
Design of Quasi-cyclic LDPC decoder

for 5G NR

A Project Report

submitted by

VIGNESH SUNDARESHA

in partial fulfilment of the requirements

for the award of the degree of

DUAL DEGREE

(BACHELOR AND MASTER OF TECHNOLOGY)

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JULY 2021

THESIS CERTIFICATE

This is to certify that the thesis titled Design of Quasi-cyclic LDPC decoder for 5G

NR, submitted by Vignesh S, to the Indian Institute of Technology, Madras, for the

award of the degree of Dual degree (B.Tech and M.Tech), is a bona fide record of the

research work done by him under our supervision. The contents of this thesis, in full or

in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Prof. Andreas Peter Burg
Research Guide
Associate Professor
STI IEL TCL
EPFL, Switzerland

Prof. Janakiraman Viraraghavan
Research Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Lausanne

Date: 28th July 2021

ACKNOWLEDGEMENTS

Firstly, I would like to express my immense gratitude to both my guides Prof. Janakira-

man Viraraghavan and Prof. Andreas Burg. I was inspired to pursue research in VLSI

thanks to the excellent teaching of Prof. Janakiraman in his Digital IC design course.

Through my interactions with him I have gained a lot knowledge and insights about the

subject. His flexibility, cooperativeness and understanding has helped me complete this

project. I would like to thank Prof. Andreas Burg for giving me an opportunity to work

in his lab and do my thesis here. His way of going about the research, solving the prob-

lems with us and using different tools to do things efficiently has helped me become a

better researcher. I would also like to thank Prof. Nitin Chandrachoodan for being in

the panel and reviewing my work. I want to thank all the professors at IIT Madras for

taking their time and teaching me the courses.

I would like to thank Hassan Harb for clarifying all my doubts and guiding me to

complete the objective of the project. Then I want to thank Karthikeyan M, my partner

in the glitch minimization project for working with me during the pandemic to finish

the project. I want to thank Ioanna Paniara and Francesca De Simone for helping me

come to Switzerland safely during the pandemic. I also want to thank Rajat, Shruthi,

my family members and all my friends for making my stay at IIT Madras a wonderful

experience. I want to extend my gratitude to Samsung IITM Pravartak Technologies

Foundation Fellowship and the EPFL Excellence in Engineering Fellowship for sup-

porting my project.

Lastly, I want to thank my father, my sister and most importantly my mother for

being there for me through the ups and downs and always supporting me.

i

ABSTRACT

KEYWORDS: 5G NR, QC-LDPC, decoding, code rates, lifting sizes

With the advent of the 5th generation New Radio (5G NR) communication standard,

we expect to see massive connectivity and high data rates being delivered on battery-

powered devices. One of the error-correction schemes used in the 5G NR standard is

the Quasi-cyclic Low-Density Parity-Check (QC-LDPC) codes, which offer good per-

formance in terms of average frame error rates. The 5G LDPC codes cover a wide range

of lifting sizes and code rates that make the design of a flexible decoder challenging.

This thesis outlines the various modifications that were executed on the reference archi-

tecture (built for the IEEE 802.11n standard) to make it functional and fully compliant

with the 5G NR standard. The modifications are performed with the consideration of

retaining the reference optimizations.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

NOTATION viii

1 INTRODUCTION 1

2 LDPC CODES AND DECODING 2

2.1 Overview of Linear codes . 2

2.2 System model . 3

2.3 LDPC codes . 4

2.3.1 Decoding - Tanner graphs 4

2.3.2 Decoding LDPC codes - Message passing 4

2.3.3 QC-LDPC codes . 5

2.4 5G QC-LDPC codes . 7

2.5 Decoding algorithms . 7

2.5.1 Sum Product algorithm (SPA) 7

2.5.2 Min Sum (MS) and Offset Min Sum (OMS) 9

2.5.3 Layered v/s flooding . 10

2.5.4 Layered - Offset Min Sum (L-OMS) 10

2.5.5 Adapted L-OMS . 11

2.6 Algorithmic optimizations . 14

2.6.1 Specific Message clipping 15

2.6.2 Early termination . 15

iii

3 EAGLE - REFERENCE DECODER ARCHITECTURE 17

3.1 Overview . 17

3.2 Decoder scheduling . 17

3.3 Control unit . 19

3.4 Clock control unit . 20

3.5 NCU pool . 20

3.5.1 MIN unit . 20

3.5.2 SEL unit . 21

3.6 Memories . 21

3.7 Cyclic shifter . 21

3.8 Interface . 22

4 5G EAGLE - PROPOSED DECODER ARCHITECTURE 23

4.1 IEEE 802.11n v/s 5G NR requirements 23

4.2 Control unit . 23

4.2.1 FSM . 24

4.2.2 Sequence memory . 25

4.3 Clock control unit . 26

4.4 NCU pool . 26

4.5 Memories . 27

4.6 Cyclic shifter . 28

4.7 Interface . 28

4.8 Summary of changes . 28

4.9 Results . 29

4.10 Further optimizations and future work 32

5 CONCLUSION 35

LIST OF TABLES

4.1 802.11n v/s 5G NR . 23

4.2 Sequence word bit-structure . 25

4.3 Command bit-structure . 26

4.4 Memory sizes . 27

4.5 Architectural modifications . 29

4.6 Throughput results . 31

v

LIST OF FIGURES

2.1 System model . 3

2.2 Example representation of Tanner graph with CNs and VNs [1] . . . 5

2.3 Base graph structures for 5G . 9

2.4 Layered OMS pictorial representation of message passing [2] 12

3.1 Top-level architecture of Eagle [2] 18

3.2 Variable node conflict resolving in scheduling [3] 18

3.3 Interface block diagram . 22

4.1 Control FSM in state diagram . 24

4.2 Control FSM out state diagram . 25

4.3 NCU pool block diagram . 27

4.4 SNR v/s FER . 30

4.5 clk cycles v/s CR and NZ . 33

4.6 clk cycles v/s Z and iters . 34

vi

ABBREVIATIONS

SISO Single Input Single Output

SNR Signal to Noise Ratio

AWGN Additive White Gaussian Noise

VLSI Very Large Scale Integration

QC-LDPC Quasi-Cyclic Low Density Parity Check

SPA Sum Product Algorithm

MS Min-Sum

OMS Offset Min-Sum

CN Check Node

VN Variable Node

MC Message clipping

NZ Non-zero

MCC Macro computation cell

CMD Command

FSM Finite State machine

5G NR 5th generation New Radio

IEEE Institute of Electrical and Electronics Engineers

LUT Look up table

FER Frame Error Rate

CR Code Rate

vii

NOTATION

P(Er) Probability of error
K Message length
N Block length
H Parity check matrix
G Generator matrix (dimension : K x N)
m Message vector (dimension : 1 x K)
c Codeword vector (dimension : 1 x N)
Hp Prototype parity check matrix
Ls Number of commands in sequence memory
BR Quantization bits for R-message
BQ Quantization bits for Q-message
BT Quantization bits for T-message
Zmax Maximum lifting size
NB,max Maximum non-zero blocks
Nnon−zero block Number of non-zero blocks
Np Maximum number of columns of Hp

Mp Maximum number of rows of Hp

Lj Intrinsic information of VN
Li→j CN update
Lj→i VN update
Z Lifting size

viii

CHAPTER 1

INTRODUCTION

In the current age where smartphones and internet are extensively used, it is imperative

that we have high data rates, massive connectivity and reliable communication. The 5th

generation New Radio (5G NR) [4] standard aims to support these features by using

Quasi-Cyclic Low Density Parity Check (QC-LDPC) codes as one of the error correc-

tion schemes. The LDPC codes [5] have good performance compared to existing linear

codes and the QC-LDPC codes [6] reduce the hardware complexity of the decoder sig-

nificantly, thus making LDPC codes realizable and one of the error correction schemes

used for 5G NR. 5G LDPC codes consist of two prototype matrices with 51 lifting sizes

varying between 2 and 384 and code rates ranging from 0.2 to 0.9. Due to the wide

range of lifting sizes and code rates, 5G LDPC codes are suitable for various applica-

tions each with its own specific requirements (small/modern/high code length and code

rates).

The state-of-the-art is rich with LDPC decoder designs ([7][2] to name a few). The

authors in [2] proposed, what is called, Eagle decoder for IEEE 802.11n and 802.16e

standards. The features in terms of power consumption and throughput rate of the Eagle

architecture makes it a suitable starting point for our work.

Following this chapter the report is organized as follows: chapter 2 introduces the

LDPC codes and some of the decoding algorithms used for them. Chapter 3 talks about

the reference architecture Eagle [2]. The steps to update the Eagle architecture to 5G

Eagle are presented in chapter 4. Finally the chapter 5 concludes the report.

CHAPTER 2

LDPC CODES AND DECODING

2.1 Overview of Linear codes

In real world both noise and fading affect the message being transmitted thus resulting

in the reception of erroneous messages. In the mid 20th century Claude Shannon came

up with a theory [8] which stated that at a given signal-to-noise ratio (SNR) it is possible

to achieve nearly error-free (probability of error : P(Er), tends to zero) transmission

up to a maximum rate which is called capacity. The talk of rate - which is the fraction

of message bits among the transmitted bits - arises due to the addition of redundant

bits that do not carry any information. These redundant bits are computed in a manner

which enables the received erroneous message to be decoded. This sort of encoding and

decoding occurs not only in communication systems, but also in various other practical

systems such as Compact Disks (CDs), data storage systems and so on.

There are various methods for channel coding [9]. However the linear block codes

are widely used for practical purposes due to minimal hardware complexity when com-

pared to other methods. They are called block codes since the redundant bits are added

to a block of message bits and not individual bits. Linear block codes mean that the

combination of two or more codewords results in a codeword belonging to the same

code. Therefore, linear block codes can be represented by a generator matrix G and

parity check matrix H. The generator matrix is used at the encoding side where the

codeword is generated (see equation 2.1a) and the parity check matrix defines the set

of constraints to be satisfied at the decoding side (see equation 2.1b). The generator

matrix is used while encoding the message while parity check matrix plays a crucial

role in decoding the message. The following equations hold,

c = Gm (2.1a)

HcT = 0 (2.1b)

Figure 2.1: System model

There are several linear block codes [1] that have been used in the past for communica-

tion systems. Repetition codes, Hamming codes [10], Bose-Chaudhuri-Hochquenghem

(BCH) codes [11], Reed-Solomon (RS) codes [12] are some of the most popular lin-

ear block codes. All these codes have been constructed with a specific structure to the

parity check matrix that allows for simpler decoding. In recent times the Low-density

parity-check codes (LDPC) has become more predominant. However, unlike the former

set of codes, the LDPC codes do not have a well-defined structure beforehand. As the

name suggests, the only constraint is that the parity check matrix should be sparse. As a

result of this lack of structure, the encoding and decoding becomes more complex. The

reason for the usage of LDPC codes, the decoding complexity and ways to overcome

this hurdle will be explained in the coming sections.

2.2 System model

The model of the employed communication system is shown in figure 2.1. Throughout

the whole process we use SISO communication system with an AWGN channel. The

input to the encoder is K uniform i.i.d. message bits. The output of the encoder - which

is the codeword - is sent as input to the modulator that performs BPSK modulation.

This is then sent across the AWGN channel and the received vector is passed through

the demodulator. The demodulator converts the received vector into LLR information,

which is then sent to the quantizer (as in equation 2.2). The quantized LLRs are sent

to the decoder which performs the decoding and gives the estimate of the bits that were

transmitted.

vn , log

(
P (cn = 0|r)
P (cn = 1|r)

)
ln = Q(vn)

(2.2)

3

2.3 LDPC codes

The LDPC codes were originally introduced by Gallager [5] in 1962. But the lack

of advancement in the VLSI technology required for the decoding prevented people

from investigating the topic further at that time. The main motivation for reusing the

LDPC codes was their capability to achieve performance very close to capacity when

compared to the prevailing linear block codes [13]. One of the justifications given for

this improved performance of LDPC codes is the “similarity" in their construction with

that of Shannon’s [8]. Shannon uses a random code while proving his theorem and

unlike the specificity in the structure of the parity check matrices as in [11] [12], the

LDPC codes have a fairly random construction for their parity check matrix [14] (we

show later how we constrain this with structure to help encoding and decoding).

2.3.1 Decoding - Tanner graphs

Apart from looking at the parity check matrix as a set of equations that need to be sat-

isfied, another intuitive way would be to look at them from a graph theory perspective.

If we consider the parity check matrix as the adjacency matrix of a graph, then the rows

become the check nodes (CN) and the columns become the variable nodes (VN). We

can do so, since there are no internal connections between the CNs or VNs thus making

this a bipartite graph. A more common terminology for this used in the field of commu-

nications is the Tanner graph. Every non-zero entry on the parity check matrix indicates

a connection/edge between the corresponding CN and VN, i.e. an ith CN is connected

to a jth VN if,

[H]i,j = 1

Thus the sum (in the binary field : GF(2)) of all the VNs connected to a particular CN

should be 0. This should hold true for all the CNs which translates to 2.1b.

2.3.2 Decoding LDPC codes - Message passing

The decoding for the LDPC codes uses the iterative decoding algorithm. This algorithm

is efficient for decoding when the connections are sparse which is the case with LDPC

codes. The iterative decoding algorithm works on the principle of message passing. As

4

Figure 2.2: Example representation of Tanner graph with CNs and VNs [1]

the name suggests, message passing means the transfer of message/information from

one node to its connected nodes. In case of communication systems this information

is passed in the form of LLRs. In the first step the decoder receives LLRs from the

channel - the prior probability information - which is sent to the VNs. The next step -

which is the iterative step - is where the LLR information from the VNs is transferred

to the CNs. Here each CN - connected to dc VNs - sends back the information to all of

its connected VNs by estimating the parity of that VN using the remaining dc− 1 VNs.

Each CN performs this for all the VNs connected to it. After this, the VNs update their

values based on the parity information they receive from all their connected CNs. These

two updates keep on going until a valid codeword is obtained, or maximum number of

iterations is reached. Let the length of a cycle in the Tanner graph be indicated as the

number of passed edges starting from a node and coming back to the same node. It is

observevd that the short cycles in the graph negatively affect the performance.

2.3.3 QC-LDPC codes

Though the performance of LDPC codes are very good, the encoding and decoding be-

comes extremely difficult due to lack of structure. Thus, the goal is to strike a balance

by not affecting the performance significantly, but still giving the parity check matrix

some structure that will reduce the encoder and decoder complexities. Thus effectively,

we try to make the code pseudorandom. The cyclic codes - in which any codeword

belonging to the code can be circularly shifted to obtain another word that belongs to

the same code - have simpler encoder-decoder hardware compared to most other linear

codes. Their encoding and decoding can implemented using feedback shift registers.

But they provide lot of structure to the parity-check matrix and remove the randomness

5

needed. Thus we use Quasi-Cyclic (QC) codes, which do not significantly harm the per-

formance [14], but aid enormously by reducing the hardware complexity and allowing

for parallelism. The parity check matrix for these QC-LDPC codes can be represented

compactly using prototype matrix. This prototype matrix Hp (as shown below) is of

size Mp × Np contains entries (called shift amounts) whose value ranges from 0 to Z

along with “–", where Z is the lifting size.

Hp =

307 19 50 −

76 − 76 −
...

...
...

− 135 − 0

Mp×Np

Each entry in the prototype matrix is replaced by a Z ×Z cyclic shift matrix Pc, where

c (> 0) represents the value at that particular entry in Hp. This cyclic shift matrix is

defined as follows,

Pc =
c∏

i=1

P1 (2.3a)

P0 = IZ×Z (2.3b)

P− = 0Z×Z (2.3c)

[P1]i,j =

1, j = i (mod Z) + 1

0 else
(2.3d)

This choice of cyclic shift matrix has sparsity same as the identity matrix thus making

the overall blown-up parity check matrix low density. However, the code would not be a

LDPC code if the cyclic shift matrix chosen was denser. Each block in the parity check

matrix corresponding to each entry in the prototype matrix is just a cyclic shift of the

identity matrix as it can be seen in equation 2.4a. Hence we call these codes as ‘Quasi’

cyclic LDPC codes.

6

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

×

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 =

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 (2.4a)

P1 ×P1 = P2 (2.4b)

2.4 5G QC-LDPC codes

In case of 5G LDPC codes, there are two main divisions for the prototype matrices

which are called Base Graphs (BG) 1 and 2. The BG 1 is of size 46×68 while the BG 2

is of size 42× 52. These are the maximum sizes of the base graphs which corresponds

to code rates of 0.33 and 0.2 respectively. However, it is possible to shorten or puncture

the code and thus obtain different code rates. There are 51 possible lifting sizes ranging

from 2 to 384. The structure of base graphs 1 and 2 are shown in figure 2.3.

2.5 Decoding algorithms

There are several algorithms over time which are variants of the iterative decoding al-

gorithm. The goal of the successive algorithms have been to reduce the hardware com-

plexity by trading off some performance (FER v/s SNR).

2.5.1 Sum Product algorithm (SPA)

The most basic form of the iterative decoding algorithm that can be used for the LDPC

decoding is the Sum-Product algorithm (SPA). The hardware complexity for SPA is

high. Below (algorithm 1) we show only an algorithmic perspective of the SPA

The notations for Lj , Li→j and Lj→i are the input LLRs, the CN update from CN i to

VN j and VN update from VN j to CN i respectively (see chapter notation).

7

Algorithm 1: Sum-product algorithm [1]
1 Initialization :
2 The input LLRs are computed using the received vector from the channel

and is sent to all the VNs
3 Lj→i = Lj

4 CN update :
5 The message going from ith CN to jth VN is computed by estimating the

parity of the jth VN using the information from the other VNs connected
to the ith CN

6 Li→j = 2 tanh−1

 ∏
j′∈N(i)−{j}

tanh
(
1

2
Lj′→i

)
7 VN update :
8 The message going from jth VN to ith CN is computed
9 Lj→i = Lj +

∑
i′∈N(j)−{i}

Li′→j

10 LLR total :
11 Compute the total LLR that is used to determine the codeword
12 Ltotal

j = Lj +
∑

i∈N(j)

Li→j

13 Decode and stop :
14 Using the BPSK criteria we convert the LLR into corresponding bits and

obtain the word. We then check if the word belongs to the code
15 HcT = 0

8

(a) base graph 1

(b) base graph 2

Figure 2.3: Base graph structures for 5G

2.5.2 Min Sum (MS) and Offset Min Sum (OMS)

As it can be seen in algorithm 1 : line 6, the functions involved increase the hardware

complexity significantly. Thus the goal is to obtain similar functionality which can min-

imize the hardware, but does not degrade the performance significantly. The expression

in line 6 of 1 can be separated into sign and magnitude, and the magnitude component

can be replaced with a simple minimum function of the LLRs of all the connected VNs.

The below expression is the min-sum approximation of the SPA.

Li→j =
∏

j′∈N(i)−{j}

αj′i. min
j′∈N(i)−{j}

βj′i

αji = sign(Lj→i)

βji = |Lj→i|

(2.5)

This is very simple in terms of hardware complexity, but it sacrifices the perfor-

mance considerably. Thus we use a modified version of this min-sum algorithm called

the offset min-sum (OMS). The equation 2.5 is modified as,

9

Li→j =
∏

j′∈N(i)−{j}

αj′i.max{ min
j′∈N(i)−{j}

βj′i − coffset, 0} (2.6)

The CN update for the MS has a very optimistic extrinsic information [1] since we are

replacing the entire product term by the maximum term (negative of minimum). Thus

OMS compensates for this by subtracting a fixed offset to give better performance.

2.5.3 Layered v/s flooding

The algorithm mentioned in 1 is what is called the flooding schedule. To motivate the

use of the layered scheduling we look more closely at the flooding operation. In case

of the flooding algorithm, all the VNs send their LLRs to all the CNs at once. The CNs

compute the required CN updates and send them back to the VNs all at once. But it is

not necessary that all these nodes send their information simultaneously.

This is where the layered scheduling comes in, where initially, all the VNs con-

nected to the first CN send their information to that. Once the first CN computes its

updates, it sends back the information to its connected VNs. After this, the next set of

VNs connected to the second CN send their information to that and the process goes

on until the last CN sends its information back to the VNs. At this point, one iteration

is completed (see figure 2.4). Since the later CNs receive information which are well-

updated, it is natural that the layered schedule takes lesser iterations to complete the

decoding process. However, it should be noted that each iteration itself, takes signifi-

cantly extra time compared to the flooding schedule. This trade-off provides a designer

to choose the schedule based on his/her application.

2.5.4 Layered - Offset Min Sum (L-OMS)

The layered-OMS algorithm [15] has good performance and fast convergence along

with being hardware efficient. The algorithm 2 is described below.

10

Algorithm 2: Layered-OMS [15]

1 Initialization :

2 R-messages are initialized to 0, Q-messages are initialized to input LLR

from the channel

3 loop iters : 1, .., I

4 loop layers : 1, ..,Mp

5 Initialize min 1 & 2, index and sign

6 MIN phase :

7 Read LLRs from Q-mem and perform shift

8 compute temp vector

9 compute sign, 1st, 2nd min and index from temp vector

10 SEL phase :

11 Read LLRs from Q-mem and perform shift

12 compute temp vector

13 Obtain data (sign,mins,index) from pipeline registers

14 compute R-message w/ MC

15 compute Q-message w/ MC

16 Shift the Q-messages back using cyclic shifter

2.5.5 Adapted L-OMS

Though the layered-OMS is good, it is not fully efficient when implemented on hard-

ware. For instance, the L-OMS in algorithm 2 needs three cyclic shifters which can be

easily reduced. The temporary vector is being computed twice. It requires a double

clocking systems to read from the Q and R memories. These limitations can be mini-

mized by simple algorithmic and architectural changes which are mentioned below in

the algorithm 3.

11

Figure 2.4: Layered OMS pictorial representation of message passing [2]

12

Algorithm 3: Adapted layered-OMS [2]

1 Initialization :

2 R-messages are initialized to 0, Q-messages are initialized to input LLR

from the channel : r0m,n = 0, qn = ln

3 loop iters : 1, .., I

4 loop layers : 1, ..,Mp

5 Initialize min 1 & 2, index and sign : m1,m2 ←∞. IZ×1, s← IZ×1

6 MIN phase :

7 loop VN n : 1, .., Np and 6= ”− ”

8 compute delta shift : c∆ = [Z − cn + [Hp]m,n](mod Z)

9 compute temp vector & store in T-mem : tn ← Pc∆qn − ri−1
m,n

10 compute 1st min and index : [m1,x,v]← min{m1, |tn|}

11 compute 2nd min : m2 ← min{m2,x}

12 compute sign : s← s.sign(tn)

13 SEL phase :

14 loop VN n : 1, .., Np and 6= ”− ”

15 compute abs min : m← sel(m1,m2,v, n)

16 compute R-message : ri−1
m,n ← s.sign(tn).max{m− β}

17 compute Q-message qn ← (tn + rim,n), cn = [Hp]m,n

18 loop VN n : 1, .., Np and 6= ”− ”

19 c∆ = [Z − cn](mod Z),qout ← Pc∆qn

The above algorithm is what is used in the reference architecture [2]. The algorithm

can be explained as follows,

Initialization

The R-messages are all initialised to 0 and the Q-messages are all initialised to the

input LLR. The minimums 1 and 2 along with sign are initialized to infinity and ones

respectively (algorithm 3 lines 1 to 5). The operations are looped across the number of

iterations and the number of layers. When considering the loops over the columns of

13

the prototype matrix, we only consider the "non-zero blocks (NZ)", i.e. those which do

not have a "–" in the matrix entry as indicated in line 7 of algorithm 3.

MIN phase

In the MIN phase initially the delta shift is computed (algorithm 3 line 8), by which the

cyclic shifter has to rotate the Q-messages. After the obtaining the shifted Q-messages,

the R-messages are subtracted to obtain the temporary vector which is stored in the

T-memory (algorithm 3 line 9). As it can be seen in lines 10-12, the first and second

minimums are computed iteratively for each layer along with the first minimum in-

dex. Then the product of all the signs is taken in a particular layer is computed. All

these computations (first and second minimum, index and signs) are stored in pipeline

registers so that they can be used later in the SEL phase.

SEL phase

In the SEL phase, the absolute minimum values for all the VNs are computed using the

"sel" function. The sel function assigns the first minimum for the all VNs except that

VN which was the first minimum, and replaces that with the second minimum (line 15).

After this we compute the R-messages and Q-messages (lines 16,17). While computing

the R-messages (CN updates) we subtract the fixed offset value β (hyperparameter) and

multiply the sign to obtain the extrinsic information to be sent to each VN. While com-

puting the Q-message, we just add the extrinsic information from the VN and CN to

obtain the total LLR. The circular-shift value is also updated. In the end, after process-

ing all the layers and iterations, we undo the cyclic shift so that the Q-messages return

to their original value.

2.6 Algorithmic optimizations

A few algorithmic optimizations are done in [2] to improve the throughput and reduce

the hardware complexity.

14

2.6.1 Specific Message clipping

Reducing the number of bits used to represent the LLRs at the Q , R and T memories as

well as the inputs is necessary to reduce the hardware complexity. This done by using

the message clipping operation. The idea behind this operation is, since the LLRs keep

getting added to the Q-memory, it grows larger and larger. As a result we need more

bits to represent it. In case we just reduce the number of bits used in the representation

of Q-messages, it will significantly impact the performance. So we try to control the

maximum value of the R-messages, and in turn control the range of the Q-message

value. The message clipping operation is shown below,

clip(r, t) = max{min{r, Qmax − t},−Qmax − t} (2.7)

where Qmax = 2BQ−1− 1 and BQ represents the bit width of the Q-messages. Thus we

can use this message clipping as trade-off to reducing the memory consumption with

error-rate performance

2.6.2 Early termination

Early termination is an optimization that is incorporated to save power and increase the

throughput of the decoder. The main idea of early termination is to reduce the average

number of iterations that is performed to decode the codewords. There are two primary

reasons why we would want to do early termination. Firstly, when the SNR is high, it

takes very few iterations for the decoder to reach the correct codeword, so we do not

want to waste the remaining iterations (each iteration corresponds to at least 88 clock

cycles for 802.11n and 316 clock cycles for 5G, when implemented at the minimum

code rate) just performing redundant computations. It not only reduces the through-

put but also wastes power. Second case is when the SNR is very low, then we know

that even if we take the maximum iterations (15 in our case) we are not able to reach

the desired codeword. So we decide to discard this frame and go to the next frame.

The early termination method for high SNR is straightforward, we just use the equation

2.1b and implement it efficiently on the hardware. However, the low SNR termination is

the tricky part, and it is best use a single method that works for both these SNR regimes.

15

This is what is done in the reference architecture [2]. They employ a statistical

metric using which they decide both the high and low SNR early termination. To give

a broad idea of this metric, they observe the LLR values of the Q-messages with the

increasing iterations and it is seen that in case of high SNR, these values separate into

peaks very early, and in case of low SNR, there is almost no separation. The early

termination technique is something that is not incorporated in the current version of the

5G Eagle decoder since we are looking for hardware efficient implementations for the

same. Thus the derivation of the algorithm for early termination used in [2] is beyond

the scope of this report.

16

CHAPTER 3

EAGLE - REFERENCE DECODER ARCHITECTURE

3.1 Overview

In this chapter we talk about the reference architecture [2], [16] along with the hardware

optimizations that were implemented to improve it. The reference architecture - Eagle -

was designed to work for both the IEEE 802.11n and 802.16e standards. This was also

an improvement done to an older reference design [7] which was slower and lacking

power efficiency. The main units of the decoder include the control unit, Q-memory,

cyclic shifter and the NCU pool as seen in figure 3.1. These units are explained in more

detail in the subsequent sections.

3.2 Decoder scheduling

The decoder is designed in such a way that the Z NCUs can function in parallel to de-

liver the output. Thus the blocks are processed in groups of Z as seen in the prototype

matrix. The MIN and SEL units are decoupled by pipelining and hence can process in

parallel. While the MIN unit performs the computations for the (m + 1)th layer, the

SEL unit performs the computation for the mth layer. Since we are doing the layered

scheduling, we need the previous layer’s LLR updates before computing the MIN com-

putation of the current layer. Thus, in case of VN conflicts as shown in figure 3.2, the

blocks are reordered so that the SEL unit performs the computation on these conflicted

VNs first and then the MIN unit can use those updated LLRs. In case the conflicts are

not resolvable by reordering then the MIN unit is stalled until all the conflicted VNs are

updated by the SEL unit.

Assuming there are no stalled cycles, i.e. all the conflicts are resolved by reordering,

then we get the following expression for the number of cycles needed to decode a code-

word,

clk cycles = Niters ×Nnon−zero blocks (3.1)

Figure 3.1: Top-level architecture of Eagle [2]

Figure 3.2: Variable node conflict resolving in scheduling [3]

18

where, Niters stands for the number of iterations on average the decoder needs to com-

plete the decoding process, Nnon−zero blocks stands for the number of non-zero blocks in

the prototype matrix. This can be seen from the figure 2.4 where we first go through all

the VNs connected to the first CN, and then to the second CN and so on. As a result,

the number of times we will be processing the Z NCUs are equal to the number of non-

zero blocks in the prototype matrix. Going through all these non-zero blocks needs to

performed for many iterations until the expected codeword is obtained.

However, the expression 3.1 ignores the stalling effects. Another thing to keep in mind

is the effect pipelining, which also requires some additional cycles to flush out the ex-

isting outputs. Taking these effects into account the expression becomes,

clk cycles = Niters × (Nnon−zero blocks +Nstall) +Npipeline (3.2)

where, Nstall indicates the number of stalling cycles andNpipeline indicates the num-

ber of cycles needed to flush out the pipeline. The architecture is extensively pipelined,

i.e. between any two units in figure 3.1 there is pipelining, thus helping all the oper-

ations to function in parallel. This pipelining can cause latency and thus complicate

the data dependency of the VNs. This also needs to be considered while resolving the

clashes during scheduling.

3.3 Control unit

The control unit is the brain of the decoder as it sends all the necessary commands to

synchronize different units to work as expected. The control unit consists of the se-

quence memory which contains the order in which MIN and SEL units have to process

the VN blocks. These sequence words which are stored in the sequence memory con-

tain the shift amounts in the prototype matrix along with the VN (Q-memory address)

and CN (R-memory address) on which the operation needs to be performed. The table

4.2 shows the attributes and the number of bits used for each of them in the sequence

command. The sequence memory has 128 words, to incorporate the 88 non-zero blocks

plus any stalling.

19

The prototype matrix Hp is converted into the set of commands using MATLAB -

where all the scheduling and resolving of clashes is taken care of. The number of com-

mands Ls - which is equivalent to Nnon−zero +Nstall - determines the throughput of the

decoder. Thus lower the value of Ls higher the throughput. The sequence commands

are stored only for one iteration, so the same set of commands are repeated for each iter-

ation. These sequence commands are loaded into the memory during the configuration

phase.

3.4 Clock control unit

It gets the main clock input and enable signals from the control unit, and using this, it

generates the gated clocks. These gated clocks are used to control different groups of

NCUs and memories, and based on the lifting size it can either enable or disable the

groups.

3.5 NCU pool

The NCU pool is the heart of the decoder where all the computations that are necessary

to do message passing happen. The entire NCU pool is divided into 3 groups of 27

NCU units. This is done so that when the lifting size is not maximum, some of the

groups can be clock gated, thus saving power. Each of these 3 groups contain 3 Macro

computation units (MCCs) each having 9 NCUs, a T-memory and a R-memory unit.

So in total there are 9 such MCCs. Each NCU contains a MIN unit and a SEL unit to

perform the MIN and SEL phase as described in the algorithm 3

3.5.1 MIN unit

The input to the MIN unit is the circularly shifted Z LLR values from the cyclic shifter.

In the MIN unit we perform the MIN phase operations (lines 9-12 in algorithm 3). We

first compute the temporary vector, and then use that to iteratively compute the first and

second minimum along with the indices. We then move on to compute the sign of the

entire layer. The temporary vector is stored in the T-memory while the other values are

20

stored in the pipeline registers - all of which are passed onto the SEL unit.

3.5.2 SEL unit

The SEL unit performs the operations in the SEL phase (lines 15-17 in algorithm 3).

The absolute minimums are assigned to all the VNs and then the R-message is computed

by subtracting the offset. This is then written into R-memory. But before doing so, the

Q-message is also computed.

3.6 Memories

All the memories have been instantiated with a memory wrapper. The sizes of these

memories and the their quantization is shown in table 4.4. To improve the throughput

(by reducing the Ls) we do memory forwarding for Q and T memories. In case of the

forwarding for Q-memory, the output of the SEL unit is directly fed to the cyclic shifter,

thus saving the cycles of writing and reading into Q-memory. This is done, only if the

Q-memory read address is equal to the Q-memory write address in the same cycle. In

case of T-memory, the output of the MIN unit is directly fed to the input of the SEL unit

(instead of writing and reading into T-memory), thus saving cycles. At the beginning of

each decoding phase, it is important to set the R-memory to zero.

3.7 Cyclic shifter

The cyclic shifter circularly shifts the Z LLRs from the Q-memory by the amount spec-

ified in the shift memory. The Eagle architecture uses only one cyclic shifter that per-

forms the delta shift,i.e. instead of circularly shifting the LLRs by the absolute value

in the prototype matrix, it shifts by the difference in shift value from the previous non-

zero block. The expression for this is seen in line 9 of algorithm 3. Along with the

shift memory there is a shift buffer and this loads the shift amount value into the shift

memory only after the Q-messages are updated.

21

3.8 Interface

The interface unit designed here acts as mediator between the chip and the top level

decoder. It mainly separates the combined input sent from the chip input pads into LLR

information and CMD information so that this can be sent separately to the Q-memory

and control unit of the decoder. It does this by using 2 Finite State Machines (FSMs).

These FSMs, apart from including the loading of input and unloading of the output, also

include request and acknowledgement handshakes. These handshakes are done with the

chip and the top decoder module.

Figure 3.3: Interface block diagram

22

CHAPTER 4

5G EAGLE - PROPOSED DECODER

ARCHITECTURE

4.1 IEEE 802.11n v/s 5G NR requirements

Attributes IEEE 802.11n 5G NR
Base-graphs 1 2

Lifting sizes (Z) 3 51
Zmax 81 384
Zmin 27 2

Code rates 4 more than 50
Columns of Hp fixed - 24 variable

Maximum columns 24 68
Maximum rows 12 46

Table 4.1: 802.11n v/s 5G NR

The reference architecture [2] is used for the IEEE 802.11n standard. As we saw

this architecture was optimized very well for power, area and throughput. Thus it would

be very convenient if we can retain these optimizations and make the decoder functional

for 5G NR. However, as we can see in the table 4.1, there are several differences be-

tween the 802.11n standard and 5G NR that prevent us from directly using the Eagle [2]

architecture. In the next few sections we explain the major architectural changes that

were performed in order to adapt the Eagle architecture to 5G NR.

4.2 Control unit

The main functioning of the control unit of the 5G Eagle is similar to the Eagle [2].

However, a few modifications have been done to accommodate for all the large number

of lifting sizes and code rates for 5G.

It should be noted that, unlike the 802.11n standard we cannot divide the NCU/memory

groups into the exact lifting size values since there is no progression/sequence in the

Load LLR Idle

New cmd Config

a

b

c

d

e f

g

Figure 4.1: Control FSM in state diagram

lifting size values for 5G. Thus if we want to retain the granularity feature of the

NCU/memories, we need to group the bunch of lifting sizes (we receive the exact value

of the lifting size as input) into bins of 24 so that these groups can be clock gated. The

justification for using 16 groups of 24 units is explained in a later section. This group-

ing is done in the control unit, which sends the enable signals to the clock control unit

that generates these gated clocks. There is a clock look up table that is used to map

the lifting size to the number of clocks that needs to be clock gated. Using this, the

enable signals are sent to the clock control unit. For example all the lifting sizes below

24 : 2,3,..22,24 - come under one group, while all lifting sizes below 48 and above 24 :

26,...48 - come under another group and so on.

4.2.1 FSM

The control unit has three FSMs - FSM in, FSM control and FSM out - that help syn-

chronize the functioning of the decoder. The functioning of the FSM control is un-

changed compared to the Eagle architecture. However, the FSMs in and out have to

modified to adapt multiple code rates for 5G. This is because these i/o FSMs depend on

the value of the number of columns to decide how long they want to stay in the “load

LLR" state or the “o/p LLR" state. To provide this value to the i/o FSMs, we use CMD

register which stores the number of columns of the prototype matrix (which we obtain

as input).

24

Idle Prepare o/p

o/p LLR

a

b

c

de

f

Figure 4.2: Control FSM out state diagram

4.2.2 Sequence memory

The function of the sequence memory is same as in the case of [2]. With the increase

in the maximum number of non-zero blocks (from 88 to 316) in the prototype matrix,

it is necessary to increase the sequence memory size to 512 words. The changes in the

sequence word and command word is as shown in tables 4.2 and 4.3 respectively. The

address lines for the sequence memory are also changed from 7 bits to 9 bits.

Attributes Reference
architecture (bits)

Proposed
architecture (bits)

Q-mem address 5 7
T-mem address 5 7

R-mem read address 7 9
R-mem write address 7 9

Shift amount 7 9
Min-Sel stall 2 2

row-iter-seq end 3 3
Last Q block 1 1

Total bits 37 47

Table 4.2: Sequence word bit-structure

25

Attributes Reference
architecture (bits)

Proposed
architecture (bits)

Standard 1 1 (unused)
Mode (Z) 2 6
Code rate 2 2 (unused)

No. of columns 0 7
Code attribute 1 1 (unused)

Max-iters 4 4
Early termination (high-low) 2 2
Output mode (bits/LLR) end 1 1

Operation 1 1
Beta 3 3

ETMaxWinSize 5 5
ETMaxNoProgrInRow 5 5

Total bits 27 38 (34)

Table 4.3: Command bit-structure

4.3 Clock control unit

As mentioned before this unit generates the gated clocks using the input clock and

enable signals form control unit. We have 16 clocks, that are going to be gated based

on the enable signals from control unit.

4.4 NCU pool

The NCU pool is divided into 16 groups of 24 NCUs. Each group has 3 MCCs each

containing 8 NCUs, a T-memory block and R-memory block. The architecture and

functionality of the internal MIN and SEL units remain unchanged. The reasoning

behind this split of NCU groups is, firstly, 16 times 24 is 384 which is equal to the

maximum lifting size in 5G. We do not want to split the groups into very small blocks

of NCUs (let us say 196 groups of 2) since the memory overhead will be too much.

Thus to find a balance and also retain the granularity feature (thus retaining the clock

gating feature) we chose 16 groups of 24 units. See figure 4.3 for the block diagram of

the NCU.

26

Figure 4.3: NCU pool block diagram

4.5 Memories

The functionality of the memory architecture (along with the forwarding) remains same

as Eagle. With the change in the maximum number of columns in the prototype matrix,

the maximum number of non-zero blocks and the maximum lifting size, the sizes of the

memories have to be changed. This is depicted in table 4.4. It should also be noted that

the number of quantization bits used for Q and T memories have been increased from

5 to 7. This was done based on the simulation results, where it was observed that the

7-bit quantization are much closer to the floating point performance as compared to the

5-bit quantization.

Memory units Expressions Reference
architecture (bits)

Proposed
architecture (bits)

R-memory BRNB,maxZmax 5×88× 81 5 ×316× 384
T-memory BQNPZmax 5×24× 81 7×68× 384
Q-memory BTNPZmax 5×24× 81 7×68× 384

Total bits (BQ +BT)NPZmax

+ BRNB,maxZmax
55080 972288

Table 4.4: Memory sizes

27

4.6 Cyclic shifter

The functioning of the cyclic shifter also remains similar to the Eagle architecture. The

major changes here are, first, the cyclic shifter units are divided into 16 groups of 24 -

similar to the NCU blocks. Second, the address (from 2 to 6) and data lines (from 7 to

9) for the shift memory have to updated to accommodate the maximum shift that is 384.

4.7 Interface

Excluding the control unit, interface is the next unit which undergoes the maximum

number of changes. The architecture needs to be changed to accommodate both the

increased lifting sizes and code rates.

In case of adapting it for the code rates, similar to the control unit, even the interface

has FSM in and FSM out (but with a lot more states to check for the requests and

acknowledgements). Here as well, in the acknowledgement state and while waiting for

the top module, it needs the actual value of the number of columns. This value is stored

in the command buffer and is assigned to an internal signal in the interface that is used

by the FSM.

To accommodate all the 51 lifting sizes, the interface unit needs to be modified. This is

mainly because the it is necessary to map the mode (lifting size) to the LLR input and

output handshakes. To perform this, we use look up tables. These look up tables list

out all the options which are a function of the Z value and number of input and output

pads. Apart from the cyclic shifter unit, this is the only unit which requires the exact

value of the lifting size (the group information is not enough). Thus we modify the look

up tables to accommodate for the 5G lifting sizes.

4.8 Summary of changes

Listed below is the summary of changes that were done to adapt the Eagle [2] to 5G

NR. In case of increase in number of words in the memory, the address bus size also

changes. This information is not included in the table.

∗ in the table indicates that the power of 2 is considered for the number of words in

28

Units Reference architecture Proposed architecture
NCU/memory division 3 groups of 27 16 groups of 24
Quantization of input LLR,

Q & T memories 5 bits 7 bits

Q & T memory sizes 24 × 81 words 68 × 384 words
R-memory size 88 words 316 words

Sequence memory size 128 words 512∗ words

CR flexibility Needs only CR value Needs the value of no. of rows
and columns of H

CMD and SEQ length 27 and 37 bits 34 and 47 bits
Interface LUTs for 3 Zs LUTs for 51 Zs

Table 4.5: Architectural modifications

the sequence memory. However, the maximum number of words needed for the biggest

5G BG is only 347.

4.9 Results

Coming to results, the 5G Eagle architecture was simulated on ModelSim SE-64 10.7c,

with 10ns as clock period for the simulation. The scheduling was performed on MAT-

LAB and the required sequence of commands was generated and stored in a file named

stimuliHL.asc. The stimuliHL.asc file also contained the configuration in which the

decoder has to operate (all the CMD word information 4.3 - lifting size, number of

columns, number of codewords, output mode, operation mode etc.) and the input LLRs

that the decoder receives from the channel (all generated using MATLAB). It also needs

an expresp.asc file that contains the expected response (from MATLAB) after decoding

is complete (which are in terms of bits).

The expected response generated from MATLAB matched the VHDL/RTL code re-

sponse upon simulating for various lifting sizes, code rates and iterations. The perfor-

mance curve is shown in figure 4.4,

Apart from the performance results we also obtain throughput results which we esti-

mate by calculating the number of clock cycles needed by the decoder to complete the

decoding for a single codeword. This will also give us the average number of clock cy-

cles needed for any codeword with the same configuration since we are not using early

termination, and all decoding is performed till the maximum number of iterations. The

results are shown in table 4.6.

29

(a) K = 21, CR = 0.33

(b) K = 22, CR = 0.67

Figure 4.4: SNR v/s FER

30

Z CR Niters Nnon−zero blocks
clk cycles

(simulation)
clk cycles

(analytical) % extra cycles

384 0.33 15 316 5230 4740 10.34
288 0.33 15 316 5230 4740 10.34
176 0.33 15 316 5230 4740 10.34
60 0.33 15 316 5230 4740 10.34
4 0.33 15 316 5230 4740 10.34

352 0.2 15 197 3284 2955 11.13
256 0.2 15 197 3284 2955 11.13
112 0.2 15 197 3284 2955 11.13
28 0.2 15 197 3284 2955 11.13
5 0.2 15 197 3284 2955 11.13
5 0.33 15 316 5230 4740 10.34
5 0.4 15 265 4405 3975 10.81
5 0.5 15 210 3350 3150 12.70
5 0.55 15 188 3205 2820 13.65
5 0.67 15 144 2515 2160 16.43
5 0.55 13 188 2781 2444 13.79
5 0.55 11 188 2357 2068 13.94
5 0.55 9 188 1933 1692 14.24
5 0.55 7 188 1509 1316 14.67

Table 4.6: Throughput results

The equation 4.9 is again written below

clk cycles = Niters × (Nnon−zero blocks +Nstall) +Npipeline

It can be seen from the plots that the number clock cycles depicts the equation 4.9 very

closely. The throughput increases (clk cycles reduces) with increase in code rate due to

the reduction in the number of non-zero blocks as the parity-check matrix shrinks (see

figure 4.5). Due to parallel processing of the Z NCUs, the number of clock cycles re-

main constant and independent of lifting size. The throughput however, decreases with

increase in number of maximum iterations (see figure 4.6).

The percentage of extra cycles needed compared to the analytical method is seen in

the table 4.6. For changing lifting sizes, the percentage of extra cycles remains the same

for reasons explained above. The percentage of extra cycles increases with the increase

in code rate. This is mainly because, the number of stalling cycles will be higher for the

initial layers of the base graphs (see figure 2.3) due to the higher density of the non-zero

blocks in the initial layers. As a result of this, as the code rate increases, even though

31

the number of non-zero blocks reduces, the percentage reduction in the stalling cycles is

not much. Thus we see the increasing trend of percentage extra cycles. The increase in

the percentage extra cycles with decrease in number of iterations - though minimal - is

due to constant amount of cycles needed flushing, even though the number of iterations

reduces.

4.10 Further optimizations and future work

We now have a functional QC-LDPC decoder for 5G, which includes most of the op-

timizations that were done in the Eagle [2] architecture. However, 5G NR standard is

unique in its own way and poses several problems along with options to optimize fur-

ther. Some of the optimizations that we will be performing in the near future are listed

below.

As seen in the figure 4.5 and 4.6 the simulation throughput results are a little far from the

analytical results from equation 3.1. We can bring these curves closer by modifying the

scheduling and reducing the number of stalling cycles. One of the ways to achieve this

is to reorder the way in which we process the layers so that we face minimum clashes,

which can resolved further by reordering the VN processing. We can replace the cyclic

shifter with a more efficient architecture that can enable higher degree of parallelism.

As mentioned above, the current 5G Eagle setup does not incorporate the early termi-

nation scheme since it requires the value of the number of rows in the prototype matrix.

This can range between 0 and 46 and this will need us to have 6 bits dedicated for that.

Thus, we want to find ways to perform the early termination in more hardware-efficient

manner. Lastly, we also want to find a way to reduce the number of NCUs and still

maintain the same throughput.

32

(a) clk cycles v/s CR

(b) clk cycles v/s NZ

Figure 4.5: clk cycles v/s CR and NZ

33

(a) clk cycles v/s Z

(b) clk cycles v/s iters

Figure 4.6: clk cycles v/s Z and iters

34

CHAPTER 5

CONCLUSION

The reference architecture Eagle [2] - with all its optimizations - provides a good start-

ing point to develop the QC-LDPC decoder for 5G. However, due to the sporadic and

large number of lifting sizes and code rates, we had to modify most of the units -mainly

to accommodate the maximum lifting size, maximum number of non-zero blocks and

maximum number of columns in Hp - to make it functional for 5G. We were able retain

most of the optimizations performed, mainly the clock gating of groups to save power.

The quantization of Q and T memories had to be increased by 2 bits to ensure good per-

formance. The RTL code outputs agree with MATLAB version, and the performance is

as expected. The throughput results look promising; however several optimizations can

be further done to improve the efficiency in terms of power, area and throughput which

were stated above.

REFERENCES

[1] William Ryan and Shu Lin. Channel codes: classical and modern. Cambridge
university press, 2009.

[2] Christoph Roth. Design and vlsi implementation of a low-power quasi-cyclic ldpc
decoder. Integrated Systems Laboratory, ETH Zurich, 2009.

[3] Chieh-Yu Lin, Li-Wei Liu, Yen-Chin Liao, and Hsie-Chia Chang. A 33.2 gbps/iter.
reconfigurable ldpc decoder fully compliant with 5g nr applications. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE,
2021.

[4] Jung Hyun Bae, Ahmed Abotabl, Hsien-Ping Lin, Kee-Bong Song, and Jungwon
Lee. An overview of channel coding for 5g nr cellular communications. APSIPA
Transactions on Signal and Information Processing, 8, 2019.

[5] Robert Gallager. Low-density parity-check codes. IRE Transactions on informa-
tion theory, 8(1):21–28, 1962.

[6] Marc PC Fossorier. Quasicyclic low-density parity-check codes from circulant
permutation matrices. IEEE transactions on information theory, 50(8):1788–
1793, 2004.

[7] Christoph Studer, N Preyss, C Roth, and A Burg. Configurable high-throughput
decoder architecture for quasi-cyclic ldpc codes. In 2008 42nd Asilomar Confer-
ence on Signals, Systems and Computers, pages 1137–1142. IEEE, 2008.

[8] Claude Elwood Shannon. A mathematical theory of communication. The Bell
system technical journal, 27(3):379–423, 1948.

[9] Wikipedia contributors. Wikipedia error detection schemes. https://
en.wikipedia.org/wiki/Error_detection_and_correction#
Error_detection_schemes. Accessed: 2021-07-19.

[10] Richard W Hamming. Error detecting and error correcting codes. The Bell system
technical journal, 29(2):147–160, 1950.

[11] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error correcting
binary group codes. Information and control, 3(1):68–79, 1960.

[12] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics, 8(2):300–304,
1960.

[13] Jonghong Kim, Junho Cho, and Wonyong Sung. Error performance and decoder
hardware comparison between eg-ldpc and bch codes. In 2010 IEEE Workshop
On Signal Processing Systems, pages 392–397. IEEE, 2010.

36

https://en.wikipedia.org/wiki/Error_detection_and_correction#Error_detection_schemes
https://en.wikipedia.org/wiki/Error_detection_and_correction#Error_detection_schemes
https://en.wikipedia.org/wiki/Error_detection_and_correction#Error_detection_schemes

[14] Thomas J Richardson and Rüdiger L Urbanke. The capacity of low-density parity-
check codes under message-passing decoding. IEEE Transactions on information
theory, 47(2):599–618, 2001.

[15] Eran Sharon, Simon Litsyn, and Jacob Goldberger. An efficient message-passing
schedule for ldpc decoding. In 2004 23rd IEEE Convention of Electrical and
Electronics Engineers in Israel, pages 223–226. IEEE, 2004.

[16] Christoph Roth, Pascal Meinerzhagen, Christoph Studer, and Andreas Burg. A
15.8 pj/bit/iter quasi-cyclic ldpc decoder for ieee 802.11 n in 90 nm cmos. In
2010 IEEE Asian Solid-State Circuits Conference, pages 1–4. IEEE, 2010.

37

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	LDPC CODES AND DECODING
	Overview of Linear codes
	System model
	LDPC codes
	Decoding - Tanner graphs
	Decoding LDPC codes - Message passing
	QC-LDPC codes

	5G QC-LDPC codes
	Decoding algorithms
	Sum Product algorithm (SPA)
	Min Sum (MS) and Offset Min Sum (OMS)
	Layered v/s flooding
	Layered - Offset Min Sum (L-OMS)
	Adapted L-OMS

	Algorithmic optimizations
	Specific Message clipping
	Early termination

	EAGLE - REFERENCE DECODER ARCHITECTURE
	Overview
	Decoder scheduling
	Control unit
	Clock control unit
	NCU pool
	MIN unit
	SEL unit

	Memories
	Cyclic shifter
	Interface

	5G EAGLE - PROPOSED DECODER ARCHITECTURE
	IEEE 802.11n v/s 5G NR requirements
	Control unit
	FSM
	Sequence memory

	Clock control unit
	NCU pool
	Memories
	Cyclic shifter
	Interface
	Summary of changes
	Results
	Further optimizations and future work

	CONCLUSION

