
Predicting the success of Gradient Descent for a
particular Dataset-Architecture-Initialization (DAI)

A Project Report

submitted by

UMANGI JAIN

in partial fulfilment of the requirements
for the award of the degree of

Dual Degree (B.Tech + M.Tech)

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

June 2021

THESIS CERTIFICATE

This is to certify that the thesis entitled Predicting the success of Gradient Descent

for a particular Dataset-Architecture-Initialization (DAI), submitted by Umangi

Jain (EE16B124), to the Indian Institute of Technology, Madras, for the award of

the degree of Dual Degree, is a bona fide record of the research work carried out

by her under my supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree

or diploma.

Dr. Harish Guruprasad Ramaswamy
Research Guide
Assistant Professor
Dept. of Computer Science and Engineering
IIT-Madras, 600 036

Place: Chennai

Date:

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude towards my advisor, Prof.

Harish Guruprasad Ramaswamy. His teachings motivated me to pursue research

in this direction. He gave me the freedom to explore and always helped and guided

me in the right direction. This work would not have been possible without his

invaluable guidance, time, and support. I would also like to thank Prof. Abhishek

Sinha for his valuable insights, feedback, and support.

I am indebted to all the professors in Electrical Engineering, Computer Science,

and other departments whose courses I have taken and learned a lot. These

concepts were crucial to write this thesis.

I am very grateful to my parents and sister, who have always encouraged and

loved me unconditionally.

i

ABSTRACT

KEYWORDS: Neural networks, Early give-up, Early success indicators

Despite their massive success, training successful deep neural networks (DNN)

still largely relies on experimentally choosing an architecture, hyper-parameters,

initialization, and training mechanism. DNNs are also characterized by variabil-

ity in their performance due to the stochastic nature of deep learning algorithms.

Initialization of weights itself can play a critical role in determining the success

of gradient descent on a particular DAI (dataset-architecture-initialization) com-

bination, which makes it important to identify a good initialization technique.

However, testing the success of initialization can require significant training time

and computing power. In this work, several initializations are tested for different

architectures and datasets, and an attempt is made to predict which of these ini-

tializations will train successfully at an early stage. This can allow for discarding

models that are unlikely to train at the final stages of the training process, thus

saving training time and compute power.

This work proposes and studies an empirical tool to determine the success of the

standard gradient descent method for training deep neural networks on a specified

dataset, architecture, and initialization (DAI) combination. It benchmarks several

DAI combinations and introduces two methods, noise stability and decay of the

distribution of singular values of the output from hidden layers, which aid in

predicting the success of a DAI. Through extensive systematic experiments, it is

shown that the evolution of singular value decomposition of the matrix obtained

from the hidden layers of a DNN can help determine the success of gradient descent

technique to train a DAI (even in the absence of validation labels in the supervised

learning paradigm). This phenomenon can facilitate early give-up, stopping the

ii

training of neural networks, which are predicted to not generalize well early in the

training process.

Experimentation across multiple tasks, datasets, architectures, and initializa-

tion schemes reveals that the proposed scores can more accurately predict the

success of a DAI than simply relying on the training and validation accuracy at

earlier epochs to make a judgment. The idea has been further extended to choose an

optimal initialization and architecture from a set of initializations and architectures

trained on a dataset using a dynamic run selection algorithm and the proposed

early prediction scoring. The current scope of this work is limited to multilayer

perceptron (MLP) and convolutional neural networks (CNN) architectures.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

ABBREVIATIONS ix

1 INTRODUCTION 1

1.1 Early success indicators . 3

2 Background Work 5

2.1 Compressibility in trained neural networks 5

2.2 Gradient descent aligns the layers of deep linear networks 6

2.3 Upper Confidence Bound (UCB) algorithm 7

3 Experimental Setup 9

3.1 Dataset . 9

3.2 Architecture . 11

3.3 Initialization . 12

4 Alternative success indicators 14

4.1 Noise Stability . 14

4.1.1 Experiments on noise stability 14

4.2 Automatic dimensionality reduction 19

4.2.1 Experiments on automatic dimensionality reduction . . . 20

5 Scores for early success indicators 25

5.1 Predicting success of initializations for a dataset and architecture 31

5.2 Improving Scoring . 34

iv

6 Evaluation of early success indicators 37

6.1 Failure of Noise stability . 39

6.2 Results on multilayer perceptron 39

6.3 Results on convolutional neural networks 44

6.4 Performance across architectures 45

7 Dynamic run selection algorithm 48

7.1 Introduction . 48

7.2 Evaluating dynamic run selection algorithm 51

7.2.1 Evaluating performance on DAI 52

7.2.2 Evaluating performance on DA 56

8 Future directions and Conclusion 60

8.1 Future Work . 60

8.1.1 Subspace for different classes 60

8.1.2 Predicting success of a DAI as a classification problem . . 61

8.2 Conclusion . 63

A Additional Experiments 67

LIST OF TABLES

6.1 Correlation of sF, training accuracy, sFv, validation accuracy at differ-
ent checkpoint epochs with the final validation accuracy for DA-1. 42

7.1 Range of validation accuracies and number of acceptable models in
each set for DA-1 and DA-2. 53

7.2 Number of epochs required by each reward scheme to find a good
initialization for each set in DA-1 and DA-2. 54

7.5 Sets comprising of different architectures trained on Shell-1024. 57

7.6 Number of epochs required by each reward scheme to find a good
architecture for each set in Shell-1024 dataset. 57

vi

LIST OF FIGURES

1.1 Distribution of training accuracy: Variability of outputs - scaled
weights in Xavier normal initialization scheme. 2

3.1 Visualization of the distribution of Shell dataset in R2. The two
classes lie on shells of different radius r1 and r2 respectively. . . . 10

4.1 Noise stability: Shell-1024 dataset, 4-layer MLP, Normal Xavier
initialization. Effect of noise injected on higher layer gets attenuated
in lower layers as the network learns. 15

4.2 Noise stability: Shuffled training labels ofShell-1024dataset, 4-layer
MLP, Normal Xavier initialization. Noise stability and validation
accuracy reduces with increasing percentage of shuffled training
labels. 16

4.5 Noise stability: CIFAR-10, 16-layer CNN, Normal Xavier initializa-
tion. Effect of noise injected on higher convolutional layers gets
attenuated as training progresses. 18

4.6 Comparison of noise stability of CIFAR-10 dataset, 10-layer CNN
architecture, initialization from Normal Xavier scheme with correct
and shuffled labels. Noise stability reduces for the second model. 19

4.7 SVD output at various epochs for Shell-1024 dataset, and two
different initializations. (a)-(c): initialization from Normal Xavier
scheme. (d)-(f) : initialization from Shuffled Trained scheme. . 21

4.8 SVD output at various epochs for Shell-32 dataset. Steep decay of
singular values with no effective training. 22

4.9 SVD output at various epochs and noise stability output on a regres-
sion problem. As the validation loss reduces, preferential directions
are strengthened. 23

4.10 SVD output at various epochs for (a)-(c) correct labels, (d)-(f) shuf-
fled labels on Shell-32 dataset. Trend in distribution of singular
values follows the trend in the validation accuracy. 24

5.1 Evolution of SVD and noise stability forShell-1024dataset, 2-layer
MLP architecture, initialization from Normal Xavier scheme. . . . 26

vii

5.2 Evolution of SVD and noise stability forShell-1024dataset, 2-layer
MLP architecture, initialization from Scaled Normal Xavier scheme
(Scale 10). 26

5.3 DAI-1: attains high validation accuracy along with high snt, sot, sst. 30

5.4 DAI-2: attains high validation accuracy along with high snt, sot, sst,
at epoch 30, correctly indicating high chances of success of further
training. 30

5.5 DAI-3: attains low validation accuracy along with low snt, sot, sst,
at epoch 30, correctly indicating low chances of success of further
training. 31

5.6 Shell-1024 dataset trained on a neural network architecture of 8
hidden layers obtains low scores on sst and sot. 35

5.7 Normalized singular values (sorted) for all hidden layers at various
epochs. Profile of singular value decay can be different for all layers
which can reduce the average score for deep neural networks. . . 36

6.1 Performance of snt: snt at checkpoint epoch shows a negative corre-
lation with the final validation accuracy for DA-1 and DA-2. . . . 39

6.2 Final training and validation performance of 120 different initializa-
tion for DA-1. 40

6.3 Variation of scores sF and sFv with epochs and their corresponding
validation accuracy for five initializations of DA-1. 41

6.4 Breakdown of the prediction of eventual success of all initializations
in DA-1 using sFv and BV at epoch 10. 41

6.5 sF, training accuracy, sFv, validation accuracy at checkpoint epoch 30
plotted against the final validation for all initializations in DA-1. . 42

6.8 Dense layer in well trained CNN show a decay in the singular values
upon training on DA-3. 45

7.1 Dynamic run selection algorithm for 10 initializations trained on
Shell-512 dataset, 2-layer MLP run for 100 epochs. The most se-
lected arm attains the highest validation accuracy on full training. 51

7.2 Distribution of final validation and train accuracy for each set in
DA-1. 53

7.6 Distribution of final validation and train accuracy for each set in
Shell-1024 dataset. 56

7.7 Visualizing the training and validation accuracy of architectures
in Set-I trained on Shell-1024 dataset.The good architectures are
highlighted in green. 59

viii

ABBREVIATIONS

CNN Convolutional Neural Network

BT Baseline Training score

BV Baseline Validation score

DA Dataset Architecture

DAI Dataset Architecture Initialization

DNN Deep Neural Network

DRSA Dynamic Run Selection Algorithm

ESI Early Success Indicator

MLP Multi-layer Perceptron

MSE Mean Squared Error

SVD Singular Value Decomposition

UCB Upper Confidence Bound

ix

CHAPTER 1

INTRODUCTION

Neural architectures have achieved state-of-the-art performance on various large-

scale supervised tasks in several domains spanning language, vision, speech, rec-

ommendations. Modern deep learning algorithms consume enormous energy in

terms of compute power ([10], [15]). The abundance of data and improvements on

the hardware side has made it possible to train larger models, increasing the energy

consumption at a tremendous rate. These deep learning algorithms go through

intense mathematical calculation during forward and backward passes for each

piece of data to update the large weight matrices. Another crucial factor that sig-

nificantly adds to the computing power is the immense experimentation and tun-

ing required to choose optimal initialization, architecture, and hyper-parameters.

Several variants of a model are generated and trained for a particular task on a

particular dataset to make an optimal choice.

While there is active research going on to make deep learning algorithms

greener and economical like compressing the model [8], training on a subset of the

dataset [2], designing hyper-efficient network [16], there’s still no standard mech-

anism to choose an initialization or architecture design. Though various theories

have been proposed for selecting an initialization distribution, architecture design,

training mechanism, these nets are still most often manually designed through ex-

tensive experimentation. For instance, initialization schemes, such as Xavier [3],

He [5], random orthogonal [12] have been proposed in the past. Despite some

theoretical backing, these commonly used initialization techniques are simple and

heuristic [4]. The more recent neural architecture search (NAS) research has fu-

eled efforts in automatically finding good architectures ([11], [18]). It has been

observed that these NAS algorithms are computationally very intensive and time-

consuming as well. In addition, changing the dataset or tasks requires starting

these algorithms anew.

Furthermore, DNNs are characterized by variability in performance. The per-

formance of the same initialization, training scheme, and architecture on a partic-

ular dataset can vary due to the stochastic nature of deep learning algorithms, sys-

tem architecture, operating systems, or libraries. Even initializing from the same

distribution of initializers for a particular dataset and architecture can have signif-

icantly different performances. This fickleness can significantly affect the ultimate

performance and generalization gap in neural networks. Figure 1.1 demonstrates

the variability in the performance of DNNs with MNIST dataset and a fixed choice

of architecture, 2-layer MLP (64, 32 hidden layer dimension respectively), with

ReLU activation, and RMSprop optimizer. The loss function taken is cross-entropy.

The x-axis is the different initialization distribution, obtained by varying the scale

of standard deviation in the Gaussian distribution used in Xavier initialization

from 1.0 to 256.0 in factors of 4. Each point along a vertical line has the same

distribution. The initializations are sampled from each distribution 5 times. All

the 25 networks are trained on the same dataset, architecture, training procedure,

and trained until 200 epochs. The corresponding final training accuracy at the final

epoch for these models has been plotted along the y-axis (Validation accuracy also

follows a similar trend). It can be seen that even for the same distributions, some

neural networks show performance as low as 11.05% to as high as 97.42%. Con-

sequently, experimentation is required to choose an optimal initialization weight

matrix even when sampling from a fixed initialization distribution.

Figure 1.1: Distribution of training accuracy: Variability of outputs - scaled weights
in Xavier normal initialization scheme.

Therefore, in practice, choosing good initializations and architectures often re-

2

duces to experimentally testing several possibilities. The model needs to be trained

for several epochs (till either the loss reaches a certain threshold or overfitting be-

gins) to determine the success of initialization on a particular architecture and

dataset. This process consumes significant compute power and time and can limit

the number of initializers to be tried out. While the need for experimentation can

not be eliminated wholly, this work proposes a mechanism to test several weight

initializations and architectures in lesser computational power. An early success

indicator is presented, which predicts at an early stage of training, the extent to

which a DAI (dataset-architecture-initialization combination) that is trained using

gradient descent would be successful. It provides insights into the benefits of

further training. Such a score would be crucial to test several initializations and

architectures with a reduced cost. By discarding early, DAIs that do not have the

potential of learning effectively, computing power and run time can be saved.

The following contributions are made in this work:

1. Early success indicators (ESI) are introduced and analyzed to predict the
success of an initialization for a particular architecture and dataset through
extensive empirical study.

2. The problem of finding a "good" initialization from a set of initializations is
formulated in a multi-armed bandit setting.

3. ESI are used to devise a dynamic run selection algorithm to choose a good
initialization from a set of initializations for a fixed dataset, architecture,
and training procedure. This algorithm is extended to find a good architec-
ture from a set of networks with different architectures trained on the same
dataset.

1.1 Early success indicators

Early success indicators aim to predict, at an early stage of training, the extent

to which a DAI trained using gradient descent would be successful. The extent

of success in the experimental set-up of this work is taken as the final validation

accuracy (accuracy of validation data in the last epoch eL). The early success

indicators give a score, which is calculated at an earlier epoch (called checkpoint

3

epoch) eC (eC < eL), that is indicative of the success of the DAI. This score enables

us to identify and discard models that would not train sufficiently at the end of

training and continue training the remaining. Additionally, it can determine the

benefit of further training. For instance, if the validation accuracy of the DAI at eL

is less than that at eC, then the score of one of the early success indicators would be

negative. Likewise, if the validation accuracy does not change significantly from

eC to eL, the score of one of the early success indicators would be close to zero. A

higher positive value of score indicates higher chances of success of the DAI. The

prediction regarding the success of an initialization can be helpful in two ways: it

can aid in identifying how well the network is trained at the checkpoint epoch. If

not trained, it can predict whether the network is capable of learning on further

training. In either case, such a prediction will be crucial in determining whether

further training of the DAI would be beneficial.

Thesis organization:

This thesis is organized as follows - Section 2 outlines the background work and

formalisms required to build the scoring mechanisms for early success indicators.

Section 3 explains the experimental set-up and the dataset, architectures, and ini-

tialization distributions used throughout the experiments, section 4 describes the

basis of the two early success indicators. Section 5 details the proposed scoring

mechanism, section 6 shows the experimental results of the performance of these

indicators on classification and regression tasks. Section 7 describes and evaluates

the dynamic run selection algorithm for a set of initializations/architectures. Sec-

tion 8 highlights the future directions for the work and establishes the conclusion.

4

CHAPTER 2

Background Work

This section outlines the prior work that has been used in predicting the suc-

cess of gradient descent on a DAI. Trained neural networks show compressibility

property, as explained in section 2.1, which is exploited to design early success

indicators. The distribution of singular values from the weight matrices of the

hidden layers has revealed intriguing properties for deep linear networks as high-

lighted in section 2.2. The dynamic run selection algorithm in Section 7 is based

on the Upper Confidence Bound or UCB algorithm, which is stated in section 2.3.

2.1 Compressibility in trained neural networks

The early success indicator is motivated by the noise compression properties as

outlined in [1]. In their paper, Arora et al. propose an empirical noise-stability

framework for DNNs that computes each layer’s stability to the noise injected at

lower layers. Each layer’s output to an injected Gaussian noise at lower layers is

stable for a well-trained network. The added noise in a trained neural network

(capable of generalization) gets attenuated as it propagates to higher layers. This

noise stability allows individual layers to be compressed.

Gaussian noise is injected at one of the hidden layers to test the noise stability

of a network, and its propagation throughout the network is studied. It has been

observed that as noise propagates to deeper layers, the effect of noise diminishes.

Noise sensitivity ΨN of a mapping M from a real-valued vector x to another real-

valued vector with respect to some noise distribution N is defined as:

ΨN(M, x) = Eη∈N

[
||M(x + η||x||) −M(x)||2

||M(x)||2

]

Noise stability from a linear mapping with respect to Gaussian noise has been

derived mathematically in [1]. Their results prove that the noise sensitivity of a

matrix M at any vector x , 0 with respect to Gaussian distribution N(0, I) is
||M||2F||x||

2

||Mx||2 .

This suggests that if a vector x is aligned with matrix M, the noise sensitivity would

be low, implying that the matrix M would be less sensitive when noise is added at

x. Low sensitivity implies that the matrix M has some large singular values. This

gives rise to some preferential directions along which signal x is carried, while

the noise, which is uniform across all directions, gets attenuated. Intuitively, this

translates to a non-uniform distribution of singular values from the output of a

transformation that generalizes well. On training further, as the noise stability of

the neural network strengthens, the noise gets suppressed further, the extent of

compression increases, and the preferential direction of propagation gets aligned

with the signal (higher singular values of M).

Through experimentation, it has been shown that this compression property is

observed for non-linear deep neural networks as well. This work shows that the

distribution of singular values of the output matrix from hidden layers in DNNs is

non-uniform. This non-uniform distribution of singular values and its evolution

as training continues is used to build the early success indicators. Its utility in

predicting the success of a DAI for feed-forward networks is shown empirically.

2.2 Gradient descent aligns the layers of deep linear

networks

Ziwei Ji et al. [6] in their work show encouraging results for gradient descent (with

decreasing loss function1) applied to deep linear networks on linearly separable

data. Consider a dataset {(xi, yi)}ni=1, where xi ∈ Rd, ||xi|| ≤ 1 and yi ∈ {−1,+1}, that

is assumed to be linearly separable. A linear network of depth L is parameterized

by weight matrices WL, ...,W1, where Wk ∈ Rdk×dk−1 . d0 = d is the dimension of input

1for smooth losses (i.e, with Lipschitz continuous derivatives), gradient descent with decaying
step sizes can be designed that never increases the risk

6

vector and dL = 1. Let W = (WL, ...,W1) denote all parameters of the network. wprod

denotes (WL...W1)T. The (empirical) risk of the network is :

R(W) =
1
n

n∑
i=1

l(yiWL...W1xi) =
1
n

n∑
i=1

l(< wprod, yixi >)

In [6], it is shown that for a loss function l that is continuously differentiable,

unbounded, strictly decreasing to 0, β−smooth and G−Lipschitz :

• The risk converges to 0. limt→∞ R(W(t)) = 0

• The normalized weight matrix Wi/||Wi||F asymptotically equals its rank-1
approximation of uivT

i , where ui is the left singular vector and vi is the right
singular vector.

• These rank-1 matrices are aligned across layers |vT
i+1ui| → 1 and Wk+1 and Wk

have the same singular values (asymptotically). Since WL is taken as a row
vector, all layers have rank 1.

• For logistic loss, the gradient descent iterations converge in the same direction
as the maximum margin solution.

For a well-trained network, gradient descent converges in specific directions.

However, most real-world data are not linearly separable, and non-linear deep

neural networks can still get the risk to 0 (even for shuffled labels as shown in

[17]). Section 4.2 analyzes the distribution of singular values from the output of a

hidden layer in real-world datasets and DNNs empirically.

2.3 Upper Confidence Bound (UCB) algorithm

The problem of choosing a "good" initialization from a set of initializations, as stud-

ied in detail in section 7, has been formulated as a multi-armed bandit problem

in this work. Formally, a stochastic bandit (reward for each arm is sampled from

an IID distribution specific to that arm) algorithm A has K possible arms/actions

to choose from in T rounds. In round t, the Upper Confidence Bound (UCB) algo-

rithm, as shown in [9], changes its exploration-exploitation balance as it enhances

7

its knowledge about the environment, to maximize its rewards. UCB algorithm A,

at round t, chooses an action at given by

at = argmaxa

Qt(a) + c

√
ln(t)
Nt(a)


where Qt(a) is the estimated average reward of arm a up to round t, Nt(a) is the

number of times action a has been chosen before round t, c is the hyper-parameter

that controls the exploration-exploitation balance. The two terms in the expression

can be thought of as exploitation and exploration terms, respectively. The second

term is a measure of the variance in the estimation of the reward for arm a. The UCB

algorithm has tight theoretical bounds under three assumptions [14]: algorithm A

observes rewards of only the selected arm (bandit feedback), the reward for each

action is IID, i.e., at any round t, the reward for the chosen arm a is sampled from

its distribution Da, and the reward at every round is bounded.

Motivated from the UCB algorithm, a dynamic run selection algorithm has

been devised for the problem setting mentioned above.

8

CHAPTER 3

Experimental Setup

This section specifies the notations for the datasets, architectures, and initialization

schemes that are used in the experiments to follow.

3.1 Dataset

Success of a DAI is tested on two tasks, classification and regression. Following

datasets are used for experimentation in this work:

Classification Datasets

1. Dataset1 - MNIST : Digit classification dataset consisting of 60, 000 training
examples and 10, 000 examples for validation. Number of classes is 10. Image
size is 28 × 28. For MLP, it is flattened to 784 dimensional vector.

2. Dataset2 - Shell-d : Shell-ddataset (norm of vector is a constant) consists of
20, 000 training and 4, 000 validation samples in all experiments. Input vector
can be of different dimensions d, where (d ∈ {32, 64, 128, 256, 512, 1024}). The
default vector size is 1024. Number of classes is 2.

3. Dataset3 - CIFAR-10 : Colour images consisting of 50, 000 training examples
and 10, 000 examples for validation. Number of classes is 10. Image size is
32 × 32 × 3.

Shell-d Dataset: Shell-d dataset is a synthetic dataset comprising of 2 classes.

Each class lies in a shell inRd. In the experiments, the two classes form a concentric

shell of radius 1 and 1.1 respectively. In 2-dimensional space (d = 2), Shell-2 data

can be visualized on the 2 curves as shown in Figure 3.1. Sharp shells are used to

generate the data (no noise added) for all the experiments.

Regression Datasets : The following two synthetic datasets are generated

for regression task.

Figure 3.1: Visualization of the distribution of Shell dataset in R2. The two classes
lie on shells of different radius r1 and r2 respectively.

1. Dataset4 - Cosine of Sum : Data points are generated from the below func-
tion

y = cos(
b+ f−1∑

i=b

xi) + sin(
b+2 f−1∑
i=b+ f

xi) + cos(
b+3 f−1∑
i=b+2 f

xi) + sin(
b+4 f−1∑
i=b+3 f

xi)

• x is a 100 dimensional vector. (xT = [x1, x2, .., x100])

• b is an arbitrary index. (Taken as 1 in all experiments)

• 4 f is the total number of indices considered for calculating y.

• Only some units of the input vector contribute to the output [b, b + 4 f).

• The range of y is [−4, 4].

Getting a uniform distribution over y by sampling xi appropriately is non-
trivial. (Because sum of two or more independent random variables is
the convolution of their distributions). For instance, even if xi is sampled
such that cos(

∑b+ f−1
i=b xi) and sin(

∑b+2 f−1
i=b+ f xi), are both uniform over [−1, 1];

z = cos(
∑b+ f−1

i=b xi) + sin(
∑b+2 f−1

i=b+ f xi) will not have a uniform distribution as
shown in Figure 3.2. Therefore, to get a uniform distribution over y, a differ-
ent approach is taken. The range of y is divided into smaller bins, and equal
numbers of samples are extracted from each bin. The samples are shuffled
before training. The bin size for this dataset is taken to be 15.

2. Dataset5 - Sum of Cosines : Data points are sampled from the below func-
tion

y =

∑b+ f−1
i=b cos(xi) +

∑b+2 f−1
i=b+ f sin(xi)

2 f

• x is a 100 dimensional vector. (xT = [x1, x2, .., x100])

• b is an arbitrary index. (Taken as 1 in all experiments)

• 2 f is the total number of indices considered for calculating y.

10

(a) Distribution of
cos(
∑b+ f−1

i=b xi)
(b) Distribution of

sin(
∑b+2 f−1

i=b+ f xi)
(c) Distribution of z

Figure 3.2: Samples from Cosine of Sum dataset for f = 4, b = 1. The distribu-
tion of z approximates the convolution of the distribution of the two
independent variables.

• Only some units of the input vector contribute to the output [b, b + 2 f).

• The possible ranges of y is [−1, 1].

The distribution of y is obtained in the same way as for Cosine of Sum dataset.

3.2 Architecture

Experiments are done on multilayer perceptron (MLP) and convolutional neural

network (CNN). Following architectures are chosen for experiments:

Multilayer Perceptron Architectures

1. Architecture1 -4-layer MLP : Four hidden layers of dimensions {512, 256, 256, 128}
is taken. No dropout or batch-normalization layer included.

2. Architecture2 - 2-layer MLP : Two hidden layers of dimensions {64, 32} is
taken. No dropout or batch-normalization layer included.

3. Architecture3 - 2-layer MLP : Two hidden layers of dimensions {256, 128} is
taken. No dropout or batch-normalization layer included.

Convolutional Neural Network Architectures

1. Architecture4 - 16-layer CNN : VGG-16 [13] architecture is used. Another
variant with dropout and batch-normalization layer is also considered in
some experiments.

11

2. Architecture5 - 10-layer CNN : 10 layered convolutional neural architecture
is used. 10 hidden layers are as follows: (C16−A−C16−A−M−C32−A−D−
C32−A−M−C64−A−C64−A−C128−A−M−F256−A−F128−A−F10−so f tmax),
where C is Conv2D layer, A is activation (ReLU), M is MaxPooling, F is Fully
connected Layer, D is dropout.

3. Architecture6 - 8-layer CNN : 7 layered convolutional neural architecture is
used. 8 hidden layers are as follows: (C32−A−BN−C32−A−M−D−C64−
A−C64−M−D−C128−A−C128−A−M−Flatten−F512−A−F10−so f tmax),
where BN is batch normalization.

Filter size is 3 × 3 for all CNN architectures.

3.3 Initialization

Three different initialization schemes are used to obtain a varied set of generaliza-

tion gaps and training accuracies in neural networks.

1. Scheme1 - Normal Xavier : Initialization using Normal Xavier method [3].
It draws samples from a truncated normal distribution with mean 0 with

standard deviation =
√

2
f an_in+ f an_out , where f an_in is the number of input

units in the weight tensor and f an_out is the number of output units in the
weight tensor.

2. Scheme2 - Shuffled Trained : y% of labels in the training data (where
y ∈ {20, 40, 60}) is shuffled and the network is trained for x epochs. The
weights of this partially trained network on shuffled data then initializes the
model on a correctly labeled dataset. In all experiments, x ∈ {40}.

3. Scheme3 - Scaled Normal Xavier : Scales the standard deviation of the
normal distribution in Xavier initialization.

Please Note:

• In all the experiments, rectified linear activation function (ReLU) activation
is used.

• Optimizer is chosen from SGD, RMSProp, Adam.

• Loss function is cross-entropy for classification and MSE (mean squared
error) for regression.

• For some experiments, y% labels in the training data are shuffled, where
y ∈ {20, 40, 60} to design networks with varied generalization gap.

12

Dataset-Architecture (DA) combination
Evaluation of initialization for performance of early success indicators and dy-

namic run selection algorithm is done on the following dataset-architecture com-

binations.

1. Dataset-Architecture-1 -DA1 : Shell-1024dataset and Architecture1 (4-layer
MLP).

2. Dataset-Architecture-2 - DA2 : Shell-512dataset and Architecture3 (2-layer
MLP).

3. Dataset-Architecture-3 - DA3 : CIFAR-10 dataset and Architecture6 (8-layer
CNN).

13

CHAPTER 4

Alternative success indicators

The two main metrics generally used for evaluating a trained neural net are training

loss and validation accuracy. While validation accuracy is still the gold standard,

it is of vital importance to build other surrogate metrics that are predictive of

validation accuracy and the state of training. In this section, two such metrics are

introduced: noise stability and automatic dimensionality reduction.

4.1 Noise Stability

This section studies generalization gaps in DNNs via a simple compression-based

framework introduced in Arora et al. [1]. The compression effect is investigated on

classification and regression problems. For the classification task, experimentation

has been done for MLP and CNN.

As introduced in section 2.1, noise-stability for deep nets is characterized by the

stability of each layer’s computation to Gaussian noise injected at lower layers. It

is hypothesized that this added error gets attenuated for a trained neural network

capable of generalizing as it propagates to higher layers. In all the experiments,

noise with l2 norm to be 10% of the norm of the original input is added. As its

effect decreases on higher layers, this property is called compressibility.

4.1.1 Experiments on noise stability

In this section, several experiments on different datasets, architectures, and initial-

izations are done to test the robustness of the compressibility property. The plots

for noise stability begin at the layer at which noise is added. The x-axis denotes the

index of layers and y-axis denotes the relative error due to added Gaussian noise.

It is calculated as ||x
i
−x̂i||2
||xi||2

, where xi is the original input to layer i and x̂i is the input

to layer i after adding noise.

Compression after training: Consider Shell-1024 dataset, 4-layer MLP archi-

tecture, and initialization from Normal Xavier scheme, which is trained using

RMSprop optimizer with learning rate 10−3 till 500 epochs. Figure 4.1 shows the

noise stability of the DAI before and after training. It can be seen that Figure 4.1b

shows significant attenuation of noise in all the layers. This demonstrates that the

signal is propagating in specific preferential directions, unlike noise.

(a) Initialization (b) Trained (Epoch 500)

Accuracy
Train 99.90%

Validation 85.90%
Epoch 500

Figure 4.1: Noise stability: Shell-1024 dataset, 4-layer MLP, Normal Xavier ini-
tialization. Effect of noise injected on higher layer gets attenuated in
lower layers as the network learns.

Results on multilayer perceptron

In this section, the attenuation of noise in well-trained MLP networks is tested on

Shell-1024 and MNIST dataset with varying generalization gaps. This is achieved

by shuffling the training data labels and scaling the weights of the network at

initialization.

Compression after training on shuffled labels: Zhang et al. in [17], experimen-

tally showed that the standard architectures using SGD and regularization could

reach low training error even when trained on randomly labeled examples (which

will clearly not generalize). In this experiment, y% labels of Shell-1024 dataset

15

(in the training data) are shuffled to test the robustness of compressibility on net-

works that reach almost zero training error but have a huge generalization gap.

This provides networks with widely different validation accuracy. Consider the

noise stability profile for same dataset, architecture, and initialization scheme with

y ∈ {20, 40, 60} in Figure 4.2. All models are trained till 500 epochs with RMSProp

optimizer and learning rate 10−3.

(a) 20% Shuffled (b) 40% Shuffled (c) 60% Shuffled
Accuracy

Train 99.91%
Validation 80.87%

Epoch 500

Accuracy
Train 99.91%

Validation 68.78%
Epoch 500

Accuracy
Train 97.63%

Validation 52.56%
Epoch 500

Figure 4.2: Noise stability: Shuffled training labels of Shell-1024dataset, 4-layer
MLP, Normal Xavier initialization. Noise stability and validation accu-
racy reduces with increasing percentage of shuffled training labels.

Clearly, the network’s noise stability reduces when trained on shuffled data,

although the training accuracy remains almost the same. The extent of compression

also correlates with the validation accuracy for these DAIs.

Compression after training on initialization from Shuffled Trained: To fur-

ther test the robustness of noise stability, it is tested on models that have been

initialized from Shuffled Trained initialization scheme. Consider the compres-

sion profile in Figure 4.3 for MNIST dataset, 4-layer MLP architecture. The model

is trained on 40% shuffled labels till 40 epochs to get this initialization. It is further

trained using RMSprop optimizer with a learning rate of 10−3 till 200 epochs on

correctly labeled data. It can be seen that irrespective of the initialization scheme,

when validation accuracy is high, the noise compresses significantly.

16

(a) Initialization (b) Trained

Accuracy
Train 98.78%

Validation 98.55%
Epoch 200

Figure 4.3: Noise stability: MNIST dataset, 4-layer MLP, Shuffled Trained ini-
tialization. Noise stability is observed for well trained network with
Shuffled Trained initialization scheme.

Compression with initialization from Scaled Normal Xavier scheme: Scaling

the weights of Xavier distribution can affect the final validation accuracy of the

models. If the weights of Xavier’s normal distribution are scaled to very high val-

ues, it can diverge further on training, leading to no effective training. Conversely,

if the weights are scaled down to very low values, training can be prolonged.

Three scaling factors : (1) f = 0.1, (2) f = 20 and (3) f = 100 are considered for

Shell-1024 dataset, 4-layer MLP architecture. The noise stability profiles are as

shown in Figure 4.4. The models are trained using SGD, Adam, and RMSprop

optimizer, respectively, with a learning rate of 10−3 till 200 epochs. It can be seen

that at f = 0.1 (although slow), the model still trains and displays stability against

noise. For f = 20, although the training accuracy is very high, there’s a huge

generalization gap. The validation accuracy is low, and the noise stability plot

displays poor compression in this case. For f = 100, no effective training occurs.

The noise stability plot clearly shows lower compression than in the first case.

Results on convolutional neural networks

To observe noise stability in CNNs, CIFAR-10 dataset is trained on 16-layer CNN

architecture (with dropout and batch-normalization layers) with an initialization

from Normal Xavier scheme. It is trained for 100 epochs using RMSprop opti-

mizer and a learning rate of 10−3. It can be seen from Figure 4.5 that the noise

is compressed in this setup as well. The stability profile at 50 epochs also shows

17

(a) f = 0.1 (b) f = 20 (c) f = 100
f = 0.1 Accuracy
Train 100.00%

Validation 86.82%
Epoch 200

f = 20 Accuracy
Train 99.85%

Validation 56.00%
Epoch 200

f = 100 Accuracy
Train 50.14%

Validation 51.06%
Epoch 200

Figure 4.4: Noise stability: Shell-1024 dataset, 4-layer MLP, Scaled Normal
Xavier initialization. Varying the scale of Normal Xavier initializa-
tion from 10−1 to 102.

compression (although lower than when trained further). This shows that signifi-

cant attenuation occurs as training continues.

Refer Figure A.2 in Appendix for noise stability in other set-ups of CNN.

(a) Initialization (b) Epoch 50 (c) Epoch 100
Accuracy

Train 46.45%
Validation 49.55%

Epoch 50

Accuracy
Train 91.56%

Validation 74.39%
Epoch 100

Figure 4.5: Noise stability: CIFAR-10, 16-layer CNN, Normal Xavier initializa-
tion. Effect of noise injected on higher convolutional layers gets atten-
uated as training progresses.

Compression for Convolutional Neural Networks (Shuffled Labels): Due to

high training time of CNN on shuffled labels, a subset of CIFAR-10dataset of 10, 000

training examples is considered with 10-layer CNN architecture and initialization

from Normal Xavier scheme. 60% of the labels are shuffled, and the model is

18

trained for 200 epochs using SGD optimizer and a learning rate of 10−3. Figure 4.6

compares the compression profile of two models trained on a subset of CIFAR-10

dataset with all correct labels and with 60% shuffled labels, respectively. There is

a clear decline in the noise compression for models trained on shuffled data in the

case of CNNs as well.

(a) Trained on correct labels (b) Trained on 60% shuffled la-
bels

Correct Labels Accuracy
Train 91.56%

Validation 74.39%
Shuffled 60% Accuracy

Train 92.49%
Validation 27.77%

Epoch 200

Figure 4.6: Comparison of noise stability of CIFAR-10 dataset, 10-layer CNN ar-
chitecture, initialization from Normal Xavier scheme with correct and
shuffled labels. Noise stability reduces for the second model.

The experiments demonstrated in this section show that a neural network with

higher validation accuracy generally shows higher noise stability. Several datasets,

architectures, and initialization schemes were considered for testing the robustness

of noise stability. It has also been observed that noise stability for lower dimen-

sional datasets shows a different profile than that for higher-dimensional data.

Another interesting observation was observed from the initialization of the CNN

architecture, which shows certain compression property during the initialization

itself. This property is, however, not observed for the MLP architecture. Please

refer Section A.1.1 in Appendix for further details.

4.2 Automatic dimensionality reduction

This section experimentally demonstrates that the singular value decomposition

of the outputs of the hidden layers is characterized by a steep curve for trained

neural networks, which can be helpful while predicting the success of a DAI.

The preferential directions in which signal is carried in well-trained networks

19

are utilized to build the early success indicators. Two metrics are introduced: (a) to

capture the singular value distribution of the output from hidden layers of DNNs

at a training step and (b) its evolution as training progress are introduced. Both

of these metrics are combined to predict the success of a DAI early, enabling us to

stop training of networks that are likely not to benefit from training further.

4.2.1 Experiments on automatic dimensionality reduction

Consider a deep neural network of depth L with hidden layers (W1,W2, ..,WL) of

dimension d1, .., dL. Let n test data points be passed through the hidden layers of

the trained network and matrices obtained from the output of all hidden layers be

of dimensions (n × d1), .., (n × dk). The singular values of the matrices are obtained

and normalized by the largest singular value and therefore lies in the range [0, 1].

The evolution of singular values over the epochs is studied for classification and

regression on all the datasets mentioned in Section 3.

Classification

The experiments below are done on classification of Shell-1024 dataset using

MLP architecture.

Validation accuracy and SVD outputs: Consider two different networks (Shell-1024

dataset, initialization from Normal Xavier scheme) and (Shell-1024 dataset, ini-

tialization from Scaled Normal Xavier scheme - scaled by a factor of 20) with

architecture consisting of only one hidden layer of size 128. The two networks

show very different generalization gap, and their SVD profile is shown in Figure

4.7. Both are trained till 60 epochs; the optimizer used is SGD.

Figure 4.7 (a-c) are for initialization from Normal Xavier scheme. It obtains a

validation accuracy of 81.04%. With each epoch, the distribution of SVD value

compresses. In contrast, in Figure 4.7 (d-f) for initialization from Scaled Normal

20

Xavier scheme, the validation accuracy achieved is 51.92%, and the distribution

of SVD values enlarges with subsequent epochs. Even the noise compression for

the first network is much more significant. This illustrates that compression of

SVD values over subsequent epochs can positively correlate with the neural net-

work’s learning. Refer section A.2 in Appendix for SVD output for a deeper neural

network which also demonstrates steep decay in each layer.

(a) Training (b) Normalized singular values
(sorted) - layer 1 of size 128

(c) Noise stability (epoch 60)

(d) Training (e) Normalized singular values
(sorted) - layer 1 of size 128

(f) Noise stability (epoch 60)

Figure 4.7: SVD output at various epochs for Shell-1024dataset, and two different
initializations. (a)-(c): initialization from Normal Xavier scheme. (d)-
(f) : initialization from Shuffled Trained scheme.

However, it is worth noting that compressed singular values do not necessarily

imply a subspace in which the signal propagates effectively. There can be initial-

izations of neural networks with extremely compressed singular values that do

not optimize or generalize further on training. Consider Shell-32 dataset, and an

architecture consisting of two hidden layers of sizes [128, 128]. No explicit regu-

larization is added. The optimizer used is SGD, trained till 100 epochs, and the

learning rate is (10−5). Its SVD profile is shown in Figure 4.8. There is no effective

training in this network, but still, SVD output is very compressed.

21

(a) Training (b) Normalized singular values
(sorted) - layer 1 of size 128

Figure 4.8: SVD output at various epochs for Shell-32 dataset. Steep decay of
singular values with no effective training.

Regression

This section studies the effect of decay of singular values on regression. Consider

the function below:

y = cos(x1 + x2) × sin(x3 + x4)

• x is a 100 dimensional vector. (xT = [x1, x2, .., x100]). Only the first four
directions contribute to the signal.

• In this experiment, x is sampled from a unit sphere of 100 dimension. Due
to this, the values of y are not uniformly distributed.

It is trained on an MLP architecture comprising of 4 hidden layers [256, 128, 128, 64]

with no batch normalization, dropout layer. It is trained till 500 epochs, a learn-

ing rate of 10−3, and optimizer RMSProp. The singular values and noise stability

output for this regression problem is shown in Figure 4.9 (singular value pattern

of layer 3 and layer 4 is similar to layer 2). It can be seen that the validation loss

reduces continuously, and the distribution of singular values in subsequent epochs

shrinks for all layers in the regression problem as well. The effect, in this case, is

more prominent in the first hidden layer.

Refer section A.2.1 in Appendix for SVD profile and noise stability in regression

for Cosine of Sum dataset and Sum of Cosines dataset.

22

(a) Distribution of y (b) Training and validation loss (c) Noise stability (epoch 500)

(d) Normalized singular val-
ues (sorted) - layer 1 of size
256

(e) Normalized singular values
(sorted) - layer 2 of size 128

Figure 4.9: SVD output at various epochs and noise stability output on a regression
problem. As the validation loss reduces, preferential directions are
strengthened.

Validation accuracy and singular values: When trained on shuffled data as in

section 4.1.1, it is observed that the validation accuracy rises and then begins to

fall with further training. This section studies how the output from SVD accounts

for such variability in the validation accuracy. In this experiment, 40% of labels

are shuffled for Shell-32 dataset. Architecture consists of two hidden layers of

dimension {128, 128} and initialization fromNormal Xavier scheme. The optimizer

used is SGD with a learning rate 10−3. The results are presented in Figure 4.10.

When the labels are shuffled, the validation accuracy is higher than the training

accuracy for some time but eventually goes below training accuracy with further

training. Interestingly, the SVD value plot for each layer also displays such vari-

ation. The values were initially decaying, but with further training, it expands

again. The SVD decomposition starts reverting its effect as validation accuracy

dips further. This phenomenon can be crucial in detecting overfitting in models in

the absence of validation labels.

23

(a) Correct labels (b) Normalized singular values
(sorted) - layer 1 of size 128

(c) Normalized singular values
(sorted) - layer 2 of size 128

(d) 40 % Shuffled (e) Normalized singular values
(sorted) - layer 1 of size 128

(f) Normalized singular values
(sorted) - layer 2 of size 128

Correct labels Accuracy
Train 99.99%

Validation 97.10%
Epoch 400

40 % Shuffled Accuracy
Train 79.23%

Validation 69.12%
Epoch 400

Figure 4.10: SVD output at various epochs for (a)-(c) correct labels, (d)-(f) shuffled
labels on Shell-32 dataset. Trend in distribution of singular values
follows the trend in the validation accuracy.

24

CHAPTER 5

Scores for early success indicators

This section aims to determine the success of a DAI during the initial stages of

training using the tools developed in Section 4. In the last section, it is shown

that well-trained networks often show a high degree of noise stability. It is also

characterized by a steep decay of SVD value as training progresses. Consider the

evolution of two DAIs in Figure 5.1 and Figure 5.2 respectively (SVD output for

layer 3, layer 4 is similar to layer 2). Eventually, the first network achieves good

validation accuracy, while the second fails to learn. The output from SVD values

of hidden layers and noise stability value gives insights about the final validation

accuracy at an earlier stage.

It can be seen that the first network demonstrates steep decay of SVD values,

even at the 50th epoch. Furthermore, the generalization gap of the second network

is much higher than the first network, which does not show stability against noise

at epoch 50. The SVD curve and noise stability are more prominent in the first

network, which has better validation accuracy. As training progresses, the SVD

values from the first network decay further, in contrast to the second network.

Noise stability also follows a similar pattern.

In this section, a quantifying mechanism for these characteristics is devised.

Three scores are introduced to quantify the performance of a network at a particular

epoch.

Notations: The following notations are used for the task of classification with k

classes: Consider a dataset {(xi, yi)}ni=1, where xi ∈ Rd, label yi is an integer between

1 to k. A multi-class classifier f transforms an input x in Rd to Rk. Let f be a feed-

forward neural network of depth L parameterized by weight matrices WL, ...,W1,

where dimension of each hidden layer i be di, such that Wk ∈ Rdk×dk−1 . (X,Y) be

(a) Training
Epoch 200

(b) Normalized singular values
(sorted) - layer 1 of size 512

(c) Normalized singular values
(sorted) - layer 2 of size 256

(d) Noise stability
Epoch 50

(e) Noise stability
Epoch 200

Accuracy
Train 100.00%

Validation 85.94%
Epoch 200

Figure 5.1: Evolution of SVD and noise stability for Shell-1024 dataset, 2-layer
MLP architecture, initialization from Normal Xavier scheme.

(a) Training
Epoch 350

(b) Normalized singular values
(sorted) - layer 1 of size 512

(c) Normalized singular values
(sorted) - layer 2 of size 256

(d) Noise stability
Epoch 50

(e) Noise stability
Epoch 350

Accuracy
Train 75.62%

Validation 55.42%
Epoch 350

Figure 5.2: Evolution of SVD and noise stability for Shell-1024 dataset, 2-layer
MLP architecture, initialization from Scaled Normal Xavier scheme
(Scale 10).

26

the test dataset with m samples {(xti, yti)}mi=1. Ai be the matrix obtained on passing

the test dataset through the ith hidden layer of the trained network. {σti j}
di
j=1 is the

singular values obtained in descending order from the matrix Ai at epoch t. For a

hidden layer l at epoch t, three metrics are defined snlt, solt, and sslt. These scores are

computed over a window of the last t0 epochs as described in the sections below.

The same notations are used for the task of regression as well.

Capturing noise stability - snt

Score snt quantifies the degree of noise stability for MLP/CNN architecture. Stan-

dard experimental setting of adding noise with l2 norm as 10% of the norm of input

is maintained for calculating the score.

snt =
2

(L)(L + 1)
×

1

αn ×
∑L

i=1
∑L+1

j=i+1 yi j

• αn is a hyperparameter for scaling the values of noise compression. (1 for all
experiments below).

• yi j is the norm of the normalized difference of the output of layer j when
noise is added to layer i (i < j).

• The higher the value of snt, the better the noise stability as yi j is relatively
lower for models showing better noise stability.

Capturing steep decay of the SVD values - sot

Metric sot captures the non-uniform distribution of singular values and the prefer-

ential directions for signals which can compress noise in other directions.

solt =
β

dl × t0
×

1∑t
k=t−t0

∑dl
i=1 σkli

27

• solt is the score for output of layer l at epoch t. An average score can be
calculated across all layers as

sot =
1
L

L∑
i=1

solt

• β is a hyper-parameter that are chosen empirically. (107 for all experiments
below).

• The higher the value of sot, the higher the decay in the distribution of singular
values. For a steep decay of singular values, σkli for any i > 1 would result
in small values with increasing i (as the highest singular value is scaled to
1). This would result in a higher value of solt for that layer. Therefore, sot can
capture the non-uniform distribution of singular values.

A higher sot suggests that the distribution of singular values is skewed. Models

which generalize well show a high value of sot during training.

Capturing shift of SVD decay - sst

sst quantifies the automatic dimensionality reduction phenomenon across epochs.

It captures the shift in the non-uniform distribution of singular values as training

progresses.

sslt =
1

(t0 − 1) × dl
×

t∑
k=t−t0+1

dl∑
j=1

αk(σ(k−1)l j − σkl j)

• sslt is the score for output of layer l. An average score can be calculated as

sst =
1
L

L∑
i=1

sslt

.

• αk is a hyper-parameter that are chosen empirically. It is an increasing pa-
rameter with k. It varies linearly, giving highest weightage to the latest epoch
and least weightage to the last epoch of the window. αk lies in the range [0, 1].

• The higher the value of sst, the more the shift towards decay.

As the validation loss of a model reduces, its transformation matrix gets aligned

with the input data leading to further skewness and positive value in sst.

28

The scorings sst and sot are normalized across different feed-forward architec-

tures by normalizing the score for each hidden layer by the number of units in

the layer. Parameter β is used to scale sot in the range of sst, which is crucial when

combining the two scores. These two metrics are combined, and a scoring is pro-

posed, independent of the labels of the test dataset, which can be used as an early

indicator of predicting the success of a DAI trained using gradient descent. The

three examples below demonstrate how the scoring mechanism can be used for

predicting the success of a DAI. It is shown that the scoring as outlined above can

draw insights into the success or failure of a DAI. Consider three cases- DAI-1,

DAI-2, DAI-3 : Shell-1024 dataset, 4-layer MLP architecture, initialized from

initialization from Normal Xavier scheme. It was shown earlier that networks

with the same initialization distribution could have very different generalization

gaps and training accuracy.

Figure 5.3 shows output from DAI-1. It can be seen that the network learns

(validation accuracy greater than random guessing) after epoch 25 roughly. The

SVD decay becomes steeper, and further noise stability can be observed. It is

characterized by high values for snt, sot, and sst.

Figure 5.4 shows output from DAI-2. It can be seen that the network learns (val-

idation accuracy greater than random guessing) after epoch 60 roughly (much later

than DAI-1, even though both have the same initialization distribution). However,

in this case, the SVD decay and noise compression scores show high positive values

(even before epoch 60), indicating that successful training is possible and training

should be continued.

Figure 5.5 shows output from DAI-3. The network does not demonstrate

effective learning till epoch 100 as the final validation accuracy is 50.00%. This

is characterized by stillness in the distribution of singular values and low noise

stability. This is accompanied by a small snt, sot, and sst at epoch 30, indicating that

this model can be discarded early.

29

(a) Training
Epoch 50

(b) Normalized singular values
(sorted) - layer 1 of size 512

(c) Noise stability
Epoch 20

(d) Noise stability
Epoch 50

Epoch 20 Score/Acc
Train 99.99%

Validation 53.64%
snt 0.0832
sot 9.66
sst 7.93

Epoch 50 Score/Acc
Train 100.00%

Validation 79.44%
snt 0.1571
sot 13.50
sst 0.82

Figure 5.3: DAI-1: attains high validation accuracy along with high snt, sot, sst.

(a) Training
Epoch 100

(b) Normalized singular values
(sorted) - layer 1 of size 512

(c) Noise stability
Epoch 30

(d) Noise stability
Epoch 100

Epoch 30 Score/Acc
Train 99.17%

Validation 49.50%
snt 0.07478
sot 4.22
sst 6.06

Epoch 100 Score/Acc
Train 100.00%

Validation 84.42%
snt 0.1504
sot 20.3
sst 1.83

Figure 5.4: DAI-2: attains high validation accuracy along with high snt, sot, sst, at
epoch 30, correctly indicating high chances of success of further train-
ing.

30

(a) Training (b) Normalized singular values
(sorted) - layer 1 of size 512

(c) Noise stability
Epoch 30

(d) Noise stability
Epoch 100

Epoch 30 Score/Acc
Train 52.35%

Validation 57.42%
snt 0.0527
sot 2.08
sst 0.19

Epoch 100 Score/Acc
Train 57.42%

Validation 50.00%
snt 0.0599
sot 1.92
sst 0.01

Figure 5.5: DAI-3: attains low validation accuracy along with low snt, sot, sst, at
epoch 30, correctly indicating low chances of success of further training.

As shown in the above examples, these scores can provide insights on continu-

ing training for different models. The models which do not score high do not train

well generally.

5.1 Predicting success of initializations for a dataset

and architecture

The metrics described above are combined to propose a scoring, independent of

the labels of the test dataset, which can be used as an early indicator of predicting

the success of a DAI trained using gradient descent.

For a particular DAI combination, an early success indicator calculates the score

by combining the two metrics sot and sst at every epoch t. This combined score

is used to make a binary decision on whether to continue training on that DAI

or discard the initialization choice. If the score crosses a certain threshold t1, the

model is trained further. However, if the score is below t1, the model is discarded

31

before completing the training procedure. This can allow several initializations

to be tested for different datasets and tasks with lesser time and computational

power. The final score is calculated by combining the two metrics:

st = log(sot) + η × sst (5.1)

η is a hyper-parameter used to take a weighted average of the two terms in

the combined score. It is worth noting that compressed singular values does

not necessarily imply a subspace in which the signal propagates effectively (as

shown in Figure 4.8). To discard such models which do not train at all, two more

thresholds t2 and δ are introduced. These thresholds allow for removing models

which have compressed SVD values and still show very small changes in sst. This

phenomenon is usually accompanied by non-decreasing validation loss. Training

these models further does not change the distribution of SVD values and therefore

the training could be stopped earlier. Considering these factors, the final combined

score sF is summarized as follows:

sF =


0 if sot ≥ t2 and sst ≤ δ

st otherwise
(5.2)

While the lower threshold ensures that the models whose SVD values do not

attain a minimum level of compression are discarded, the upper threshold is used

to discard models which do not train at all. To distinguish models whose SVD

values decay but it does not train from the models which train successfully and

obtain a steep decay of SVD values, score sst is used. Since models which do not

learn effectively do not change significantly on further training.

The scores in figure 5.3, 5.4, and 5.5 demonstrates how scores based on singular

values can provide insight on the training of neural networks. The first DAI shows

high values for all three scores at epoch 20. As training saturates at epoch 50, the

score sst goes down, indicating that the benefits of training further are low. The

second DAI, obtained from the same distribution, attains only 49.50% validation

32

accuracy at epoch 30. However, the scores are still indicative of successful training.

It can be seen that the DAI trains to a validation accuracy of 84.42%. Through

experimentation, this work claims that the insight obtained from this distribution

of singular values gives a prescience of the DAI’s performance and thereby enables

us to only train models with higher chances of generalizing well.

The above scores are calculated on validation data points but do not require the

labels of the data points. However, the scores can be improved with the availability

of labels for the validation dataset. The validation accuracy at a particular epoch av

is incorporated into the scoring mechanism to propose a new score sFv as follows:

sFv =


av if sot ≥ t2 and sst ≤ δ

av × (1 + min(1−av
av
, γst)) otherwise

(5.3)

sFv lies in the interval [av, 1]. It is an indicative measure of the final validation

accuracy of the initialization based on the current validation accuracy av. γ is a

hyper-parameter to scale the score st, and is constant for all DAIs.

The goal of early success indicators sF and sFv is to predict which DAIs would

be successful. A good initialization is defined as the weight matrices which yield

a good validation accuracy upon training for a fixed dataset, architecture, and

training procedure. Obtaining a good neural network model is heavily affected

by choice of initial parameters. The initial point has an influence on whether or

not the learning process converges. In cases where it converges, initialization can

affect how fast or slow the convergence happens, the error, and the generalization

gap. There is no universal initialization technique as modern initialization strate-

gies are heuristic [4]. The current understanding of how the initial point affects

optimization and generalization is still incipient, and therefore, in practice, choos-

ing good initialization is hugely experimental. The model needs to be trained

for several epochs (till either the loss reaches a certain threshold or overfitting

begins) to determine the success of initialization on a particular architecture and

dataset. This process consumes significant compute power and time and can limit

the number of initializers to be tried out. Therefore, these scores can, to a reason-

33

able extent, determine the success of a DAI during the early training process and

provide insights on the benefits of further training.

In the experiments detailed in section 6, two cases are considered: with and

without the availability of validation data labels at checkpoint epoch (the epoch

at which the decision regarding further training is made), denoted by sFv and sF

respectively. To calculate sF, training accuracy, snt, sot, and sst are available at the

checkpoint epoch. Training accuracy is not considered for calculating sF as it alone

can not account for the generalization gap. A higher value of sF and sFv indicates

better compression and can potentially indicate better performance of the model.

Inclusion of snt (for noise stability) gave inferior predictive performance than sF, so

it is dropped from final prediction score.

Baseline: To evaluate the performance of sF and sFv, the baseline in the experi-

ments is the training accuracy and the validation accuracy at checkpoint epoch,

respectively. In the absence of early success indicators, judgment on further train-

ing of a DAI relies on the training accuracy alone (or validation accuracy when

the labels are available). Therefore, the utility of these indicators is based on

performing better than the mentioned baseline.

5.2 Improving Scoring

This section briefly highlights some improvement techniques that can be used to

enhance the scores sF and sFv.

1. Decaying weights of units: For calculating sot, all the singular values are taken
for a hidden layer output. However, the values of singular values go down
rapidly, and the majority of the contribution to the score is delivered by the
first few singular values. Each singular value’s weight (sorted in descending
order) is varied linearly from 1 to 0 to enhance this effect.

2. Non-linear difference: The decaying weights of units in the output of hidden
layers motivates non-linear difference in calculating sst, with higher weigh-
tage to the difference in the initial singular values. These weights are also
varied linearly from 1 to 0.

34

3. Soft-threshold: Instead of hard-thresholding and completely discarding mod-
els with sot ≥ t2 and sst ≤ δ, a soft thresholding can be introduced to lower the
false-negative predictions. One such threshold used in sF = t2

sot
× t2 for sot ≥ t2

and sst ≤ δ.

4. Weighted average across layer: As shown in the section below, experimenta-
tion on deeper networks reveals that not all layers may show the compression
properties in the trained DNNs. Instead of taking a linear average across all
the layers, different weights can be given to each layer. In this experimental
setting, average over only the best n layers was tested. Since this n is depen-
dent on the number of hidden layers in the architecture, it has not been used
in the results in section 6.

Problems with deep nets

All layers in a deep neural network may not necessarily show a shift towards

higher decay in the singular values as training progresses. For instance, consider

the Shell-1024 dataset trained on a 8-layered MLP (hidden units of size [256, 256,

256, 256, 128, 128, 64, 64] respectively). It attains a training accuracy of 98.6% and

validation accuracy of 70.2% after training till 60 epochs.

(a) Training Epoch 60

Score/Accuracy
Train 98.6%

Validation 70.2%
snt 0.0683
sot 5.7
sst 1.24

Epoch 60

Figure 5.6: Shell-1024 dataset trained on a neural network architecture of 8 hid-
den layers obtains low scores on sst and sot.

It can be seen that the last 4 hidden layers show very little change in sslt, while

the first 4 layers have a high sslt score. Linear averaging can bring the score of

the DAI down, and this creates a need to set different thresholds for different

architectures.

35

(a) Hidden layer 1
of size 256

(b) Hidden layer 2
of size 256

(c) Hidden layer 3
of size 256

(d) Hidden layer 4
of size 256

(e) Hidden layer 5
of size 128

(f) Hidden layer 6
of size 128

(g) Hidden layer 7
of size 64

(h) Hidden layer 8
of size 64

Figure 5.7: Normalized singular values (sorted) for all hidden layers at various
epochs. Profile of singular value decay can be different for all layers
which can reduce the average score for deep neural networks.

36

CHAPTER 6

Evaluation of early success indicators

In this section, different sets of dataset and architecture combinations are chosen,

and various initializations are tested on it. Checkpoints are defined as epochs at

which the scores are calculated, and a decision regarding the success of the initial-

ization is made. The decision for a DAI can be one among the three: discarding

the models that do not train early, stopping further training for trained models

(because training further won’t yield further benefits), and continuing training for

better results. This decision is taken only based on the values from sF (and sFv when

validation labels are available) at the checkpoint epoch. All initializations are fur-

ther trained till a pre-decided final epoch, and the prediction at the checkpoint

epoch is compared against the validation accuracy at the last epoch. Spearman’s

correlation is calculated between the score obtained from the early predictor at the

checkpoint epoch and validation accuracy at the final epoch.

Spearman’s Rank Correlation Coefficient: It evaluates the monotonic relation-

ship between two ordinal or continuous variables. While Pearson’s correlation is

used to capture linear correlation between two variables, Spearman’s rank correla-

tion can be used when the variables tend to change together, but not necessarily at

a constant rate. The Spearman correlation coefficient is based on the ranked values

for each variable. It is defined as the Pearson Correlation Coefficient between the

rank variables. Mathematically, for two variables X and Y, it is given as:

rs = ρrgX,rgY =
cov(rgX, rgY)
σrgXσrgY

(6.1)

The notations are as follows:

• rs is the Spearman’s Rank Correlation coefficient

• rgX and rgY are ranks of X and Y

• cov is the covariance

• σrgX is the variance of the rank variable of X

Correlation coefficients vary between -1 and +1, with 0 implying no correlation.

Correlations of -1 or +1 imply a strong relationship between the variables. Positive

correlations suggest that as x increases, so does y. Negative correlations indicate

that as x increases, y decreases. Spearman’s rank correlation between the scores

calculated at the checkpoint epoch and the final validation accuracy is calculated

to show that the two share a positive relation. A high positive correlation indicates

that the proposed scoring can be a good predictor for the final validation accuracy.

The performance of sF and sFv is compared against the baseline training (BT) and

validation (BV) accuracy at the checkpoint, respectively.

Experiment Setting: The experiments in section 6.1 and 6.2 on multi-layered

perception are done on the following two dataset and architecture pair :

• DA-1 : Shell-1024 dataset, 4-layer MLP architecture

• DA-2 : Shell-512 dataset, 2-layer MLP architecture

Initializations are taken from all the schemes defined in section 3.3. Additional

experiment on real-world MNIST dataset is summarized in the Appendix. The

experiments in section 6.3 on CNN are done on the following DA :

• DA-3 : CIFAR-10 dataset, 8-layer CNN architecture

Several initializations are trained for each of the two DAs. These initializa-

tions are generated by randomly varying the standard deviation of the weights in

Xavier’s initialization within a factor of 10. All the models are trained using the

same training mechanism.

38

6.1 Failure of Noise stability

Noise stability, captured by snt, is characterized by several false positives, i.e.,

models that have high score snt but do not train to be successful. For the two DAIs,

figure 6.1 shows that the Spearman’s correlation is negative, and thus, snt has not

been used further for devising the early success indicators.

(a) DA-1 Epoch 20 (b) DA-1 Epoch 40

Epoch rs

20 -0.7826
40 -0.7818

(c) DA-2 Epoch 20 (d) DA-2 Epoch 40

Epoch rs

20 -0.3701
40 -0.3589

Figure 6.1: Performance of snt: snt at checkpoint epoch shows a negative correlation
with the final validation accuracy for DA-1 and DA-2.

6.2 Results on multilayer perceptron

The scores sF and sFv are calculated at checkpoint epochs, and it is compared with

the final validation accuracy at the final epoch. Evaluation is done using two met-

rics: Spearman’s correlation and the number of correct predictions for the success

of a DAI. An arbitrary threshold is set for each DA to mark successful initializa-

tions. Prediction of the success of a DAI is formulated as a two-class problem to

quantify the performance of the ESI. Initializations that achieve final validation ac-

curacy above a desired threshold belong in class y1 of successfully trained models.

Initializations that do not attain this threshold upon full training belong to class y0

of not successfully trained models. A prediction is made at the checkpoint epoch

39

to predict the class in which the model trained of that initialization would belong

in the final epoch.

DA-1 (Shell-1024 dataset, 4-layer MLP architecture)

A total of 120 initializations are trained on this DA. Initializations that achieve

validation accuracy above 60% at the final epoch are considered to be in class y1

and all the other initializations in class y0. All initializations are trained to a total

of 100 epochs to evaluate the performance of the metrics.

Figure 6.2 shows the distribution of final training accuracies and validation

accuracies for DA-1 at epoch 100. The points right to the red line indicates models

which qualify to be in class y1.

(a) Distribution of Accuracy

Total models 120
y1 35
y0 85

Figure 6.2: Final training and validation performance of 120 different initialization
for DA-1.

Figure 6.3 shows the value of validation accuracy, sF, and sFv at every epoch

for five initializations. At checkpoint 30, the points with sF greater than 2.25 are

predicted to train successfully. The models with a horizontal line in the second

curve (initialization 5) represent models whose score does not change much. While

sF can determine that their accuracies might not change with further training, it

can not determine the actual accuracy. This limitation is mitigated when using sFv.

A prediction is made whether the model would belong to class y0 or y1 at epoch

100 using these scores at checkpoint epoch 10. Table 6.4 compares the performance

40

(a) Validation accuracy (b) sF (c) sFv

Figure 6.3: Variation of scores sF and sFv with epochs and their corresponding
validation accuracy for five initializations of DA-1.

of sFv and validation accuracy at the checkpoint to make a binary prediction of

the success of initialization at the checkpoint. It can be seen that sFv is better at

predicting both trained and not trained networks compared to simply using the

validation accuracy.

Prediction
y1 y0 Total

Tr
ue y1 27 8 35

y0 3 82 85
Total 30 90 120

(a) Prediction using sFv

Prediction
y1 y0 Total

Tr
ue y1 20 15 35

y0 4 81 85
Total 24 96 120

(b) Prediction using BV

Figure 6.4: Breakdown of the prediction of eventual success of all initializations in
DA-1 using sFv and BV at epoch 10.

The correlation of the four different measures at checkpoint epoch 30 and fi-

nal validation accuracy at epoch 100 is shown in figure 6.5. It can be seen that

using training accuracy alone to make a judgment at checkpoint epoch can lead

to wrong decisions in several cases. Since training accuracy alone can not deter-

mine the generalization gap, it can not provide accurate insights about the final

validation accuracy. A low training accuracy at the checkpoint epoch, although

indicative of low validation accuracy at checkpoint too, can not provide informa-

tion about the final training and validation accuracy. Score sF does not use training

accuracy/loss at the checkpoint epoch. Without the labels, the score provides a

positive correlation value with the final validation accuracy.

Likewise, using the validation accuracy at the checkpoint epoch to predict the

validation accuracy at the final epoch can lead to several misclassifications. A

41

low validation accuracy can either stay at low validation accuracy or get well-

trained as well. A high validation accuracy can also either yield a lower final

validation accuracy (over-fitting) or get better trained. Score sFv supplements this

with additional information, boosting the validation accuracy score that has the

potential to train further and a low sst to indicate stopping the training process.

(a) sF and final validation accuracy (b) Train accuracy at epoch 30 and final val-
idation accuracy

(c) sFv and validation accuracy (d) Validation accuracy at epoch 30 and 200

Figure 6.5: sF, training accuracy, sFv, validation accuracy at checkpoint epoch 30
plotted against the final validation for all initializations in DA-1.

Checkpoint sF Training accuracy sFv Validation accuracy
at checkpoint at checkpoint

10 0.478 0.513 0.551 0.508
20 0.605 0.594 0.673 0.615
30 0.708 0.711 0.746 0.704

Table 6.1: Correlation of sF, training accuracy, sFv, validation accuracy at different
checkpoint epochs with the final validation accuracy for DA-1.

Table 6.1 summarizes the Spearman’s correlation values between baseline/scores

and final validation accuracy. It can be seen that score sFv is better than the baseline

42

of validation accuracy at the checkpoint at all checkpoints.

Shell-512 dataset, 2-layer MLP architecture

A total of 137 initializations are trained on this DA. Figure 6.6 shows the distribution

of final training accuracies and validation accuracies for DA-2. Initializations that

achieve validation accuracy above 65% at the final epoch are considered to be in

class y1 and all the other initializations in class y0. The points right to the red line

indicates models which qualify in class y1.

(a) Distribution of Accuracy

Total models 137
y1 34
y0 103

Figure 6.6: Final training and validation performance of 137 different initialization
for DA-2.

A prediction is made whether the model would belong in class y1 or y0 at epoch

100 using these scores at checkpoint epoch 10. Table 6.7 compares the performance

of sFv and validation accuracy at the checkpoint to make a binary prediction of

the success of initialization at the checkpoint. It can be seen that sFv is better at

predicting both trained and not trained networks, compared to simply using the

validation accuracy for this DA as well.

Prediction
y1 y0 Total

Tr
ue y1 29 5 34

y0 2 101 103
Total 31 106 137

(a) Prediction using sFv

Prediction
y1 y0 Total

Tr
ue y1 26 8 34

y0 2 101 103
Total 28 109 137

(b) Prediction using BV

Figure 6.7: Breakdown of the prediction of eventual success of all initializations in
DA-2 using sFv and BV at epoch 10.

43

Table 6.2 summarizes the Spearman’s correlation values obtained for all the

initializations.

Checkpoint sF Training accuracy sFv Validation accuracy
at checkpoint at checkpoint

10 0.224 0.587 0.766 0.716
20 0.228 0.524 0.767 0.762
30 0.230 0.514 0.818 0.786

Table 6.2: Correlation of sF, training accuracy, sFv, validation accuracy at different
checkpoint epochs with the final validation accuracy for all initializations
in DA-2.

It can be seen that score sF performs comparably to the training accuracy at the

checkpoint epoch in the absence of labels. Score sFv is better than the baseline of

validation accuracy at the checkpoint at all checkpoints in this case as well.

6.3 Results on convolutional neural networks

Obtaining singular values of the convolutional layers in CNN requires concatenat-

ing the vector obtained from passing the data through all the feature maps in the

layer. This method can require large memory and computation. Three variants of

SVD calculation are tried for CNN. Although without normalization of score across

architectures, a conclusive metric is not yet decided. Refer A.4 in the Appendix

for further details.

However, the dense layers in CNNs show a compression in SVD values (as ob-

served in MLP). Consider two initializations obtained trained on DA-3 (CIFAR-10,

8-layer CNN) in figure 6.8. It can be seen that the first model trains till a validation

accuracy of 76.3% on training till 100 epochs. This is accompanied by the com-

pression of SVD values in the fully connected layer of dimension 256 as training

continues. The second initialization does not show this compression and remains

untrained till epoch 100.

44

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

validation
train

(a) Validation accuracy = 76.3% at epoch 100

0 50 100 150 200 250

10 3

10 2

10 1

100 5
10
15
20
25
30
35

(b) Normalized singular values (sorted) - dense
layer 1 of size 256 at various epochs

0 20 40 60 80 100
0.0900

0.0925

0.0950

0.0975

0.1000

0.1025

0.1050

0.1075

0.1100

ac
cu

ra
cy

validation
train

(c) Validation accuracy = 9.89% at epoch 100

0 50 100 150 200 250

10 2

10 1

100 5
10
15
20
25
30
35

(d) Normalized singular values (sorted) - dense
layer 1 of size 256 at various epochs

Figure 6.8: Dense layer in well trained CNN show a decay in the singular values
upon training on DA-3.

It is observed that the range of sst and sot for CNNs is different from that in MLP.

A better normalization technique is required for the scoring to analyze the results

obtained from the SVD of fully connected layers in CNNs.

6.4 Performance across architectures

The analysis so far has been limited to the same dataset and architecture. How-

ever, finding an optimal DNN architecture is also largely experimental. This

section expands the utility of early success indicators to test the prediction of both

an initialization and architecture for a dataset. For the experiment, Shell-1024

dataset is considered. The various MLP architecture chosen vary from 1 hidden

45

layer to 11 hidden layers, and the dimension of each hidden layer is chosen ar-

bitrarily in the range of 32 to 512 (in factors of 2). All the models are trained on

Adam optimizer with a learning rate of 10−4. A total of 50 such architectures and

initializations are trained on this dataset, and their sF and sFv values are recorded at

the checkpoint epoch. All the models are further trained for 100 epochs to find the

final validation accuracy. The distribution of final training and validation accuracy

for all the models can be observed in figure 6.9

Figure 6.9: Final training and validation performance of 50 different architectures
on Shell-1024 dataset.

The correlation values at checkpoint 10, 20, 30 are summarized in table 6.3. sFv

beats the validation accuracy at checkpoint for all the checkpoints. Figure 6.10

shows the correlation plots for all the four scoring methods.

Checkpoint sF Training accuracy sFv Validation accuracy
at checkpoint at checkpoint

10 0.439 0.678 0.719 0.671
20 0.628 0.761 0.789 0.752
30 0.712 0.781 0.843 0.814

Table 6.3: Correlation of sF, training accuracy, sFv, validation accuracy at different
checkpoint epochs with the final validation accuracy for all 50 architec-
tures trained on Shell-1024 dataset.

Correlation not a good measure for sF: In the correlation plot, while the x-axis

indicates the final validation accuracy, the y-axis indicates the chances of success on

46

(a) sF and final valida-
tion accuracy

(b) BT and final vali-
dation accuracy

(c) sFv and final valida-
tion accuracy

(d) BV and final vali-
dation accuracy

Figure 6.10: sF, training accuracy, sFv, validation accuracy at checkpoint epoch 30
plotted against the final validation for all 50 architectures.

training further via sF. It is observed that as the validation loss stops decreasing, the

value of sst decreases to very small values. As with initialization-5 in figure 6.3 (the

blue curve), the value of sF becomes a constant. This constant value of sF indicates

that further training of the model is unlikely to train the model further. This can

happen in two scenarios: the model does not train, or the training has saturated.

However, the final validation accuracy in both cases can be significantly different.

For instance, consider the two initializations below on Shell-1024 dataset and

4-layer MLP. The first initialization obtains a final validation accuracy of 73.2%,

and the second remains untrained. In both cases, the validation accuracy does not

change significantly since the initialization. These initializations return a similar

score sF at the checkpoints, indicating that further training might not be beneficial.

Therefore, finding the correlation of sF with the final validation accuracy is not a

good measure to evaluate its performance.

(a) Trained DAI (b) Untrained DAI

Figure 6.11: sF gives same score for two initializations at epoch 30 which do not
benefit from further training.

This problem, however, is mitigated when using the validation labels at the

checkpoint.

47

CHAPTER 7

Dynamic run selection algorithm

7.1 Introduction

In this section, an empirical framework using the early success indicators defined

above is proposed to find a "successful" initialization among a set of initializations

when trained on the same dataset, architecture, and training procedure. Instead of

testing all the initializations in the set to obtain a good initialization, a dynamic run

selection algorithm based on the upper confidence bound algorithm is proposed

for finding such an initialization. Experiments suggest that such an approach saves

significant computational work and training time. For a particular combination

of DA (dataset-architecture) and training mechanism, a set of n initializations are

selected to be tested. Let this set of initializations be I. The proposed algorithm

uses early success predictors to evaluate these initializations in a multi-armed

bandit setting. The following formalism is used-

1. Each initialization in the set I is trained for very few epochs ei initially before
starting the algorithm.

2. Each initialization is an arm/action in the algorithm. Selecting an arm would
train the model further, which was initialized on that particular initialization.

3. The algorithm is run for T rounds. Each round t comprises of training
the selected arm at for a fixed number of epochs (e). The total run time
of the algorithm can be limited to (B − nei)/e rounds, where B is the total
computational budget allocated for finding a good initialization for a task.
nei is the initial computation cost before starting the algorithm.

4. The reward for choosing an arm at in round t is determined by a scheme S.
Four such schemes are analyzed below.

5. A model trained on initialization at would be trained for a total of mat epochs
before round t, where mat = Nat × e, where Nat is the number of times arm at

is chosen before round t.

6. At the end of each round, the validation accuracy of the models trained
on n initializations would be available. This validation accuracy would be
calculated for different epochs for different arms, depending on Nat. It is
expected that good initializations would be chosen more often and would
save the computational time for training the other initializations.

This dynamic run selection algorithm (DRSA) is used to choose the arm to be

pulled. Algorithm 1 details the algorithm. Qt(a) is the empirical estimate of reward

of arm a before round t, Nt(a) is the number of times arm a has been selected till

round t, c is a hyper-parameter to tune the exploration exploitation trade-off.

Four reward functions are proposed as follows:

1. Training accuracy (BT) : Reward of the algorithm is training accuracy at that
epoch.

2. Sf : Reward of the algorithm is score sF based on singular values.

3. Validation accuracy (BV) : Reward of the algorithm is validation accuracy at
that epoch.

4. Sfv : Reward of the algorithm is score based on singular values and validation
accuracy, sFv.

Although the assumption of IID rewards in the UCB algorithm does not hold

true in this experimental set-up, this DRSA has shown to find a good initialization

in each set with the goal of using fewer training epochs.

Baseline: Baseline algorithm to evaluate the performance of DRSA is defined

as follows: Randomly choose an initialization from the set I and train it till the

end (final epoch). The number of epochs required (on average) to find a good

initialization for a DA would be the baseline. If n models are good out of N models

in a set, Random baseline is set as N
n × e, where e is the number of epochs for which

each model is run totally.

Reward from the pull() function depends on the chosen reward function: BT, Sf,

BV, Sfv. Reward for each function is normalized between [0, 1]. An initialization

is declared good if the final validation accuracy exceeds the threshold, which is

decided arbitrarily.

49

Algorithm 1: Dynamic run selection algorithm on DAs

1: procedure DRSA . Returns a model from the set of models
2: Train each model (arm) for a fixed number of epochs (ei) and set that reward

as the initial reward
3: trained_arms = []
4: for t in range(total_iterations) do
5: a : list of arms not in trained_arms
6: chosen_armt = argmaxa(Qt(a) + c

√
ln(t)
Nt(a))

7: r = pull(chosen_armt, t);
8: Nt+1(chosen_armt)← Nt(chosen_armt) + 1
9: Qt+1(chosen_armt)← Qt(chosen_armt) + (r−Qt(chosen_armt))

Nt+1(chosen_armt)
10: if Nt+1(chosen_armt) >= e then
11: if validation_accuracy(chosen_armt) > threshold then
12: return (chosen_armt) . break
13: else
14: add chosen_armt to trained_arms

The idea of DRSA is further extended to find a good architecture and initial-

ization for a fixed dataset. Selecting an architecture involves choosing several

hyper-parameters. For MLP, the number of hidden layers and number of units in

each of the hidden layer has to be determined. Even with the rapidly evolving

state-of-the-art performance of deep learning networks in several domains, finding

an optimal architecture has remained a challenging task. While there is active on-

going research on automatically finding an optimal architecture, these algorithms

consume high computational power and time. As stated above, two aspects are

crucial for searching optimal architectures, training and evaluating a candidate

architecture and a search algorithm to explore different architecture types. Both

of these aspects are combined in DRSA, which simultaneously trains and explores

architectures from a given set of architectures for a particular dataset and returns

a good architecture in less computational time.

The toy example below on DA-1 (Shell-512, 2-layer MLP) illustrates how

DRSA on 10 different initializations (arms) when run for 100 total epochs performs.

Each arm is run for 4 epochs initially. Then the algorithm chooses the arm with

the highest upper confidence bound and updates the parameters.

The final validation accuracy in the plot is obtained by training all the models

50

Figure 7.1: Dynamic run selection algorithm for 10 initializations trained on Shell-
512 dataset, 2-layer MLP run for 100 epochs. The most selected arm
attains the highest validation accuracy on full training.

to a total of 100 epochs individually to evaluate the performance of DRSA. The

reward function in this example is sF. It can be seen that the arm which eventually

gives the highest validation accuracy is the most picked arm. Section 7.2 evaluates

the performance of DRSA for larger sets.

7.2 Evaluating dynamic run selection algorithm

DRSA is evaluated for two tasks:

1. Finding a good initialization from a set of initializations trained on the same
dataset, architecture, and training mechanism.

2. Finding a good architecture and initialization from a set of architectures
trained on the same dataset and training mechanism.

To evaluate its performance for finding a good initialization, the models are

51

trained on two combinations of dataset and architectures (DAs). To further check

the reliability of the proposed algorithm, each of these DAs is divided into m

sets. For each set of a DA, the number of training epochs required to find a good

initialization is calculated. An initialization is declared "good" if the validation

accuracy on full training crosses a certain threshold (this threshold is decided

arbitrarily). Each set contains a few such good initializations. Initializations are

grouped in sets such that the range of validation accuracies of good models in a

set is minimized.

The number of training epochs required to search for a good initialization

is used as the metric to evaluate each of the reward functions and the Random

baseline.

7.2.1 Evaluating performance on DAI

In this section, the algorithm is used to find a good initialization from a set of

initializations (all trained on same dataset, architecture, and training procedure).

Three combination of DA are considered for the evaluation:

• DA-I : Shell-1024 dataset, 4-layer MLP architecture

• DA-II : Shell-256 dataset, 2-layer MLP architecture

• DA-III : CIFAR-10 dataset, 8-layer CNN architecture

For the MLP architectures, all the four reward schemes are analyzed. However,

due to the difficulties mentioned in section 6.3, only BT and BV schemes are used

for the CNN DA combination. These initialization for each DA are divided into

different sets. For each set, the algorithm is run to find a good initialization.

Evaluation on multilayered perceptron

For DA-I and DA-II, a total of 111 and 108 initializations are considered, respec-

tively. Each of this initialization is trained to a maximum of 50 epochs. These are

52

grouped into 4 and 3 sets, respectively. The statistic for each set is summarized in

Table 7.1.

DA Set Total Models Good Models Validation accuracy range

I 27 2 80.2%-81.1%
I II 28 3 80.0%-81.9%

III 28 3 80.0%-81.5%
IV 28 3 83.8%-85.3%
I 37 3 77.1%-78.0%

II II 36 3 78.3%-79.4%
III 35 2 80.6%-81.6%

Table 7.1: Range of validation accuracies and number of acceptable models in each
set for DA-1 and DA-2.

Each set contains a few good models such that the range of validation accuracy

for the good models is minimized. This is done to ensure that finding a good

initialization carries equal weightage, and the algorithms can be compared on the

basis of the number of epochs required to find the good initializations alone. The

distribution of final training and validation accuracies for each of this set can be

visualized in figure 7.2 for DA-I and figure 7.3 for DA-II. The threshold for deciding

good initialization is set as 80% and 75%, respectively.

0.5 0.6 0.7 0.8 0.9 1.0
Validation accuracy at epoch 50

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
ac

cu
ra

cy
 a

t e
po

ch
 5

0

DAI 1 | Set 1

(a) Set 1

0.5 0.6 0.7 0.8 0.9 1.0
Validation accuracy at epoch 50

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
ac

cu
ra

cy
 a

t e
po

ch
 5

0

DAI 1 | Set 2

(b) Set 2

0.5 0.6 0.7 0.8 0.9 1.0
Validation accuracy at epoch 50

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
ac

cu
ra

cy
 a

t e
po

ch
 5

0

DAI 1 | Set 3

(c) Set 3

0.5 0.6 0.7 0.8 0.9 1.0
Validation accuracy at epoch 50

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
ac

cu
ra

cy
 a

t e
po

ch
 5

0

DAI 1 | Set 4

(d) Set 4

Figure 7.2: Distribution of final validation and train accuracy for each set in DA-1.

(a) Set 1 (b) Set 2 (c) Set 3

Figure 7.3: Distribution of final validation and train accuracy for each set in DA-2.

53

Each initialization is run for 2 epochs before starting the algorithm. The al-

gorithm is run for each of the four reward schemes, and the result is compared

against the random baseline. For instances in which the ratio of good models to all

models is low, the random baseline can be quite high. The algorithm is terminated

as soon as a good arm is trained completely (till epoch 50). The results for each set

of DA-I and DA-II are summarized in Table 7.2.

DA Set Random Sf BT Sfv BV

I 675 254 294 512 560
I II 467 206 296 152 156

III 467 282 248 596 670
IV 467 310 342 572 654
I 616 198 122 122 122

II II 600 280 120 120 120
III 875 246 186 194 256

Table 7.2: Number of epochs required by each reward scheme to find a good ini-
tialization for each set in DA-1 and DA-2.

It can be seen that the reward scheme S f v beats the random baseline by a huge

margin in 6 out of the 8 sets (S f beats the baseline in the remaining two sets). For

DA-II, the performance of all the rewards is better than the random baseline. For

DA-I, however, the last two sets show inferior performance of S f v and BV. Further

analysis on these sets reveal the following reasons for this performance:

1. Over-fitting: Several models in set 3 and 4 of DA-1 start over-fitting (decrease
in validation accuracy) before epoch 50. Some examples from these sets are
shown below:

(a) Initialization 1 (b) Initialization 2 (c) Initialization 3

Figure 7.4: Decreasing validation accuracy as training progresses for three initial-
izations from set-III and IV in DA-1.

The validation accuracy of these models is above 80% for a certain range of

54

epochs and then starts reducing. The sets are built on the final validation
accuracy, and these models are not included as good initializations in it. This
leads to DRSA exploiting these arms and thus spending computational time
on training them as well. One potential method that could overcome this is
using a weighted average of rewards instead of a linear running average in
step 9 of the algorithm 1. This will ensure that the scores go down rapidly as
over-fitting begins.

2. False positives: Some models show decreasing validation loss and unchang-
ing validation accuracy. These models can also be accompanied by high score
values, leading to investing computational power in these initializations.

Evaluation on convolutional neural network

The idea of DRSA for selecting a good initialization can be extended to convo-

lutional neural networks as well. For CNNs, the focus is on random, BT, BV

strategies. For DAI-3, a total of 56 initializations are trained. All models are

trained till a maximum of 100 epochs, and 73% is maintained as the threshold for

declaring an initialization good with this DA. The distribution of final training and

validation accuracy is shown in figure 7.5.

Figure 7.5: Distribution of final validation and train accuracy for each set in DA-3.

These initializations are divided into 2 sets as indicated in Table 7.3. Each set

has 28 initializations.

Using Random, BT, BV scoring for heuristic UCB algorithm for CNN onCIFAR-10

dataset gives the results presented in Table 7.4. For both the sets, BT and BV scoring

beats the Random baseline by a huge margin.

55

Set Total Models Good Models Range of validation accuracy

I 28 3 73.1%-73.4%
II 28 2 75.1%-75.1%

Table 7.3: Range of validation accuracies and number of acceptable models in each
set for DA-3.

Set Random BT BV

I 933 140 238
II 1400 388 292

Table 7.4: Number of epochs required by Random, BT, BV reward scheme to find a
good initialization for each set in DA-3.

7.2.2 Evaluating performance on DA

In this section, the result of running DRSA on choosing a good architecture and

initialization from a set that is trained on the same dataset and training mechanism

is presented. The dataset used for this experiment is Shell-1024 dimensional. A

total of 50 models have been trained to 50 epochs to find the final validation

accuracy. The architecture has been chosen arbitrarily by varying the number of

hidden layers and the dimension of each hidden layer in an MLP. The number of

hidden layers is varied from 1 to 11. These models are then divided into different

sets to check the reliability of the UCB algorithm. The summary of these models

is as shown in Table7.6.

(a) Set 1 (b) Set 2

Figure 7.6: Distribution of final validation and train accuracy for each set in
Shell-1024 dataset.

The initialization for these architectures is sampled form Xavier normal distri-

bution. Models which attain a validation accuracy higher than 75% are classified

as good. The characteristic for each set is summarized in table 7.5

56

Set Total Models Good Models Range of validation accuracy

I 25 5 75.1%-76.4%
II 25 5 77.3%-82.5%

Table 7.5: Sets comprising of different architectures trained on Shell-1024.

Both of these sets are run on all the reward schemes, and the result is compared

against the random baseline. Although the computational cost for training 1 epoch

of different architectures is different, the random baseline is calculated, assuming

the computation time to be comparable. The results are summarized in table 7.6.

Set Random Sf BT Sfv BV

I 250 208 242 110 180
II 250 360 388 196 196

Table 7.6: Number of epochs required by each reward scheme to find a good ar-
chitecture for each set in Shell-1024 dataset.

It is evident that DRSA with reward scheme sFv and BV performs better than

random trials.

Varying the hyper-parameter for exploration-exploitation balance, c affects the

number of training epochs required to find a good initialization. A very small value

of c suggests that the algorithm heavily prefers the empirical estimation of rewards

as the confidence bound is shrunk. This often results in yielding initializations that

may not give a good performance but performs better than random prediction. A

very high value of c (close to 1) suggests that the algorithm has wide confidence

bound and focuses more on exploring. This can result in exploring arms with low

empirical rewards finally. Therefore, choosing an optimal c is necessary. For all

the experiments in this section, c is maintained as 0.1.

Visualization baseline: Figure 7.7 shows the training and validation accuracy

at each epoch for 24 architectures and initializations used in Set-II in table 7.5. It

demonstrates that choosing a model to train at each round t of the dynamic run

selection algorithm is non-trivial. For instance, for several models, the validation

57

accuracy at epoch 20 is not indicative of the final validation accuracy. The good

models indicated in the table are marked in green in the table.

Problem with DRSA: The results of the dynamic run selection algorithm are

susceptible to the choice of hyper-parameter c for S f and S f v schemes. Since the

scores are not normalized for different datasets, the same choice of c can result

in high exploration in some DAIs (leading to wastage of computational cost for

models that yield low scores and would potentially not train further), and high

exploitation in some DAIs (leading to complete training of DAIs which might not

give best results in the final epoch). The algorithm is less sensitive to the choice of

hyperparameter c for BT and BV scoring, however.

58

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 7.7: Visualizing the training and validation accuracy of architectures in Set-I
trained on Shell-1024 dataset.The good architectures are highlighted
in green.

59

CHAPTER 8

Future directions and Conclusion

8.1 Future Work

Early success indicator and dynamic run selection algorithm have shown positive

results on the task of predicting the success of gradient descent for a particular

dataset-architecture-initialization combination. This work could be further ex-

tended in the following directions.

8.1.1 Subspace for different classes

The calculation of sst and sot in section 5 is done independent of the labels of the test

dataset. It can be extended to automatic dimensionality reduction for individual

classes. For a two-class problem with classes y0 and y1, let A0 and A1 be the matrix

obtained by passing validation dataset of each class through the hidden layer l.

Let A0 and A1 be of dimension n × dl, where n is the number of data points and dl

is the dimension of output from the hidden layer (assuming n ≥ d1).

The direction v1 along which a matrix A has the most amplifying power (or

impact) is calculated as:

v1 = argmaxv∈Rdl ||Av||2, subject to ||v||2 = 1

Similarly, the next most amplifying direction is found by

v2 = argmaxv∈Rdl ||Av||2, subject to ||v||2 = 1,< v1, v >= 0

Proceeding along these lines gives us an orthonormal bases {v1, .., vdl of Rdl}. The

singular values quantify the amplifying power of each such direction σi = ||Avi||2.

An orthogonal matrix U is chosen such that Avi = σiui for i = 1, .., dl.

Intuitively, it is expected that the amplifying power of the matrix A0 and A1

would be in different directions. If it were in the exact same direction, distinction

between the two classes could not be made out. Therefore, a rudimentary attempt

to quantify this intuition is stated as a score s:

s =

∑dl
i=1 σi0, σi1vT

iovi1

dl

where σi0 is the ith singular value of matrix A0.

A high score s can be indicative of separate directions of different classes for

the automatic dimensionality reduction.

8.1.2 Predicting success of a DAI as a classification problem

Predicting the success can be formulated as a three-class problem. Neural networks

at any epoch can have either:

• High training accuracy, high validation accuracy

• High training accuracy, low validation accuracy

• Low training accuracy, low validation accuracy

Please note, the terms "high" and "low" here can be defined quantitatively for

a given task and dataset based on simple thresholding. Roughly, the case of low

training accuracy and low validation accuracy is when the neural network is close

to a random predictor for training and testing data. High training accuracy and

low validation accuracy are models with a huge generalization gap. The case of

low training accuracy and high validation accuracy is not often observed in real-

world problems. (Using dropout can give slightly higher validation accuracy than

training accuracy, but the difference is usually not significant).

61

Let the three classes be called y1, y2, y3 respectively and let a DAI be in class sC at

checkpoint epoch eC and in class sL at the final epoch eL (where sC, sL ∈ {y1, y2, y3}).

For evaluating the performance of ESI on the classification problem, the classes are

decided as follows: high accuracy (validation or train) is defined to be attained if it

crosses a threshold of 70%. Table 8.1 shows the possible combination of occurrence

at eC and eL for the Shell-1024 dataset.

eC

eL y1 y2 y3

y1

y2

y3

Table 8.1: Different possible combination of y1, y2, y3 at eC and eL for the Shell-1024
dataset.

The use of early success indicators can be extended to predict in which class

a DAI would fall after the final epoch. In the absence of validation labels, this

prediction could be made at the checkpoint epoch as well. For the Shell-1024

dataset, a total of 144 models are considered, trained on a 4-layered MLP. The true

status of this dataset is shown in the table below. With the availability of validation

labels at eC (In this experiment eC is considered at epoch 20), a prediction is made

about sL using only the score sst. The results for it are summarized in the table

below.

62

True Status Prediction using sst

eC

eL
y1 y2 y3

y1 8 15 0

y2 25 20 0

y3 5 7 64

eC

eL
y1 y2 y3

y1 10 13 0

y2 17 28 0

y3 4 0 72

The total number of correct predictions is 102 out of 144 (70.83%). All predic-

tions for the (y3, y2) combinations are wrong as sst can not predict models with low

training and validation accuracy at the checkpoint as models with a high gener-

alization gap (it can only predict if the model would be trained successfully or

not). This is a preliminary experiment using just sst. An extensive study can be

conducted for each of the seven sC, sL combinations.

8.2 Conclusion

In this work, a mechanism has been realized to predict the success of gradient

descent for a particular dataset-architecture-initialization combination. Two early

success indicators are proposed, analyzed, and tested on several tasks, datasets, ar-

chitectures, and initializations to facilitate early give-up, i.e., stopping the training

of models early, which are predicted to not generalize well upon further training

thereby saving computational time and power.

The early success indicators investigate noise stability and automatic dimen-

sionality reduction for the outputs from the hidden layer, indicating that for a

well-trained network, signal carries in specific directions (section 4). This phe-

nomenon is used to build quantitative measures to compute scores for making a

classification regarding the success of gradient descent on a particular DAI. Evalu-

ation on various DAI combinations demonstrates the success of these early success

indicators and the advantage of using them instead of simply relying on the train-

ing and validation accuracy at the checkpoint epoch to make a judgment about the

final success of the DAI (section 6).

63

These indicators are used to put forward a dynamic run selection algorithm

to find a good initialization weight from a set of such weights in section 7. The

algorithm runs for a finite number of rounds and chooses an initialization to train in

each round. This combines the training of each initialization and testing of several

initializations in one algorithm. The results show that the proposed algorithm is

better than the random baseline on a majority of the DAIs. The analysis has been

extended to choosing architectures and to CNNs.

In conclusion, using early success indicators can facilitate early give-up by

predicting the success of a DAI with prescience at an early stage in training, which

can help make an informed decision on the benefits of further training the model.

64

REFERENCES

[1] Arora, S., R. Ge, B. Neyshabur, and Y. Zhang (2018). Stronger generalization bounds
for deep nets via a compression approach. URL http://arxiv.org/abs/1802.05296.

[2] Frankle, J. and M. Carbin (2018). The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks. URL http://arxiv.org/abs/1803.03635.

[3] Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep feed-
forward neural networks. Technical report. URL http://www.iro.umontreal.

[4] Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. Technical report.

[5] He, K., X. Zhang, S. Ren, and J. Sun (2015). Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. URL http://arxiv.org/
abs/1502.01852.

[6] Ji, Z. and M. Telgarsky (2018). Gradient descent aligns the layers of deep linear
networks. URL http://arxiv.org/abs/1810.02032.

[7] Kalyanakrishnan, S., A. Tewari, P. Auer, and P. Stone (2010). PAC Subset Selection
in Stochastic Multi-armed Bandits. Technical report.

[8] Kozlov, A., I. Lazarevich, V. Shamporov, N. Lyalyushkin, and Y. Gorbachev (2020).
Neural Network Compression Framework for fast model inference. URL http:
//arxiv.org/abs/2002.08679.

[9] Lai Andherbertrobbins, T. L. (1985). Asymptotically Efficient Adaptive Allocation
Rules*. Technical report.

[10] Li, D., X. Chen, M. Becchi, and Z. Zong, Evaluating the energy efficiency of deep
convolutional neural networks on CPUs and GPUs. In Proceedings - 2016 IEEE Interna-
tional Conferences on Big Data and Cloud Computing, BDCloud 2016, Social Computing and
Networking, SocialCom 2016 and Sustainable Computing and Communications, SustainCom
2016. Institute of Electrical and Electronics Engineers Inc., 2016. ISBN 9781509039364.

[11] Liu, H., K. Simonyan, and Y. Yang (2018). DARTS: Differentiable Architecture Search.
URL http://arxiv.org/abs/1806.09055.

[12] Saxe, A. M., J. L. McClelland, and S. Ganguli (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. URL http://arxiv.org/abs/
1312.6120.

[13] Simonyan, K. and A. Zisserman (2014). Very Deep Convolutional Networks for
Large-Scale Image Recognition. URL http://arxiv.org/abs/1409.1556.

[14] Slivkins, A. (2019). Introduction to Multi-Armed Bandits. URL http://arxiv.org/
abs/1904.07272.

65

http://arxiv.org/abs/1802.05296
http://arxiv.org/abs/1803.03635
http://www.iro.umontreal.
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1810.02032
http://arxiv.org/abs/2002.08679
http://arxiv.org/abs/2002.08679
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1904.07272
http://arxiv.org/abs/1904.07272

[15] Strubell, E., A. Ganesh, and A. McCallum (2019). Energy and Policy Considerations
for Deep Learning in NLP. URL http://arxiv.org/abs/1906.02243.

[16] Tang, H., Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han (2020). Searching
Efficient 3D Architectures with Sparse Point-Voxel Convolution. URL http://arxiv.
org/abs/2007.16100.

[17] Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals (2016). Understand-
ing deep learning requires rethinking generalization. URL http://arxiv.org/abs/
1611.03530.

[18] Zoph, B. and Q. V. Le (2016). Neural Architecture Search with Reinforcement Learn-
ing. URL http://arxiv.org/abs/1611.01578.

66

http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/2007.16100
http://arxiv.org/abs/2007.16100
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.01578

APPENDIX A

Additional Experiments

A.1 Noise stability

This section tests the result of noise stability for other datasets and architectures as

well. Figure A.1 demonstrates compressibility of MLP for a different dataset: MNIST

dataset, 4-layer MLP architecture, initialization from Normal Xavier scheme. It

is trained using RMSprop optimizer with learning rate 10−3 till 100 epochs. Signif-

icant compression can be seen in this setup as well when the correctly labeled data

is passed. This stability reduces when the data is shuffled.

(a) Initialization (b) Correct labels (c) 20% Shuffled
Correct Labels Accuracy

Train 97.58%
Validation 97.75%

Epoch 100

Shuffled Labels Accuracy
Train 76.63%

Validation 70.19%
Epoch 100

Figure A.1: Noise stability of MNIST dataset, 4-layer MLP architecture, initializa-
tion from Normal Xavier. Noise stability and validation accuracy
reduce as the labels are shuffled.

Compression of noise on MNIST dataset is also tested with 16-layer CNN ar-

chitecture and initialization from Normal Xavier scheme as shown in Figure A.2.

This DAI also demonstrates significant noise stability and very high validation

accuracy.

(a) Initialization (b) Trained

Accuracy
Train Acc 98.74%
Val Acc 98.17%

Epoch 100

Figure A.2: Noise stability of MNIST dataset, 16-layer CNN architecture, initializa-
tion from Normal Xavier scheme.

A.1.1 Noise stability for smaller dimension dataset

Although, results for MNISTdataset, Shell-1024dataset, CIFAR-10dataset provide

support to the hypothesis of a positive correlation between learning and noise sta-

bility, the results for low dimensional datasets do not always show noise stability.

Figure A.3 demonstrate how compression profile changes with increasing dimen-

sion.

(a) D=2 (b) D=4 (c) D=8 (d) D=16

(e) D=32 (f) D=64 (g) D=128 (h) D=256
Dimension Train Acc Val Acc

2 100.00% 100.00%
4 100.00% 100.00%
8 100.00% 99.20%

16 99.80% 98.56%

Dimension Train Acc Val Acc
32 97.35% 98.50%
64 95.92% 93.55%

128 94.00% 89.21%
256 99.17% 92.20%

Figure A.3: Noise stability of smaller dimensional Shell dataset, 4-layer MLP ar-
chitecture, initialization from Normal Xavier scheme. Noise stability
increases with increasing dimension of imput vectors.

68

Shell dataset with different dimension ranging from 2 to 256 are used. The

stopping criteria for all the above mentioned dataset is early stopping with patience

10. 4-layer MLP architecture and initialization from Normal Xavier scheme is

used in all the following networks. Therefore, this shows that generalization does

not always imply compression.

A.1.2 Compression at initialization

It has been observed that MLP and CNN show very different compression profiles

at initialization. There is some observable compression in CNNs, unlike MLPs, at

initialization. Consider an initialization in Figure A.4 (a) of a 10 layer MLP with

8 hidden layers of 256 units and 2 hidden layers of 128 dimension. Initialization

from Normal Xavier scheme is used. It can be seen that there is no significant

compression in MLPs at initialization. On the other hand, consider Figure A.4(b)

that shows an instance of initialization in CNNs. 10-layer CNN architecture and

initialization fromNormal Xavier scheme is used. There is significant compression

in CNN even without any training.

(a) Initialization of 10-layer MLP (b) Initialization of 10-layer CNN

Figure A.4: Initialization of MLP and CNN. CNN initialization shows noise sta-
bility at initialization.

To test whether ReLU can contribute towards this compression at the beginning,

the value of noise transmission is extracted just before the activation function.

Consider MNIST dataset, 10-layer CNN architecture, initialization from Normal

Xavier scheme. Table A.1 compares the the values for noise stability before and

69

after the ReLU activation function of untrained (initialization) and trained network.

The network is trained for 10 epochs, achieving a validation accuracy of 97.24%.

It can be seen that in many layers, the value of noise propagation reduces after

passing through ReLU activation function and this could be a possible factor for

compression at initialization.

Layer Before ReLU After ReLU Before ReLU After ReLU

(init) (init) (trained) (trained)

1 0.1024 0.1079 0.0928 0.0763

2 0.0861 0.0891 0.0632 0.0631

3 0.0893 0.0804 0.0704 0.0669

4 0.0822 0.0748 0.0444 0.0349

5 0.0985 0.0898 0.0533 0.0615

6 0.1031 0.1072 0.0558 0.0668

7 0.0914 0.0787 0.0506 0.0688

8 0.1055 0.1081 0.0674 0.0643

9 0.0973 0.097 0.0762 0.0655

Table A.1: Effect of activation function on noise stability of MNISTdataset, 16-layer
CNN architecture, initialization from Normal Xavier scheme

A.2 Singular Value Decomposition

Singular value distribution is tested for additional classification and regression

tasks in this section.

70

A.2.1 Regression

In Section 4.2.1, it was showed that compression of SVD values holds for trained

regression models as well. The following experiment is done on Cosine of Sum

dataset and Sum of Cosines dataset. The SVD profile is compared for different f.

SVD outputs for Cosine of Sum dataset

The output is uniformly distributed in [−4, 4]. The architecture is the same as used

in 4.2.1 (4 hidden layers(256,128,128,64). No batch normalization, dropout layer

considered). Consider the following cases:

1. 4f = 40 :
• Dataset : Sampled from y = cos(

∑10
i=1 xi) + sin(

∑20
i=11 xi) + cos(

∑30
21 xi) +

sin(
∑40

31 xi).

• Training : Trained till 2000 epochs using SGD optimizer, and 10−3 learn-
ing rate.

Figure A.5 shows the SVD output for each hidden layer and the noise stability
(the plot for layer-3 and layer-4 are similar to layer-2). Profile of the first
hidden layer is very different from others. Proper decay of SVD values is
observed in the first layer. There is some irregular behaviour for the first few
singular values in all the other layer. After the 10th singular value, expected
behaviour is observed.

2. 4f = 20 :
• Dataset : Sampled from y = cos(

∑5
i=1 xi) + sin(

∑10
i=6 xi) + cos(

∑15
11 xi) +

sin(
∑20

16 xi)

• Since less dimensions of x are active in this function, a steeper SVD
decay was expected. But the results were very similar to the case above.

SVD outputs for Sum of Cosines dataset

Since Sum of Cosines dataset is a summation of several cosine terms, it gets

difficult to obtain a uniform distribution of y as f increases. It also becomes more

difficult to train the model with increasing value of f . The architecture is the same

as used in the last regression experiment. Consider the following case:

1. 2f = 4 :
71

(a) Distribution of y (b) Training (c) Noise stability at epoch 2000

(d) Normalized singular val-
ues (sorted) - layer 1 of size
256

(e) Normalized singular values
(sorted) - layer 2 of size 128

Epoch 2000 Loss
Train Loss 0.00080
Val Loss 0.043

Figure A.5: SVD Output at various epochs for Cosine of Sum dataset at 4 f = 40.

• Dataset : Sampled from y =
∑2

i=1 cos(xi)+
∑4

i=3 sin(xi)
4 .

• Training : Trained till 2000 epochs using SGD optimizer and 10−3 learn-
ing rate.

Although there is some decay in the SVD values, the shift is not significant
with subsequent epochs. The noise stability plot displays stability to noise.

A.3 Evaluating early success indicators

Analysis in section 6 was done on synthetic Shell dataset for MLPs. An experiment

for MNIST dataset has been shown below.

MNIST dataset, 2-layer MLP architecture

Figure A.7 shows the distribution of final training accuracies and validation ac-

curacies. Initializations which achieve validation accuracy above 20% at the final

72

(a) Distribution of y (b) Training (c) Noise stability at epoch 2000

(d) Normalized singular val-
ues (sorted) - layer 1 of size
64

(e) Normalized singular values
(sorted) - layer 2 of size 64

Epoch 2000 Loss
Train Loss 0.4738
Val Loss 0.4680

Figure A.6: SVD Output at various epochs (in log scale) for Sum of Cosines
dataset at 2 f = 4.

epoch are considered to be in class y1, and all the other initializations in class y0.

The points right to the red line indicates models which qualify in class y1.

Figure A.8 shows the prediction using sF and sFv. Table A.2 summarizes the

Spearman’s correlation values obtained for all the initializations. Since the gen-

eralization gap for most of the initializations is very low, training accuracy at

checkpoint has a higher correlation with final validation accuracy.

Checkpoint sF Training accuracy sFv Validation accuracy
at checkpoint at checkpoint

30 0.7822 0.0287 0.7677 0.7936
50 0.7822 0.0816 0.7767 0.8027

Table A.2: Correlation of sF, training accuracy,sFv, validation accuracy at different
checkpoint epochs for all initializations.

For this DA, the validation accuracy is very close to the training accuracy for

73

(a) Distribution of Accuracy

Total models 20
y1 15
y0 5

Figure A.7: Final training and validation performance of 20 different initialization
for MNIST dataset, 2-layer MLP.

Prediction
y1 y0 Total

Tr
ue y1 15 0 15

y0 0 5 5
Total 15 5 20

(a) Prediction using sFv

Prediction
y1 y0 Total

Tr
ue y1 15 0 15

y0 1 4 5
Total 16 4 20

(b) Prediction using BV

Figure A.8: Breakdown of the prediction of eventual success of all initializations
using sFv and BV at epoch 30.

most of the models. Therefore, the correlation of training accuracy at eC and

validation accuracy at final epoch.

A.4 Convolutional Neural Networks

The activation maps of CNNs can be flattened to a 1-D matrix, and the SVD output

can be extracted from there. The dimension of the matrix would be (n×(dx×dy×nc)),

where n is the number of data points, dx and dy are the dimension of feature map

and nc is the number of feature maps at that hidden layer. However, this matrix

could be huge in size for most of the architectures. Three ways of obtaining SVD

output from the CNNs are discussed below. For all the experiments, CIFAR-10

dataset and 10-layer CNN architecture is used.

1. Max/Avg Sampling: Sampling is done on the outputs of hidden layer and
before flattening it. Both max sampling and average sampling show similar
result. Below is the result from average sampling. Figure A.9 demonstrates
the training and SVD output of layer-6.

74

• Architecture: C(16, 16, 32, 32, 64, 64, 128), D(256, 128, 10), where C is
Convolutional Layer and D is dense layer.

• After sampling, lengths of vectors is as follows (1936, 1936, 1152, 1152,
576, 576, 1152, 256,128,10).

(a) Training (b) Normalized singular values
(sorted) - layer 6 of size 576

Score/Acc
Train Acc 80.49 %
Val Acc 71.70%

sot 2.10
sst -2.04

Epoch 40

Figure A.9: Training and SVD output at various epochs: CIFAR-10 dataset,
10-layer CNN architecture, average sampling.

2. Individual Activation Map: All the feature maps in a hidden layer are taken
individually for calculating the scores. The final score for a hidden layer is
averaged by the number of feature maps. The size of SVD matrix in this case
becomes (n × (dx × dy)). In Figure A.10, one randomly selected SVD output
from hidden layer-6 is shown.
• Architecture : C(16, 16, 32, 32, 64, 64, 128), D(256, 128, 10), where C is

Convolutional Layer and D is dense layer.

• After sampling, lengths of vectors is as follows: (1024, 1024, 256, 256,
64,64,64, 256, 128,10).

(a) Training (b) Normalized singular values
(sorted) - layer 6 of size 64

Score/Acc
Train Acc 82.29 %
Val Acc 74.50%

sot 1.83
sst -7.21

Epoch 40

Figure A.10: Training and SVD output at various epochs: CIFAR-10, 10-layer
CNN, individual feature map.

3. Entire Hidden Unit: Flatten the entire hidden unit. This method is only
feasible for small architectures. Figure A.11 shows the training and the SVD
output.

75

• Architecture : C(4, 4, 16, 16, 32, 32, 32),D (256, 128, 10), where C is
Convolutional Layer and D is dense layer.

• After sampling, lengths of vectors is (4096, 4096, 1600, 1600, 800, 800,
800, 256, 128, 10).

(a) Training (b) Normalized singular values
(sorted) - layer 6 of size 800

Score/Acc
Train Acc 58.51 %
Val Acc 58.70%

sot 2.21
sst -1.39

Epoch 40

Figure A.11: Training and SVD output at various epochs: CIFAR-10, 10-layer
CNN, entire hidden layer.

The SVD profile for CNNs do not indicate a clean decay of the values with sub-

sequent epochs. Other layers of CNN also show similar profile. The comparison

for the three methods is not straightforward as the scoring has not been normal-

ized across architectures yet. An extensive experimentation for each method and

normalized scoring is further required to predict the success of a DAI based on the

two tools.

A.5 LUCB

LUCB algorithm [7] selects a subset of size m of those arms with the highest

expected rewards from among the arms of a stochastic n-armed bandit.

A.5.1 Algorithm

Each sample (or pull) of an arm a yields a reward of either 0 or 1, generated ran-

domly from a fixed Bernoulli distribution with mean pa . An arm a is (ε,m) optimal

for ∀ε ∈ (0, 1), ∀m ∈ {1, 2, 3, ...,n − 1} iff pa ≥ pm − ε.

76

Arms : 1, 2, ...,n

Top: 1, 2, ...,m

Bottom: m + 1,m + 2, ...,n

There are at least m (ε,m)-optimal arms. Let Good be the set of all (ε,m)-optimal

arms, and let the set Bad contain all the remaining arms.

m ≤ |Good| ≤ n and 0 ≤ |Bad| ≤ (n −m)

• During round t, ut
a be the number of times arm a has been sampled.

• p̂t
a be the empirical mean of the rewards from arm a.

• β(ut
a, t) is a positive number interpreted to be a high probability bound on the

deviation of the empirical mean of arm a from its true mean.

β(u, t) =

√
1

2u
ln(

k1nt4

δ
)

with probability at least 1 − δ that every arm returned by the algorithm is
(ε,m)-optimal.

• Hight: Set of m arms with the highest empirical average during round t

• Lowt : Set of n −m arms with the lowest empirical averages during round t

• ht
∗
: Among the arms in Hight , it is the arm with the lowest lower confidence

bound

• lt
∗
: Among the arms in Lowt , it is the arm with the highest upper confidence

bound

A.5.2 Modification

Theoretical bounds for LUCB do not hold for the proposed heuristic LUCB as

rewards are not IID and ut
a is bounded by e in this set-up. The changes are

explained in the algorithm 2.

The results obtained from LUCB are detailed below. The following two combi-

nation of DA are considered for the evaluation:

77

Algorithm 2: Heuristic LUCB on DAs

1: procedure LUCB . Returns m models from the set of n models
2: Train each model (arm) for a fixed number of epochs (2) and set that reward

as the initial reward
3: trained_arms = []
4: Hight = [m arms with highest initial reward]
5: Lowt = [n-m arms with lowest initial reward]
6: ht

∗
= argminh∈Hight{p̂t

ht
∗

− β(ut
ht
∗

)}
7: lt

∗
= argmaxh∈Lowt{p̂t

lt∗
+ β(ut

lt∗
)}

8: for t in range(total_iterations) do
9: term = (p̂t

lt∗
+ β(ut

lt∗
)) − (p̂t

ht
∗

− β(ut
ht
∗

)) . Check_Stopping_Criterion
10: if term < ε then
11: return Hight

12: Add fully trained arms in trained_arms
13: alpha = length(trained_arms)
14: if α >= m then
15: return Hight

16: Hight =trained_arms ∪ [m − α arms (not in trained_arms) with highest
reward at t]

17: Lowt = [n −m arms (not in trained_arms) with lowest reward at t]
18: a = list of arms in Hight, not in trained_arms
19: ht

∗
= argminh∈a{p̂t

ht
∗

− β(ut
ht
∗

)}
20: lt

∗
= argmaxh∈Lowt{p̂t

lt∗
+ β(ut

lt∗
)}

21: pull(ht
∗
, lt
∗
)

22: Update rewards and ut

• DA-I : Shell-1024 dataset, 4-layer MLP architecture

• DA-II : Shell-256 dataset, 2-layer MLP architecture

For the MLP architectures, all the four reward schemes are analyzed. The

distribution of datasets, good models, training procedure is same as detailed for

DA-1 and DA-2 in section 7. Epochs represent the number of epochs required

for the LUCB algorithm to terminate and Good indicates the number of good

initialization retrieved out of the total m models returned.

78

DA-1 (Shell-1024, 4-layer MLP)

Table A.3 summarizes the results. It can be seen that S f v performs better than BV

for all the sets and both values of m.

Set m Sf BT Sfv BV

Epochs Good Epochs Good Epochs Good Epochs Good
I 1 240 0 304 1 304 1 304 1

3 456 1 408 2 568 2 572 2
II 1 320 0 260 1 288 0 344 0

3 552 1 412 1 620 2 692 1
III 1 440 0 304 0 432 0 440 0

3 512 0 416 1 592 1 584 1

Table A.3: LUCB Results on DA-1.

DA-2 (Shell-256, 4-layer MLP)

Table A.4 summarizes the results. Scheme BV performs better for this DA.

Set m Sf BT Sfv BV

Epochs Good Epochs Good Epochs Good Epochs Good
I 1 236 0 236 0 525 1 416 1

3 424 0 424 0 656 3 592 3
II 1 232 1 232 1 380 1 324 1

3 464 2 484 2 556 3 528 3
III 1 232 0 232 0 420 1 348 1

3 420 1 428 0 564 2 608 2

Table A.4: LUCB Results on DA-2.

79

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABBREVIATIONS
	INTRODUCTION
	Early success indicators

	Background Work
	Compressibility in trained neural networks
	Gradient descent aligns the layers of deep linear networks
	Upper Confidence Bound (UCB) algorithm

	Experimental Setup
	Dataset
	Shell-d Dataset:

	Architecture
	Multilayer Perceptron Architectures
	Convolutional Neural Network Architectures

	Initialization
	Dataset-Architecture (DA) combination

	Alternative success indicators
	Noise Stability
	Experiments on noise stability
	 Compression after training:
	Results on multilayer perceptron
	Compression after training on shuffled labels:
	Compression after training on initialization from Shuffled Trained:
	Compression with initialization from Scaled Normal Xavier scheme:

	Results on convolutional neural networks
	Compression for Convolutional Neural Networks (Shuffled Labels):

	Automatic dimensionality reduction
	Experiments on automatic dimensionality reduction
	Classification
	Validation accuracy and SVD outputs:

	Regression
	Validation accuracy and singular values:

	Scores for early success indicators
	Notations:
	Predicting success of initializations for a dataset and architecture
	Baseline:

	Improving Scoring

	Evaluation of early success indicators
	Failure of Noise stability
	Results on multilayer perceptron
	Results on convolutional neural networks
	Performance across architectures
	Correlation not a good measure for sF:

	Dynamic run selection algorithm
	Introduction
	Evaluating dynamic run selection algorithm
	Evaluating performance on DAI
	Evaluating performance on DA
	Visualization baseline:
	Problem with DRSA:

	Future directions and Conclusion
	Future Work
	Subspace for different classes
	Predicting success of a DAI as a classification problem

	Conclusion

	Additional Experiments
	Noise stability
	Noise stability for smaller dimension dataset
	Compression at initialization

	Singular Value Decomposition
	Regression

	Evaluating early success indicators
	Convolutional Neural Networks
	LUCB
	Algorithm
	Modification

