
Outlier Detection in Multi-Armed Bandits

A Project Report

submitted by

HANUMATH PRANAV BHARADWAJ KORRAPATI

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

&

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2021

THESIS CERTIFICATE

This is to certify that the thesis titled Outlier Detection in Multi-Armed Bandits, sub-

mitted by Hanumath Pranav Bharadwaj Korrapati, to the Indian Institute of Tech-

nology, Madras, for the award of the degree of Bachelor of Technology & Master of

Technology, is a bona fide record of the research work done by him under our supervi-

sion. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Prof. Srikrishna Bhashyam
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600036

Date: 18th June 2021

Place; Chennai

ACKNOWLEDGEMENTS

I am very grateful to my research guide Professor Srikrishna Bhashyam for giving

me the opportunity to work with him. The mini project I did under his guidance laid

a great foundation of interest for me in this area. His guidance and support have been

invaluable throughout the project. Learnt a great lesson from this project that I should

always cross check results and run simulations for a higher number of episodes for

desirable results. I would also like to thank my family wholeheartedly without whom I

couldn’t have finished my project during these tough times.

i

ABSTRACT

Multi-Armed Bandits problem is a very prominent field of study for the past 50 years.

It’s use cases are in Internet traffic routing, Marketing, Medical technology, Recommen-

dation systems etc. In this work we will be talking about a specific problem in MAB

setting called outlier detection. Our target is to find the outlier arms with least number

of samples in a fixed confidence setting.This is different from the "Top-K" arm prob-

lem and the "Threshold" problem as neither the number of outliers nor the threshold

value are known before hand. We need to estimate mean values of arms simultaneously

along with the threshold.

Then we will be exploring novel algorithms developed in the recent years to solve the

classic "best arm" problem. We will be comparing performance of these novel algo-

rithms with the existing traditional algorithms. Simulations will be done using synthetic

data along with suitable collected data available on the internet. All my implementa-

tions are here: https://github.com/pranav973/Outlier-detection-in-Bandits

iii

https://github.com/pranav973/Outlier-detection-in-Bandits

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES vii

LIST OF FIGURES ix

ABBREVIATIONS xi

1 INTRODUCTION 1

1.1 Outlier definition . 1

1.2 Problem setting . 1

2 ROUND ROBIN ALGORITHM 3

2.1 Procedure . 3

2.2 Construction of confidence intervals 3

2.3 Pseudo code . 4

2.4 Sample complexity . 4

3 WEIGHTED ROUND ROBIN ALGORITHM 5

3.1 Introduction . 5

3.2 Ideal value of ρ . 5

4 BASELINE AlGORITHM 7

4.1 Simulation settings . 7

5 ADAPTIVE DOUBLE ESTIMATION 11

5.1 Introduction . 11

5.2 The Algorithm . 11

5.3 Sample complexity . 12

5.4 Simulation settings . 13

v

6 ROBUST OUTLIER ARM DETECTION 15

6.1 Introduction . 15

6.2 Confidence Intervals . 15

6.3 ROAElim . 16

6.4 ROALUCB . 17

6.5 Sample Complexity . 17

7 GOOD ARM IDENTIFICATION 19

7.1 Hybrid dilemma of confidence . 19

7.2 LUCB-G . 19

7.3 APT-G . 19

7.4 Simulation settings . 20

8 RBMLE 23

8.1 Introduction . 23

8.2 Simulation settings . 24

9 GAI with RBMLE as score function for sampling 27

9.1 Introduction . 27

9.2 Simulation settings . 27

10 CONCLUSIONS AND FUTURE WORK 29

LIST OF TABLES

4.1 Accuracy are shown for different value of "k" to not make it look cum-
bersome. 7

7.1 Samples for Setting1 . 21

7.2 Samples for Arithmetic setting . 21

7.3 Close-to-Threshold setting . 21

7.4 Medical data setting . 22

8.1 Time taken per decision . 25

9.1 HdoC vs HdoC RBMLE . 27

vii

LIST OF FIGURES

4.1 Comparison of number of pulls for each of the 3 algorithms RR,WRR,IB 8

4.2 Weight tuning in steps of 0.5 to check for weight that minimizes pulls 9

5.1 Authors simulation for similar setting 13

5.2 Our simulation for ADE . 14

5.3 ∆min vs Pulls . 14

6.1 Theoretical vs Actual complexity for ROALUCB 18

8.1 Cumulative regret for RBMLE . 25

ix

ABBREVIATIONS

MAB Multi armed Bandit

RR Round Robin

WRR Weighted Round Robin

ADE Adaptive Double Estimation

RBMLE Reward biased Maximum Likelihood estimation

LUCB Lower Upper Centrality Bound

HDOC Hybrid Dilemma Of Confidence

xi

CHAPTER 1

INTRODUCTION

Multi-armed bandit:

The classic multi-armed bandit setting has a fixed number of arms with underlying sta-

tionary distributions. At each round arms are drawn according to some heuristic and

a reward is obtained by sampling the arm chosen. The samples are considered to be

independent. In a regular setting the reward received at each time step is viewed as a

feedback to optimize exploration and exploitation. But the problem we have considers

the number of pulls as cost and is therefore a pure exploration problem. All the algo-

rithms we study in outlier detection are δ − PAC. The goal is to predict the outlier set

accurately in as less samples as possible.

1.1 Outlier definition

There have been a lot of instances of "Outliers" in the field of data science. A large

amount of work is done in the area of identifying outlier data points from the observed

data points in a data set. We concentrate on finding the arms which generate data that

are substantially different from other sources. (Carpentier and Valko, 2014) defines

extreme bandits by looking at the sampled rewards in each round and choosing the

arm with highest sample at every instant. The algorithm "Extreme hunter" favours the

arm with a heavy tail function as it’s most probably the one which can produce large

samples. On contrary our work is to identify arms with highest expected reward in a

sense.

1.2 Problem setting

We study to identify outlier arms with extremely high reward expectations compared

to other arms. Our setting has n arms with stationary distributions and all the samples

drawn are independent from each other. We denote x(j)
i to denote the jth sample of arm

i. The true expected rewards are represented by yifor itharm. To define the outliers we

use the standard kσ rule over the expected rewards. Let µy and σy be the mean and

standard deviation of expected rewards.

µy =

∑
i

yi

n
, σy =

√√√√∑
i

(µy − yi)2

n

We define the the threshold for an outlier to be :

θ = µy + kσy

Mathematically we define the set of outliers as

Ω = {iε [n] |yi > θ}

We use mean and standard deviation estimates at every time step to have an esti-

mated threshold and thus classify arms as either active or inactive based on the threshold

value at that instant.

ŷi =

mi∑
t=1

x
(t)
i

mi

, µ̂y =

n∑
i=1

ŷi

n

„

σ̂y =

√√√√√ n∑
i=1

(ŷi − µ̂y)2

n

θ̂ = µ̂y + kσ̂y

Where mi is the number of times itharm is drawn until that time instant.

2

CHAPTER 2

ROUND ROBIN ALGORITHM

We would be exploring the first algorithm from (Zhuang et al., 2017) in this chapter.

2.1 Procedure

This simple algorithms samples all active arms one by one in a round robin sense until

the termination condition is met. Intuitively the algorithm must stop when all the arms

are either classified as outlier or non-outlier. In order to this we construct confidence

intervals for estimated means and threshold at every time instant. We classify an arm

when it’s confidence interval doesn’t overlap with threshold’s confidence interval. If

there is an overlap it’s considered active for next iteration.

2.2 Construction of confidence intervals

In order to have the overall algorithm to be δ − PAC we use δ1 for Hoeffding bounds.

δ1 =
6δ

π2(n+ 1)T 2

For a confidence level of δ1 after T number of total pulls we have

P (ŷi − yi > βi(mi, δ
1)) < δ1, P (ŷi − yi < βi(mi, δ

1)) < δ1

For threshold confidence interval we have

P (θ̂ − θ > βθ(m, δ1)) < δ1, P (θ̂ − θ < βθ(m, δ1)) < δ1

where the functions βi, βθ are dependent on range of the reward distributions and m is

the vector of arm means. In order to have the overall algorithm to be δ−PAC we need

to set

2.3 Pseudo code

Round Robin algorithm(RR):

Input: n, k

Output: An expected set of outlier arms Ω̂

1. Pull each arm once for iε[n].

2. Update the values of m,mθ, βi, βθ, ŷi, θ̂.

3. Construct the set A, the set of active arms.

4. Set i = 1, T = n.

5. While A 6= φ:

6. i = i%n+1

7. Sample arm i

8. T = T+1

9. Update the values of m,mθ, βi, βθ, ŷi, θ̂

10. Return Ω̂

2.4 Sample complexity

The algorithm can be shown to return the correct set of outliers with probability 1− δ.

The sample complexity can be upper bounded from (2) as below:

T ≤ 8R2HRR

[
log(

2R2π2(n+ 1)HRR

3δ
) + 1

]
+ 4n

where HRR = n
mini(yi−θ)2 (1 +

√
l(k))2, where l(k) = Θ(n)

4

CHAPTER 3

WEIGHTED ROUND ROBIN ALGORITHM

This algorithm from (Zhuang et al., 2017) is an extension to the regular Round Robin

algorithm which is more accurate and takes almost 60% less samples for an identical

setting.

3.1 Introduction

In this algorithm instead of sampling all arms equally, we pull the active arms more

frequently compared to classified arms. We use a predefined constant ρ and we pull

the active arms until they aren’t active anymore or the totals pulls exceeds ρ times the

number of rounds.

3.2 Ideal value of ρ

Our target is to find the ρ that minimizes the number of samples compared to regular

round robin. This value is instance dependent on means of arms. We therefore optimize

the following problem

ρ∗ = argminρ≥1sup
HWRR

HRR

Where the supremum is taken over all possible y.

The optimal value of ρ is

ρ∗ =
(n− 1)

2
3

l
1
3 (k)

CHAPTER 4

BASELINE AlGORITHM

In order to compare our novel algorithms performance we use a strong baseline al-

gorithm CLUCB from (S. Chen and Chen, 2014). The CLUCB algorithm is a pure

exploration algorithm which identifies the "best" set of arms in the given decision set

in a fixed confidence setting. We modify this algorithm to return best arm. After every

iteration of algorithm we remove the best arm from given set and continue until the

current best arm is not a part of Ω̂.

In the CLUCB algorithm from (S. Chen and Chen, 2014) we take the decision set

as simply the set of individual arms. The maximising Oracle must return the "best" arm

at any point. We remove the best arm once the algorithm converges and remove the arm

from further sampling. We run the algorithm again on rest of the arms.

4.1 Simulation settings

We tabulate the accuracy values of RR,WRR and compare them with the baseline: 1−

δ = 0.9. We don’t compare the accuracy of Iterative baseline algorithm as it’s not a

valid PAC algorithm. It’s correctness is also not proved.

Table 4.1: Accuracy are shown for different value of "k" to not make it look cumber-
some.

k RR WRR

2 0.98 1.0
2.5 0.98 0.97
3 0.96 0.98

For the simulations we use N = 20,30,40,50,75,100,120,150,200. All the means are

generated from Uniform distribution [0,1]. For every instance "n" we have averaged the

results over 10 different data sets. We have also used 3 "k" values, [2,2.5,3]. The sample

complexity is averaged over 3 "k" values.The plot is a semi log plot with logarithmic

axis as Y axis.

Figure 4.1: Comparison of number of pulls for each of the 3 algorithms RR,WRR,IB

We have verified our expression for weight in WRR for n = 15 arms and k = 2.5.

Weights are taken from 1.5 to 5 in steps of 0.5. All the instances repeated for 10 times.

From our expression we are supposed to have 2.5 as ideal weight which is exactly the

case.

8

Figure 4.2: Weight tuning in steps of 0.5 to check for weight that minimizes pulls

9

CHAPTER 5

ADAPTIVE DOUBLE ESTIMATION

5.1 Introduction

The RR and WRR algorithms are state of the art in terms of accuracy and number

of samples for a smaller number of arms. The radius of confidence and the sample

complexity are heavily dependent on the number of arms. In both the algorithms we

keep sampling all the arms until the termination condition even though we have a fair

idea which arms are possibly the outliers and which aren’t. The radius of confidence of

threshold is also dependent on harmonic mean of estimated means of all the arms. We

therefore propose ADE from (Zhang and Zhou, 2020) which only samples active arms

at any point of time. The sample complexity is also almost independent of number of

arms involved. We sample separately to estimate the radius of threshold thus making it

independent of estimated means of arms.

5.2 The Algorithm

The algorithm uses two sampling strategies, one for estimating means another for es-

timating the threshold. We choose strategy based on the radius of confidence. If the

arms radius is more then it’s more uncertain so we sample arms else we sample for the

threshold.

Sequential Sample for The arms: We sample the arm "i" once and the sample is

used to update the estimated mean.

Random Sample for The Threshold: We pull an arm uniformly at random from the

"n" arms abd we sample it twice. The samples are used to estimate the threshold.

Let mi,t, yi,mi,t be the number of times arm i has been sampled until round tand the

mth
i,t sample respectively.

Letmθ,tbe the number of times we sample for threshold before round t. Let themth
θ,t

samples be (xmθ,t,1, xmθ,t,2).

We have:

ŷi,t =
1

mi,t

∑
yi,mi,t

µ̂y,t =
1

mθ,t

mθ,t∑
l=1

xl,1

σ̂y,t =

√√√√| 1

mθ,t

mθ,t∑
l=1

xl,1xl,2 −
1

mθ,t2

mθ,t∑
l=1

mθ,t∑
h=1

xml,lxh,2

θ̂y = µ̂y,t + kσ̂y,t

ra,t = R

√
log(1

δt
)

2ma,t

δt =
3δ

(n+ 4)π2T 2

We can clearly observe the dependence of radius of confidence is clearly limited to

logarithmic factors here. Therefore radius of confidence is very small even though we

are dealing with high number of arms.

5.3 Sample complexity

The sample complexity for ADE is δ − PAC with:

T = O(
∑ 1

∆2
i

log(

√
n

δ

1

∆2
i

) +
1

∆2
min

log(

√
n

δ

1

∆2
min

)

where ∆i = |yi − θ| and ∆min = min∆i

12

Compared to RR and WRR the sample complexity also only depends on “n” upto

logarithmic terms where as both RR and WRR have H = O(nlogn).

5.4 Simulation settings

For the simulation settings we use n = 100,200,300,400,500,600,700,800,900,1000 with

each ’n" averaged over 10 different data sets. The means are sampled randomly from a

uniform distribution [0,1]. The RR and WRR are taking significantly much time even

for single episode. So as a reference we will be using the results of the author with the

same settings. In our plot we will be using 1e7 and 2e7 as baselines for comparison.

Figure 5.1: Authors simulation for similar setting

We vary ∆min as [0.06,0.08,0.09,0.1,0.12] to find relationship between ∆min and

No of pulls. All the experiments are averaged over 10 episodes.

13

Figure 5.2: Our simulation for ADE

Figure 5.3: ∆min vs Pulls

14

CHAPTER 6

ROBUST OUTLIER ARM DETECTION

6.1 Introduction

The algorithms from (Yinglun Zhu and Nowak, 2020) are an extension to all the previ-

ous algorithms we discussed along with LUCB algorithm from (Shivaram Kalyanakr-

ishnan, 2012). According to extensive work done on robust parameters to detect outliers

(Leys and Licata, 2013), turns out Median and Median absolute deviation found the

outliers that mean and standard deviation missed. We will be discussing two adaptive

algorithms using these for threshold estimation.

6.2 Confidence Intervals

For simplicity purpose we are subscript everything that belongs to median arm with

subscript (m). Define AD(i) = |yi − y(m)|. Since we do not know which arm is the

median arm, all the confidence intervals of assumed median arm are median of all arms

confidence intervals.

βs =

√
log(4ns2

δ
)

2s

Ly(m),t = median{Lyi,t}

Uy(m),t = median{Uyi,t}

LADi,t = max{Ly(m),t − Uyi,t, Lyi,t − Uy(m),t}

UADi,t = max{Uy(m),t − Lyi,t, Uyi,t − Ly(m),t}

LAD(m),t = median{LADi,t}

UAD(m),t = median{UADi,t}

Lθ,t = Ly(m),t + kLAD(m),t

Uθ,t = Uy(m),t + kUAD(m),t

θ̂t =
Lθ,t + Uθ,t

2

ÂDi,t =
LADi,t + UADi,t

2

6.3 ROAElim

The stopping rule for both the algorithms is same. We stop when there is no intersection

between threshold confidence interval and any of the arms confidence interval. Now we

need to find the arms that overlap with any part of the threshold expression. So we

will find arms whose estimated mean interval overlap with interval of median arm’s

estimated mean. Similarly we find it for absolute deviation of median arm and the

threshold itself. We take union of all these sets and find the common arms from the

previous union set and sample them all. This looking back at previous set ensures we

don’t unnecessarily sample arms with minimal doubt and the number of arms sampled

at every iteration is non increasing.

16

6.4 ROALUCB

The LUCB algorithm from (Yinglun Zhu and Nowak, 2020) is special in terms of its

sampling strategy. In order to find the "k" best arms we split the set of arms to dis-

joint sets of size ’m","n-m". We consider the "active" arms as the ones at the boundary

of both the sets. We take the arm with highest upper bound the lower empirical av-

erage set and the arm with lowest lower bound from the higher empirical average set.

We sample both the arms the difference between the bounds is less than some threshold.

Similar to LUCB we sample arms that are on the boundary to median estimated

mean, AD of median arm and the threshold. Since we do not clearly know if "m" or

"m-1" is the actual median we split the sets accordingly and sample both arms in each

case.

AmedianL,t+1 = argminiεJm−1{Li,t}∪argminiεJm{Li,t}∪argmini/∈Jm−1{Ui,t}∪argmini/∈Jm{Ui,t}

AMAD
L,t+1 = argminiεJMAD

m−1
{LADi,t}∪argminiεJMAD

m
{LADi,t}∪argmini/∈JMAD

m−1
{UADi,t}∪argmini/∈JMAD

m
{UADi,t}

AθL,t+1 = argminiεŜo,t{Li,t} ∪ argminiεŜn,t{Ui,t} ∩ {iε[n]|Iyi,t ∩ Iθ,t 6= Φ}

We will sample the arms from the union sets of these 3 sets. Therefore at every

instant we will sampling at most 10 arms similar to LUCB.

6.5 Sample Complexity

∆θ
i = |yi − θ|, ∆θ

∗ = min∆θ
i , ∆median

i = |yi − y(m)|,∆MAD
i = |ADi − AD(m)|

17

∆∗i = max{∆θ
∗,min{∆θ

i ,∆
median
i ,∆MAD

i }}

T ≤ O(Ck2

n∑
i=1

log(

nk
δ∆∗

i

(∆∗i)
2
)

Simulation settings For the simulations we take Gaussian system with fixed standard

deviation 0.5. We take 17 arms 5 of which have means uniformly distributed between

[0,2]. The threshold is fixed as 2.837 with k = 2.95. The two outlier arms have a mean

gap of 0.2. They are moved from Threshold such that ∆θ
∗ is varied from 0.2 to 0.6 in

steps of 0.05. We expect the correlation between the variables to be a straight line as

the complexity is tightly bound in both the directions.

Figure 6.1: Theoretical vs Actual complexity for ROALUCB

18

CHAPTER 7

GOOD ARM IDENTIFICATION

The best arm identification problem and the threshold problem consume a lot of sample

to do a task that is very pinpointed in a sense. Consider the case where we don’t have

a lot of data to go with, like a case where we have to find a drug out of a pool of drugs

that cures a certain rare disease or a classic recommendation system in an e-commerce

website. In the second instance a seller who is rated well now might not be rated well

in the future hence a decision on whether an arm is "good" should be made rather than

finding the best seller or partition all the sellers into good or bad. We will now discuss

an elimination style algorithm that no only intends to minimize the stopping time for a

threshold problem but also minimizes individual round times of elimination.

7.1 Hybrid dilemma of confidence

The HdoC algorithm from (Kano et al., 2019) consists of two parts, 1. The sampling

strategy 2. The identification strategy. The sampling strategy is exactly same as that of

UCB. We sample the arm that has maximum UCB score. For the identification we use

LUCB algorithm identification rule.

7.2 LUCB-G

In LUCB-G algorithm we use the same metric derived from Hoeffding’s inequality for

both identification and sampling.

7.3 APT-G

In the APT-G algorithm we use the absolute difference between the estimated mean and

the threshold for sampling. In order to not be biased towards arms that are less sampled

we multiply the score function with number of times an arm is pulled. The identification

problem is same as LUCB rule.

The proposed lower and upper bounds for sample complexity are very close. The

sample complexity for HdoC is δ − PAC with:

E[Tλ] ≥
λ∑
i=1

(
1

d(µi, ξ)
log

1

2δ
)− m

d(µλ,ξ)

E[Tλ] ≤ (log
1

δ
)
λ∑
i=1

(
1

2∆2
i

)

where Tλ is the sampling time taken for λth good arm, ∆i is the absolute gap from

the threshold to the ith arm and d(µi, ξ) is the binary entropy function.

The identification score for all 3 algorithms are:

ψi = µ̂i ±

√
log(

4kN2
a∗
δ

)

2Na∗(t)

if the current sampled arm has µ̂i −

√
log(

4kN2
a∗
δ

)

2Na∗ (t)
> ξ then add it to the set of good

arms, else if µ̂i +

√
log(

4kN2
a∗
δ

)

2Na∗ (t)
< ξ then discard the arms the set of current sampled

arms.

The sampling scores for different algorithms are:

1. HdoC: µ̂i +
√

logt
2Ni

2. LUCB-G: same as ψi

3. APT-G: min
√
Ni(t)|ξ − µ̂i|

7.4 Simulation settings

We have 4 simulation environments here. The first 3 are synthetic and the last one is

a real time data set for finding appropriate dosage of a drug used to treat Rheumatoid

Arthritis. For all the simulation we use δ = 0.05.

20

1. The first simulation setting has 10 Bernoulli arms with µ1:3 = 0.1 , µ4:7 =

0.35 + (0 : 3)∗0.1, µ8:10 = 0.9 and threshold ξ = 0.5.

Table 7.1: Samples for Setting1

Algo τ1 τ2 τ3

HdoC 122.06± 31.02 173.71± 29.92 210.25± 28.65
LUCB −G 128.33± 28.45 178.86± 36.70 225.32± 34.33
APT −G 7084.83± 1439.67 7267.07± 1456.46 7504.56± 1457.22

Algo τ4 τ5 τstopping

HdoC 849.72 + 229.34 6347.21± 1556.90 11689.11± 1976.44
LUCB −G 880.98± 210.42 6521.33± 1358.44 11955.21± 1863.02
APT −G 9338.87± 1646.80 11330.79± 2016.89 11424.32± 2017.65

2. This simulation setting has 6 Bernoulli arms (Arithmetic progression setting)

with µ1:6 = (1 : 6)∗0.1 and threshold ξ = 0.35.

Table 7.2: Samples for Arithmetic setting

τ1 τ2 τ3 τstop

249.21± 47.38 660.23± 195.56 6130.20± 1272.37 10906.45± 1567.98
265.71± 48.85 799.86± 93.39 5895.32± 1355.30 9953.22± 1535.22

7778.02± 1571.66 8898.98± 1592.81 10822.59± 2098.20 10910.14± 2078.08

3. This simulation setting has 6 Bernoulli arms (Close-to-Threshold setting) with

µ1:3 = 0.55, µ4:10 = 0.45 and threshold ξ = 0.5.

Table 7.3: Close-to-Threshold setting

τ1 τ2 τ3 τstop

10142.22± 2976.30 14734.12± 2840.56 17890.36± 2823.18 51487.37± 4697.58
11067.92± 2885.99 13910.29± 2913.90 17475.21± 2600.05 50592.11± 5123.67
48321.5± 4918.07 49323.93± 4907.30 49762.61± 4754.758 49818.93± 4758.75

4. This simulation setting has 5 Bernoulli arms (Medical data for testing dosage of

Secukinumab) with µ = [0.36, 0.34, 0.469, 0.465, 0.537] and threshold ξ = 0.5.

21

Table 7.4: Medical data setting

Algo τ1 τstop

HdoC 10325.43± 3393.25 34838.07± 6700.04
LUCB −G 10764.77± 2195.36 33457.49± 5223.42
APT −G 33851.35± 6534.39 34440.95± 6624.07

22

CHAPTER 8

RBMLE

All the above algorithms except for the Hdoc algorithms we studied are pure exploratory

problems. We were only interested in identifying the a set of arms depending on the

context and we never really cared about sampled rewards. Now we will see a novel

algorithm based on regret minimization that is indexable like the UCB algorithm. This

algorithm takes advantage of family of bandits and gives us a separate indexable func-

tion for every family. It is faster than all the state of the art MAB algorithms.

8.1 Introduction

We pose the Multi armed bandit problem as an Markov Decision Process with an un-

known vector of parameters on which the transition probabilities depend on every step.

The Certainity Equivalence approach goes by taking the MLE estimate of Likelihood

function as the parameter value at every state and follows the optimal policy for that pa-

rameter set. This has been shown to be sub-optimal in terms of Long time reward. The

paper uses “Reward biased Maximum likelihood estimation” technique to overcome the

problem.

Consider an MDP with state space Ω and action space Θ..Assume the transition prob-

abilities are stationary and depend on parameter vector η. We have p(i, j, u; η) as the

transition probability from state i to state j under action uwith parameter η. The reward

for this transition be r(i, j, u).

Let η0 be the true parameter and let J(φ, η) be the reward for policy φ. We consider

optimal reward for every possible η as Jopt(η) = maxφJ(φ, η). For the CE approach

we have

η∗t = maxη

T∏
t=0

p(s(t), s(t+ 1), u(t), η)

The action taken in CE approach is ut = φη∗t (s(t)).Both the parameter estimate and

the long term regret estimated by CE process are non optimal. But in the long term the

probability transitions are optimal. i.e

p(i, j, φη∗(t)(i), η
∗
t) = p(i, j, φη∗(t)(i), η

0)

ηRBLM = argmaxη[f(Jopt(η))α(t)

T∏
t=0

p(s(t), s(t+ 1), u(t), η)]

where f is a strictly monotonically increasing function and α(t) is a process which

is O(t).

The indexing function for Gaussian and Sub Gaussian family is:.

Ii(t) = pi(t) +
α(t)

2Ni(t)

where pi(t), Ni(t) are the estimated mean and number of times itharm is sampled

until round t.

α(t) = C(t)
√
logt

For Gaussian distributions: Assume same variance for all arms, and C ≥ 256σ2

∆
, we

have

R(t) ≤ O(
n∑
a=2

∆a) +O(nClogt)

We need to have a minimum value of "C" for our regret to be bounded. Therefore

we adaptively estimate the constant every iteration.

8.2 Simulation settings

We use a 10 arm Gaussian bandit family with variance 1. The set of means are equal

to those one taken in (Mete et al., 2021). For benchmarking we used UCB, Thompson,

UCB-normal and MOSS algorithms. We have plotted the cumulative regret until 1e5.

We have also measured the time taken for a decision in every algorithm

24

Figure 8.1: Cumulative regret for RBMLE

Table 8.1: Time taken per decision

Algo T ime/decision

RBMLE 0.001266
UCB 0.00038062
TS 0.0008261

MOSS 0.0009708
UCB −Norm 0.001008

25

CHAPTER 9

GAI with RBMLE as score function for sampling

9.1 Introduction

In place of UCB score as mentioned in (Kano et al., 2019), I have tried using RBMLE

score for sampling as RBMLE has less regret therefore more possibility to exploit. Like

mentioned in the RBMLE section we need to maintain a minimum "C" to have our re-

gret bounded. The "C" is estimated step wise using estimated mean at that particular

instant. We do not use the "classified" arms for estimating the "C" value. The identi-

fication score has to be updated for Gaussian distribution by using Cramer’s bound as

mentioned in (Kano et al., 2019).

9.2 Simulation settings

4. This simulation setting has 10 Gaussian arms with mean values identical to setting 1

in GAI simulations and threshold ξ = 0.5. We take variance σ = 1 for all the amrs.

Table 9.1: HdoC vs HdoC RBMLE

Algo τ1 τ2 τ3

HdoC 405.43± 152.94 650.59± 171.32 948.88± 286.136
HdoC −RBMLE 372.52± 132.44 611.32± 154.59 875.45± 220.12

Algo τ4 τ5 τstop

HdoC 4002.12± 1672.09 26716.55± 7918.30 47234.22± 10280.42
HdoC −RBMLE 3872.51± 1378.53 24234.63± 7683.22 43598.23± 10092.87

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

The RR and WRR algorithms are simple but they keep sampling arms unnecessarily

even though we know with confidence in the middle if some of the arms are outliers.

The sample complexity also increases drastically with the number of arms which is not

desirable for recommendation systems considering there are hundreds of items to be

suggested. The adaptive double estimation samples for threshold separately so that we

don’t have to depend on estimated means for threshold estimate. This has diminished

the effect of number of arms on sample complexity. But ADE still depends on mean

and standard deviation to define an outlier and is limited to bandit families with finite

range reward. ROALim, ROALUCB have stable measures to identify outliers and have

performed sufficiently well compared to all other state of the art algorithms. GAI has

shown why it’s better than outlier detection problem in the real world. It needs very less

samples to output a subset of outlier arms which is satisfactory for several problems

including Drug testings and crowd sourcing algorithms.

As part of the future work to our project we can explore using the ADE algorithm

to infinite range families (e.g Gaussian). Though the RBMLE-HdoC performed better

than regular HdoC algorithm we need to mathematically prove that the algorithm is

δ − PAC. and we can obtain bounds on sample complexity. The bounds given for

ROALim, ROALUCB are not tight and are difficult to be obtained with the regular

techniques. We can try to improve these bounds mathematically.

REFERENCES

1. Carpentier, A. and M. Valko, Extreme bandits. NIPS, 2014.

2. Kano, H., J. Honda, K. Sakamaki, K. Matsuura, A. Nakamura, and
M. Sugiyama (2019). Good arm identification via bandit feedback. Mach.
Learn., 108(5), 721–745. ISSN 0885-6125. URL https://doi.org/10.1007/
s10994-019-05784-4.

3. Leys, L. C. K. O. B. P., C. and L. Licata (2013). Detecting outliers: Do not use
standard deviation around the mean, use absolute deviation around the median. Journal
of Experimental Social Psychology, 49(4), 764–766.

4. Mete, A., R. Singh, X. Liu, and P. R. Kumar (2021). Reward biased maximum likeli-
hood estimation for reinforcement learning.

5. S. Chen, I. K. M. R. L., T. Lin and W. Chen, Combinatorial pure exploration of multi-
armed bandits. In NIPS, 2014.

6. Shivaram Kalyanakrishnan, P. A. P. S., Ambuj Tewari, Pac subset selection in
stochastic multi-armed bandits. Proceedings of the 29thInternational Confer-ence on
Machine Learning, Edinburgh, Scotland, UK, 2012.

7. Yinglun Zhu, S. K. and R. Nowak, Robust outlier arm identification. Proceedings of
the 37th International Conference on MachineLearning, Online, PMLR 119, 2020.

8. Zhang, Z. H. Z. S., X. and Y. Zhou, Adaptive double-exploration tradeoff for outlier
detection. The Thirty-Fourth AAAI conference, 2020.

9. Zhuang, H., C. Wang, and Y. Wang, Identifying outlier arms in multi-armed bandit.
In Advances in Neural Information Processing Systems, 2017.

31

https://doi.org/10.1007/s10994-019-05784-4
https://doi.org/10.1007/s10994-019-05784-4

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Outlier definition
	Problem setting

	ROUND ROBIN ALGORITHM
	Procedure
	Construction of confidence intervals
	Pseudo code
	Sample complexity

	 WEIGHTED ROUND ROBIN ALGORITHM
	Introduction
	Ideal value of

	BASELINE AlGORITHM
	Simulation settings

	ADAPTIVE DOUBLE ESTIMATION
	Introduction
	The Algorithm
	Sample complexity
	Simulation settings

	ROBUST OUTLIER ARM DETECTION
	Introduction
	Confidence Intervals
	ROAElim
	ROALUCB
	Sample Complexity

	GOOD ARM IDENTIFICATION
	Hybrid dilemma of confidence
	LUCB-G
	APT-G
	Simulation settings

	RBMLE
	Introduction
	Simulation settings

	GAI with RBMLE as score function for sampling
	Introduction
	Simulation settings

	CONCLUSIONS AND FUTURE WORK

