
Deep Convolutional Elman Jordan Neural Networks

A Project Report

submitted by

DHRUV CHOPRA

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2021



THESIS CERTIFICATE

This is to certify that the thesis titled Deep Convolutional Elman Jordan Neural Net-

works, submitted by Dhruv Chopra, to the Indian Institute of Technology, Madras, for

the award of the degree of Bachelor and Master of Technology, is a bona fide record

of the research work done by him under our supervision. The contents of this thesis,

in full or in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Prof. V. Srinivasa Chakravarthy
Research Guide
Professor
Dept. of Biotechnology
IIT-Madras, 600 036

Prof. Harishankar Ramachandran
Research Co-Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: June 2021



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my guide Dr. V. Srinivasa Chakravarthy whose

teachings motivated me to pursue my current area of research. I was able to learn a wide

range of topics thanks to his guidance. His ideas always intrigued me and led me in new

directions helping me expand my horizons. I would like to thank him for giving me the

opportunity to work on this project. I’m extremely grateful to him for his constant

support and guidance throughout and for enabling me to learn so much and execute the

project so well.

I would like to thank my co-guide Dr. Harishankar Ramachandran for his ideas,

constant guidance, motivation and support.

I would like to thank Sweta Kumari, PhD student at CNS lab, for all her ideas and

for all the fruitful discussions that I had with her.

Lastly I would like to thank my parents who have been guiding and helping me at

every step of my life. None of this would have been possible without their help.

i



ABSTRACT

KEYWORDS: Reconstruction, Attention, Deep Learning, Elman Jordan

Image reconstruction using attention windows is an important task with widespread po-

tential applications ranging from autonomous driving, to memory modelling, to saliency

detection and saliency map generation. Our brain scans the entire image piecewise by

attending to only a small region of the entire big picture and part by part aggregates the

entire information represented in the image, with fading memory of the information rep-

resented by the parts focused at very early on and best recollection of the most recently

focused at regions. Exactly on these lines, in this paper, we propose a dual channel

convolutional recurrent neural network architecture with both Elman and Jordan con-

nections to solve the image reconstruction problem. The inputs across timesteps are the

heatmaps signifying the location in the image where the current attention is focused at

and a zoomed in version of the attention window and the output at each timestep is the

aggregated image till the current moment with diminishing brightness of the regions

encountered in the past, precisely how our brain memory works. We test the perfor-

mance of our proposed architecture on various datasets such as the MNIST dataset and

the Fashion MNIST dataset.
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CHAPTER 1

Introduction

Achieving Image Reconstruction from attention windows and their corresponding heatmaps

to encode their spatial locations using neural networks is of significant importance. Im-

age reconstruction finds widespread potential applications in various domains such as

saliency detection and map generation, autonomous driving and importantly memory

modelling. In this thesis, we propose a dual channel recurrent convolutional Elman

Jordan neural network to address the Reconstruction Problem.

1.1 Problem Statement

The Reconstruction Problem is the following:

Design a neural network with the following characteristics:

Inputs: Cropped out portions of the image scanned piecewise with spatial information

Final Output: The entire Aggregated image over all the timesteps with:

Case 1: Diminishing brightness across the regions focused at in the past

Case 2: Constant brightness across all the regions

Let’s look at this in more detail.

The inputs that will be provided would be as follows. We would follow a random

trajectory and scan over the entire image part by part, piecewise, and crop out small sec-

tions from the image, which are the Attention Windows. Corresponding to the location

of these Attention Windows, we would create heatmaps to encode the spatial location

of these cropped out pieces. The heatmap would be a black image of the same size as

the image from which the patches are cropped out, with a small white patch of the same

size as Attention Window, in the exact location from which it was cropped out from

the original image. Thus, the network would be given an input of a series of a pair of

images, the Attention Window and its corresponding heatmap, and it would be required



to aggregate the information contained in all those images and reconstruct the entire

image, of which they are a part.

For this reconstruction, we consider further two cases. In the first case, the net-

work should, in the final reconstruction, reconstruct the patches, that were shown to it

in the past, that is which were input to it in earlier timesteps, with continually dimin-

ishing brightness, according to as the further back in time the Attention Window was

encountered, the lesser should the brightness of its corresponding region in the final

reconstructed image be. In the second case, we require complete reconstruction, that

is reconstructing the entire image with constant brightness across all the regions of the

image, irrespective of when their corresponding attention windows were input to the

network.

Thus, in this thesis, we explore the performance of different network architectures

on these reconstruction tasks, and propose a novel lightweight architecture to address

the reconstruction problem.

1.2 Approach to Solve the Problem

Since the reconstruction problem requires us to generate the entire image from small

attention windows and their heatmaps, we need to aggregate their entire information

content, the image content and the spatial location content, over all the timesteps and

use it to generate the complete image in the end. Hence, the problem statement in-

herently requires the neural network to have memory, and so we must use recurrent

neural networks. Since we are dealing with images and convolution operations work

best with images instead of dense fully connected operations, so we use the convo-

lutional version of these recurrent neural networks. We start by looking at naive ap-

proaches using LSTMs and dense connections. Then we split the problem statement

into sub-objectives. First, we design a static network to reconstruct partial images just

for a single timestep, by providing only one pair of Attention Window and heatmap as

inputs. Essentially, for each timestep we try to reconstruct the corresponding partial im-

age separately, with just the Attention Window placed in the correct location as pointed

to by its corresponding heatmap and the rest of the image blank. Next, to the static net-

work we add memory in the form of convolutional Elman and Jordan connections and
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reconstruct the entire image using the series of Attention Window and heatmaps pairs

as inputs, for both the cases, the case with the diminishing brightness and the case with

the constant brightness across the image regions. Finally, we consider other recurrent

convolutional neural networks such as convFFs and convLSTMs and we compare the

performance of our convolutional Elman Jordan neural network to their performance.
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CHAPTER 2

Background and Related Work

In this chapter, we will have a look at some theoretical background and some research

papers related to the work presented in this thesis.

2.1 Theoretical Background

We use various concepts such as convolutional neural networks and recurrent neural

networks in our work, the performance of which have been well established on various

kinds of tasks. Let’s have a look at these concepts in detail.

2.1.1 Convolutional Neural Networks

Convolutional Networks are widely used for image related tasks. The convolution oper-

ation helps to preserve the spatial information content in an image, while also extracting

the important features present in it. In the convolution operation, the whole image is

scanned by a moving filter with a specific stride, and the pixel values of the image,

which are in the scope of the size of the filter are multiplied with the corresponding

filter values, the products are summed and then the value is placed in the corresponding

cell in the output. Thus, this process is repeated till all the pixels in the input are cov-

ered. The filter values form the parameters of the network which are to be learnt during

training by backpropagation.Another operation which is of significance is deconvolu-

tion. Deconvolution operation is basically the inverse of the convolution operation and

is used for objectives like increasing the height and width dimensions of the input tensor

and so on.

Convolutional Layers have a variety of advantages over dense fully connected lay-

ers. They are less computationally expensive as they have fewer parameters than dense

connections. Moreover, they inherently implement weight sharing, which is a regular-

ization technique and hence they prevent overfitting. Thus, using convolutional opera-



tions, instead of regular dense operations is a more effective alternative for tasks which

involve images.

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks are widely used when dealing with time series data. When-

ever we have series of inputs and we are supposed to extract features from them, accu-

mulate those features over time and produce relevant outputs, we use recurrent neural

networks. RNNs have a memory component, which enables them to store the features

representations over time and combine it along with the additional input given to it at

every new timestep and produce appropriate outputs, aggregating all the information

that it has accumulated upto the current point.

To implement the memory aspect of RNNs, a large variety of techniques are used,

varying from Elman and Jordan Connections, to Vanilla RNNs, GRUs and LSTMs,

depending on the tasks and requirements at hand.

In this thesis, since we are working on time series data involving images, we need to

combine the best aspects from both the types of neural networks, and hence, we work

on convolutional recurrent neural networks.

2.2 Related Work

In this section, we will look at some previous related work in domains related to recon-

struction, such as saliency map generation.

The first work of interest is by Zhao et al. (2015). In the paper, the authors propose

a dual channel network architecture to detect image saliency. They follow the following

pathway. First they segment the image into superpixels. This they achieve by clustering

neighbouring pixels with similar color attributes. Once the image is divided into these

large pixel chunks known as superpixels, they then set out upon the task of classifying

each superpixel as being salient or not. That is, whether it is a part of the object in fo-

cus, which is the foreground, or the background. To do this, the use a dual channel deep

neural network. The first channel is used to encode local contextual information. The
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input to this channel is a small cropped out portion of the image, such that the current

superpixel cluster being classified is at the center of the image patch with the rest of the

portion padded appropriately. The second channel is used to encode global contextual

information, such as spatial information about the superpixel relative to the other image

components and so on. For this channel, the input which is sent is the whole image,

shifted, translated and padded appropriately such that the superpixel cluster under cur-

rent consideration lies at the center. These two inputs pass through a number of layers

and after that the information from the two channels is combined together. Post that,

there are a few more convolutional layers and then finally in the end there is just a two

neurons, which output the probability of the superpixel cluster being in the background

or being salient. Thus, using the dual channel approach to encode local information and

global information improves the results significantly.

The second work is by Li et al. (2017). In this paper, the authors try to under-

stand and demarcate the most important or saliency wise relevant portions of the image,

basically the regions of the image which contain the information most relevant to its

classification into the right category. For this, first the authors start off with the predic-

tion probability and then back propagate through the various layers until they reach the

input image, where they identify those pixels of the image which contribute the most

to the classification probability. Next, for each of these identified pixels, they consider

the surrounding pixels within a certain radius, which they compute using a formula and

further mark them as being salient or being a part of the background. This, process

they repeat again at two different scales, at twice and four times the initial radius, to

improve the saliency relevance map of the image. Thus, the key aspect of this paper is

that various regions of the image have to be looked at at different scales to accurately

determine whether they are of significance to the saliency relevance map of the image

or not.

The third work of interest is by Jaderberg et al. (2015). In the paper, the authors

introduce a spatial transformer network and demonstrate how by using a series of spatial

transformations they can narrow down upon the most important or salient portion of the

image and extract it out and use it for classification or other tasks. They perform the

transformations by passing the image through a localization network channel, which

outputs the parameters of a transformation matrix. This transformation matrix learns

the appropriate parameters to perform a variety of transformations, ranging from affine
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transformations to projective transformations to thin plate spline transformations. Then,

once the transformation matrix is obtained, both the matrix and the input image are sent

to a sampler, which implements a differentiable function such as integer sampling or

bilinear sampling and produces a transformed output which is then further used for

tasks such as classification and so on. Thus, in this paper, the authors demonstrate

the inherent use of saliency by extracting the most important parts of an image for

performing various tasks without explicitly demarcating the most salient regions.
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CHAPTER 3

Proposed Architectures for the Reconstruction Problem

In this chapter, we will look at a number of architectures to address the reconstruction

problem. We first will look at a naive initial approach using basic LSTMs and then

we will step by step build our model architecture by splitting the objective into sub-

objectives, explore various architectures and their variants and solve the Reconstruction

Problem.

3.1 Dataset Preparation

We conduct out our experiments on the following datasets.

• Synthetically Generated Dataset

• MNIST

• Fashion MNIST

Since, our reconstruction problem requires two inputs, the heat map to encode the

spatial location being currently focused at and the attention window, to each input we

assign a separate channel. For the first channel, which is the Attention Location Chan-

nel, for each timestep we create the heatmap. The heatmap is a binary image which is

black all over with a white square patch corresponding to the location being focused

at currently in the present timestep. Correspondingly, for the second channel, which is

the Attention Window Channel, we crop that portion from the image, where the current

attention focus is at, which is mapped by the white square patch of the heatmap being

input in the first channel. An example of the inputs for both the channels is shown in

Fig. 3.1. For a 28x28 image, the input sizes are 8x8 for the Attention Window and

28x28 for the heatmap.



Figure 3.1: The inputs: The 8x8 Attention Window(left) and 28x28 heatmap(right)

We perform image reconstruction for the following two cases. In the first case, re-

gions of the image which were encountered in the previous timesteps diminish in bright-

ness over time by a constant factor. In the second case, we reconstruct the entire image,

all the regions, with constant brightness, irrespective of the timestep at which the region

was encountered. Accordingly, we construct the ground truths for each timestep, which

are the aggregations of the regions of the image, which have been focused at upto the

current timestep, diminishing in brightness for the first case and of constant brightness

for the second. Examples of the expected outputs at the final timesteps have been shown

for both the cases in Fig. 3.2.

Figure 3.2: Expected outputs: Diminishing MNIST(left) and Fashion MNIST(right)

3.2 Initial Approach using LSTMs

First and foremost, whenever we have any data which is sequential in nature, LSTMs

come to mind. LSTMs have memory, which enable the model to remember aspects and
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features of the previous timesteps and aggregate the entire information, along with the

new inputs and information of the current timestep to generate the output of the present

timestep. Given this, we carry out our first experiments on an LSTM based architecture

to gauge their performance.

3.2.1 Architecture Details

The model architecture for this approach is shown in Fig. 3.3. First we apply convo-

lutional operations to both the inputs to both the channels separately. Then we flatten

them out and apply two fully connected layers to get two separate vectors for both the

channels. Then, we concatenate both the channels and send the whole resultant vector

to three contiguously stacked LSTM layers.

Figure 3.3: Architecture of the LSTM based network

3.2.2 Training Details and Results

We use the Mean Squared Error loss to train the network. The loss is computed by

comparing the prediction and the expected image, which is the aggregation of the image

only upto the current timestep, at all the timesteps and is back propagated through the

network. We achieve a training MSE loss of 0.083 after training for 200 epochs.
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The results are shown in Fig. 3.4. As we can see, the architecture has not performed

well, as was reflected in the poor training loss also. The outputs are very blurred and no

significant learning has occurred apart from the approximate location of the signs. This

is primarily because the LSTM connections we used are dense connections composed

of fully connected layers. However, to preserve the spatial information in images, fully

connected layers are not the best approach. We will address these shortcomings and

overcome the limitations of the architecture, step by step in the coming sections.

Figure 3.4: Generated Image(left) vs Ground Truth(right)

3.3 Sub Objective 1: Static Network

We solve the Reconstruction Problem in two steps. In the first step, we try to reconstruct

a portion of the image at each timestep independently of each other. Essentially, we try

to reconstruct every snapshot of the image as we scan through it, given just the attention

window and the heatmap of the current timestep as inputs.

3.3.1 Architecture Details

The model architecture for this approach is shown in Fig. 3.5. Here, since the outputs

of the network depend only upon the inputs at the current timestep there is no memory

component needed and hence we devise a static network, to accomplish the task of

piecewise partial reconstruction of the image. We reconstruct the image part by part

separately for each timestep, by just providing the network the attention window and

heatmap corresponding to the present region of being focused at, as inputs.

11



Figure 3.5: Architecture of the Static network

The Attention Location Channel and the Attention Window Channel have similar

architectures.

The input to the Attention Location Channel is an image with same dimensions as

the original image(28x28 for MNIST dataset images). The entire image is black except

for a white patch. This patch denotes the exact area in the image where the attention is

being focused at in the current timestep and is essentially being used as a heatmap to

direct the network towards the current attention location.

Correspondingly, the input to the Attention Window Channel is the cropped out

portion of the entire image where the attention is focused at in the current timestep,

corresponding to the location of the white patch in the heatmap.

The inputs to both the channels are further fed in the the next layers of each channel

respectively consisting of three convolutional layers. Additionally, after each convo-

lutional layer, local response normalization is applied. Then both channels consist of

fully connected layers. Those fully connected layers are then concatenated and now

the combined information is sent through the combined channel, another series of three

convolutional layers. The final output layer produces an output which is the reconstruc-

tion of the partial image, with the attention window placed in the correct location as

was in the original image as pointed to by the heatmap.

12



3.3.2 Training Details and Results

For training this network, we use the Mean Squared Error loss. The prediction of the

network is just the portion of the image reconstructed at the correct location, the spa-

tial information of which is encoded by the heatmap, corresponding to the region in

focus currently, using the provided inputs. We compare it with the constructed ground

truth and obtain a training Mean Squared Error of 0.00012 and validation MSE loss of

0.00018 after training for 150 epochs.

The results for this sub objective are shown in Fig. 3.6. As we can observe, the results

obtained are very sharp images and the network is able to place the attention window in

the correct location as present in the original image, as directed by the heatmap.

Figure 3.6: Generated Image(left) vs Ground Truth(right)

3.4 Sub Objective 2: Elman Jordan Aggregator

Now that we have been able to place the attention window in the correct corresponding

location in the image separately for each timestep, we now need to design a network

which can take a series of attention windows and heatmaps across various timesteps as

inputs and generate the entire image for both cases, the first case in which brightness

of the regions encountered in the past diminishes over time by a constant factor and the

second case in which the brightness of the image is constant across all the regions. To

accomplish this objective the network must possess memory of the features encountered

in the past.
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3.4.1 Architecture Details

The model architecture for this approach is shown in Fig. 3.7. We address the problem

of adding memory to the previous static architecture by adding Convolutional Elman

and Jordan Recurrent Connections to the network.

Figure 3.7: Architecture of the convElmanJordan Network

The Attention Location Channel and the Attention Window Channel have similar

architectures as they had in the previous static network architecture.

We choose the attention location and hence the location of the white patch randomly

in all of our experiments. Over the entire range of timesteps, we ensure that the entire

image is being scanned so that it can be reconstructed appropriately.

The inputs to both the channels are further fed in the the next layers of each chan-

nel respectively consisting of three convolutional layers with convolutional Elman self

connections at each layer. Additionally, after each convolutional layer, local response

normalization is applied. Then both channels consist of fully connected layers. Those

fully connected layers are then concatenated and now the combined information is sent

through the combined channel, another series of three convolutional layers, each of

which also have convolutional Elman self connections. Moreover, there is also a Jordan

loop present from the final layer to the first layer of the combined channel. The final

output layer produces an output which is the reconstruction of the image, with all the

information seen upto the current timestep.

14



The equations for the Elman self connections are as follows:

ht = σh(Wh ∗ xt + Uh ∗ ht−1 + bh)

yt = σy(Wy ∗ ht + by)

The equations for the Jordan connections are:

ht = σh(Wh ∗ xt + Uh ∗ yt−1 + bh)

yt = σy(Wy ∗ gt + by)

Here,

• xt : input vector

• ht :hidden convolutional layer vector

• gt :hidden layer before the output layer

• yt : output vector

• Wl, Ul : convolutional filters of the respective layers

• bl : biases of the respective layers

• ∗ : denotes the convolution operation

• t : denotes the current timestep

3.4.2 Training Details, Experiments and Results

For training this network, we use the Mean Squared Error loss. The prediction of the

network is the entire aggregated image reconstructed by placing all the attention win-

dows across all the timesteps at their correct respective locations, as directed by their re-

spective heatmaps, with diminishing brightness across regions focused at in the past for

the first case and constant brightness in the second. We compare it with the constructed

ground truth and obtain the following validation MSE losses, for different datasets, af-

ter training for 100 epochs, which takes about 4.5 hours to complete. They are shown

in Table. 3.1.
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Table 3.1: MSE losses of convEJ network for various datasets

MNIST Fashion MNIST
Diminishing 0.0021 0.0032

Not Diminishing 0.0049 0.0084

The results for this sub objective are shown in Fig. 3.8, Fig. 3.9, Fig. 3.10 and

Fig. 3.11 for different datasets for both the cases, diminishing and non diminishing

brightness. As we can observe, the network is able to aggregate all the information fed

to it in the form of heat maps and attention windows across all the timesteps and recon-

struct the entire image almost perfectly, for both cases with diminishing brightness and

with constant brightness for a large variety of datasets.

Figure 3.8: Diminishing MNIST: Reconstruction(left) vs Ground Truth(right)

Figure 3.9: Diminishing Fashion MNIST: Reconstruction(left) vs Ground Truth(right)
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Figure 3.10: Non diminishing MNIST: Reconstruction(left) vs Ground Truth(right)

Figure 3.11: Fashion MNIST: Reconstruction(left) vs Ground Truth(right)

3.5 convFF and convLSTM

We now try adding memory to the static network using other kinds of recurrent archi-

tectures. Also, another aspect which we try to address is removing the fully connected

dense layers and accordingly we modify the architecture of the two channels of the

network to solve the reconstruction problem without them.

3.5.1 Architecture Details

The architecture details are shown in Fig. 3.12. We build upon the architecture of the

static network. First off, we remove the fully connected layers and solely rely on convo-

lution operations in both the channels, the Attention Location Channel and the Attention

Window Channel. Post the convolution operations, we just add the tensors directly to

combine the information from the features extracted from the inputs to both the chan-

nels. To enable this, we make the following change from the static architecture. Since

the attention window is relatively smaller as compared to the heatmap, 8x8 compared
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to 28x28 in the case of MNIST and Fashion MNIST datasets, to the Attention Window

Channel we need to add deconvolutional layers to bring it up to the same dimensions

as the Attention Location Channel output tensor. As shown in Fig. 3.12 we add two

deconvolutional layers to the Attention Window Channel. Post the addition of the ten-

sors from both the channels, we pass them through convFF and convLSTM layers in the

combined channel in two separate experiments, which serve as the memory component

of the network.

Figure 3.12: Architecture of the convFF/convLSTM Network

3.5.2 Training Details and Results

As in the previous Elman Jordan Network, we train both the networks, the convFF

based network and the convLSTM based network. We train each network for 30 to 40

epochs, which takes nearly 16-22 hours to complete. For the convFF based network, as

we can see in Fig. 3.13 and Fig. 3.14, the results are not good. The network is not able

to reconstruct the image. For the convLSTM based network on the other hand, we are

able to get good results, as we can see in Fig. 3.15, Fig. 3.16, Fig. 3.17 and Fig. 3.18.

We obtain the following validation MSE losses, for different datasets, for both the cases

diminishing and constant brightness. They are shown in Table. 3.2.

Table 3.2: MSE losses of convLSTM network for various datasets

MNIST(30 epochs) Fashion MNIST(40 epochs)
Diminishing 0.0043 0.0148

Not Diminishing 0.0065 0.0172
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Figure 3.13: convFF Diminishing MNIST: Reconstruction(l) vs Ground Truth(r)

Figure 3.14: convFF Fashion MNIST: Reconstruction(l) vs Ground Truth(r)

Figure 3.15: convLSTM Diminishing MNIST: Reconstruction(l) vs Ground Truth(r)
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Figure 3.16: convLSTM Diminishing Fashion MNIST: Reconstruction(l) vs GT(r)

Figure 3.17: convLSTM MNIST: Reconstruction(l) vs Ground Truth(r)

Figure 3.18: convLSTM Fashion MNIST: Reconstruction(l) vs Ground Truth(r)
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3.5.3 Comparison with convElmanJordan Network

Hence, we see that, convLSTM although it is able to reconstruct the image, it is still

not able to achieve as good MSE losses as the Recurrent Elman Jordan Network that

we proposed in the previous section, even after taking so long to train as compared to

it.The convLSTM network takes 16 hours for 30 epochs to train for the Diminishing

MNIST dataset and 22 hours for 40 epochs to train for the Fashion MNIST dataset as

compared to 4.5 hours for 100 epochs taken to train by the convELmanJordan network

we proposed. There is a huge difference between the two. A comparison of the vali-

dation MSE losses for both the networks, convLSTM and convElmanJordan is plotted

in Fig. 3.19 for the Diminishing MNIST case and in Fig. 3.20 for the Fashion MNIST

case. Thus, we observe that, using our Recurrent Elman Jordan Network Architecture,

we are able to achieve good image reconstruction results with a network architecture

with lightweight recurrent connections by extending the Elman Jordan equations to a

convolutional form and utilizing a dual channel architecture.

Figure 3.19: Validation Losses: convLSTM vs convEJ for Diminishing MNIST
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Figure 3.20: Validation Losses: convLSTM vs convEJ for Fashion MNIST

3.5.4 Conclusion

Thus, through various experiments, we see that, the recurrent convolutional ElmanJor-

dan architecture that we propose performs really well as compared to other architectures

that we experimented upon in the thesis. It is faster, lighter and reconstructs the images

much more accurately.
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