
Investigating Transformer architecture for Automatic

Speech Recognition and Machine Translation in Indian

Languages

A Project Report

Submitted by

MOLUGU SAI SANTOSH GAURAV

in partial fulfillment of the requirements for the award of the degree

of

BACHELOR OF TECHNOLOGY & MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

CHENNAI-600036

JUNE 2021

1

THESIS CERTIFICATE

This is to certify that the thesis entitled “Investigation of Transformer architecture for

Automatic Speech Recognition and Machine Translation in Indian Languages”

submitted by Molugu Sai Santosh Gaurav to the Indian Institute of Technology, Madras for

the award of the degree of Bachelor of Technology and Master of Technology is a bona

fide record of research work carried out by him under my supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Prof. Umesh S.
Associate Professor
Department of Metallurgical and Materials Engineering
Indian Institute of Technology Madras
Chennai – 600 036.

Place: Chennai

Date: 3rd June 2021

2

ACKNOWLEDGEMENTS

I am grateful to my research guide Professor Umesh S for his constant invaluable guidance

and support throughout the project. Also, special thanks to Aditya, Vishwas and Vrunda for

resolving my doubts and helping me in my thought process. This project has helped me learn

a few crucial lessons from this project regarding a first hand experience of research and

formalised my thought process in conveying my ideas.

1

ABSTRACT

Keywords: Transformer architecture, Neural Machine Translation (NMT), Automatic Speech

Recognition (ASR), Common Label Set (CLS), Indian Languages.

The core of the present work deals with exploring the use of transformer architecture in the

areas of NMT and ASR modelling for Indian Languages.

Transformer encoder-decoder models have become popular in natural language processing

[2] and speech processing [3]. The Transformer architecture allows to successfully train a

deep stack of self-attention layers via residual connections [21] and layer normalisation [22].

The positional encodings [2], typically based on sinusoidal functions, are used to provide the

self-attention with the sequence order information.

Across various applications, systematic improvements have been reported over the standard,

multi-layer long short-term memory (LSTM) recurrent neural network based models.

Transformer based End-To-End NMT models have shown to be effective in modelling text

data, the transformer architecture incorporates self-attention mechanisms to effectively model

the spatial correlations found in text. In the case of machine translation transformers have

outperformed the previous benchmarks set by GoogleNMT.

Transformer based End-To-End Automatic Speech Recognition (ASR) systems work very

well in a multilingual scenario due to their power of encapsulating the acoustic,

pronunciation, and language models in a single network. Common label representation has

proven to be very effective in building ASR systems for low resource Indian languages.

Generating a Common Label Set (CLS) [5] for these languages is easy due to the similar

ordering of characters based on the sounds they represent.

In this report we explore the use of Transformers in modelling Machine Translation for

Indian Languages with emphasis on academic lecture data and multilingual speech

recognition for six Indian Languages.

2

Fig. i Complete visualisation of an End-To-End Transformer model. (Courtesy: Alammar, J

(2018).The Illustrated Transformer [Blog post]. Retrieved from

https://jalammar.github.io/illustrated-transformer/). ii

3

https://jalammar.github.io/illustrated-transformer/

TABLE OF CONTENTS

ABSTRACT 2

TABLE OF CONTENTS 4

LIST OF FIGURES 5

LIST OF TABLES 6

CHAPTER 1 7

Transformers in Neural Machine Translation for Indian Languages 7

1.1. INTRODUCTION 7

1.2. DATASET DETAILS 7

1.3. EXPERIMENTAL DETAILS AND DISCUSSION 7

1.3.1 PARAMETERS 7

1.3.2 RESULTS 8

1.4. CONCLUSION AND FUTURE WORK 11

CHAPTER 2 12

Transformers in Multilingual Automatic Speech Recognition for Indian Languages 12

2.1. INTRODUCTION 12

2.2. DATASET DETAILS 13

2.3. COMMON LABEL SET 15

2.4. UNIVERSAL SPEECH RECOGNIZER 15

2.4. EXPERIMENTAL DETAILS AND DISCUSSION 16

2.4.1. TRANSFORMERS 16

2.4.2. TRANSFORMER EXPERIMENTS 17

2.4.2.1. TRANSFORMER PARAMETERS 17

2.4.2.2. TRANSFORMER RESULTS 17

2.4.3. ANALYSING THE PERFORMANCE BY PARTITIONING THE 18

LANGUAGES

2.4.3.1 RESULTS 18

2.5. CONCLUSION 19

4

LIST OF FIGURES

Fig. i Complete visualisation of an End-To-End Transformer model. (Courtesy: Alammar, J

(2018).The Illustrated Transformer [Blog post]. Retrieved from

https://jalammar.github.io/illustrated-transformer/).

5

https://jalammar.github.io/illustrated-transformer/

LIST OF TABLES

Table 1.3.2.1: Analysing performance with respect to number of bpe 8

Table 1.3.2.2: Analysing performance with respect to addition of small amounts of 8

technical data.

Table 1.3.2.3: Comparing the pre training and fine tuning performance of en-hi 9

transformer NMT.

Table 1.3.2.4: Final NMT for General Purpose(Model3) and Technical(Model4) en-hi 10

translation.

Table 2.2.1: Dataset Details. 14

Table 2.3.1: Character to Common Phoneme Map 15

Table 2.4.1.1: In multilingual the reference transcriptions are provided in their native 16

scripts while in CLS they are in the common script. LID provides the language

information while training.

Table 2.4.2.2.1: WER on test set for transformer architecture on multilingual ASR and 17

CLS model for each of the 6 languages.

Table 2.4.3.1.1: This table compares the performance of the different languages when we 19

make divisions of the dataset based on language family and data characteristics

6

CHAPTER 1

TRANSFORMERS IN NEURAL MACHINE TRANSLATION FOR INDIAN

LANGUAGES

1.1. Introduction

NMT refers to the use of computers to automate some of the tasks or the entire task of

translating between human languages. Given a sequence of text in a source language, there is

no one single best translation of that text to another language. This is because of the natural

ambiguity and flexibility of human language. This makes the challenge of automatic machine

translation difficult, perhaps one of the most difficult in artificial intelligence. Classical

machine translation methods often involve rules for converting text in the source language to

the target language. The rules are often developed by linguists and may operate at the lexical,

syntactic, or semantic level. This focus on rules gives the name to this area of study:

Rule-based Machine Translation, or RBMT.

Neural machine translation, or NMT for short, is the use of neural network models to learn a

statistical model for machine translation. The key benefit to the approach is that a single

system can be trained directly on source and target text, no longer requiring the pipeline of

specialized systems used in statistical machine learning. As such, neural machine translation

systems are said to be end-to-end systems as only one model is required for the translation.

Multilayer Perceptron neural network models can be used for machine translation, although

the models are limited by a fixed-length input sequence where the output must be the same

length. These early models have been greatly improved upon recently through the use of

recurrent neural networks organized into an encoder-decoder architecture that allow for

variable length input and output sequences. Key to the encoder-decoder architecture is the

ability of the model to encode the source text into an internal fixed-length representation

called the context vector. Interestingly, once encoded, different decoding systems could be

used, in principle, to translate the context into different languages. Although effective, the

Encoder-Decoder architecture has problems with long sequences of text to be translated. The

problem stems from the fixed-length internal representation that must be used to decode each

word in the output sequence. The solution is the use of an attention mechanism that allows

the model to learn where to place attention on the input sequence as each word of the output

sequence is decoded.

7

The encoder-decoder recurrent neural network architecture with attention is currently the

state-of-the-art on some benchmark problems for machine translation. And this architecture is

used in the heart of the Google Neural Machine Translation system, or GNMT, used in their

Google Translate service.

Development of a full-fledged bilingual MT system for any two natural languages with

limited electronic resources and tools is a challenging and demanding task. The current work

in NMT for Indian Languages has mainly focused on general purpose English to Indian

Language translations. However, these models fail in translation of technical academic data.

The end-to-end NMT systems require a huge amount of training data to train, many Indian

languages do not have large english transcribed data to build good English to Indian

Language NMT modelling. In the case of technical data, the data is even scarce, this kind of

modelling is referred to as low resource NMT modelling.

Apart from major cities and towns in India, the majority of the students are given education

in their non-English mother tongue. To make education more accessible to students across

India we have explored the idea of building a NMT model for Indian language for technical

academic data. With the help of these NMT models one can easily access the course

information in their native language.

1.2. Dataset Details

There are 4 different datasets used in the NMT experiments, a 1.4 M general purpose en-hi

corpus curated by IITB (General purpose en-hi), a ~300 K technical en-hi corpus curated

from NPTEL lectures using nltk and regex libraries by IITM Speech Lab (Technical en-hi), a

8.56 M en-hi corpus curated by AI4Bharat (IITB data is included), and a small dataset of 10K

corpus curated from SRT text.

1.3. Experimental Details and Discussion

1.3.1. Parameters

The modelling of English to Hindi Neural Machine Translation are carried out on ESPnet1

[20] transformer framework with 6 Encoder, 6 Decoder, 2048 Linear units, 4 head attention

heads, 256 attention dimension, bpe encoding transformer model. The experiments in Table

8

1.3.2.1, 1.3.2.2, 1.3.2.3 were done on 1 NVIDIA GTX 1080 Ti card with batch size of 32 and

accumgrad of 2, the experiments in Table 1.3.2.4 were done on 1 NVIDIA A100 card with

batch size of 32 and accumgrad of 2.

1.3.2. Results

The BLEU scores, Brevity Penalty and Ratio metrics for both the general purpose and

technical en-hi NMT models are provided in Table 1.3.2.1, 1.3.2.2, 1.3.2.3, 1.3.2.4.

Train
Dataset

Data size nbpe Pre-train
Model

Test
Dataset

BLEU
score

BP Ratio

IITB 1.4 M 16 K None IITB 22.67 0.911 0.915

IITB 1.4 M 10 K None IITB 24.81 0.928 0.931

IITB 1.4 M 7.5 K None IITB 26.54 1.000 1.005

IITB 1.4 M 5 K None IITB 26.02 1.000 1.001

Table 1.3.2.1: Performance with respect to number of bpe (byte pair encoding).

The number of byte pair encodings (nbpe) is an important hyperparameter in modelling a

NMT model, the nbpe is dependent on the vocabulary size or training data size. In Table

1.3.2.1, we find that the 7.5 K nbpe gives the best performance for 1.4 M training data.

Train
Dataset

Data size nbpe Pre-train
Model

Test
Dataset

BLEU
score

BP Ratio

IITB +
NPTEL

1.4 M +
45 K

10 K None IITB 27.11 1.000 1.260

IITB +
NPTEL

1.4 M +
45 K

10 K None NPTEL 21.33 1.000 1.239

Table 1.3.2.2: Performance with respect to addition of small amounts of technical data.

9

To assess the impact of addition of technical data(NPTEL) to General Purpose data(IITB), a

small amount of technical data from 300 K NPTEL corpus is added and a transformer is

trained. As shown in Table 1.3.2.2, the addition of data has shown to significantly improve

the General en-hi performance and help us arrive at a baseline regarding the technical en-hi

performance.

Mode
l ID

Train
Datas

et

Finetu
ne

Datas
et

Data
size

nbpe Pre-tr
ain

Mode
l

Finetu
ne

epoch
s

Test
Datas

et

BLE
U

score

BP Ratio

Mode
l1

IITB
+

NPTE
L

None 1.4 M
+ 300

K

7.5 K None None IITB 21.27 0.793 0.812

Mode
l1

IITB
+

NPTE
L

None 1.4 M
+ 300

K

7.5 K None None NPTE
L

17.61 0.740 0.769

Mode
l1

IITB
+

NPTE
L

None 1.4 M
+ 300

K

7.5 K None None SRT 33.60 0.801 0.818

Mode
l2

IITB
+

NPTE
L

NPTE
L

1.4 M
+ 300

K

7.5 K Mode
l1

5 IITB 21.40 0.790 0.810

Mode
l2

IITB
+

NPTE
L

NPTE
L

1.4 M
+ 300

K

7.5 K Mode
l1

5 NPTE
L

18.06 0.738 0.767

Mode
l2

IITB
+

NPTE
L

NPTE
L

1.4 M
+ 300

K

7.5 K Mode
l1

5 SRT 34.13 0.808 0.824

10

Table 1.3.2.3: Comparing the pre training and fine tuning performance of en-hi transformer

NMT.

Fine Tuning is a method employed to enhance the performance of a model for a particular

task. To improve the low resource NPTEL performance, a model trained on General purpose

and Technical corpora is trained and later fine tuned for a few epochs. The Table 1.3.2.3

shows the increase in performance when Model2 is finetuned towards Technical en-hi NMT

using Model1 for 5 epochs.

Model
ID

Train
Datase

t

Data
size

nbpe Pre-tra
in

Model

Finetu
ne

epochs

Test
Datase

t

BLEU
score

BP Ratio

Model
3

SAM
ANA
NTAR

+
NPTE

L

8.4 M
+ 300

K

10 K None None IITB 28.46 0.816 0.831

Model
3

SAM
ANA
NTAR

+
NPTE

L

8.4 M
+ 300

K

10 K None None NPTE
L

27.36 0.805 0.822

Model
4

SAM
ANA
NTAR

+
NPTE

L

8.4 M
+ 300

K

10 K Model
3

5 NPTE
L

32.40 0.799 0.817

Table 1.3.2.4: Final NMT for General Purpose(Model3) and Technical(Model4) en-hi

translation.

Finally, we train a NMT model using all the data available and later finetune the model using

technical corpus, a higher nbpe is used to accommodate the increase in vocabulary or dataset

11

size. Table 1.3.2.4 shows the best performance achieved on General purpose as well as

Technical en-hi translation, the table also shows that with increase in data the models perform

better.

1.4. Conclusion and Future Work

From the above experiments we see that transformers work reasonably well even with limited

amounts of data. With more data, the model improves in performance significantly. As data

for Indian languages is currently scarce, we could use less complex transformer models to

train NMT models for other Indian languages. The decoder part of the transformer in a way

acts as a language model and this helps in building faster and less complex NMT models

without the need for language models.

The performance could be further improved by addition of new data, using back translation

[23], exploring the integration of BERT and GPT models. Recently, conformers [8] have

found to be outperforming transformers as it uses localised attention in modelling.

12

CHAPTER 2

TRANSFORMER IN MULTILINGUAL AUTOMATIC SPEECH RECOGNITION

FOR INDIAN LANGUAGES

2.1. INTRODUCTION

End-To-End ASR models obviate the need for lexicon and language models and offer better

performance than conventional hybrid systems. Also these models can generalize better to

unseen words, which makes them suitable for low resource multilingual speech recognition.

With the advent of attention [1] between the encoder and decoder, performance of the

sequence-to-sequence models have further improved. This includes the new Transformer [2]

architecture, solely based on attention. Though Transformers were introduced for Natural

Language Processing (NLP), they are gaining popularity in ASR too [3, 4, 5, 6]. Conformer

[7], a hybrid of Transformer and Convolutional Neural Network, which is more suited for

speech, is also gaining popularity in recent times.

A major problem in building good ASR systems for many languages is the lack of transcribed

data. In order to tackle the data insufficiency problem, most works have focused on pooling

data from different languages to build multilingual systems. Multilingual ASR systems

trained with data from many languages, not only have an inherent advantage of recognising

speech corresponding to different languages used on training but also solve the data

insufficiency problem by pooling. [8] explored a common acoustic model for multiple

languages based on a global phone set. Later, [9] explored different training approaches using

tandem and bottleneck features for multilingual Multi-layer perceptron models. In [10], a

hybrid attention-CTC model was employed to perform grapheme-based speech recognition of

10 different languages. A similar idea of using a single multilingual end-to-end model based

on attention was shown to improve performance over monolingual models for various Indian

languages with the grapheme target being a union of all the characters in the languages

considered[11]. The application of adapter modules was explored for the purpose of handling

imbalanced datasets in a multilingual scenario in [12]. In multilingual systems, as the number

of languages increases, the number of targets to be modelled also increases.

13

The concept of using a common phone set, which reduces the target size, was earlier used in

English-Hindi code switched ASR [13, 14] and also in multilingual speech synthesizers

across four Indian languages [15]. In our previous work in multilingual ASR [5], we

proposed a Common Labeled set (CLS) to map characters with similar sounds from different

Indian languages to one common representation due to similar characteristics across Indian

languages. We used CLS in a Transformer framework and showed an improvement in

performance compared to plain multilingual models, as the number of characters required to

be modeled by the network is less in CLS. Though CLS gives improvement, to render the

decodes in their original language, prior language information is necessary.

In this paper, we explore CLS further in multilingual speech recognition models for six low

resource Indian languages: Hindi, Marathi, Odia, Tamil, Telugu, and Gujarati in a CLS setup.

We investigate the following: (i) performance comparison of multilingual CLS models in

transformer framework for a new set of Indian languages (ii) performance comparison of

different languages when the data is split on the basis of language family and vocabulary size.

2.2 DATASET DETAILS

The datasets used in the experiments are a part of the “Multilingual and code-switching ASR

challenges for low resource Indian languages, Interspeech 2021”. The dataset comprises

audio and corresponding text from 6 different Indian Languages: Hindi, Marathi, Odia,

Tamil, Telugu, and Gujarati. Microsoft originally released the Tamil, Telugu, and Gujarati

datasets as a part of “Low resource Speech Recognition Challenge On Indian Languages,

Interspeech 2018”. The Hindi and Marathi datasets are collected from a collection of stories,

whereas the Odia is based on Agriculture, Healthcare, and Finance domains, and the Tamil,

Telugu, and Gujarati data are from a general domain. Hindi, Marathi and Odia have about 95

hours of train data each and the sampling rate is 8 kHz. Tamil, Telugu and Gujarati have

about 40 hours each of train data and the sampling rate is 16 kHz.

Language Encoding Duration(hrs) Vocabulary Size

Hindi 16bit,8kHz Train - 95.05 6542

14

Test - 5.55

Marathi 16bit,8kHz Train - 93.89
Test - 5

1644

Odia 16bit,8kHz Train - 94.54
Test - 5.49

3395

Tamil 16bit,16kHz Train - 40
Test - 5

50123

Telugu 16bit,16kHz Train - 40
Test - 5

43720

Gujarati 16bit,16kHz Train - 40
Test - 5

39327

Table 2.2.1: Dataset Details.

2.3 Common Label Set

A unique characteristic of Indian family of languages is that there is a uniform order in which

the alphabets are placed across most of the languages. Also, there is a strong correspondence

between alphabets and the phonemes they represent. This is shown in Table 2.3.1. For

example, the first unicode character in all indian languages represents the phoneme /a/. In our

previous work [5], we explored the benefits of pooling similar sounding characters across

languages and representing them as one single unit, i.e., by a Common Label Set (CLS). The

most interesting part here is the ease with which the CLS can be generated for Indian

Languages. Due to the logical ordering of characters just by knowing the position of a

character in the alphabetical list of any Indian language, we can easily map it to the character

and sound that it represents in the new language. Our experiments in [5] showed that a CLS

based multilingual model is better than the regular multilingual model based on the union of

all characters.

15

Table 2.3.1: Character to Common Phoneme Map

2.4. EXPERIMENTAL DETAILS AND DISCUSSION

All 8 kHz data has been upsampled to 16 kHz. In the case of multilingual models, we take the

union of BPEs in the native script as targets. In this section we explore the Multilingual and

Multilingual+CLS in Transformer framework.

2.4.1. TRANSFORMERS

Transformers are sequence to sequence models which are very popular in Natural Language

Processing (NLP). The performance improvement in Transformers come from the self

attention modules which allows them to model global context. Transformers have also found

their way into ASR and give good results [3, 6]. For ASR, rather than utterance level

attention, local patterns at phrase level are more important but vanilla Transformers are not

able to exploit them.

2.4.2. TRANSFORMER EXPERIMENTS

2.4.2.1. TRANSFORMER PARAMETERS

For the 6 language multilingual ASR model and 6 language CLS model, the number of

encoders, decoders are 12 and 6 respectively. The attention dimension of the corresponding

model is 384 and the number of attention heads is 6. The number of encoder and decoder

units is 2048 and 1000 byte pair encodings were used, in order to account for the character

sets of all the 6 languages. For all the experiments, specaug [19] was employed with two

masks each for frequency and time. Range of 40 was used for frequency mask and 30 was

used for time mask. The training was done on 1 NVIDIA GTX 1080 Ti card with a batch size

of 32 and accumgrad of 2. The models mentioned above were trained on a linear combination

of attention loss and ctc loss with the ctc loss parameter being 0.3 using espnet toolkit [20].

16

2.4.2.2. TRANSFORMER RESULTS

Table 2.4.2.2.1 presents the WERs for Multilingual and Multilingual+CLS. From the results

we see that the performance of Multilingual+CLS is consistently better than Multilingual for

all the six languages.

Language Multi Multi+CLS

Hindi 35.8 35.2

Marathi 21.9 21.7

Odia 50.2 48.5

Tamil 31.9 27.9

Telugu 32.9 28.2

Gujarati 26.9 22.1

Table 2.4.2.2.1: WER on test set for transformer architecture on multilingual ASR and CLS

model for each of the 6 languages.

2.4.3. ANALYSING THE PERFORMANCE BY PARTITIONING

THE LANGUAGES

We partitioned the languages on the basis of vocabulary size and it is named as SPLIT 1 in 6.

The vocabulary sizes for Hindi, Marathi, Odia, Tamil, Telugu, and Gujarati are 6542, 1644,

3395, 50123, 43720, 39327, respectively. Hereafter, the combined set of Hindi, Marathi, Odia

languages for SPLIT 1 will be referred to as SET1 correspond to low vocabulary languages,

and combined set of Tamil, Telugu, Gujarati will be referred to as SET2 correspond to large

vocabulary. Despite the duration of the train sets of languages in SET1 being significantly

higher than those in SET2, the vocabulary is smaller since SET1 was collected by making

different speakers read the same set of sentences. Thus, we noticed a lot of repeated

sentences.

Two major families of Indian languages exist: Indo-Aryan, spoken by the people

predominantly in North and Central India, and Dravidian, spoken in Southern India. Hence,

17

SPLIT 2 as seen in Table 5.3.1.1 is the partition based on language family. In this

partitioning, Tamil and Telugu were considered as one group as they belong to the Dravidian

family of languages and remaining languages formed the other group as they belong to

Indo-Aryan family of languages.

2.4.3.1 RESULTS

The experiments were performed in the transformer framework and the parameters were

retained the same as multilingual+cls.

From the Table 2.4.3.1.1, these are the main inferences:

1. The WERs of Hindi, Marathi, and Odia, in both SPLIT 1 and SPLIT 2 have improved.

This might be due to the pooling of small vocabulary size of these languages, although these

are 90 hour duration datasets.

2. Whenever languages with rich vocabulary are added, the ones with less vocabulary benefit

significantly.

3. In SPLIT 2 dravidian languages Tamil and Telugu degrades over the 6-language baseline

as the data size is 2/3 times the SET1.

4. SPLIT 2 seems to help Indo-Aryan languages. This might be owing to the fact that they are

getting help from the one large vocabulary datasets (Gujarati) reinforcing the second point.

Language 6-lang (Multi +
CLS)

SPLIT 1 SPLIT 2

Hindi 35.2 34.8 31.5

Marathi 21.7 20.3 19.9

Odia 48.5 40.6 43.2

Tamil 27.9 24.4 29.2

Telugu 28.2 25.8 30.9

Gujarati 22.1 20.7 27.1

Table 2.4.3.1.1: This table compares the performance of the different languages when we

make divisions of the dataset based on language family and data characteristics.

18

2.5. CONCLUSION

Common Label Set performs better even for a new set of languages. The performance

degradation over the multilingual+CLS is not very significant. We also analysed the datasets

by partitioning them on the basis of vocabulary size and language family resulting in some

interesting insights: i) For the CLS to benefit, vocabulary size of the datasets pooled must be

high. ii) Grouping the languages based on language families helps improve the performance.

We would like to explore self-supervised pre-training methods for multilingual models.

19

REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to

align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.

Polosukhin, “Attention is all you need,” arXiv preprint arXiv:1706.03762, 2017.

[3] L. Dong, S. Xu, and B. Xu, “Speech-transformer: A no-recurrence sequence-to-sequence

model for speech recognition,” in 2018 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2018, pp. 5884–5888.

[4] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hybrid ctc/attention

architecture for end-to-end speech recognition,” IEEE Journal of Selected Topics in Signal

Processing, vol. 11, no. 8, pp. 1240–1253, 2017.

[5] V. M. Shetty, M. Sagaya Mary N J, and S. Umesh, “Exploring the use of common label

set to improve speech recognition of low resource indian languages,” in ICASSP 2021 - 2021

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.

[6] M. S. Mary N J, V. M. Shetty, and S. Umesh, “Investigation of methods to improve the

recognition performance of tamil-english code-switched data in transformer framework,” in

ICASSP 2020- 2020 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2020, pp. 7889–7893.

[7] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y.

Wu et al., “Conformer: Convolution-augmented transformer for speech recognition,” arXiv

preprint arXiv:2005.08100, 2020.

[8] T. Schultz and A. Waibel, “Fast bootstrapping of lvcsr systems with multilingual phoneme

sets,” in Fifth European Conference on Speech Communication and Technology, 1997.

[9] S. Thomas, S. Ganapathy, and H. Hermansky, “Multilingual mlp features for low-resource

lvcsr systems,” in 2012 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2012, pp. 4269–4272.

[10] S. Watanabe, T. Hori, and J. R. Hershey, “Language indepen- dent end-to-end

architecture for joint language identification and speech recognition,” in 2017 IEEE

20

Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2017, pp.

265–271.

[11] S. Toshniwal, T. N. Sainath, R. J. Weiss, B. Li, P. Moreno, E. Weinstein, and K. Rao,

“Multilingual speech recognition with a single end-to-end model,” in 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018,

pp.4904–4908.

[12] A. Kannan, A. Datta, T. N. Sainath, E. Weinstein, B. Ramabhad-ran, Y. Wu, A. Bapna,

Z. Chen, and S. Lee, “Large-scale multi-lingual speech recognition with a streaming

end-to-end model,” arXiv preprint arXiv:1909.05330, 2019.

[13] S. Sivasankaran, B. M. L. Srivastava, S. Sitaram, K. Bali, and M. Choudhury, “Phone

merging for code-switched speech recognition,” in Third Workshop on Computational

Approaches to Linguistic Code-switching, 2018.

[14] K. Dhawan, G. Sreeram, K. Priyadarshi, and R. Sinha, “Investigating target set reduction

for end-to-end speech recognition of hindi-english code-switching data,” in 2020 National

Conference on Communications (NCC). IEEE, 2020, pp. 1–5.

[15] A. Prakash, A. L. Thomas, S. Umesh, and H. A. Murthy, “Building multilingual

end-to-end speech synthesisers for indian languages,” in Proc. of 10th ISCA Speech

Synthesis Workshop (SSW’10), 2019, pp. 194–199.

[16] D.-C. Lyu and R.-Y. Lyu, “Language identification on code-switching utterances using

multiple cues,” in Ninth Annual Conference of the International Speech Communication

Association, 2008.

[17] K. R. Mabokela and M. J. Manamela, “An integrated language identification for

code-switched speech using decoded-phonemes and support vector machine,” in 2013 7th

Conference on Speech Technology and Human-Computer Dialogue (SpeD). IEEE, 2013, pp.

1–6.

[18] J. Gonzalez-Dominguez, D. Eustis, I. Lopez-Moreno, A. Senior, F. Beaufays, and P. J.

Moreno, “A real-time end-to-end multilin-gual speech recognition architecture,” IEEE

Journal of selected topics in signal processing, vol. 9, no. 4, pp. 749–759, 2014.

[19] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le,

“SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition,”

21

in Proc. Interspeech 2019, 2019, pp. 2613–2617. [Online]. Available:

http://dx.doi.org/10.21437/Interspeech.2019-2680

[20] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishi-toba, Y. Unno, N. Enrique Yalta

Soplin, J. Heymann, M. Wiesner, N. Chen, A. Renduchintala, and T. Ochiai, “ESPnet

End-to-end speech processing toolkit,” in Proceedings of Interspeech, 2018, pp. 2207–2211.

[Online]. Available: http://dx.doi.org/10.21437/Interspeech.2018-1456

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

IEEE Conf. on Computer Vision and Patt. Recog. (CVPR), Las Vegas, NV, USA, June. 2016,

pp. 770–778.

[22] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint

arXiv:1607.06450, 2016.

[23] Rico Sennrich, Barry Haddow, Alexandra Birch, “Improving Neural Machine

Translation Models with Monolingual Data” ,CoRR ,2015.

22

http://dx.doi.org/10.21437/Interspeech.2018-1456

