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ABSTRACT

In this thesis we look at the sample-complexity in non-truthful mechanisms. Hartline and

Taggart (2019) introduce the problem of non-truthful sample complexity and identify a param-

eterized family of mechanisms with either all-pay, winners-pay bids and truthful payment se-

mantics for which they show polynomial sample complexity bounds. They consider the welfare

and revenue objective for non-truthful mechanisms when the value distributions are bounded in

the range [0, 1]. They also look at the revenue objective for truthful mechanisms for unbounded

regular value distributions. We consider the revenue objective for non-truthful mechanisms and

show polynomial sample complexity bounds for regular potentially unbounded distributions.

Along with this we provide a multiplicative bound on the revenue estimation error for a

rank-by-bid position auction with either winners-pay-bids or all-pay semantics. Chawla et al.

(2017) obtain an additive bound on the revenue estimation error when values are bounded in

the range [0, 1]. They provide a revenue estimator definition which is nothing but a weighted

order statistic. We perform a thorough empirical analysis on the properties of the estimation

error and verify its dependence on various parameters such as number of agents, number of

samples, etc.
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CHAPTER 1

INTRODUCTION

Mechanism Design is a branch of economic theory that provides a framework to analyze out-

comes in strategic settings. Obtaining mechanisms with "favourable" outcomes is one of the

main goals in this field. For example, in the setting of auctions (Myerson (1981)), the seller

would want to design the rules so that buyers bid their true value for the item (Vickrey (1961)).

Such a mechanism where the buyers report their true values is known as a truthful mechanism.

In a single-parameter mechanism design problem, the agents have one value for receiving the

service. Just as truthfulness is a property desired in equilibrium, a different goal of the designer

could be to maximize the welfare or revenue. Revenue maximizing mechanisms do require

knowledge about the distribution of agents. For example, in a single-item single-agent setting,

posting a price which depends on the distribution of the agent is the revenue optimal mech-

anism (Myerson (1981)). Thus to design optimal mechanisms, having knowledge about the

distribution is imperative.

There is vast literature on the design of mechanisms from data in the truthful setting. The

data that is obtained is the actual value of the agent and the goal is to further design a truth-

ful mechanism, the data of which will again correspond to the values. Dhangwatnootai et al.

(2010) consider a prior-independent setting and propose a single sample mechanism where re-

serve prices are stochastically chosen from the available data and obtain near optimal revenue

approximations. The goal of a prior independent mechanism is to design mechanisms which

work well for all type of distributions. Elkind (2007) show that an auction with reserve price

type auction can be learned in polynomial time for finite support distributions. Cole and Rough-

garden (2014) who show that polynomial many truthful samples, polynomial in the number of

bidders and approximation factor, are necessary and sufficient to obtain an approximation to

the optimal revenue. Morgenstern and Roughgarden (2015) consider a general statistical learn-

ing approach to learning learning approximately optimal auctions from data. The problems in

truthful sample complexity were largely resolved by Devanur et al. (2016), Gonczarowski and

Nisan (2017) and Guo et al. (2019).



However, most practical applications run non-truthful mechanisms i.e a mechanism where

truth telling is not an equilibrium. Thus the assumption of access to truthful data might not

hold in these settings. Typical auctions used in practice such as i.i.d rank based position auc-

tions (cf. Jansen and Mullen (2008)) with winners-pays-bid semantics (eg : Paes Leme et al.

(2020)) or all-pay semantics (all participants pay whether they are allocated the item or not)

are not truthful. The equilibrium strategy of a player or the bid function is not the identity

function. Another benefit of non-truthful mechanisms is that they are more robust, in terms

of performance, to the prior distributions of the agents (Feng and Hartline (2018)). Thus the

question in non-truthful mechanism design is whether the optimal revenue can be achieved with

equilibrium bid samples.

Hartline and Taggart (2019) consider the problem of non-truthful sample complexity and

state the goals of the problem clearly. They consider an environment where agents could come

from different populations and make no assumption on the feasible allocation rule. They reduce

the problem to i.i.d rank-based position auctions, a scenario where the equilibrium bid distri-

bution is well behaved and can be utilized for estimation. Their mechanism utilizes two sets

of samples : design time samples and run time samples. Design time samples are obtained by

running a mechanism from a family of mechanisms and then these samples are used to select

the parameters of the mechanism to be run. Run time samples are obtained when this chosen

mechanism is run. The environment considered is a batched environment and hence a final

allocation decision is made based on a batch of samples or the run time samples. They define

the problem of non-truthful sample complexity as follows

Definition 1. (Hartline and Taggart (2019)) The problem of non-truthful sample complexity is

to identify in a parameterized family of winner-pays-bid (or all-pay) mechanisms and polyno-

mials pdesign and prun such that with n-agent environments and desired loss ε :

• C1 : With mdesign = pdesign(n, ε−1) design-time samples of profiles of Bayes-Nash equi-
librium bids from any mechanism in the family, parameters of the designed mechanism
can be selected

• C2 : Withmrun = pdesign(n, ε−1) run-time samples of profiles of Bayes-Nash equilibrium
bids in the selected mechanism, the selected mechanism can be run

• C3 : The expected performance, in agents’ values and the mrun run-time samples of the
selected mechanism, is at most ε less than that of the Bayesian optimal mechanism

2



They show polynomial time sample complexity for the following environments :

• Winner-pays-bid and all-pay mechanisms, additive welfare approximation, and bounded
value distributions

• Winner-pays-bid and all-pay mechanisms, additive revenue approximation, and bounded
and regular value distributions

• Truthful mechanisms, multiplicative revenue approximation, and (unbounded) regular
value distributions

We show polynomial time sample complexity bounds for winner-pays-bid and all-pay mech-

anisms, a multiplicative revenue approximation for unbounded regular value distributions. We

do use the normalization that the monopoly revenue is one but our results still hold in the case

the monopoly revenue of agent i is R∗i . As the optimal surrogate values are expected order

statistics, Hartline and Taggart (2019) show that estimating the revenue of multi-unit auctions

up to an ε error suffices. We show multiplicative estimation error bounds for regular unbounded

distributions with the normalization mentioned above.

As mentioned above, the parameters for the optimal parameterized mechanism is the ex-

pected order statistics. Thus the problem reduces to estimating the order statistics from the

design time equilibrium bid samples. Chawla et al. (2017) consider the more general prob-

lem of estimating the per-agent revenue of a counterfactual auction from the equilibrium bid

distribution of an incumbent auction. Such scenarios are typically encountered in the A/B test-

ing of auctions (eg : Kohavi et al. (2009), Chatham et al. (2004)) where typically a website

runs one form a service and mixes in a different service with some probability to estimate the

gains/losses had the website used the latter. A similar setting is used in Randomized Con-

trolled Trials where a different version is evaluated by splitting the users into two groups, the

Treatment Group and the Controlled group. The difference in the outcomes of the two groups

convey the effects of the different version. As far as A/B testing of auctions are concerned, the

setting Chawla et al. (2017) consider is the following : auction A is currently being run while

auction B is run a few number of times randomly to see how the agents react. They assume

that the agents are aware of this mixing and hence bid according to an auction which is the

convex combination of A and B. The goal is to estimate the revenue of auction B from the

data obtained from auction C. The traditional approach to revenue estimation by Guerre et al.
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(2000) involves inverting the equilibrium bid distribution to obtain the value of the agent. This

inversion is done based on the empirical bid distribution.

In this thesis, we thoroughly investigate the behavior of the estimator proposed by Chawla

et al. (2017) for all the dependent variables. We also observe the benefits of truncation in

extreme incumbent / counterfactual auction settings. We also compare the method proposed

to classical approaches of smoothing the bid function (k-nearest neighbors smoothing) and

observe that no smoothing is optimal.

4



CHAPTER 2

PRELIMINARIES

In the single-parameter independent private model for mechanism design, there are n agents

each with a value vi drawn from a distribution, corresponding to the population of that agent

Fi. The model is described in the quantile space where the results and intuitions are much

more transparent (eg : Hartline (2013)). The quantile qi of an agent in population i with value

vi is the probability that a randomly sampled value from Fi is smaller than the value vi of

that agent i.e qi = Fi(vi). We can thus express the value of an agent in a population as a

function of the quantile i.e vi(q) = F−1
i (q). The profile of values for the agents is denoted

by v = (v1, v2, . . . , vn) and the profile of quantiles is denoted by q = (q1, q2, . . . , qn). An

allocation x = (x1, x2, . . . , xn) where xi ∈ {0, 1} is an indicator for agent i being served. The

space of feasible allocations could be constrained and is denoted as X ⊂ {0, 1}n. Depending

on whether agent i wins or not, she can be assigned a non-negative payment pi. The utility of

the agent is linear in the allocation and payment as vi(qi)xi − pi.

A mechanism (x,p) for this problem maps a vector of bids, b, to a feasible allocation

x ∈ X and a payment vector p where the ith index corresponds to the payment for agent i.

A mechanism consists of allocation algorithms x̃(b) which maps the bid profiles to a feasible

allocation and a payment rule p̃(b) which maps the bid profiles to a payment vector. The two

payment formats that we consider are the winners-pay-bid format wher, as the name suggests,

agents pay only if they receive the service i.e p̃i(b) = bix̃i(b) and the all-pay format where

agents pay irrespective of if they have received the service or not i.e p̃i(b) = bi. A strategy for

an agent in a mechanism is a mapping from her value to the bid. The strategy of the ith agent is

denoted by si(.) and s = (s1, s2, . . . , sn) is a strategy profile. Mechanisms with these payment

formats do not have truth-telling as an equilibrium i.e all agents bidding their value is not an

equilibrium strategy.

In this thesis we deal with sample-complexity in non-truthful mechanisms. For the same we

analyze non-truthful mechanisms in Bayes-Nash equilibrium. As mentioned earlier, a strategy



for agent i is denoted by si(.). It maps the agents quantile qi to a bid, and thus with a uniformly

drawn quantile, induces a bid distribution for a particular strategy. Given a quantile qi for

agent i, a distribution over the quantiles of other agents induces an interim allocation rule

for agent i, which essentially denotes the probability with which agent i receives the service.

Agent i’s interim allocation rule is xi(qi) = Eq−i
[x̃i(s(q))]. In a similar vein, the interim

payment rule is pi(qi) = Eq−i
[p̃i(s(q))]. When the agents values are independently distributed,

Myerson (1981) gave a characterization of the interim allocation and payment at a Bayes Nash

Equilibrium

Theorem 1. (Myerson (1981)) For independently distributed agents, interim allocation and

payment rules are induced by a Bayes-Nash equilibrium with onto strategies if and only if for

each agent i

• (monotonicity) allocation rule xi(qi) is monotone non-decreasing in qi

• (payment identity) payment rule pi(qi) satisfies pi(qi) = vi(qi)xi(qi)−
∫ qi

0
xi(r)v

′
i(r)dr+

pi(0)

While we consider the revenue objective, Hartline and Taggart (2019) study both the welfare

and revenue objective. The welfare of a mechanism is E[
∑

i vi(qi)xi(qi)]. The optimal mecha-

nism for welfare allocates the value-maximizing feasible set. This allocation rule is monotone

and implementable via payments from Theorem 1.As far as the revenue of a mechanism is

considered, the characterization provided by Myerson (1981) allows us to write the revenue as

a weighted sum of single-agent posted pricing mechanisms. In a single-agent posted pricing

mechanism, an agent is offered the item for a price and then depending on her value chooses to

buy that item or not for that particular price. Clearly the agent will not buy the item if her value

is below the price and will buy the item if her value is above the price. Formally, the revenue

curve Ri(qi) for a given value distribution specifies the revenue of a single-agent posted pricing

mechanism for a posted price of v(qi). We have that Ri(qi) = vi(qi)(1− qi) as the probability

that the agents value is greater than vi(qi) is 1− qi. A classical result characterizes the expected

payment made by an agent at BNE

Lemma 1.1. (Myerson (1981), Bulow and Roberts (1989)) In Bayes-Nash Equilibrium, the

expected payment of an agent satisfies
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Eqi [pi(qi)] = Ri(0)xi(0) + Eqi [Ri(qi)x
′
i(qi)] = Ri(1)xi(1)− Eqi [R

′
i(qi)xi(qi)]

The family of auctions that we consider are the rank-based position auctions. More specif-

ically, we consider the i.i.d environment where the value of agents comes from the same dis-

tribution. A position auction with n agents is defined by the tuple of weights (w1, w2, . . . , wn)

with the constraint that 1 ≥ w1 ≥ w2 ≥ · · · ≥ wn. A position auction assigns agents to po-

sitions (potentially randomly) and the agent at the ith position is allocated with probability wi.

A rank-based position auction assigns positions to agents based on a rank. A rank-by-bid po-

sition auctions ranks agents based on their bids and assigns positions accordingly. Chawla and

Hartline (2013) show that for rank-by-bid i.i.d position auctions with all-pay or winnerss-pay

semantics, the equilibrium is symmetric, unique and efficient i.e if s is a BNE strategy profile,

then si(.) = s(.) for all i ∈ [n]. The equilibrium is also such that the agents’ values and bids

are in the same order i.e an agent with a higher value will also have a corresponding higher bid.

Multi-unit auctions are a special case of these position auctions in the sense that they have a

constraint on the number of items they allocate. A k-unit( constraint of k-unit) multi-unit auc-

tion would have the following position weights : wl = 1 for all l ∈ {1, 2, . . . , k} and wl = 0 for

all l ∈ {k+1, . . . , n}. The highest k-bids-wins position auctions sorts the agents bids and gives

the k-items to the top k bidders. For a position environment, we can define its marginal weights

w′ = (w′1, w
′
2, . . . , w

′
n−1) where w′i = wi − wi+1. We define w′0 = 1− w1 and w′n = wn. Note

that on the support {0, 1, . . . , n}, the marginals induce a probability distribution. A rank-by-bid

position auction with weights w can be thought of as a convex combination of highest-bids-

wins k-unit auctions where the convex combination weights are given by the marginals. The

rank-by-bid multi-unit allocation rule just depends on the rank of an agent amongst other agents

and not the exact bids itself. We can write the allocation probability of an agent with quantile q

in a k-highest bids-wins position auction as

xk(q) =
k−1∑
i=0

(
n− 1

i

)
qn−1−i(1− q)i

7



This is because, to be given the item, the agent with just needs to have one of the highest

k quantiles of n agents. But this is nothing but that at most k − 1 agents out of the remaining

n− 1 agents have a quantile greater than q. The probability an agent has quantile greater than

q is (1− q). The per-agent revenue of such an auction is Pk = Eq[R(q)x′k(q)].

The allocation rule of a rank-by-bid position auction is nothing but the convex combination

of allocation rules of k-highest-bids-wins auction. Let the allocation rule of the rank-by-bid

position auction with weights w be x(.), then

x(q) =
n−1∑
k=1

w′kxk(q)

We can also obtain the per-agent revenue in a rank-by-bid mechanism with weights w, in

terms of the per-agent revenues of k-highest-bids-wins auctions by revenue equivalence (My-

erson (1981)). Denoting the per-agent revenue as Px,

Px =
n−1∑
k=1

w′kPk

As far as the allocation rule of any rank-by-bid position auction is concerned, the following

bound on the derivative of the allocation rule x′(q) is shown

Lemma 1.2. (Chawla et al. (2017)) The maximum slope of the allocation rule x of any n-agent

rank-based auction is bounded by n : supq x
′(q) ≤ n. The maximum slope of the allocation

rule xk for the n-agent highest k-bids-win auction is bounded by

sup
q
x′k(q) ∈ [

1√
2π
,

1√
π

]
n− 1√

min{k − 1, n− k}
= Θ(

n√
min{k, n− k}

)

We utilize this result while proving an upper bound on the estimated error.

2.1 Surrogate Ranking Mechanism

Hartline and Taggart (2019) consider a parameterized family of mechanisms, the Surrogate

8



Ranking Mechanism, for which they show polynomial time sample complexity to be ε close to

the optimal welfare/ revenue.

Definition 2. A Surrogate Ranking Mechanism(SRM) is parameterized by nT surrogate values

Ψ, with Ψi = {ψ1
i ≥ ψ2

i · · · ≥ ψTi } for all i ∈ [n]. The input to the mechanism is a profile of

bids.

• A surrogate value for each agent i is calculated as
– Draw T − 1 run-time samples from the agent’s bid distribution

– Calculate the rank ri of the agent’s bid relative to these samples

– Select the agent’s surrogate values ψi = ψrii according to the agent’s sample rank

• For space X of feasible allocations, the algorithm allocates to maximize the surrogate
surplus arg maxx∈X

∑n
i=1 ψixi

• Payments are assigned according to any standard payment format

The idea is to identify "good" surrogate values which approximate the optimal mechanism.

Intuitively, since the agents are competing against agents from its own population, they bid as

if they are playing in an i.i.d position auction environment. Thus in some sense the Surrogate

Ranking Mechanism gives a reduction from non i.i.d agents to an i.i.d setting. Formally,

Theorem 2. (Hartline and Taggart (2019)) For any profile of value functions v and surrogate

values Ψ, the unique stationary equilibrium of the winner-pays-bid(resp. all-pay) SRM is given

by each agent i bidding according to the unique and efficient BNE of the i.i.d winner-pays-

bid(resp. all-pay) position auction with weights corresponding to the characteristic weights of

the ith agent induced by the SRM and value function vi.

They show that the surrogate values of the revenue optimal surrogate ranking mechanism

are nothing but expected order statistics. This is then a good approximation to the revenue

optimal mechanism. The representation error of this parameterized family of mechanisms is

small. Intuitively, representation error arises due to the fact that the actual data that we test on

does not come from our target function. Our target function here is the optimal mechanism

for the agents which would have some sort of a reserve price while the bid data we get is

from the ranking mechanism. There is another form of error known as the generalization error.

This corresponds to the classical training vs test error in a learning setup. The goal is to learn

9



the optimal surrogate values by running a mechanism from a family of mechanisms. They

show that the there exists a set of surrogate values which approximates the optimal welfare or

revenue.

Theorem 3. (Hartline and Taggart (2019)) There exists a surrogate ranking mechanism with

winners-pays-bids, all-pay or truthful-payment semantics which attains a (1 − O( 3
√
n/T ))-

fraction of the optimal welfare in stationary equilibrium. With regular distributions, there

exists such a mechanism which attains a (1 − O( 3
√
n/T ))-fraction of the optimal revenue in

stationary equilibrium.

2.2 Revenue Inference

The analysis to find the sample complexity for a revenue approximation involves estimating

the optimal surrogate values. This in turn involves estimating the revenue of multi-unit auc-

tions. Chawla et al. (2017) give an upper bound on the estimation error when the values of

the agents are bounded in the range [0, 1]. They consider an i.i.d rank-by-bid position auction

environment with either all-pay or winners-pay-bid semantics. The typical inference procedure

involves estimating the value distribution from the equilibrium bids, as a known value distribu-

tion allows the designer to optimize for revenue. Note that the mapping from the value to the

bids at equilibrium maximizes expected utility over the bid distribution of the other agents. The

assumption is that the value distribution, the allocation rule, and consequently the bid function,

are monotone, continuously differentiable and invertible.

For example, we can obtain the symmetric equilibrium bid function b(q) for the winners-

pay-bid rank-by-bid position auction with allocation rule x(q) by taking the derivative of the

utility with respect to the equilibrium bid and setting it to zero. For the two settings that we

consider, the symmetric equilibrium bid satisfies

• Winners-Pay-Bid : v(q) = b(q) + x(q)b′(q)
x′(q)

• All-Pay : v(q) = b′(q)
x′(q)

At a high level, they estimate the bid function using samples from the equilibrium bid

distribution and utilize this to estimate the revenue. Note that the allocation rule is known as

10



the designer knows what rank-based position auction is being run. A key result utilized in their

theoretical analysis is a bound on the error of this estimated bid function. Csorgo (1983) and

Csorgo and Revesz (1978) obtain a bound on the weighted statistical error in the bids based on

which the following error bound in the shown in the case the normalization is
√
N .

Lemma 3.1. (Chawla et al. (2017)) Suppose that b and b′ exist on (0, 1) and supq∈(0, 1) q(1 −

q)b′(q) <∞. Then the density-weighted uniform mean absolute error of the empirical quantile

function b̂(.) on q ∈ [δN , 1− δN ] with δN = 25 log logN
N

is bounded almost surely as

Eb̂[ sup
q∈[δN ,1−δN ]

|
√
N(b

′
(q))−1(b(q)− b̂(q))s|] < 1 + 16

log logN√
N

sup
q
q(1− q)b′(q).

Note that the symmetric bid function for an all-pay auction with allocation rule x(q) satisfies

b′(q) = v(q)x′(q). We utilize the normalization supq∈(0,1) v(q)(1− q) = 1 and hence under this

normalization supq∈(0, 1) q(1− q)b′(q) = supq∈(0, 1) q(1− q)v(q)x′(q) <∞.

Now consider the scenario where we want to estimate the per-agent revenue of a rank-

by-bid position auction Y , by running an incumbent auction rank-by-bid position auction X

(as is done in a typical A/B testing scenario). For the symmetric equilibrium bid function of

an all-pay auction with allocation rule x(q) when the agents have a value function v(q) can be

expressed as b′(q) = v(q)x′(q). Thus for such an incumbent auction, we can write the per-agent

revenue for an auction with allocation rule y(q) as

Py = Eq[y
′(q)(1− q)v(q)] = Eq[y

′(q)(1− q) b
′(q)

x′(q)
] = Eq[Zy(q)b

′(q)]

where Zy(q) = (1 − q) y
′(q)
x′(q)

. This function Zy(.) can take very large values at the extreme

quantiles. For example when the incumbent auction is the 1-unit auction and the counterfactual

auction is the (n − 1) auction, Zy(q) is unbounded at q = 0. To avoid this divergence at the

extremes, the estimator utilizes truncation to a quantile range [δ, 1−δ], where δ is the truncation

parameter. This truncation induces a bias-variance tradeoff in the eventual revenue estimator.

Also note that the Zy(.) function only depends on the allocation rules of the two auctions. It

is independent of the distribution of the population as these are rank-based auctions and hence

the allocation for an agent only depends on the rank of its quantile among other participating
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agents. The incumbent auction is run N times to obtain an estimate of the equilibrium bid

function of an agent. Note that the bids obtained are in best response to the distribution of the

the other agents. These N bids are then sorted in ascending order as b̂1 ≤ b̂2 · · · ≤ b̂N . The

estimated bid function is defined as follows

Definition 3. The estimated empirical bid function for the N sorted bids, b̂1 ≤ b̂2 · · · ≤ b̂N , is

defined as

b̂(q) = b̂i ∀ q ∈ [
i− 1

N
,
i

N
)

This corresponds to a piecewise-constant function. Replacing the estimated bid function in

the per-agent revenue equation, we obtain the estimated truncated per-agent revenue as

Definition 4. The estimator of the per-agent revenue P̂y, for an auction with allocation rule y,

and N sampled equilibrium bids b̂1 ≤ b̂2 · · · ≤ b̂N from an auction with allocation rule x is :

P̂y =

N−δNN∑
i=δNN

(Zy(
i− 1

N
− Zy(

i

N
)))b̂i + δN

y′(1− δN)

x′(1− δN)
b̂N

where Zy(q) = (1 − q)y′(q)/x′(q) and δN = max{25 log logN, n}/N is the truncation

parameter.

The estimator is a weighted order statistic of the bids. As we see in the next chapter,

while the weighted order statistic form is used to derive their estimation error bounds, while

performing simulations, the estimator in its current form is numerically unstable due to the

rounding errors from the large Z(.) functions. We now look at the behavior of the estimator for

extreme incumbent/counterfactual auctions and verify their theoretical bounds.
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CHAPTER 3

ESTIMATOR BEHAVIOR AND STABILITY

3.1 Estimator Stability

The revenue estimator proposed is a weighted order statistic of the sampled bids. The Z(.)

function can take very large values while the bids are bounded in the range [0, 1] based on the

assumption that the values of the agents lie in the range [0, 1]. The estimator proposed is the

following

P̂y =

N−δNN∑
i=δNN

[Z(
i− 1

N
)− Z(

i

N
)]b̂i + δN

y′(1− δN)

x′(1− δN)
b̂N

While this estimator is used to derive the inference bounds, the above estimator is numer-

ically unstable. Due to the large values of Z(.), this estimator leads to floating point errors

while performing simulations. Since Z(.) can take large values, the difference of Z(.) can lead

to large negative values which causes a loss in precision. Thus by re-writing the estimator as a

difference of the bids, we obtain

P̂y =

N−δNN∑
i=δNN

Zy(
i

N
)(b̂i+1 − b̂i)

Note that these two estimators are exactly the same, just that one is written as a weighted

order statistic of the bids while the other is written as a weighted sum of the difference of the

bids. Note that intuitively, this re-written estimator seems to be more stable as Z(.) can still

take large values but this is compensated with the small difference in consecutive sampled bids.

Verification : We verify the numerical instability by comparing the two estimators with

end-point corrections. We calculate the truncated sum for estimator L and M , with end-point

corrections. We are essentially calculating the same summation hence the values should be the



N = 103 N = 104 N = 105 N = 106

|L−M | 2.33 ∗ 10−8 8.21 ∗ 10−2 1.05 ∗ 106 4.39 ∗ 1012

Table 3.1: Absolute error in the truncated estimator L and M, when n = 10, x(q) = 1 − (1 −
q)n−1, y(q) = qn−1

same. However, if they are different, then this means that the source of error is the accuracy of

computation. Thus we calculate

L =

N−δNN∑
i=δNN

Zy(
i

N
)(b̂i+1 − b̂i)

M =

N−δNN∑
i=δNN

(Zy(
i− 1

N
)− Zy(

i

N
))b̂i + Zy(

N − δNN
N

)b̂N−δNN+1 − Zy(
δNN − 1

N
)b̂δNN

Setting : The number of agents are n = 10, all of them coming from the Beta(2, 2)

distribution. The incumbent auction is the (n−1)-unit auction while the counterfactual auction

is the 1-unit auction.

Observation : We observe that for small N , estimator L and M perform similarly as ex-

pected but as N increased the difference of the summations starts to diverge. This means that

as we increase N , we start including quantiles for which Z(.) is very large, hence accuracy

errors from (Zy(
i−1
N

)− Zy( i
N

)) start adding up leading to this behaviour.

3.2 Estimator Behavior

Using the re-written estimator we perform simulations to show the properties of the inference

error.
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3.2.1 Simulation Methodology

We perform Monte-Carlo simulations to calculate the mean absolute error of the estimated

revenue P̂B from the true revenue of the counterfactual auction PB. We generate a uniform

quantile grid in the range [0, 1] where the interval length is ∆. The counterfactual auction is

denoted as B and the incumbent auction as C. The allocation rules xC(q) and xB(q), their

derivatives x′C(q) and x′B(q), and R(q) are calculated analytically on the grid. The true revenue

is calculated using R(q) and x′B(q), and then performing numerical integration on the grid

Py =
∆

1 + ∆

1
∆∑
l=0

(1− `∆)v(`∆)x′B(`∆)

The equilibrium bids for the incumbent all-pay auction C are calculated in a similar manner

using numerical integration on the grid. We utilize the fact that the equilibrium bids for an

all-pay auction satisfy v(q) = b′(q)
x′(q)

. For a particular simulation, we generate a sample of N

bids, with replacement, from the bid distribution of the incumbent auction and sort them as

b̂1 ≤ b̂2 ≤ · · · ≤ b̂N . Using the definition of Z(.),

Z(q) = (1− q)x
′
B(q)

x′C(q)

we estimate the revenue as

P̂B =

N−δNN∑
i=δNN

Z(
i

N
)(b̂i+1 − b̂i)

where δN = max{25 log logN,n}
N

is the truncation parameter. We repeat this simulation by

performing a random draw of the bids 2000 times and obtain the mean absolute error of the

estimated revenue.
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Figure 3.1: Allocation Rules for different auctions when n = 16

3.2.2 Simulation Results

In this section, we verify the dependence of the inference error bounds on various parameters.

One of the auction we use for our simulations is the Uniform Stair auction.

Definition 5. The uniform-stair auction is an n-agent position auction defined by the weights

w = (1, n−2
n−1

, . . . , 1
n−1

, 0).

The allocation rule for the uniform stair auction is the uniform stair allocation rule x(q) = q.

We consider a set of five auctions for our study :

• 1-unit auction : Extreme low supply auction

• n
8
-unit auction : Low supply auction

• Uniform Stair auction
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• 7n
8

-unit auction : High supply auction

• (n− 1)-unit auction : Extreme high supply auction

The allocation rule for each of these auctions when n = 16 is shown in Figure 3.1. The

overview of our experiments is as follows. We first test the dependence of the estimation error

on N , the number of samples of the incumbent auction, and n the number of agents, in the

case the counterfactual auction is mixed in with some probability ε. We test the dependence

of the estimation error on the mixture probability ε. We show the benefits of truncation in the

case the number of agents are large but the number of samples are small. We then compare the

estimation method to classical A/B-testing methods and finally verify that the results shown

are robust to different distributions.

Dependence of Inference Error on N : Figure 3.2 shows the dependence of the normal-

ized truncated mean absolute error on the number of bid samples N , for a fixed n = 16 and the

agents come from the F = Beta(2, 2) distribution. The mean error is normalized by
√
N and

the counterfactual auction is mixed in with probability ε = 10−3. We consider three settings,

when the counterfactual auction is the low supply n
8
-unit auction, high supply 7n

8
-unit auction

and the Uniform Stair auction and for each case plot the estimation error for the five incumbent

auctions under consideration. The theoretical bound tells us that the estimator has a 1/
√
N

dependence. When we mix the counterfactual auction with some probability, there is no need

for truncation. In fact truncation causes a loss in estimation in such a setting. We observe that

indeed the estimation error has a 1/
√
N as the normalized error is a constant. The magnitudes

of the error vary due to the different dependence on n in different cases. Note that in in certain

settings, a different incumbent auction is better at estimating the revenue of an auction than

that particular auction itself. For example in Figure 3.2 (a), the Uniform Stair auction is better

at estimating the revenue of the n
8

auction than the n
8

auction itself. This is because the bid

distribution of the Uniform Stair auction is better to estimate revenue than the skewed bid dis-

tribution of the low supply auction. Note that while the theoretical bound is greater than one

at small N , our empirical analysis shows that the inference error is non-trivial even in these

extreme settings.

Dependence of Inference Error on n : Figure 3.3 shows the dependence of the normalized
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(a) Counterfactual Auction : n
8 -unit auction (b) Counterfactual Auction : 7n

8 -unit auction

(c) Counterfactual Auction : Uniform Stair Auction

Figure 3.2: Dependence of the normalized truncated mean absolute error on the number of
bid samples for different counterfactual auctions and different incumbent auctions
when the counterfactual auction is mixed in with some probability
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(a) Counterfactual Auction : n
8 -unit (b) Counterfactual Auction : 7n

8 -unit

(c) Counterfactual Auction : Uniform Stair Auction

Figure 3.3: Dependence of the truncated mean absolute error on the number of agents for dif-
ferent counterfactual auctions and different incumbent auctions when the counter-
factual auction is mixed in with some probability
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truncated mean absolute error on the number of agents n, for a fixed number of bid samples

N = 10000, when the agents come from the F = Beta(2, 2) distribution and when the coun-

terfactual auction is mixed with probability ε = 10−3. The theoretical analysis gives us the

following worst bounds for each of the settings we consider

• Uniform Stair Counterfactual : O( log(n)√
N

)

• Low Supply Counterfactual : O(
√
n log(n/ε)√

N
)

• High Supply Counterfactual : O(
√
n log(n/ε)√

N
)

Note that this bound is valid only for N > n2, which corresponds to the region to the left

of the solid green vertical line in Figure 3.3. The empirical analysis shows that the inference

error is better than the theoretical bounds obtained. We see a trend upwards in Figure 3.3 (c)

in the case the incumbent is the counterfactual for large n as the truncation depends on n for a

fixed N in this setting which leads to a loss in bid-data.

Dependence of Inference Error on ε : Figure 3.4 shows the dependence of the truncated

mean absolute error on the mixture probability ε, for a fixed number of bid samplesN = 10000,

fixed number of agents n = 16 when the agents come from the F = Beta(2, 2) distribution.

Recall that in this mixture setting, the counterfactual auction is run with probability ε and the in-

cumbent auction is run with probability (1−ε). The theoretical bound tells us that in the region

N > 1
ε

(corresponding to the region to the left of the solid green line in Figure 3.4), the infer-

ence error is bounded as O(log(1/ε)), and in the region N < 1
ε

it is bounded as n2 logN/
√
N

which dominates the other bound. Note that when N > 1
ε
, our empirical study shows a sub-

logarithmic bound in the case the counterfactual is the low-supply and high-supply auction

while it shows a Θ(log(1/ε)) bound in the case the counterfactual auction is the Uniform Stair.

Chawla et al. (2017) show that there is a Universal B-Test mechanism which is a mixture of the

1-unit and (n − 1)-unit auction. The property of such an auction is that mixing this with any

other position auction makes it possible to infer the revenue of that position auction. Figure 3.5

depicts the behavior when we utilize the Universal B-Test. Comparing this to Figure 3.4, there

is not much improvement in terms of the inference error.

Truncation vs Un-truncation :
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(a) Counterfactual Auction : n
8 -unit (b) Counterfactual Auction : 7n

8 -unit

s
(c) Counterfactual Auction : Uniform Stair

Figure 3.4: Dependence of the truncated mean absolute error on the mixture probability ε for
different counterfactual auctions and different incumbent auctions when the number
of bid samples and number of agents are fixed
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(a) Counterfactual Auction : n
8 -unit (b) Counterfactual Auction : 7n

8 -unit

(c) Counterfactual Auction : Uniform Stair

Figure 3.5: Dependence of the truncated mean absolute error on the mixture probability ε when
we mix the Universal A/B test mechanism for different counterfactual auctions and
different incumbent auctions when the number of bid samples and number of agents
are fixed
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We now look at the benefit of truncation when the counterfactual is not mixed in with any

probability. As a motivation, we first observe the behavior of the estimator error for extremely

small mixture probabilities. Figure 3.6 compares the truncated and un-truncated estimator er-

rors when the counterfactual auction is the Uniform Stair auction, the number of agents are

n = 16, the number of samples are N = 10000 and the agents come from the F = Beta(2, 2)

distribution. We observe that when the incumbent are the low-supply auctions, n/8-unit and 1-

unit, the un-truncated estimation error is of the order 105 for extremely small mixture probabili-

ties, while the truncated estimator is bounded and less than the trivial bound of one even at these

extremely small mixture probabilities. An interesting point to note is that while the theoretical

bounds suggest that at approximately ε = 1/N , the better bound becomes O(n2 logN/
√
N)

(solid green line in Figure 3.6), simulation evidence suggests that this behavior happens at

much smaller ε.

(a) Truncated Error (b) Untruncated Error

Figure 3.6: Comparison of the truncated error and untruncated error when the counterfactual
auction (Uniform Stair) is mixed in the incumbent auction with some probability ε

We now compare the truncated and un-truncated error when the counterfactual auction is

not mixed in with any probability. Figure 3.7 depicts a comparison of the two, when the incum-

bent auction is the n/8-unit auction and the counterfactual auction is the 7n/8-unit auction, by

plotting the estimation error against N for different number of agents. The agents come from

the F = Beta(2, 2) distribution. We also show the estimation error in the case the counter-

factual and incumbent auction are the same, depicted by the solid lines for each n. We expect
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this "counterfactual error" to be Θ(1/
√
N) where the constants depend on n. The estimator

is just the average of the sampled bids and hence we do not expect a drastic estimation error.

We now come to the n/8-unit incumbent and 7n/8-unit counterfactual setting. The reason we

chose these auctions is because they capture the "worst-case" scenario. The dark solid line in

each plot corresponds to the trivial bound of one. We can clearly see the benefit of truncation

as the truncated error bounds are less than one while the un-truncated error bounds are of very

high order. For n = 8, even the un-truncated estimator performs well but truncation is required

as n increases for a given N . Another point to note is that for a given n, as N increases, the

un-truncated estimator and truncated estimator begin to perform similarly. We can also verify

the
√
N dependence of the estimation error from our plots.

(a) Truncated Error (b) Un-truncated Error

Figure 3.7: Log-log plot to show the estimation error as a function of the number of samples
N for different number of agents. The solid black line is the trivial error bound
while the solid colored lines correspond to the scenario the incumbent auction is
the counterfactual auction itself

We compare the estimation mechanism proposed to a classical method which involves

smoothing the bid distribution. The natural smoothing approach we employ is to consider the

k-nearest neighbors to each bid in sorted order of bids. The classical approach, which asks for a

uniform bound on the error in estimates of values to plug into the revenue estimator, would tune

k depending on the bid distribution. We consider the scenario where the incumbent auction is

the 1-unit auction (no mixing of the counterfactual auction), the counterfactual auction is the

(n − 1)-unit auction, the number of bid samples N = 1000, the number of agents n = 5 and
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the agents value comes from F = Beta(2, 2) distribution. Our empirical evidence (Figure 3.8

(a)) suggests that the optimal smoothing is no smoothing. Recall that the estimator does not

require any smoothing dependent on the bid distribution. The truncation parameter used for the

estimator does not depend on the type of auction run, but how does it compare to the optimal

truncation parameter ? To verify the same, we consider a (n − 1)-unit counterfactual auction

and 1-unit incumbent auction for small values of n. Figure 3.8 (b) shows that for the chosen

values of n, the truncation of the estimator is at most four times the error obtained using the

optimal truncation.

(a) k-nearest neighbor smoothing (b) Optimal Truncation

Figure 3.8: The figure on the left corresponds to the mean relative error as a function of the
amount of smoothing (k-nearest neighbors). The figure on the right corresponds to
the ratio of the error using the truncation presccribed and the error obtained from
the optimal truncation

Distribution Robustness : Currently all of our experiments are run when the agents come

from the distribution F = Beta(2, 2). We verified the robustness of our empirical results by

running the experiments for a variety of distributions. The distributions we considered are

the equal-revenue distribution on [0.1, 1], the uniform distribution on [0.3, 1] and a bi-modal

distribution. Figure 3.9 shows the truncation vs un-truncation experiment for n = 16 and the

behavior is same as that of the F = Beta(2, 2) distribution.
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(a) Truncated Error (b) Un-truncated Error

Figure 3.9: Log-log plot to show the estimation error as a function of the number of samples N
for different distributions.
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CHAPTER 4

NON-TRUTHFUL SAMPLE COMPLEXITY

In this chapter, we obtain a sample complexity result for regular distributions, and a multiplica-

tive revenue objective. Our main result is

Lemma 3.2. For agents with regularly distributed values having a monopoly revenue of 1 lead-

ing to potentially unbounded values, there are families of winner-pays-bid and all-pay mecha-

nisms that satisfy conditions C1, C2 and C3 with prun(n, ε−1) = O(nε−3) and pdesign(n, ε−1) =

Õ(n6ε−14) for multiplicative loss and the revenue objective.

Along with this, we obtain multiplicative bounds on the revenue estimation error. To obtain

a multiplicative bound, we obtain an upper bound on the term |P̂y−Py|/Py, where Py is the per-

agent revenue of the position auction in an i.i.d environment and P̂y is the estimated revenue by

running an incumbent auction.To obtain an upper bound on the desired term, we upper bound

the numerator and lower bound the denominator for a setting where the monopoly revenue is

one.

Lemma 3.3. Under the assumption the agents are regular, the revenue curve is normalized such

that maxq R(q) = 1 and the incumbent rank-based auction x is such that its top two position

weights are the same, the mean relative error in estimating the revenue of a rank-based auction

with allocation rule y using N samples from the bid distribution for an all-pay rank based

auction with allocation rule x is bounded as below. Here n is the number of positions in the two

auctions, and P̂y is the estimator with δN set to max(25 log logN, n)/N .

Eb̂[|P̂y − Py|]
Py

≤ O(
n3 logN√

N
)

When the distribution are similar, we can obtain a better multiplicative bound.



4.1 Multiplicative Bounds

First, to obtain a lower bound, we obtain lower bounds on the value of the revenue curve at

quantile values which are integer multiples of 1/n, in terms of other such similar quantile

values. The bound follows from the concavity of the revenue curve due to the regularity as-

sumption. The quantile convention we use for the lower bound below is that a lower quantile

corresponds to a higher strength in the population i.e v(q) = F−1(1− q).

Lemma 3.4. For all kC , kB ∈ {1, . . . , n− 1}, regular distributions, R(kB
n

) ≥ 1
n
R(kC

n
).

Proof. Case 1 : kC > kB. Since the revenue curve is concave, R(
kB
n

)
kB
n

≥ R(
kC
n

)
kC
n

. Thus, R(
kB
n

)

R(
kC
n

)
≥

kB
kC

. Based on the current case, kB ≥ 1, kC ≤ n, thus R(
kB
n

)

R(
kC
n

)
≥ 1

n
.

Case 2 : kC < kB. Note that, 1 − kB
n
≥ 1

n
(1 − kC

n
). Since the revenue curve is concave,

R(
kB
n

)

1− kB
n

≥ R(
kC
n

)

1− kC
n

, thus R(
kB
n

)

R(
kC
n

)
≥ 1

n
. Hence the claim is proved.

Finally when kC = kB, we have R(kC
n

) = R(kB
n

) and thus trivially R(kB
n

) ≥ 1
n
R(kC

n
).

For a multiplicative bound, we want a lower bound on the denominator which is the per-

agent revenue in a general rank-based position auction y. Our approach is to obtain a mul-

tiplicative bound on the estimated revenue of multi-unit auctions and then show that as any

position auction y is a convex combination of multi-unit auctions the same bound follows. The

lemma below obtains lower and upper bounds on the per-agent revenue in a multi-unit in terms

of the revenue curve.

Lemma 3.5. For all k ∈ {1, . . . , n − 2}, the revenue of the k-highest-bids-win auction in an

n-agent i.i.d regular environment satisfy

1

2

k

k + 1
R

(
k + 1

n

)
≤ P(k:n) ≤ R

(
k

n

)
.
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For k = n− 1,
1

4
R

(
1− 1

n

)
≤ P(n−1:n) ≤ R

(
1− 1

n

)

Proof. Let us denote the per-agent revenue of the k-highest-bids-win auction in an n-agent

environment as P(k:n). For any k, the expected revenue of the auction Rev[k] = nP(k:n).

1. Upper-Bound : For any k ∈ {1, 2, . . . , n − 1}, consider another auction with n agents
such that each agent is served with ex-ante probability at most k/n, but without a supply
constraint i.e this auction could give out items to all agents based on the ex-ante con-
straint. This corresponds to posting a price of V ( k

n
) for each agent and the number of

items sold in expectation is k. Clearly, the revenue of the k-unit auction is less than the
revenue obtained from the agents by posting this price. Thus,

Rev[k] ≤ nR(
k

n
)

2. Lower-Bound : By revenue equivalence,

nP(k:n) = kE[v(k+1:n)]

For any value z, we can bound the expected (k + 1)th order statistic as

E[v(k+1:n)] ≥ zPr{Ez}

where Ez is the event that at least (k + 1) agents have value greater than z. Choosing
z = V (k+1

n
) and observing that the probability that at least k + 1 agents have a value

greater than V (k+1
n

) is at least 1
2
, we get

Rev[k] ≥ k.V (
k + 1

n
).

1

2
=

1

2

k

k + 1
nR(

k + 1

n
)

For the case k = n−1, the revenue of this k-unit auction will at least be k times a price of
V (1− 1

n
), times the probability that at least n-agents have a value greater than V (1− 1

n
).

Thus

Rev[n− 1] ≥ (n− 1)V (1− 1

n
)(1− 1

n
)n ≥ nR(1− 1

n
)
1

4

Hence the claim follows
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Note that P(1:n−1) and P(1:n) are the per agent revenues for a single unit (n− 1) and n agent

auction respectively. Bulow and Klemperer (1996) showed that for regular, i.i.d single agent

environments, the expected revenue of the highest-bids-wins auction with (n + 1)-agents is at

least that of the optimal auction with n agents. We now bound the single unit auction per-agent

revenue in a (n−1)-agent setting by the corresponding per-agent revenue in the n-agent setting.

Lemma 3.6. For i.i.d regular single-item environments, the per-agent revenue of the highest-

bids-wins in a (n−1)-agent setting is bounded in terms of the per-agent revenue of the highest-

bids-wins in a (n)-agent setting as

(1− 1

n− 1
)P(1:n) ≤ P(1:n−1) ≤ (1 +

1

n− 1
)P(1:n)

Proof. Consider a n-agent auction with (n − 1) real agents and one fake agent. We run the

optimal 1 unit auction on these agents. The revenue of this auction will be n−1
n
OPT (1, n) as

the revenue contribution will only be from the real agents. Note that this auction will act as a

lower bound for the optimal one unit (n−1)-agent auction as this is an auction which allocates

one item to (n − 1) agents. Thus, we get OPT (1, n − 1) ≥ n−1
n
OPT (1, n). Thus utilizing

the result of Bulow and Klemperer (1996), we get that the expected revenue of a second-price

auction with n-agents is a n
n−1

approximation to the optimal revenue. Hence we have

(n− 1)P(1:n−1) ≥
n− 2

n− 1
OPT (1, n− 1) ≥ n− 2

n
OPT (1, n) ≥ (n− 2)P(1:n)

Thus we get P(1:n−1) ≥ n−2
n−1

P(1:n). To obtain a corresponding upper bound, we simply apply

nP(1:n) ≥ OPT (1, n− 1) ≥ (n− 1)P(1:n−1)

and thus P(1:n−1) ≤ n
n−1

P(1:n−1).

In our setting, we consider unbounded value distributions which could potentially lead to
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equilibrium bids. The lemma below shows bounds on the equilibrium bid function in multi-unit

auctions.

Lemma 3.7. For any regular value distribution, the upper bound on the bid for a k-unit

auction(k ∈ {2, 3, . . . , n − 2}), both winners-pay-bid and all-pay semantics, in a n-agent

i.i.d regular environment is given by

1

2
V (

k

n− 1
) ≤ lim

v→∞
b(v) ≤ V (

k − 1

n− 1
)

. For k = n− 1, the bid in the limiting case is,

1

4
V (1− 1

n− 1
) ≤ lim

v→∞
b(v) ≤ V (1− 1

n− 1
)

For k = 1, the bid in the limiting case is at least (n− 1)P(1:n−1).

Proof. For a k-unit highest-bids-win winners-pay-bid auction, by revenue equivalence, for a

bid function b(.),

b(v) = E[v(k+1:n)|v(k+1:n) ≤ v]

Thus in the limiting case,

lim
v→∞

b(v) = E[v(k:n−1)]

Now if we consider a (k − 1)-highest bids win auction in a (n− 1)-agent environment,

(n− 1)P(k−1:n−1) = (k − 1)E[v(k:n−1)]

where P(k:n) is the per-agent expected revenue of a k-unit auction in an n-agent environment.

Thus,

lim
v→∞

b(v) =
n− 1

k − 1
P(k−1:n−1) ≤

n− 1

k − 1
R(
k − 1

n− 1
) = V (

k − 1

n− 1
)

where the second inequality comes from Part 1 of Lemma 3.5. For a lower bound, P(k−1:n−1) ≥
k−1
2k
R( k

n−1
), which again comes from Lemma 3.5, and the lower bound for the limiting bid

follows. When k = n− 1, using Lemma 3.5, we can bound P(n−2:n−1) ≥ 1
4
R(1− 1

n−1
) and the

claim follows. For the case k = 1,
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lim
v→∞

b(v) = E[v(1:n−1)] ≥ E[v(2:n−1)]

≥ (n− 1)P(1:n−1)

For a k-unit highest-bids-win all-pay auction, by revenue equivalence and a bid function

b(.),

b(v) = E[v(k+1)|v(k+1) < v]Pr[v(k+1) < v]

In the limiting case,

lim
v→∞

b(v) = lim
v→∞

E[v(k+1)|v(k+1) < v]Pr[v(k+1) < v] = lim
v→∞

E[v(k+1)|v(k+1) < v]

and the proof follows as in the case for winner-pays-bid setting.

We consider the model where the bidders are i.i.d and their samples are drawn from con-

tinuous distributions. The auction is a rank-by-bid auction with either the all-pay format or

the winner pays bid format. A rank-by-bid auction can be written as a convex combina-

tion of k-highest bids win auctions, where the weights for each k-unit auction are given by

w′k = wk − wk+1. This rank-by-bid auction can be viewed as sampling a k from the distribu-

tion w’ = (w′1, w
′
2, . . . , w

′
n) and then running that k-unit auction. While the previous lemma

obtained upper bounds for maximum bids in multi-unit auctions where k ∈ {2, 3, . . . , n − 1},

the maximum bid in a single unit auction can be unbounded (eg : equal revenue distribution).

Lemma 3.8. The maximum bid in a general position auction with its top two position weights

being the same, with either all-pay or winner-pays-bid semantics, is bounded.

Proof. Bids for an all-pay setting : Consider an all-pay rank-by-bid auction with position

weights w = (w1, w2, . . . , wn). Since this is an all-pay setting and using the fact that an rank-

by-bid auction y can be written as a convex combination of multi-unit auctions, we get
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lim
v→∞

by−all−pay(v) = lim
v→∞

n∑
k=1

w′kb
k−all−pay(v)

= lim
v→∞

n∑
k=2

w′kb
k−all−pay(v)

where by−all−pay(.) is the bid function of the all-pay auction y and bk−all−pay(.) is the bid

function for the k-unit all pay auction. The second equality comes from the assumption w1 =

w2. Lemma 3.7 tells us that the maximum-bid is bounded for all k ∈ {2, 3, . . . , n − 1} and

hence the maximum bid for the all-pay auction is bounded.

Bids for a winner-pays-bid setting : Let by−win−pay(.) be the bid function in a winner-

pays-bid setting. By revenue equivalence,

by−win−pay(v)Pr[v > vj∀j 6= i]w1 ≤
n∑
k=1

w′kb
k−all−pay(v)

This is an inequality because we have not included the interim payment in the winner-pays-bid

auction in the case it is assigned lower positions. Thus in the limiting case,

lim
v→∞

by−win−pay(v) ≤ lim
v→∞

n∑
k=1

w′k
w1

bk−all−pay(v)

= lim
v→∞

n∑
k=2

w′k
w1

bk−all−pay(v)

where the last equality comes from the assumption w1 = w2 and since Lemma 3.7 tells

us that the limit exists for each individual term, thus the limit exists for the winners-pay-bid

setting as well.

In the unbounded setting, while the result above gives us an upper bound on the equilibrium

bids for a class of position auctions, we now show a lower bound on the equilibrium bid for
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any position auction.

Lemma 3.9. Under the normalization

max
q
R(q) = 1

for regular agents, the maximum bid in an all-pay auction y, in a position environment with

weights (w1, w2, . . . , wn) is lower bounded by

by−all−paymax ≥ w1

4n

where n is the number of i.i.d agents.

Proof.

by−all−paymax =
n∑
k=1

w′kb
k−all−pay
max

= w′1(n− 1)P(1:n−1) +
n−2∑
k=2

w′k
n− 1

k − 1
P(k−1:n−1) + w′n−1

n− 1

n− 2
P(n−2:n−1)

≥ w′1
n− 1

4
R(

2

n− 1
) +

n−2∑
k=2

w′k
n− 1

2k
R(

k

n− 1
) + w′n−1

n− 1

4(n− 2)
R(1− 1

n− 1
)

≥ w′1
4

+
n−2∑
k=2

w′k
2k

+
w′n−1

4(n− 2)

≥ w1

4n

where the first equality follows from Lemma 3.8, the second equality from Lemma 3.7,

the third equality from the definition of a revenue curve, the first inequality from the worst

case analysis of the (n − 1)-unit auction and the second inequality from the fact that for the

normalization maxq R(q) = 1, R( k
n
) ≥ min{k,n−k}

n
for all k ∈ {1, 2, . . . , n− 1}.

We have seen some simple results which bound the equilibrium bid function and the per-

agent revenue in a multi-unit auction. We now work towards obtaining an upper bound on the
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numerator for the normalization where the monopoly revenue is one. The quantile convention

we use for the upper bound below is that a lower quantile corresponds to a lower strength in

the population i.e v(q) = F−1(q). We employ the following lemma to derive estimation error

bounds for our setting

Lemma 3.10. (Chawla et al. (2017)) The per-agent counterfactual revenue of a rank-based

auction with allocation rule y can be expressed in terms of the bid function b of an all-pay

mechanism x as :

Py = Eq 6∈Λ[−Z ′y(q)b(q)] + Zy(1− δN)b(1− δN)− Zy(δN)b(δN) + Eq∈Λ[Zy(q)b
′(q)]

where Zy(q) = (1− q)y′(q)/x′(q), extreme quantiles are Λ = [0, δN ]∪ [1− δN , 1], and the

truncation parameter is δN ∈ [0, 1
2
].

Utilizing this, it is straightforward to show that the estimation error when the counterfactual

auction is the k-unit auction is

|P̂y − Py| ≤ |Eq 6∈Λ[−Z ′y(q)(b̂(q)− b(q))]|+ |Eq∈Λ[Zy(q)b
′(q)]|

+ |Zy(1− δN)(b(1− δN)− b̂N)|+ |Zy(δN)b(δN)|
(4.1)

where b̂(.) is the estimated bid function. Bounding each of these terms will give an upper

bound on the estimation error.

4.1.1 Bounding the error terms from moderate quantiles

Lemma 3.11. For Zk and Λ defined, under the normalization maxq R(q) = 1, the error from

the moderate quantiles in the estimator P̂k is bounded as
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Eb̂[|Eq 6∈Λ[Z ′k(q)(b̂(q)− b(q))]|] ≤
4n2 logN√

N
(1 +

16n log logN√
N

) (4.2)

under the assumption that the top two positions in the incumbent auction have the same

weight.

Proof. Let us look at the error contribution from the moderate quantiles

|Eq 6∈Λ[Z ′k(q)(b̂(q)− b(q))]| ≤ Eq 6∈Λ[|Z
′
k(q)

Zk(q)
|] sup

q
|Zk(q)(b̂(q)− b(q))| (4.3)

Note that Zk(q) = (1 − q)x
′
k(q)

x′(q)
. Chawla et al. (2017)(Lemma 3.6) show that Zk(q) is single

peaked and hence the first part of the above equation is bounded by 4n logN . Now let us look

at the second term in the equation,

sup
q
|Zk(q)(b̂(q)− b(q)) = sup

q
|(1− q)x

′
k(q)

x′(q)
(b̂(q)− b(q))| (4.4)

Note that for an all-pay auction, the symmetric bid function satisfies v(q) = b′(q)
x′(q)

. Thus,

sup
q
|Zk(q)(b̂(q)− b(q))| = sup

q
|(1− q)x

′
k(q)v(q)

b′(q)
(b̂(q)− b(q))|

≤ sup
q
|(1− q)v(q)x′k(q)| sup

q
| 1

b′(q)
(b̂(q)− b(q))|

≤ sup
q
|(1− q)v(q)| sup

q
x′k(q) sup

q
| 1

b′(q)
(b̂(q)− b(q))|

= sup
q
x′k(q) sup

q
| 1

b′(q)
(b̂(q)− b(q))|

(4.5)

where the last inequality comes from the normalization we are using.

Utilizing Lemma 3.1
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Eb̂[sup
q
| 1

b′(q)
(b̂(q)− b(q))|] ≤ 1√

N
(1 +

16 log logN√
N

sup
q
q(1− q)b′(q))

≤ 1√
N

(1 +
16 log logN√

N
sup
q
q(1− q)v(q)x′(q))

≤ 1√
N

(1 +
16n log logN√

N
)

(4.6)

where the first inequality follows from the error of the estimated bid function, the second

inequality from the equilibrium bid function for an all-pay auction, the third inequality from the

fact that supq(v(q)(1−q)) = 1 and supq x
′(q) < n. Note that we have supq∈(0,1) q(1−q)b′(q) ≤

supq∈(0,1) x
′(q) < ∞ for all-pay auctions. Thus the expected error bound from the moderate

quantiles is given by

Eb̂[|Eq 6∈Λ[Z ′k(q)(b̂(q)− b(q))]|] ≤
4n logN√

N
sup
q
{x′k(q)}(1 +

16n log logN√
N

)

≤ 4n2 logN√
N

(1 +
16n log logN√

N
)

(4.7)

4.1.2 Bounding error from the extremal quantiles

We now bound the error contribution from the extremal quantiles. For the same, we derive

basic results relating the allocation rule of a position auction to the corresponding symmetric

equilibrium bid function.

Theorem 4. (Chawla et al. (2017)) For any n-agent rank based mechanism with allocation rule

y and δ < 1/n, the allocation rule y′ satisfies

1. supq<δ y
′(q) ≤ ey′(δ)

2. supq>1−δ y
′(q) ≤ ey′(1− δ)
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Lemma 4.1. For Zy and Λ, if δN ≤ 1/n, the second error term in the estimator P̂y is bounded

as

Eq∈Λ[Zy(q)b
′(q)] ≤ eδNy

′(δN) + eδNy
′(1− δN)

Proof. Using the definition, Z ′y(q) = (1− q)y′(q)/x′(q) and v(q) = b′(q)/x′(q) for an all-pay

auction, we get

Eq∈Λ[Zy(q)b
′(q)] = Eq∈Λ[(1− q)v(q)y′(q)] ≤ Eq∈Λ[y′(q)] ≤ eδNy

′(δN) + eδNy
′(1− δN)

where the first inequality comes from the fact that maxq R(q) = 1 and the second inequality

follows from Theorem 4.

Lemma 4.2. For Zy and Λ, if δN ≤ 1/n, the fourth error term of the estimator P̂y is bounded

as

Zy(δN)b(δN) ≤ eδNy
′(δN)

Proof. Consider the integral, which just follows from integration by parts

∫ δN

q=0

(1− q)b′(q)dq = (1− δN)b(δN) +

∫ δN

q=0

b(q)dq

Thus we get,

(1− δN)b(δN) ≤
∫ δN

q=0

(1− q)v(q)x′(q)dq ≤
∫ δN

q=0

x′(q)dq ≤ δN sup
q<δN

x′(q) ≤ eδNx
′(δN)

where the first inequality follows from the fact that x is an all-pay auction, the second in-

equality follows from our normalization maxq R(q) = 1, and the last inequality follows from

Theorem 4. Hence we get

Zy(δN)b(δN) ≤ eδNy
′(δN)

where this follows from the definition of Zy(δN)

We now bound the third error term.
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Lemma 4.3. Under the normalization

max
q
R(q) = 1

, for q̂ < 1− δN , the equilibrium bid function satisfies

b(1− δN)− b(q̂) ≤ 1

δN
(x(1− δN)− x(q̂))

Proof. By assumption maxq R(q) ≤ 1 and by definition R(q) = (1− q)v(q) and v(q) = b′(q)
x′(q)

,

thus b′(q) ≤ x′(q)
1−q . We can conclude that, for any q̂ < 1− δN ,

b(1− δN)− b(q̂) ≤
∫ 1−δN

q=q̂

x′(q)

1− q
dq

≤ 1

δN
(x(1− δN)− x(q̂))

We now bound the third term in the error by analyzing a certain set of functions corre-

sponding to allocation rules for rank-based auctions. The allocation rule and its derivative for

the n-agent k-unit auction are

xk(q) =
k−1∑
i=0

(
n− 1

i

)
qn−i−1(1− q)i

x′k(q) = (n− 1)

(
n− 2

k − 1

)
qn−k−1(1− q)k−1

For k ∈ [n− 1], define the function fk(.) as

fk(q) =
x′k(q)

1− q

Note that for k = 1, f1(q) = (n− 1) q
n−2

1−q and
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fk(q) = (n− 1)

(
n− 2

k − 1

)
qn−k−1(1− q)k−2 ∀k ∈ {2, 3, . . . , n− 1}

We are interested in the behavior of fk(.) in the range [1− 1
n
, 1]. For all k ∈ {3, . . . , n−2},

fk(.) has a unique maxima at q∗ = n−k−1
n−3

. It is a monotonically increasing function for q < q∗

and monotonically decreases for q > q∗.

Lemma 4.4. For k ∈ {3, 4, . . . , n− 2} unit and δ < 1/n, the function fk(.) satisfies

• supq>1−δ fk(q) = fk(1− δ)

• supq<1−δ fk(q) = fk(δ)

Proof. For all k ∈ {3, 4, . . . , n−2}, fk(q) attains a unique maxima at q∗ = (n−k−1)/(n−3)

where 1
n
< q∗ < 1 − 1

n
. In the quantile range q ∈ [q∗, 1], we have f ′k(q) ≤ 0 while in the

quantile range q ∈ [0, q∗], we have f ′k(q) ≥ 0. Since δ < 1/n, we have 1 − δ > q∗ and hence

f(1− δ) = supq>1−δ fk(q). Also δ < q∗ and hence f(δ) = supq<1−δ fk(q).

Lemma 4.5. For k ∈ {2, 3, . . . , n− 1} units and δ < 1/n, the function fk(q) satisfies

sup
q>1−δ

fk(q) ≤ efk(1− δ)

Proof. For k ∈ {3, 4, . . . , n − 2} units, the claim follows from Lemma 4.4. For k = 2 units,

f2(q) = (n− 1)(n− 2)qn−3

f2(1− δ) = (n− 1)(n− 2)(1− δ)n−3

≥ (n− 1)(n− 2)(1− 1

n
)n−3

≥ (n− 1)(n− 2)(1− 1

n
)n−1

≥ 1

e
(n− 1)(n− 2) =

f2(1)

e
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f2(q) is a monotonically increasing function and hence the claim follows for k = 2 units.

For k = n− 1 units, fn−1(q) = (n− 1)(1− q)n−3 is a monotonically decreasing function and

hence supq>1−δ fn−1(q) = fn−1(1− δ). The claim follows.

Lemma 4.6. Any n-agent rank-based mechanism, where the top two ranked agents are allo-

cated with the same probability, having an allocation rule x and δ < 1/n, the allocation rule

derivative x′ satisfies

sup
q>1−δ

x′(q)

1− q
≤ e

x′(1− δ)
δ

Proof. Let (w1, w2, . . . , wn−1), where w1 ≥ w2 ≥ · · · ≥ wn−1, denote the allocation probabil-

ities for the rank based mechanism where the ith ranked agent is allocated with probability wi.

Note that for a n-agent rank based mechanism where the top two ranked agents are allocated

with the same probability (w1 = w2), we have

x′(q)

1− q
=

n−1∑
k=2

w′kfk(q)

where
∑n−1

k=2 w
′
k = w1 ≤ 1. Using Lemma 4.5, we have

sup
q>1−δ

x′(q)

1− q
≤ sup

q>1−δ

n−1∑
k=2

w′kfk(q)

≤ e

n−1∑
k=2

w′kfk(1− δ)

≤ e

n−1∑
k=2

w′k
x′k(1− δ)

δ

=
e

δ
x′(1− δ)

Lemma 4.7. Under the assumption that the incumbent auction is such that its top two position
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weights are the same, the third term of the error is bounded as

|Zy(1− δN)(b(1− δN)− b̂N)| ≤ eδNy
′(1− δN)

when the quantile q̂N corresponding to the maximum sampled bid b̂N lies in the range

[1− δN , 1], where δN < 1/n.

Proof. Consider the case when the quantile corresponding to b̂N , q̂, lies in this extremal range

i.e q̂ ≥ 1− δN .

Zy(1− δN)(b̂N − b(1− δN))) ≤ Zy(1− δN)(b(1)− b(1− δN))

= δN
y′(1− δN)

x′(1− δN)
(b(1)− b(1− δN))

= δN
y′(1− δN)

x′(1− δN)

∫ 1

q=1−δN
v(q)x′(q)dq

= δN
y′(1− δN)

x′(1− δN)

∫ 1

q=1−δN
v(q)(1− q) x

′(q)

1− q
dq

≤ δ2
N

y′(1− δN)

x′(1− δN)

e

δN
x′(1− δN)

= eδNy
′(1− δN)

(4.8)

where the first inequality comes from the fact that the b(1) is an upper bound on b̂N , the first

equality from the definition of Zy(.), the second equality from the equilibrium bid definition

of an all-pay incumbent auction and the second inequality follows from the assumption that

maxq R(q) = 1 and from Lemma 4.6.

Now we just need to look at the probability that out of N samples, at least one sample has

a quantile in the extremal range. Let us denote this by event E.

Pr(Ē) = (1− δN)N ≤ e−max{25 log logN,n}
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where the inequality comes from the fact that δN = max{25 log logN, n}/N .Thus,

Pr(E) ≥ 1− e−max{25 log logN,n}

Lemma 4.8. Under the assumption that the incumbent all-pay auction is such that its top two

position weights are the same, the third error term in the estimator is bounded as

Eb̂[|Zy(1− δN)(b(1− δN)− b̂N)|] ≤ 8

N
y′(1− δN) + eδNy

′(1− δN)

Proof. Lemma 4.7 shows that when the incumbent all-pay auction is such that its top two

position weights are the same and when the quantile corresponding to the maximum bid q̂, i.e.,

with b(q̂) = b̂N , satisfies q̂ > 1− δN the third error term is bounded as

Eb̂[Zy(1− δN)(b̂N − b(1− δN))|q̂ > 1− δN ] ≤ eδNy
′(1− δN)

Now considering the case when, q̂ < 1− δN , we observe that

Eq̂[b(1− δN)− b(q̂)|q̂ < 1− δN ] = N

∫ 1−δN

q=0

(b(1− δN)− b(q))qN−1dq

≤ N

δN

∫ 1−δN

q=0

(x(1− δN)− x(q))qN−1dq

≤ N

δN

∫ 1−δN

q=0

(1− x(q))qN−1dq

where the first inequality comes from Lemma 4.3. Lemma A.8 in Chawla et al. (2017) tells

us that for a k-unit auction N
∫ 1−δN
q=0

(1 − x(q))qN−1dq ≤ 2( n
N

)k for N > 1.5n. If x = xk for

all k ∈ {1, 2, . . . , n− 1}, we have
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Eb̂[(|Zy(1− δN)(b(1− δN)− b̂N)|)|q̂ < 1− δN ] ≤ δN
y′(1− δN)

x′k(1− δN)

2

δN
(
n

N
)k

≤ 2y′(1− δN)
1

(n− 1)
(
n−2
k−1

)
(1− δN)n−1−kδk−1

N

(
n

N
)k

≤ 2

N
(

n

n− 1
)(

n

NδN
)k−1y′(1− δN)

1(
n−2
k−1

)
(1− δN)n−1−k

≤ 8

N
y′(1− δN)

where the last inequality follows from
(
n−2
k−1

)
≥ 1, (1 − δN)n > 1

4
, and n

NδN
≤ 1. Thus for

any general incumbent auction x,

Eb̂[(|Zy(1− δN)(b(1− δN)− b̂N)|)|q̂ < 1− δN ] ≤ 2
y′(1− δN)

x′(1− δN)
(
n

N
)k

≤ max
k

2
y′(1− δN)

x′k(1− δN)
(
n

N
)k

≤ 8

N
y′(1− δN)

Hence the third term in the error is bounded as

Eb̂[|Zy(1− δN)(b(1− δN)− b̂N)|] ≤ 8

N
y′(1− δN) + eδNy

′(1− δN)

Now that we have obtained a bound on for each of the terms in the inference error, we are

now ready to derive our multiplicative bound.

Lemma 4.9. Under the assumption that the agents are regular with a monopoly revenue of one,

the mean relative error in estimating the revenue of a k-unit auction using N samples from the

bid distribution of an all-pay rank-based auction whose top two position weights are the same

is
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Eb̂[|P̂k − Pk|]
Pk

≤ O(
n3 logN√

N
)

where n is the number of positions and δN is set to max{25 log logN, n}/N .

Proof. Using Lemma 3.11, Lemma 4.1, Lemma 4.2 and Lemma 4.8 we bound the error as

Eb̂[|P̂k − Pk|] ≤
4n2 logN√

N
(1 +

16n log logN√
N

) + 2eδNx
′
k(δN) + (e+ 1)δNx

′
k(1− δN)

+ x′k(1− δN)(
8

N
+ eδN)

Lemma 3.5 tells us that

Pk ≥
1

4n
∀k ∈ {1, . . . , n− 1}

The relative bound can be written as

Eb̂[|P̂k − Pk|]
Pk

≤ 16n3 logN√
N

(1 +
16n log logN√

N
) + 8eδNnx

′
k(δN) + 4(e+ 1)δNnx

′
k(1− δN)

+ 4nx′k(1− δN)(
8

N
+ eδN)

Assuming 64n3 logN <
√
N , the first term simplifies to 32n3 logN√

N
. Furthermore, the er-

ror terms are no more than the error from the moderate quantiles. Hence the relative bound

simplifies to

Eb̂[|P̂k − Pk|]
Pk

≤ O(
n3 logN√

N
)

The result above obtains a multiplicative bound for estimating the revenue of a multi-unit
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auction. For a general position auction, we utilize the fact that it can be represented as a convex

combination of multi unit auctions and obtain the multilpicative result of Lemma 3.3.

Proof. (Proof of Lemma 3.3)

Eb̂[|P̂y − Py|] ≤
n∑
k=1

w′kEb̂[|P̂k − Pk|]

≤ O(
n3 logN√

N
)

n∑
k=1

w′kPk

(4.9)

where the second inequality follows from Lemma 4.9. Hence the multiplicative bound we

obtain is
Eb̂[|P̂y − Py|]

Py
≤ O(

n3 logN√
N

)

The bound obtained seems to be crude in the sense that it does not utilize the similarity

between the incumbent and counterfactual auctions. If we observe the extreme case of the

incumbent and counterfactual auctions being the same, we should expect the inference error to

only have a
√
N dependence corresponding to the statistical error of the bids (for a fixed n).

We can obtain a better result when we account for the similarity of the auctions.

Lemma 4.10. Let x and xk denote the allocation rules for any all-pay rank based auction

and the k-highest-bids wins auction over n positions respectively. Let P̂k denote the estimated

revenue for estimating revenue Pk of the latter auction by using N equilibrium bid samples of

the former, with δN set to max{25 log logN, n}/N . If δN < 1/n and the incumbent auction is

such that its top two position weights are the same, the absolute relative bound when the agents

are regular and have a monopoly revenue of one, is given as

E[|P̂k − Pk|]
Pk

≤ O(
n√
N

Φx,xk)

where Φx,y := supq{y′(q)}max{1, log supq:y′(q)≥1
x′(q)
y′(q)

, log supq
y′(q)
x′(q)
}
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Proof. We can bound the additive absolute error for any α > 0 as

E[|P̂k − Pk|] ≤ E[
(log(1 + Zk(q)))

α

Zk(q)
|Z ′k(q)|] sup

q
| Zk(q)

(log(1 + Zk(q)))α
(b̂(q)− b(q))|

Lemma A.1 in Chawla et al. (2017) bounds the first term in the split as

E[
(log(1 + Zk(q)))

α

Zk(q)
|Z ′k(q)|] ≤

2

α
+

2

1 + α
(logZ∗k + 1)1+α

where Z∗k = supq Zk(q). The first term is at most 2(1 + e)/α for α < 1/ logZ∗k

We can bound the second term as

Eb̂[sup
q
| Zk(q)

(log(1 + Zk(q)))α
(b̂(q)− b(q))|]

≤ sup
q
| Zk(q)

(log(1 + Zk(q)))α
b′(q)|E[sup

q
| b̂(q)− b(q)

b′(q)
|]

≤ 2α sup
q

(x′k(q)) max{1, sup
q:x′k(q)≥1

x′(q)

x′k(q)
)}α 1√

N
(1 + 16

log logN√
N

sup
q
q(1− q)b′(q))

≤ 2α sup
q

(x′k(q)) max{1, sup
q:x′k(q)≥1

x′(q)

x′k(q)
)}α 1√

N
(1 + 16

log logN√
N

sup
q
q(1− q)v(q)x′(q))

≤ 2α sup
q

(x′k(q)) max{1, sup
q:x′k(q)≥1

x′(q)

x′k(q)
)}α 1√

N
(1 + 16n

log logN√
N

)

where the last inequality comes from the fact that supq v(q)(1− q) = 1, supq x
′(q) ≤ n and

from Lemma 3.9 which gives a lower bound on the bid in a general all-pay auction. We define

A as A := max{1, supq:x′k(q)≥1
x′(q)
x′k(q)

)}. Choosing α = min{1, 1/ logA, 1/ logZ∗k}, we obtain

E[|P̂k − Pk|] ≤
2(1 + ε)

α
2αAα

1√
N

sup
q

(x′k(q))(1 + 16n
log logN√

N
)

≤ 40√
N

sup
q

(x′k(q)) max{1, logA, log sup
q
{x
′
k(q)

x′(q)
}}(1 + 16n

log logN√
N

)
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Using the lower bound on the per-agent revenue derived and performing a similar analysis

for the relative bound in Lemma 4.8, we obtain the relative bound

E[|P̂k − Pk|]
Pk

≤ O(
n√
N

Φx,xk)

4.2 Sample Complexity

In this section we look at the sample complexity for a multiplicative revenue objective with

unbounded value distributions. As far as the revenue is concerned, let ψk be the kth expected

order statistic of the virtual value function. This is given by ψk = n(Pk − Pk−1), where Pk is

the per-agent revenue of a k-unit auction in an environment of n-agents. It is shown that errors

in estimating the surrogate values flow in a well behaved fashion in the surrogate-ranking-

mechanism for an additive error.

Theorem 5. (Hartline and Taggart (2019)) For all i and j, let ψji be the expected jth order

statistic of agent i’s virtual value distribution, and let ψ̂ji be an estimate of ψji satisfying |ψ̂ji −

ψji | < εi, where εi is an agent specific error bound. The difference between the expected virtual

surplus of the surrogate ranking mechanisms with the true expected order statistics is at most

2
∑

i εi.

To obtain an additive error of ε for each ψk, it suffices to estimate each Pk to an additive

error of ε
n

. We can show that if the optimal surrogate values were estimated to a multiplicative

error of ε, the multiplicative error flows in an efficient manner as well with some constraints on

the way the surrogate ranking mechanism allocates to maximize surplus.

Claim 5.1. For all i and j, let ψji be the expected jth order statistic of agent i’s virtual value

distribution, let ψ̂ji be an estimate of ψji > 0 satisfying |ψ̂j
i−ψ

j
i |

ψj
i

≤ εi, where εi is an agent-

specific relative error bound. The relative error between the expected virtual surplus of the

surrogate ranking mechanism which only allocates if the surrogate value is positive with the

true expected order statistics is at most 2 maxi εi
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Proof. Let x and x̂ denote the allocation rule of the surrogate-ranking mechanism as a func-

tion of the agent’s rank r among their run-time samples with optimal surrogate values ψ and

estimated and ironed surrogate values ψ̂, respectively.

Based on the multiplicative error in estimating the expected order statistic of the virtual

value for agent i, we get the inequality

(1− εi)ψji ≤ ψ̂ji ≤ (1 + εi)ψ
j
i

Er[
∑
i

Eqi [ψi(qi)|ri]x̂i(r)] = Er[
∑
i

ψrii x̂i(r)]

≥ Er[
∑
i

ψ̂rii
1 + εi

x̂i(r)]

≥ 1

1 + maxi εi
Er[
∑
i

ψ̂rii xi(r)]

≥ 1

1 + maxi εi
Er[
∑
i

(1− εi)ψrii xi(r)]

where the first inequality comes from the multiplicative error bound, the second inequality

comes from the fact that x̂(r) is the allocation rule that maximizes Er[
∑

i ψ̂
ri
i x̂i(r)] and the

last inequality comes from the multiplicative error on the expected order statistic of the virtual

value.

Hence the error between the expected virtual between the expected virtual surplus of the

surrogate ranking mechanisms with the true expected order statistics is

Er[
∑
i

ψrii xi(r)]− Er[
∑
i

ψrii x̂i(r)] ≤ Er[
∑
i

2 maxi εi
1 + maxi εi

ψrii xi(r)]

≤ Er[
∑
i

ψrii xi(r)]2 max
i
εi

the first inequality comes from the fact that εi > 0 for all i and hence the claim on the
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relative error follows.

It seems unlikely that a multiplicative bound for the optimal surrogate value would exist as

for any i and j, ψji can take the value zero while the estimate ψ̂ji is nothing but the difference

of the estimate of the per-agent revenues of consecutive multi-unit auctions which need not be

zero. The assumption that the surrogate ranking mechanism allocates only when the surrogate

value is positive also induces a constraint on the allocation set, something like downward-

closure. Thus the above proved result is not of much use to us. However, note that the allocation

of the surrogate ranking mechanism is such that it maximizes surrogate surplus and hence in

the case the surrogate value were zero, the mechanism would indifferent to allocating or not

allocating that particular agent. Thus if we only estimate surrogate values which are strictly

positive, we might be able to use this multiplicative estimation error.

For our current result, we only estimate the optimal surrogate values to an additive error of

ε. The additive bound derived as a by product of the multiplicative bound leads to the following

corollary.

Corollary 5.1. Consider a T -agent all-pay or winner-pays-bid i.i.d position auction such that

its agents are regular with possibly unbounded valuations, with a monopoly revenue of one.

There exists an estimator ψ̂k for the expected kth order statistic of the virtual value distribution

ψk such that with N ≥ Õ(T 4ε−2) sampled bids from the unique BNE, |ψ̂k − ψk| ≤ ε.

We can now arrive at the number of samples required to obtain a multiplicative approxima-

tion to the revenue of the optimal mechanism.

Lemma 5.1. For agents with regularly distributed values having a monopoly revenue of one

leading to potentially unbounded values, there are families of winner-pays-bid and all-pay

mechanisms that satisfy conditions C1, C2 and C3 with prun(n, ε−1) = O(nε−3) and pdesign(n, ε−1) =

Õ(n6ε−14) for multiplicative loss and the revenue objective.

Proof. T = nε−3 surrogate values suffice per agent to obtain a multiplicative revenue approx-

imation of ε. Now note that for each agent the monopoly revenue is one. Estimating each
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surrogate value to an error of ε
n

gives an O(ε) multiplicative approximation to the optimal rev-

enue. Thus the number of design time samples that suffice to obtain a multiplicative loss of ε

is O((nε−3)4(ε/n)−2) = O(n6ε−14).
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CHAPTER 5

CONCLUSION

We study the sample complexity for nun-truthful mechanisms for a multiplicative revenue ob-

jective when the value distributions are regular and potentially unbounded. We show a polyno-

mial sample complexity in this setting but the bounds obtained are impractical.

We also perform a thorough empirical analysis of the revenue estimator and verify its de-

pendence on various parameters such as the number of agents, number of bid samples, value

distribution, etc.
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