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ABSTRACT

The depth information is one of the most critical importance in scene understanding

for several industrial projects such as Self driving cars, Robotics for instance. Infer-

ring depth from a single image has taken a prominent place in recent studies With the

outcome of deep learning methods. Deep learning based solutions for computer vision

problems outperforms other solutions by a far margin. Depth estimation is one such

task that has been tremendously improved by the advent of DL.

This thesis proposes two deep fully convolutional networks for monocular depth

prediction. First architecture is based on using Bilateral grid for edge-aware depth

prediction while other architecture has a u-net parallel to CNN to infer a sharp geometric

layout of the scene.

The proposed depth prediction model archives state-of-the-art performance in both

qualitative and quantitative evaluation on NYUv2 -Depth Dataset.
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CHAPTER 1

Introduction

1.1 Motivation

In the past few years many new industrial projects in the area of Robotics , self-driving

cars, were the core of the problem to retrieve spatial information from a single sequence

of images. Capturing depth information from images is a non-trivial task in computer

vision which has been explored in the past decade. However most classical algorithms

need pairs of stereoscopic images to achieve intermediate performance. The outcome

of the deep learning method allowed to improve this field of research, in terms of re-

search. Also due to the availability of large amounts of RGB-D(color and depth) data

collected with dedicated depth sensors. Deep learning methods allow to solve ill-posed

problems such as depth prediction from a single image. The algorithm that rely on

supervised learning or self-supervised learning approaches (Clément Godard (ICCV

2019) , Fabio Tosi (CVPR 2019), Dan Xu (CVPR 2018), Jamie Watson (ICCV 2019)).

1.2 Problem Definition

This thesis will focus first on a review of the different pre-existing approaches for depth

prediction from a single image. Then we focus on explaining proposed architectures

for monocular depth prediction. Finally we compare our architectures with the existing

approaches in order to understand the qualitative and quantitative point of view.



CHAPTER 2

Related Work

Most of the recent deep learning approaches to tackle the problem of depth prediction

use only a single image, instead of two images as it is the case with classical approaches.

2.1 Eigen Network

Figure 2.1: Architecture of Eigen network

The first network which tackled the problem of depth prediction was published by

and Fergus David Eigen. The Figure 2.1 details the composition of this network. It

can be decomposed in two small networks, the first one in blue in Figure 2.1 aims to

predict a coarse depth map. The second one in orange, refines the coarse result. Several

differences can be observed between those two. The first difference is the presence

in the coarse network of two fully connected layers. These layers perform operations

which links every coefficient of the features. The local specificity will be lost but global

structure will be observed. The second network performs only several convolutions

with a small kernel to refine the information locally. This network was the first major

contribution for monocular depth prediction using deep neural networks.

2.1.1 Results of Eigen Network on NYU dataset



Figure 2.2: Eigen Network Results(1). (left) Input image (middle) ground truth (right)
prediction
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Figure 2.3: Eigen Network Results(2). (left) Input image (middle) ground truth (right)
prediction
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2.2 Laina Network

Figure 2.4: Architecture of Laina network

The state-of-the-art network for monocular depth prediction has been implemented

by Laina Laina et al. (2016). Figure 2.4 illustrates the microscopic composition of it.

It presents a classical encoder-decoder structure. The encoding operation is performed

by ResNet50. The decoding operation is specific to this network. The basic idea is

to reduce the number of features during the upsampling. To do so, Laina Laina et al.

(2016) introduces a new module called up-projection. This module performs first an

unpooling in order to increase the width and height of the features and then convolutions

to decode the information by reducing the number of features. The unpoling operation

consists in filling the value of a feature map in a two times larger feature map with only

zeros. The coefficients are filled only one column on two and one row on two. This

network architecture is quite simple in the sense that it inputs a single image and outputs

its depth map. It achieves state-of-the-art results on several academic datasets such

as NYU depth dataset Nathan Silberman and Fergus (2012) and justify the encoding-

decoding approach for depth prediction. All the following will use similar architecture.

2.2.1 Results of Laina Network on NYU dataset

12



Figure 2.5: Laina Network Results(1). (left) Input image (middle) ground truth (right)
prediction
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Figure 2.6: Laina Network Results(2). (left) Input image (middle) ground truth (right)
prediction
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2.3 Sharpnet Network

Figure 2.7: Architecture of SharpNet network

Shapnet Ramamonjisoa and Lepetit (2019) method that predicts an accurate depth

map for an input color image, with a particular attention to the reconstruction of occlud-

ing contours: Occluding contours are an important cue for object recognition, and for

realistic integration of virtual objects in Augmented Reality, but they are also notori-

ously difficult to reconstruct accurately. Main challenge for stereo-based reconstruction

methods, as points around an occluding contour are visible in only one image. Inspired

by recent methods that introduce normal estimation to improve depth prediction, they

introduce a novel term that constrains depth and occluding contours predictions. Since

ground truth depth is difficult to obtain with pixel-perfect accuracy along occluding

contours, synthetic images for training are used , followed by fine-tuning on real data

and demonstrations on NYU-V2 datasetNathan Silberman and Fergus (2012).Figure2.7

contains the Architecture of SharpNet network.

2.3.1 Results of SharpNet Network on NYU dataset

15



Figure 2.8: SharpNet Network Results(1). (left) Input image (middle) ground truth
(right) prediction
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Figure 2.9: SharpNet Network Results(2). (left) Input image (middle) ground truth
(right) prediction
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CHAPTER 3

Fully Convolutional 3D Bilateral Grid Based CNN

Network For Edge Aware Depth Prediction.

3.1 Method

This model is based on the idea of using a Bilateral grid as an input to our Architecture.

Bilateral grid is a data structure used for image processing applications. Bilateral grid

is inspired by the bilateral filter.The bilateral grid enables edge-aware image manipu-

lations such as local tone mapping on high resolution images in real time. In general,

the bilateral grid is used in three steps. First, we create a grid from an image or other

user input. Then, we perform processing inside the grid. Finally, we slice the grid to

reconstruct the output. Construction and slicing are symmetric operations that convert

between image and grid space.This idea was introduced in Mansi Sharma (2021)

3.2 Bilateral Grid

Figure 3.1: 2D image represented as a 3D bilateral grid

Bilateral grid was introduced in Chen et al. (2007) as a data structure for images to

perform edge aware computations on them. A bilateral grid is a 3D representation of a



2D image that separates pixels not only by their spatial position but also their respective

intensity values.

Let I(x, y) = z be a gray scale image where x, y are the pixel indices and z is the

intensity value, its corresponding bilateral grid is given by

BG(x, y, z) = z ∀x, y, z ∈ I (3.1)

Any 2D operation on image space, becomes a 3D operation in the bilateral space.

This is the motivation behind the fact that the network we trained is a 3D CNN.

3.2.1 Bilateral Grid for CNN

Since images can be quite large and adding a 3rd dimension quickly blows up the size,

we usually reduce spatial resolution of the bilateral grid by a factor of 2 or 4 (sometimes

even 10 if the image is of very high resolution). The choice of intensity dimension is

usually 32 or 64.

Also on further experimentation, we found it was easier for the network to learn if

instead of BG(x, y, z) = z, we use

BG(x, y, z) = 1 ∀x, y, z ∈ I (3.2)

thus making gradient values during back propagation equal for all intensity levels and

thus learning for all intensities at equal rates.

3.2.2 Representing color images as a bilateral grid

An interesting issue that arises is that only gray scale images can be represented as a

bilateral grid. If we were to represent color images we would need a 5 dimensional

grid with extra 3 dimensions for RGB values. We can work around this by creating

3 bilateral grids one for each color channel. Even in this case there are 2 ways of

representation. Let BGr, BGg, BGb be the bilateral grids corresponding to each color
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channel and let I be the image to be converted.

I(x, y) = (r, g, b) (3.3)

BGr(x, y, r) = 1, BGg(x, y, g) = 1, BGb(x, y, b) = 1 (3.4)

BGr(x, y, s) = r/s, BGg(x, y, s) = g/s, BGb(x, y, s) = b/s (3.5)

∀x, y, r, g, b ∈ I and where, s = (r + g + b)

From experiments, we found that the representation in (3.5) proved to be the best.

The models learned faster and were able to generalise to different scenes in images.

3.2.3 Why Grids

Figure 3.2: How bilateral grids preserve edges

Bilateral grids offer a simple yet robust way to preserve and retrieve edges present

in the original RGB image after performing computations. Consider the example of

blurring an image. When we use a Gaussian kernel to blur it affects all neighbourhood

pixels equally eventually destroying sharp edges. A Gaussian blur in N Dimensions is

treated as a Gaussian blur in N + 1 dimensions when using bilateral grids. Thus, 2D

Gaussian blur becomes 3D and so does the kernel. Edges by definition mean sharp rise

or drop in intensity values. Since bilateral grids separate pixels by their intensity values

20



too, the kernel never affects the pixels on the other side of the edge. This is apparent in

3.2. Notice how the first 3 black pixels are untouched and the separation remains sharp

even after the blur operation has been performed.

3.3 Proposed CNN architecture

In this section, we explain our proposed convolutional network, Like most of the CNN

architectures our model contains the contractive part which progressively decreases the

input through a series of convolution and pooling operations followed by upsampling.

First the image is Converted into a bilateral grid then it passes through the network and

output is the predicted image. Such a deep network helps in capturing large information.

Figure 3.3 contains the visual representation of the architecture.

Figure 3.3: Fully Convolutional 3D Bilateral Grid Based CNN Network For Edge
Aware Depth Prediction

3.4 Loss function

We have have used reverse Huber(berHu) as our loss function. The BerHu function is

equal to L1 norm when x ∈ [−c, c] and L2 norm outside this range.

B(x) =

 |x| |x| ≤ c

x2+c2

2c
|x| > c

We set c = 1
5
maxi(|ŷi − yi|) where i indexes all pixels over each image in the current

batch.
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3.5 Dataset (NYU-Depth V2)

The NYU v2- depthNathan Silberman and Fergus (2012) dataset improves upon the v1

in number of training samples, depth image quality and overall scene variations. It con-

sists of around 120,000 RGB image and depth image pairs. Although the depth image

needs to be obtained from a video stream after synchronisation. Due to the huge size

of dataset (420 GB) we only use the readily available sample data (2.3 GB) consisting

of around 2000 image pairs to train our model. All images are of the same resolution

of (640 × 480). The depth data has been captured using a Kinect sensor, converted

to image and then inpainted to handle the holes (missing data due to reflections and

transparent surfaces).

3.6 Implementation details

We implemented our proposed depth prediction architecture using PyTorch. Both train-

ing and evaluation are performed on a single high-end HP OMEN X 15-DG0018TX

Gaming laptop with 9th Gen i7-9750H, 16 GB RAM, RTX 2080 8 GB Graphics and

Windows 10 operating system. Training part took around 8 hours(3 min per epoch).

We have used stochastic gradient descent as an optimizer. Training code ran for 150

epochs.

3.7 Results

22



Figure 3.4: 3DBG-net Results(1). (left) Input image (middle) ground truth (right) pre-
diction
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Figure 3.5: 3DBG-net Results(2). (left) Input image (middle) ground truth (right) pre-
diction
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Figure 3.6: 3DBG-net Results(3). (left) Input image (middle) ground truth (right) pre-
diction
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CHAPTER 4

FC3D-ResUnet: A 3D Fully Convolutional Residual

Neural Network for Robust Depth Prediction from

Monocular Images.

4.1 Method

In this section, we explain our proposed convolutional network architecture, dubbed

as (FC3D-ResUnet). The objective of the proposed architecture is to strike a balance

between Depth map and a good sharp geometric layout of the scene.The input to the

network is color rgb image and output is sharp depth maps. Like most of the current

CNN architectures contains a contractive part that gradually decreases the input res-

olution through convolutions and pooling operations and thus capturing more global

information. The desired output is a high resolution image in order to achieve that

some upsampling is required. We have introduced a fully convolutional network for

depth prediction. We have set input resolution to 640 X 480 pixels and produced output

map resolution of 492 X 369 pixels.

By applying CNN directly does not produce feasible output as it lacks a sharp geo-

metric layout. To overcome this we introduced a u-net in parallel that helps the network

to infer a sharp geometric layout of the scene.Figure 4.1 contains the visual representa-

tion of the architecture.

4.1.1 Network

The network passes through convolution followed by batch normalization and pooling.

This design is possible to create a much deeper network without degradation. An-

other property of such architecture is their large receptive field which is large enough

to capture high resolution images. Given an input image it will create a feature map of

2048.The later part of the network focuses on a sequence of convolution and unpooling



Figure 4.1: FC3D-ResUnet Architecture

layers which guides the network in learning upscaling. The output of the unet is then

concatenated to the network followed by convolution and batch normalization.

4.1.2 U-Net

We have introduced a Unet style network that can infer the sharp geometric layout

of a scene. The proposed unet works parallel to the network. The Upsampling and

downsampling are used to upsize and downsize the features respectively. The input

feature after the convolutional block and max pooling block is downsized four times.

The output of the unet is concatenated to the original network.This helps in producing

sharp geometric layout of the scene.

4.2 Loss function

Like most of the depth regression problem we consider the difference between the

ground truth depth map Y and prediction of depth regression as Ŷ .We seek to define

the loss function that balances between reconstructing depth images by minimizing the

difference between the depth values while also penalizing distortions of high frequency

details in the image domain of the depth map.
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The loss function used in the proposed model is defined as.

L(Y, Ŷ ) = Ldepth(Y, Ŷ ) + Lgrad(Y, Ŷ ) + LSSIM(Y, Ŷ )

The first term in loss function is a pointwise L1 loss.

Ldepth(Y, Ŷ ) =
1

n

n∑
i

|Yi − Ŷi|

The second term in the loss function is L1 loss over the image gradient.

Lgrad(Y, Ŷ ) =
1

n

n∑
i

|Gx(Yi − Ŷi)|+ |Gy(Yi − Ŷi)|

The third term in the loss function uses the structural similarity.

LSSIM(Y, Ŷ ) =
1− SSIM(Y, Ŷ )

2

4.3 Dataset (NYU-Depth V2)

In this section we describe our experimental results and compare with other existing

architectures. We evaluated our algorithm on the NYU-Depth v2 dataset in order to

compare the robustness of our models. It is a dataset that provides images and depth

maps for different indoor scenes captured at resolution of 640 X 480. The training set

comprises 120K samples. We trained our model on 2000 subset filled in depth values

using colorization scheme and tested on 694 training samples. Our model predicts the

depth and produces the depthmap of output resolution of 492 X 369 pixels.

4.4 Implementation details

We implemented our proposed depth prediction architecture using PyTorch. Both train-

ing and evaluation are performed on a single high-end HP OMEN X 15-DG0018TX

Gaming laptop with 9th Gen i7-9750H, 16 GB RAM, RTX 2080 8 GB Graphics and

28



Windows 10 operating system. Training part took around 10 hours and the test pre-

diction was 0.23 seconds per image. We have used Adam optimizer with learning rate

0.0002 and parameter value set to beta1 0.9 and beta2 0.999 and batch size was set to

16.

4.5 Results
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Figure 4.2: FC3D-ResUnet Results(1). (left) Input image (middle) ground truth (right)
prediction
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Figure 4.3: FC3D-ResUnet Results(2). (left) Input image (middle) ground truth (right)
prediction
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Figure 4.4: FC3D-ResUnet Results(3). (left) Input image (middle) ground truth (right)
prediction
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Quantitative Analysis

We compare our model with SharpNet, Eigen, Laina. We evaluated these methods using

most common error metric defined as:

• Average relative error (rel):

1

n

n∑
i

|Yi − Ŷi|
Y

• root mean squared error (rms)√√√√ 1

n

n∑
i

(Yi − Ŷi)2

• Average (log10 ) error:

1

n

n∑
i

|log10(Yi)− log10(Ŷi)|

• threshold accuracy (δi) : Percentage of Yi s.t Max(Yi

Ŷi
, Ŷi

Yi
) = δ < thr for thr =

1.25, 1.252, 1.253

where Yi is a pixel in depth image Y , Ŷi is a pixel in the predicted depth image Ŷ ,

and n is the total number of pixels for each depth image.

5.2 Qualitative Analysis

We performed qualitative analysis of different methods on Nyu-depth v2 dataset. The

perception-based qualitative metric and depth edge reliability metric are computed. The

mean structural similarity score (mSSIM) that measures the similarity of resulting depth



maps in the image space. The mSSIM scores are computed considering gray scale

visualization of the ground truth as a reference and estimated depth map as a predicted

image. Mathematically, the mSSIM quality score is computed as:

1

n

n∑
i

SSIM |Yi − Ŷi|

The second depth edge reliability metric (DERM), analyse edges in the predicted

depth maps and ground truth. The gradient magnitude image of both the ground truth

and the predicted depth image are determined for each sample.

Table 5.1: Comparison of different methods on NYUv2-Depth data.

Eigen SharpNet Laina Ours(3DBG-net) Ours(FC3D-ResUnet)
rel ↓ 0.207 0.139 0.127 0.185 0.123
log10 ↓ 0.089 0.047 0.055 0.06 0.053
RMS ↓ 0.634 0.495 0.573 0.594 0.465
σ1↑ 0.76 0.888 0.811 0.88 0.892
σ2↑ 0.82 0.979 0.953 0.946 0.980
σ3↑ 0.95 0.995 0.988 0.989 0.996

mSSIM ↑ 0.7042 0.7186 0.955 0.949 0.980
DERM ↑ 0.476 0.510 0.637 0.675 0.718

5.3 Conclusion

In this thesis we have proposed a deep neural network for depth estimation for single

RGB images. Unlike other CNN architectures that require a multi-step process, our

model consists of a single powerful step. The proposed architecture is fully convo-

lutional that allows for training much deeper configuration, while reducing the num-

ber of parameters learned and number of training samples required. Evaluation on

challenging benchmark NYU Depth v2 dataset demonstrates that our proposed model

achieves state-of-the-art performance, both quantitatively and qualitatively. Our aim

in this work is towards generating higher quality depth maps that capture the object

boundaries which is indeed possible using existing architectures.
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(a) Image (b) Ground Truth (c) ours(FC3D-ResUnet)

(d) Laina Network (e) SharpNet (f) Eigen Network

Figure 5.1: Depth Maps

(a) Image (b) Ground Truth (c) ours(FC3D-ResUnet)

(d) Laina Network (e) SharpNet (f) Eigen Network

Figure 5.2: Depth Maps

5.4 Future Work

Our Architecture might not be able to produce good results on real world dataset be-

cause it is only trained on NYUv2-depth dataset. Next step should be to collect a lot of

real world images with their respective depth maps. This step will be very challenging

as training time will also increase. We also believe that the resolution of the depth map

can be improved further as described in Aleksandr Safin (2021). We can extend our

architecture from single image to sequence of images.
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(a) Image (b) Ground Truth (c) ours(FC3D-ResUnet)

(d) Laina Network (e) SharpNet (f) Eigen Network

Figure 5.3: Depth Maps

(a) Image (b) Ground Truth (c) ours(FC3D-ResUnet)

(d) Laina Network (e) SharpNet (f) Eigen Network

Figure 5.4: Depth Maps
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