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ABSTRACT

KEYWORDS: point cloud; geodesic neighbors; 3D object detection; part segmen-

tation

Convolutional neural networks (CNNs) have significantly improved the performance

of computer vision tasks with 2D images as input. Similar boost in performance has

not extended to point clouds of objects as the points are not spatially ordered and are

variable in number. In our work, we present CNN model with Geodesic Neighbour-

hood based feature descriptors abstracted at multiple scales for better understanding

of 3D input. The input to the model is a 3D point cloud with an irregular structure.

In the multilayered network, in each layer, the points are sampled and then geodesic

neighbourhood is calculated for each point in the sampled space. The point feature of

each point is generated based on the calculated geodesic-neighbourhood of the point. A

geodesic distance-based local neighbourhood is determined using distance along paths

that lie on the surface of the object. Such a local neighbourhood makes the point feature

descriptor invariant to shape articulation about some joint locations.

In this work, we introduce a hierarchical neural network that applies a 2D conco-

lution based network recursively on a nested partitioning of the input point set. The

nested partition is calculated using effective geodesic neighbourhood approximation in

the 3D graph models of the object. We develop a custom PyTorch Extension using

cuda kernels that we build from scratch that does the computation of geodesic neigh-

bouhood for each point during forward path of the model. This library can act as an

effective base for further future works on this and similar domain.
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CHAPTER 1

INTRODUCTION

Processing 3D point cloud data accurately is crucial in many applications including

autonomous driving(Navarro-Serment et al. (2010)) and robotics(Bogdan Rusu et al.

(2009)). In these settings, sensors like LIDAR produce unordered sets of points that

correspond to object surfaces. Correctly classifying objects from this data is important

for 3D scene understanding(Uy et al. (2019)). To understand a 3D scene means to iden-

tify the objects present in the scene, to local- ize the identified objects in 3D space, to

understand the scene layout and to understand the interplay between different elements

of the scene. Thus, 3D scene understanding can be further divided into subtopics such

as 3D object detection, 3D scene semantic segmentation, ego-motion estimation, 3D

reconstruction etc. In this thesis, we review the deep learning based methods for ob-

ject classification and part segmentation of 3D point clouds and suggest a new method

which addresses the drawbacks in existing methods.

While classical approaches for this problem have relied on hand-crafted features (Ar-

ras et al. (2007)), recent efforts have focused on the design of deep neural networks

(DNNs) to learn features directly from raw point cloud data (Qi et al. (2017a)). Deep

Learning-based methods have proven effective in aggregating information across a set

of 3D points to accurately classify objects.

The most widely adopted benchmark for comparing methods for point cloud clas-

sification has been ModelNet40. The accuracy on Mod elNet40 on the classification

tas has steadily improved over the last few years from 89.2% by PointNet (Qi et al.

(2017a)) to 94.2% by CurveNet (Xiang et al. (2021))[Fig. 1.1].

1.1 Object classification and part segmentation on point

clouds

Given a 3D scene, 3D object detection is the task of locating an object in the scene

and identifying the type of the object. Thus, 3D object detection can be further classi-



Figure 1.1: Performance on ModelNet40 classification task over time.

fied into subtasks such as 3D object proposals and 3D object classification. 3D object

proposal methods suggest possible locations of objects in a point cloud of a 3D scene

whereas 3D object classification methods identify the class of an object. Input to a

method that performs 3D object classification using point cloud data is the isolated

point cloud of an object and the output is the predicted label of a class to which the

object belongs.

Part segmentation is the task of identifying the regions occupied by parts of the object.

In 2D images, this task is carried out by classifying each of the pixel in the region of the

object with a set of labels corresponding to the parts of the objects. Similarly, 3D part

segmentation using point clouds of objects is carried out by classifying each point in the

point cloud to the corresponding part of the object. In the case of 3D part segmentation,

the input to the task is a point cloud of the object and output is the predicted part label

of each point in the point cloud.

1.2 Challenges of applying deep learning methods on

3D point clouds

The boost in performance seen in computer vision tasks with images since the intro-

duction of deep learning methods has not extended to computer vision tasks using point

clouds. Deep learning methods are less effective with point clouds as input which can
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be attributed to the structure of point cloud data and non-availability of large scale 3D

point cloud datasets. A point cloud is a set of points of variable cardinality as opposed

to an image which is structured into a 2D grid of pixels. The 2D grid structure of pixels

in images make it viable to apply the 2D spatial convolution operation on them. On

the other hand, each point cloud in a real-world dataset is represented as a sequence of

unordered point coordinates with variable number of points in each point cloud. The

spatial distribution of the points in a point cloud is nonuniform due to varying spatial

density within the point cloud. The variable lengths of the sequences of points combined

with their varying spatial densities make it unsuitable for straightforward application of

spatial convolution operations on point cloud data. Since a convolution operation is

one of the core aspects of deep learning methods in computer vision tasks, lack of

availability of this operation for point cloud data is one of the major drawbacks which

hindered the effectiveness of deep learning methods on point cloud data.

1.3 Related Works

The initial work in this domain was VoxNet(Maturana and Scherer (2015)). VoxNet,

comprises of 3D CNN layers followed by fully connected layers which gives a softmax

output to classify the input object into its respective class.

Qi et al. (2017a) introduced the seminal PointNet architecture for the task of ob-

ject classification and part segmentation with point cloud data as input. This architec-

ture outperforms VoxNet architecture in the object classification task on ModelNet40

dataset as it utilises all of the point locations within the point cloud, thus utilising the

fine shape information discarded by VoxNet. It uses pointwise convolutional layers to

process the point sets independently of each other. Each point is represented by a fea-

ture vector based on its spatial location. The output of final 1D convolutional layer is

fed to a symmetric function. The symmetric function used in their work is ElementWise

MaxPool Operator.

Architectures focusing on Point Cloud Understanding can be categorically separated

in 3 types a) voxel based b) Point Based c) Graph Based.

An approach to transforming irregular point clouds to regular representations is 3D

voxelization, followed by 3D convolution in 3D. When applied naively it has been ob-
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served that these methods incur massive computation and memory costs due to the

cubic growth in the number of voxels as a function of resolution. The sparsity of voxels

causes memory inefficiency and processing overhead. Few prior works use this spar-

sity for efficient processing. OctNet(Riegler et al. (2017)) uses unbalanced octree with

hierarchical partitions. Approaches based on sparse convolutions, where the convolu-

tion kernel is only evaluated at occupied voxels, can further reduce computation and

memory requirements.(Graham et al. (2018); Kanezaki et al. (2018)).

A broad class of DNNs have emerged to process 3D point clouds directly (Si-

monovsky and Komodakis (2017); Zaheer et al. (2017); Klokov and Lempitsky (2017);

Xu et al. (2018); Atzmon et al. (2018); Li et al. (2018); Ben-Shabat et al. (2018); Qi

et al. (2017b)). PointNet proposed one of the first strategies, where features are updated

for each point with MLP layers, and aggregated with global max pooling. However,

no local comparisons are performed in PointNet,which motivated PointNet++(Qi et al.

(2017b)). PointNet++ uses a hierarchical neural network that applies PointNet recur-

sively on a nested partitioning of the input point set. RSCNN(Liu et al. (2019)) uses

MLPs conditioned on the spatial relationship of two points to update and aggregate fea-

tures around an individual sampled point. There exist many variations to these methods,

but the emerging trend is an increase in network sophistication.

Graph based approaches for 3D point cloud classification and object detection have

been proposed in recent works(Chen et al. (2020); Lin et al. (2020); Shi et al. (2020)).Chen

et al. uses shape attentive U-shape Graph Convolution network to address the variable

scale of objects in the point cloud(mainly for object detection). Lin et al. proposes a

deformable kernel methods that directly work on local graphs created inside the point

cloud. Shi et al. assumes the point cloud as a graph with vertex and edges. It uses

multiple iteration of a graph neural network layer which updates the edge feature and

vertex feature using autoregistration mechanism and MLP layers.

The main downfall of many of these works is that they don’t consider local point

interaction between the points. Hence in our work we propose a local feature descriptor

based on pointNet. We represent each point with a feature constructed from the relative

locations of the set of points within its local neighbourhood. We use a Geodesic Dis-

tance based neighbourhood approach for local feature embedding. Like PointNet++,

the geodesic neighbourhood is calculated on a partitioned subset of the point cloud.
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1.4 Proposed solution to use all the points and local shape

feature representation

In this thesis, we present a local shape feature descriptor based neural network which

depends on the geodesic neighbourhood of the point set. The proposed network ad-

dresses the following drawbacks

• VoxNet - Underutilisation of all points in the point cloud

• PointNet - Local Point interaction not captured

• 3D CNN based models - Overutilization of computation resources due to sparsity

in point cloud

• PointNet++ - Previous studies by Nagender et al. 2019(IIT Madras), showed that

the point feature generated using Euclidean distance-based local neighbourhood points

is not invariant to rotations of the object and articulations of the object near joint loca-

tions. The Euclidean neighbourhood of a point might contain points that correspond to

parts of the object that are disconnected within the local neighbourhood. Hence we use

a geodesic neighbouhood based idea.

The input to each layer in the network is the point cloud, 3D model surface data and

the model graph properties of the 3D object. The surface data and the graph properties

of the corresponding point cloud are needed to calculate the geodesic neighbourhood

of the point set. Geodesic distance between two points in a point cloud is the distance

between the points that is measured along a path that lies on the surface of the object.

In each layer, the point set is first sampled into a subset. The geodesic neighbourhood

set calculated for each sampled point is passed through a set of 2D CNN layers. Since

the input to this layer are the set of relative 3D coordinates of the local geodesic neigh-

bourhood points, the output is a shape feature representing the shape formed by the

neighbourhood points.

The sampling of point clouds provides us an implicit multi abstraction. The ini-

tial complete point cloud will provide more detailed information about the shapes in

a smaller locality. As we go on sampling the point cloud, the RoI will enlarge and

information about an overall larger scale is obtained.

The reason behind using geodesic distance instead of standard euclidean distance as

in PointNet++ is following:
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The point feature generated with a Euclidean distance-based local neighbourhood

is translation-invariant since the relative coordinates of the local neighbourhood points

are invariant to object translations. However, the Euclidean local neighbourhood of

a point might contain points that belong to adjacent disconnected parts of the object.

Relative motion between these adjacent disconnected parts of the object could result in

inconsistent set of points in the local neighbourhood. A geodesic distance-based local

neighbourhood is articulation-invariant around joint locations in an object in addition

to being translation-invariant.

We have discussed so far about introducing a novel point based network for the task

of point cloud understanding which takes into account local shape features found using

geodesic neighbourhood. In the following chapter, we shall discuss about the Point

Based methods for 3D point cloud understanding. This will provide us intuition behind

the proposed method and help us build upto it.
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CHAPTER 2

REVIEW OF POINT BASED METHODS FOR 3D

POINT CLOUD UNDERSTANDING

In this chapter, we review some of the existing deep learning based methods for point

cloud classification and part segmentation tasks with point cloud of an object as in-

put. We shall specifically focus on the point based methods for this task. Although

deep learning methods are a recent addition to the point cloud literature, several ap-

proaches have been proposed to make training a deep learning model viable on point

cloud datasets.

2.1 Point Based Methods

In this section, we describe the methods that use the points in a point cloud as input to a

deep learning model without transforming them into other representations of the object.

We shall particularly focus on two architectures viz. PointNet and PointNet++. One

of the advantages of such methods is the prevention of loss of information during the

process of transformation of the point cloud into other representations of the object. The

first of such point-based methods, PointNet, was introduced by Qi et al. (2017a). In the

PointNet architecture, the dimension of the vector representing each point is increased

using a sequence of 1D convolution layers. The resulting vectors corresponding to

each point in the point cloud are used as input to a symmetric function to generate the

point cloud feature.The architecture of PointNet is briefly described in Section 2.2.

The main contribution of Qi et al. (2017a) is a deep learning model which can take a

variable number of unordered points in a point cloud as input and generate a point cloud

feature which captures the shape of the corresponding object. The PointNet architecture

showed significant improvement in performance in computer vision tasks over the then

state-of-the-art deep learning based models with point clouds of objects as input.

One of the major drawbacks of PointNet is the lack of interaction between the points

and its neighbours before being used as input to the symmetric function. The dimen-



sionality of the vector corresponding to each point in the point cloud is increased inde-

pendently as described in Section 2.2. Several methods have been proposed to address

this issue by using PointNet-like architectures hierarchically in local neighbourhoods

of points in each layer. We shall discuss the PointNet++ Qi et al. (2017b) in Section 2.3

which fundamentally uses the local euclidean neighbourhood for each point.

2.2 PointNet

In this section, we describe the seminal PointNet architecture introduced by Qi et al.

(2017a)The input to this architecture is the point cloud of an object and the output

is a point cloud feature representing the input point cloud. The architecture consists

of 1D convolution layers which increase the dimensionality of the vector representing

each point, feature transform layers which introduce invariance in the network to ob-

ject translation and rotation, and a symmetric function which generates the point cloud

feature from the higher dimensional representations of each point. In the PointNet ar-

chitecture, the symmetric function is an element-wise maxpool layer.The inputs to the

element-wise maxpool layer are the vectors representing each of the points in the higher

dimensional space and the output is a feature in the higher dimensional space. The out-

put feature of the element-wise maxpool layer is generated according to the Equation

2.1, where out ∈ Rd is the output of the element-wise maxpool layer, inp ∈ n × Rd is

the input to the element-wise maxpool layer, n is the number of points in the input and

d is the dimension of all of the vectors representing each point and the output feature.

We denote each feature transform layer as FT (K ), where K × K is the dimension

of the transformation matrix applied to each vector of dimension K representing a point

in the input to the transform layer.

out[j] = max
1≤i≤n

inp[i, j], ∀j = 1, 2, ....d (2.1)

The input to the feature transform layer FT (K ) is the set of vectors of dimension K

corresponding to each point in the point cloud. The feature transform layer consists

of a transformation network which predicts the K × K transformation matrix. The

transformation network consists of a PointNet-like architecture with 1D convolution

8



(a) A representation of the transformation layer

(b) A representation of the transformation network used
in the transformation layer

Figure 2.1: A representation of the transformation layer is shown in Figure (a). A rep-
resentation of the transformation network used to predict the transformation
matrix in the transformation layer is shown in Figure (b). FC(n) is a fully
connected layer with n neurons.

layers, a symmetric function and fully connected layers as shown in Figure 2.1b A

representation of the transformation layer is shown in Figure 2.1a.

In the PointNet architecture, the 3D coordinates of points in the input point cloud

are first sent through a feature transform layer, FT (3). The dimension of the vector rep-

resenting each point is increased to 64 using a sequence of two 1D convolution layers,

Conv1D(3, 64) and Conv1D(64, 64). The 1D convolution layers act independently

on each point in the point cloud. The resulting points with 64-dimensional vectors

are passed through another feature transform layer, FT (64). The resulting points with

64-dimensional vectors are passed through a sequence of three 1D convolution layers,

Conv1D(64, 64), Conv1D(64, 128) and Conv1D(128, 1024). A 1024-dimensional

point cloud feature representing the point cloud is generated by passing the output of

the final 1D convolution layer through a symmetric function. The representation for the

entire PointNet architecture is shown in Figure

One major visible concern with respect to PointNet is lack of local shape structure

understanding. The points are processed independent of each other and the symmetric

function operates on the point features. Local point interaction is important for better

9



Figure 2.2: A representation of the PointNet architecture.

representation of the point cloud as a whole. PointNet++ tackles thsi problem of local

feature representation. This forms the very basis of our proposed architecure as well.

We shall have brief discussion about PointNet++ in next section.

2.3 PointNet++

In this section, we shall discuss PointNet++(Qi et al. (2017b)). This architecture fo-

cuses on solving one major drawback of the PointNet architecure which is local point

interaction. Exploiting local structure has proven to be important for the success of

convolutional architectures. The fundamental idea of PointNet++ is similar to the re-

ceptive field of a standard CNN network. In PointNet++, a neural netowork takes in the

point data normalized in a sphere as the input and progressively captures features and

increasing scale along a multi-resolutions hierarchy. In the initial stages, the network

has a smaller FoV and learns a more local set of features while at later stages the FoV

is large. Such an ability of the network allows better generalizability to unseen cases.

The point set in first sampled into overlapping local regions by the distance metric

of the underlying space. Similar to CNNs, local features capturing fine geometric struc-

tures from small neighborhoods are extracted; such local features are further grouped

into larger units and processed to produce higher level features. This process is re-

peated until the features of the whole point set are obtained. Analogy between CNN

and PointNet++ can be seen from Figure 2.3

The design of PointNet++ addresses two issues: 1) The problem os efficient parti-

tioning of the point set and 2) The of abstraction of points sets or local features through
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a local feature learner. The two issues are correlated because the parititioning should

produce similar structures across partitions and learn in a shared weights fashion similar

to convolutional networks. The local feature learner is set to PointNet(refer to Section

2.2). As a basic building block, PointNet learns the local feature embeddings and pro-

gresses it to higher levels. In this view, PointNet++ applies PointNet recursively on a

nested partitioning of the input set.

For generating the overlapping partition of the point set. The partition is created

around the centroid location using a euclidean neighbourhood equal to the scale(Te).

PointNet++ uses FPS(Moenning and Dodgson (2003)) to sample the centroid locations.

FPS has proven to have a better point coverage than the random uniform sampling.

(a) A standard CNN network

(b) PointNet++ sampling

Figure 2.3: An anlogy between CNN network and PointNet++. Similar to CNN, the
PointNet++ looks at the input point set with increasing receptive field

Another problem that PointNet++ addresses is variable point density on the point

sets. PointNet++ uses MultiScale Grouping which concatenates features obtained from

multiple scales. If in some region the point density is lesser, such a mechanism makes

sure there are enough points in the neighbouhood set.

11



2.3.1 Hierarchical Point Set Feature Learning

Unlike PointNet in which a single symmetric function aggregates the entire point set,

PointNet++ architecture builds multi-hierarchical grouping of points with increasing

field of view by increasing the scale.

The hierarchical structure in composed by a number of set abstraction levels. Each

set abstraction layer consists of the Sampling layer, Grouping layer and PointNet layer.

The Sampling layer samples few points from the input set. The sampled points form the

centroids of local regions. Grouping layer then constructs the local region sets for the

sampled centroids using Euclidean metric in the unsampled space. PointNet layer uses

a mini-PointNet to encode local region patterns into feature vectors.

Mathmatically speaking, a set abstraction layer takes an input of dimension N × (d + C )

where N is the number of input points with d -dim coordinates and C -dim point fea-

tures. The input passes through the Sampling layer which outputs N ′ indices. Given in-

put points {x1 , x2 , ..., xN }, iterative FPS is applied to choose the subset {xi1 , xi2 , ..., xiN ′},

such that xij is the most distant point(in euclidean space) from the set {xi1 , xi2 , ..., xij−1 }

with regard to rest points. Grouping layer aggregates the euclidean neighbourhood

for each of the point and generates the N ′ ×K × (d + C ) dimension matrix. Here

K represent the number of euclidean neighbours for each point. The PointNet layer

takes this N ′ ×K × (d + C ) dimension matrix and returns N ′ × (d + C ′) dimension

output, where C ′ is the output feature dimension.

Regarding the variable density in point cloud, PointNet++ uses Multi-scale Group-

ing (Figure. 2.4) Where in the Grouping layer multiple radii are used to calculate the

euclidean neighbourhood and the features are concatenated. This will take into account

the lack of sufficient points scenario in case of lesser point density and produce better

results.

A full representation PointNet++ is shown in Figure. 2.5

In this chapter, we built the basic understanding of Point based networks for point

cloud understanding. We particularly focused on PointNet and PointNet++. We under-

stood that local shape features are of important for better understanding of the point

set. Till now we have seen Euclidean distance based neighbourhoods for local shape

feature description. In next chapter, we introduce another effective local feature de-
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Figure 2.4: MultiScale Grouping

Figure 2.5: PointNet++ with classification and segmentation networks
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scriptor based on Geodesic distance neighbourhood. We propose a similar architecture

to PointNet++ using this feature descriptor in the next chapter.
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CHAPTER 3

Multi Abstraction Geodesic Neighbourhood-based

network(magNet)

So far we have dicussed the functioning of Point based networks and got an intuition be-

hind their architecure. We observed how PointNet uses entire point set and processes it

using Transformation networks and use an element-wise maxpool layer as a symmetric

function to aggregate the point feature. We observed the lack of local point interaction

in the PointNet that causes lack of understanding of underlying struture in the point set.

We saw how PointNet++ tackles the problem by using Euclidean distance based local

shape feature descriptors and hierarchically apply it to get the shape feature at multiple

scales.

Recent works by Nagender et.al(2019)(IIT Madras) talk about the issues associated

with using Euclidean Neighbourhood for the points. Using that intuition, we propose

a novel method for robust and more intuitive understanding of Point Clouds. We call

it Multi Abstraction Geodesic Neighbouhood-based network(magNet). Let us first

understand the meaning behind nomenclature. "Multi Abstraction" refers to the fact

that we shall work on multiple levels of abstraction similar to PointNet++. "Geodesic

Neighbouhood" refers to using Geodesic Distance for finding the local neighbouhood

for each point.

The rest of this report goes as follows. We shall first discuss about issues with

Euclidean Neighbourhood in Section 3.1. In Section 3.2 we briefly discuss the concept

of geodesic distance. In Section 3.3 we discuss our proposed architecure.

3.1 Issues with Euclidean Neighbouhood

The euclidean local neighbourhood based point feature is translation invariant as it is

dependent only on the relative location of the points within the local neighbourhood.

The translation invariance property of the point feature increases the learning capacity



of the network as similar local parts across all of the objects can be represented with

similar features which makes training easier.

However, the point feature generated using Euclidean distance-based local neigh-

bourhood points is not invariant to rotations of the object and articulations of the object

near joint locations. The Euclidean neighbourhood of a point might contain points that

correspond to parts of the object that are disconnected within the local neighbourhood.

Examples for the same are shown in Figure. 3.1 and Figure. 3.2. We can observe

from the Fig. 3.1, near the point of interest, euclidean neighbourhood consists of points

from the other bench(left bench) as well which is not directly connected to it, while

Geodesic neighbourhood considers only the points that make the part of the right bench

of which the point of interest is a part of. Similar observations can be obtained from

Fig. 3.2, where the point from the tyre is under observation. We can observe that,

though Euclidean neighbourhood has more number of points but few of the points are

included from the front hood region which does make the part of the tyre. But geodesic

neighbourhood although having lesser number of points, is strictly confined to the tyre

region of the car.

This illustration clearly provides us the intuition behind moving towards geodesic

neighbourhood from euclidean neighbourhood. Following up on this, in the next section

we shall briefly discuss about the concept of Geodesic distance and Geodesic neigh-

bourhood.
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(a) Surface Plot Of Bench

(b) Point cloud (blue) of a bench showing Eu-
clidean neighbourhood (green) of a point
(red)

(c) Point cloud (blue) of a bench showing
Geodesic neighbourhood (green) of a point
(red)

Figure 3.1: Comparison between Euclidean(Fig b) and Geodesic(Fig c) neighbouhood
of a point. Euclidean neighbourhood includes points from disconnected
bench while geodesic neighbourhood considers points only from the con-
nected parts in the bench
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(a) Surface Plot Of car

(b) Point cloud (blue) of a car showing Eu-
clidean neighbourhood (green) of a point
(red)

(c) Point cloud (blue) of a car showing Geodesic
neighbourhood (green) of a point (red)

Figure 3.2: Comparison between Euclidean(Fig b) and Geodesic(Fig c) neighbouhood
of a point in the tyre of the car. Euclidean neighbourhood includes points
from front hood of the car as well while geodesic neighbourhood considers
points only from the tyre part and doesn’t extend to hood part which is not
directly connected to the tyre.
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3.2 Geodesic Distance And Geodesic Neighbourhood

Lantuéjoul and Maisonneuve (1984) define Geodesic arc as follows, "Consider an ar-

bitrarily shaped object X and let x and y be two points within X. There exist several

paths in X linking x and y . The shortest one is called the ’geodesic arc’(See Fig.3.3)

and its length is denoted by dx (x , y)"

In the context of our problem, Geodesic distance between two points on the surface

of an object is the length of the shortest path connecting the points which lies along the

surface of the object. For 3D models, we represent them by graphs in 3D. The geodesic

distance is thus calculated as the shortest path from one point to other in the graph. Thus

it becomes a shortest path problem in three dimension for which we can use Dijkstra’s

algorithm (Dijkstra et al. (1959)), A-star search (Hart et al. (1968)) etc.

The geodesic distance-based local neighbourhood of a point contains all of the

points that lie within a certain geodesic distance Tg from the point. The set of geodesic

distance-based neighbourhood points Ppg of a point p is determined according to Equa-

tion 3.1, where ||p1 − p2 ||g represents the geodesic distance between points p1 and p2 .

Tg is the geodesic distance threshold for neighbourhood points and N is the number of

points in the point cloud.

Ppg = {pi : ||p− pi||g < Tg} ∀i = 1, 2, ....N (3.1)

Figure 3.3: (1) Paths within the object (2) Geodesic arc.Lantuéjoul and Maisonneuve
(1984)

Now, given we have got the intuition behind the geodesic distance and neighbou-
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hood, we shall discuss the proposed architecture in the next section.

3.3 magNet Architecture

3.3.1 Problem Statement

Consider a discrete metric space φ = (P,G, d) whose metric is inherited from an un-

delying Geodesic space R3
d, where P ⊆ R3 is the set of points, G is a underlying

connected graph structure of P and d is the distance metric(Geodesic). We are inter-

ested in learning set functions f that take such φ as the input and produce information

regarding φ. In practice, such f can be classification function that assigns a label to φ

or a part segmentation function that assigns a per part label to each member of P .

3.3.2 Method

In this subsection, we shall discuss about the proposed architecture in detail. magNet

consists of an abstraction module at its heart. The task of an abstraction module is to

sample, group and perform convolution operation on point features. It consists of three

steps. 1) Sampling(3.3.3) 2) Grouping(3.3.4) 3) Convolution(3.3.5). We discuss about

each of the three steps in detail below.

The abstraction module is applied hierarchically. The intuition is to under the

connected components of the model at multiple scales. At initial levels, the network

will try to learn the underlying strcture at more local levels. With increasing abstraction,

the FoV increases and network will try to understand the structure at larger scale. This

multiple levels of abstraction makes the netowrk to look at finer as well as coarse details

in the point cloud structure and learn effectively.

3.3.3 Sampling

We use the sampling technique used in PointNet++. Farthest Point Sampling(FPS) sam-

ples points such that the coverage is maximum. Given input points {x1 , x2 , ..., xN }, iter-

ative FPS is applied to choose the subset {xi1 , xi2 , ..., xiN ′}, such that xij is the most dis-

20



tant point(in euclidean space) from the set {xi1 , xi2 , ..., xij−1 } with regard to rest points.

Sampling layer takes the point cloud Pus of dimension (N, 3) as the input and per-

forms FPS in its first stage and generates farthest point indices Idxfps(N ′). The second

stage is a gathering stage which gathers the points at indices Idxfps from Pus and gen-

erates the sampled points cloud Ps of dimension (N ′, 3).(See Fig. 3.4).

The pseudocode for FPS is shown in Algo. 1.

Algorithm 1: FPS algorithm
Data: Input Point Set C , Number of output points N ′

Result: Sampled Point Set Cs

1 initialization S = { Random Point from = C};
2 while size(S) != N ′ do
3 get p = farthest point in C from S;
4 insert p in S;
5 end
6 assign Cs = S;

Figure 3.4: Sampling Layer

We can clearly observe in Fig. 3.5, the structure of the point cloud is more clear in

FPS than in uniform sampling scenario.
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(a) Point Cloud with
1024 points

(b) Point Cloud with
256 points(FPS)

(c) Point Cloud with
256 points(Random Uni-
form Sampling)

Figure 3.5: FPS applied on a point cloud of 1024 points resulting in a point cloud of 256
points. The coverage of points in case of FPS is clearly better than Random
uniform sampling

3.3.4 Grouping

The major contribution of our work lies in this step. As the PointNet++ architecture

uses Euclidean neighbourhood, in our work, we use Geodesic neighbourhood instead.

The grouping module takes the pre-sampled point cloud, sampled point cloud and cor-

responding 3D scanned model data. The geodesic neighbouhood for a point set is cal-

culated with reference of its respective high resolution scan.

The scan data needed as input for grouping layer includes the traingular face data

of 3D models, the graph generated from the 3D model with the graph weights and

connections. Along with that, the vertices from the high resolution scan(not necessarily

same as the point cloud) are also needed. The grouping model has two stages. First

stage generates the indices of the geo-neighbours for each point. Second stage groups

the point features of the neighbourhood points for each sampled point. In short, the

output of this layer is the feature vector of geodesic neighbourhood for each sampled

point, neighbourhood taken from pre-sampled(high resolution) point cloud.

Fig. 3.6 illustrates the grouping layer.The input to the first stage is unsampled point

set Pus with size (N, 3), sampled point set Ps of dimension (N ′, 3) and the 3D model

data md. First stage in this layer actually calculates the indices of geodesic neighbou-

hood of each point in Ps from Pus, Idgeo of size (N ′, K), where K is the number of
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geodesic neighbourhood for each point and is a hyperparameter. More details about cal-

culating neighbourhood can be found in Appendix B. The second stage takes in Idgeo,

Pus, Ps and feature vector of unsampled point set fus((N,C)) and generates the grouped

feature fgeos of size (N ′, K, C + 3)), which is passed to the convolution layer.

Figure 3.6: Grouping Layer

Fig.3.7 shows geodesic neighbouhood calculated for a point in the point cloud of a

chair. We can observe that the nearest points on the outer face of the model are captured

as the geodesic neighbourhood of the point under observation.

Figure 3.7: Geodesic neighbouhood of the a point inside the point cloud
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3.3.5 Convolution Layer

The convolution layer(See Fig. 3.8) consists of multiple convolution blocks. Each con-

volution block consists of a 2D convolution layer followed by BatchNormalization(Ioffe

and Szegedy (2015)) and a ReLU layer. t is a architecure parameter which decides how

many convolutional blocks to be used in a convolution layer of magnet. We use a max-

Pool layer at the end which outputs the point cloud feature(at that abstraction level)

fs.

Figure 3.8: Convolution Layer

Fig 3.9 shows theabstraction module end to end with necessary connections.

Figure 3.9: Abstraction Module

We refer abstraction module as AM(K,N ′, dim) with dim being the output chan-

nels of final convBlock, K as the number of geodesic neighbours for the module and

N ′ as the number of sampled point. In such a framework, the magNet architecture is
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shown in Fig 3.10. N is the number of input points in the point cloud. The input model

data is not explicitly shown here for better clarity of the figure but one should take into

account its presence for the functioning of this model. The model generates the feature

for the entire point cloud fpc of size (1, 1024).

Figure 3.10: magNet Architecure

3.3.6 magNet for classification

We further take the point cloud feature fpc for classification. The feature vector goes

through fully connected layer followed by BatchNorm and a ReLU layer. Fig 3.11 il-

lustrates the classification head of magNet. Linear(dim) represents Fully Connected

Layer FC(inputDim, dim) followed by BatchNorm layer BN(dim) and a ReLU

layer. Final FC layer returns a vector of size 40 which is the number of classes for

ModelNet40 Wu et al. (2015) dataset.

Figure 3.11: magNet for Classification
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3.3.7 magNet for part segmentation

In the abstraction modules, we subsampled the original point set. For part segmenation

we need to up-sample the feature set segmentation task such as semantic point labeling,

we want to obtain point features for all the original points. The primitive solution is to

always sample all points as centroids in all set abstraction levels, which however results

in high computation cost. A smarted way that fits in a learning system is to propagate

point features from the sampled set to the original point set. Quoting from Qi et al.

(2017b),

"We adopt a hierarchical propagation strategy with distance based interpolation

and across level skip links. In a feature propagation level, we propagate point features

from Nl× (d+C) points to Nl−1 points where Nl−1 and Nl (with Nl ≤ Nl−1) are point

set size of input and output of set abstraction level l.We achieve feature propagation by

interpolating feature values f of Nl points at coordinates of the Nl−1 points. Among

the many choices for interpolation, we use inverse distance weighted average based on

k nearest neighbors."

The interpolated features are concatened with skip connected features from the re-

spective abstraction module output. The concatenated features are passed through the

convolution layer(Refer Section 3.3.5). The feature vector of the point set is updated

due to the convolution layer. The process is repeated and the propagated point feature is

expanded until the propagation reaches the original point feature. The inverse distance

based weight(Eqn. 3.2) gives higher priority to the points which are closed in the Metric

space(Euclidean in this case)

f j(x) =

∑k
i=1wi(x)f

j
i∑k

i=1wi(x)
(3.2)

where

wi(x) =
1

d(x, xi)p
, j = 1, ..., C (3.3)

In default case p = 2 and k = 3. The segmentation head can be seen in Fig. 2.5.

In this chapter, we discussed in detail about our proposed architecure which we

name as magNet. We understood why geodesic neighbourhood is effective and how
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can we utilize this while working with 3D point clouds. In the next chapter, we shall

provide details about our training method and the results we obtained.
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CHAPTER 4

Experimental Results

We trained the model using in PyTorch Lightning which is a lighweight PyTorch wrap-

per with high level abstraction over PyTorch functions. In this chapter, we provide de-

tails about the preprocessing and training step and provide the results that we obtained.

In Section 4.1, we briefly disucss about the Dataset and the proprocessing step. We

shall discuss about the classification problem in Section 4.2 In Section 4.3, we shall

overview the Segmentation problem.

4.1 Dataset description and preprocessing

We evaluate the performance of our proposed neural network models on the object clas-

sification and part segmentation tasks using ModelNet40 and ShapeNet part datasets

respectively. ModelNet40 consists of CAD models of objects with class labels pro-

vided for each of the object. ModelNet40 dataset consists of 12,311 CAD models of

objects categorised into 40 classes. The dataset is further split into training and test

sets, each of which contain 9843 and 2468 number of samples respectively. ShapeNet

part dataset consists of 16881 CAD models of objects which are divided into training

test and validation sets, each of which contain 12137, 2874 and 1870 number of object

CAD models respectively. The objects in this dataset are divided into 16 categories

of objects. This dataset provides point clouds of the objects which consists of points

sampled from the surface of the CAD models. Each point in the point cloud is labelled

with a part labels corresponding to the part of the object. Each category of the object

has 2-6 part labels,with a total of 50 part labels in the ShapeNet part dataset.

The following data preprocessing method is taken from MS thesis of Nagender V

S S(Dept. of CS, IIT Madras, 2019). Original work by him involved doing this step in

Python using scipy library and is a dedicated preprocessing step. But in our work, we

developed custom cuda kernels from scratch that calculate the geodesic neighbour-

hood during network. But still as the process of finding the geodesic neighbouhood is



same we present it in this section itself. Creating the graph structure from the 3D model

is a preprocessing step in our work and is mentioned in Appendix A.

Qi et al. (2017a) uniformly sampled 1024 points from the surface of the CAD mod-

els of objects and normalized them into a unit sphere. In the case of ShapeNet part

dataset, Qi et al. (2017a) have sampled 2048 points per point cloud in the train and

validation sets of the dataset. In the case of test samples, they use all of the points

provided for each point cloud in the ShapeNet part dataset for testing. For the sake of

comparison, we use the same sets of point clouds of objects used by Qi et al. (2017a)

in both of the datasets for training and testing our neural network architectures.

In addition to point clouds of objects, we also need geodesic distances between

points in our work. Geodesic distance between two points is the distance be- tween two

points that is measured along the surface of the object. To compute geodesic distance

between points, we use the CAD models of the objects provided in the dataset. The

surfaces in the CAD models of objects are represented using triangular meshes. Each

triangular mesh consists of vertices and faces, where each face is represented by the

three vertices forming the corresponding triangular face. We convert the triangular

mesh into a graph containing vertices and edges, where edges are the sides of the trian-

gular faces. The 3D coordinates of the vertices in the graph are normalised into a unit

sphere using the same parameters (mean and scaling factor) that used to normalise the

corresponding point cloud of the object into a unit sphere. The weight of each edge is

the distance between the normalised points on either side of the edge. For each point in

the point cloud of the object, we find the nearest vertex in the corresponding graph of

the object. We approximate geodesic distance between two points as the shortest path

connecting their corresponding nearest vertices in the graph of the object. We compute

shortest path between vertices of the graph using Dijkstra’s shortest path algorithm.

For the Dijkstra’s shortest path algorithm to compute shortest path connecting any

two points in a graph, the input graph should form one connected component. Due

to discrepancies in the mesh representation and due to representing different parts of

the objects with disconnected triangular meshes, the graph of the object constructed

from the triangular mesh does not form one connected component. In our work, we

preprocess the triangular mesh such that most of the mesh discrepancies resulting in

disconnected components are corrected. After removing the discrepancies, if there are
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any disconnected components in the resulting graph, we find the vertices that are within

a certain distance threshold in each pair of disconnected components and add edges

connecting those vertices. This results in a graph that forms one connected component.

The method adopted to construct a graph that forms one component is described in

Appendix A.

4.2 Classification

In this section, we describe the experiments conducted to evaluate the proposed object

classification network described in Section 3.3.6. We train the network using the train

set of ModelNet40 dataset and report results on its corresponding test set. The evalu-

ation measures of classification task on this dataset are the overall accuracy and mean

accuracy across classes. We evaluate the effectiveness of our proposed network by com-

paring the performance with the similar PointNet, PointNet++ and LSNET proposed by

Nagender et al.(2019, IIT Madras).

4.2.1 Implementation Details

In our implementation, we perform data augmentations on the training sample. We

perform random scaling, random rotation, random perturbed rotations, Jitter, Global

random translation and Random Point dropout. No augemetations were done with the

validation set.

We created the network in PyTorch(with PyTorch Lightning as wrapper). As we

had used custom cuda kernels that supported only array pointers(and not highly abstract

data types like CSR matrices etc.), we needed to do extra preprocessing on the graph

elements in order to pass them to the custom kernel. More about that in Appendix

B The input point cloud Pus and the model data md are created from the data loader

and are clubbed together(across the batch) using a custom collate function. The input

point coordinates are spherically normalized and have a value in the range [-1, 1]. We

consider the local neighbourhood distance threshold Tg as a hyperparameter. Table 4.1

shows the hyperparameter setting for the network.

During training, we use the softmax cross entropy function to compute loss and
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Table 4.1: HyperParameter setting for the classification task.

AM N ′ Tg(threshold) K
1 256 0.2 32
2 64 0.4 32
3 GroupAll GroupAll ALL

adam optimizer to update the weights based on gradients. We train our network with an

initial learning rate of 1e−4 which gets multipled by a factor of 0.8 every 5000 training

batches. We use a weight decay of 1e−5. We also use a Dropout of 0.1-0.2 for Conv2D

layers and 0.4-0.5 for Linear Layers in the network.

For the classification task, we compute the point cloud feature fpcaat every abstrac-

tion level as shown in Fig. 3.10. The final feature vector representing entire point cloud

fpc passes through the classification head of the network and generates a vector equal

to the number of output classes. The classlabel is determined based on Equation 4.1.

The classification architecture is shown in Fig 3.11. We use two Linear modules(Refer

Section 3.3.6) with output features of 512 and 256. The output of final linear layer

passes through the FC layer.

classLabel = arg max
1≤i≤NC

out[i] (4.1)

We can see the comparison between the networks in Classification accuracy in Table

4.2. We can observe despite proposed theoretical robustness, magNet couldn’t perform

well. We attribute few reasons to this below:

• We couldn’t find the right training setting for the model as the model was getting
overfitted after certain number of epochs

• Another issue is attributed to the memory requirements for the cuda kernel. For
each point, we could construct a pre-specified size of graph(450 in this case).
This is due to memory constraints for the GPU. But we observed that for few
points the number of graph points needed exceeds 450 and in that case we needed
to put some hard conditions on the kernel. This causes certain discrepancy in
the shortest path distance calculation in dijkstra and gives insufficient answer i.e.
number of neighbourhood points and network performs poorly such a scenario,
which we believe is happening in this case.
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Table 4.2: Classification Accuracy

Model Accuracy Mean Accuracy
PointNet 89.2 86.2

PointNet++ 90.7 -
LsNet(Geodesic Neighbourhood) 92.1 89.4

magNet 86.7 82.4

4.3 Part Segmentation

In this section, we describe the architecture for Part Segmentation task. In this section,

we describe training details and results we obtained.

The point cloud feature vector fpc is passed through the Feature Propagation mod-

ule(Refer to Section 3.3.7). Each feature propagation(FP ) module has a convolution

Layer which updates the point features. The FP module is repeated till the point fea-

tures of the entire input point cloud are propagated. Table 4.3 shows the hyperparameter

setting for the Segmentation Architecture.

We use softmax cross entropy loss. The output of segmentation network is a (2048, 50)

dimension matrix(There are 50 part segmentations of 16 classes of objects in ShapeNet

part dataset). The predicted part segmentation label is then calculated by performing

the argmax operation on the output(Eqn. 4.2)

partLabel[i] = arg max
1≤j≤50

out[i][j],∀i ∈ {0, 1, 2..., 2047} (4.2)

We trained the network with LR of 1e-3 and multipled by 0.8 after 3000 training

batches. We present the results after 20 epochs of training in table 4.4
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AM N ′ Tg(threshold) K MLP
1 512 0.2 32 [3, 64, 64, 128]
2 128 0.4 32 [128, 128, 128, 256]
3 32 0.8 32 [256, 256, 512, 1024]

(a) For the Abstraction Module

FP MLP
1 [1024+256, 256, 256]
2 [256+128, 256, 128]
3 [128+3, 128, 128]

(b) For the Feature Propagation Module

Table 4.3: HyperParameter setting for the Segmentation task.

Table 4.4: Segmentation Results

Class mIOU
Airplane 66.6

Bag 63.96
Cap 75.4
Car 63.5

Chair 84.75
Earphone 69.08

Guitar 83.84
Knife 76.67
Lamp 71.03

Laptop 93.18
Motorbike 26.46

Mug 89.86
Pistol 63.41

Rocket 41.85
SkateBoard 62.08

Table 77.81
mean mIOU(all shapes) 76.05
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this report, we have proposed a Multi Abstraction Neural Network for the task of

Point Cloud understanding. The motivation behind our idea was the significant im-

provement in performance shown by convolutional neural networks on computer vision

tasks with images as input. But the input to a sequence of convolution layers is either

a 2D grid of pixels (images) or a 3D grid of voxels. In our proposed model, we take

the entire point cloud as the input and systematically sample and process the point set

in order to get more and more abstract point features. The motivation was taken from

the way 2D CNN models work with increasing Field of View as the convolutional lay-

ers are applied to 2D feature map of the image. At each abstraction layer, our model

learns an underlying local shape feature formed by the connected points. With increas-

ing abstraction, the field of view is enlarged and the model looks at bigger and bigger

underlying shape. This theoretical intuition was the motivation behind this architecture.

We used geodesic distance based neighbourhood in order to extract the neighbourhood

for a point. We observed that in addition to being translation invariant, the geodesic

neighbourhood-based point feature is also invariant to articulations around joints of the

object.

We created custom cuda kernels from scratch for the process of calculating geodesic

neighbourhood for the points. We have created a custom PyTorch extension for the

same. Anyone willing to experiment with the extension will be able to do so. This

provides a better streamlining for any future work. Unfortunately we couldn’t achieve

expected results in the classification task reasons for which we have mentioned in this

report. Along with classification, we have presented the part segmentation network in

our report, but we couldn’t train the model due to technical issues. The code base is

available in open source and anyone can perform experimentations on it and attempt to

get even better results.

Despite not being able to achieve satisfactory results, we understood that Geodesic

neighbourhood is an effective mechanism to represent a point feature in 3D space. The



point feature is robust to translation, rotation and joint articulation variant. We provide

the researchers community with a robust PyTorch extension that calculates the geodesic

distance and neighbourhood for a point in a graph which is another learning problem in

itself.

5.0.1 Future Work

One clear cut observation from our study was regarding overfitting of the model. There

is an opportunity to build a better performing NN network using the robust sampling+grouping

method we provide. This can provide us state of the art results. Another opportunity

for future work lies in modifying the cuda kernels to eliminate the restriction for pre

defined number of graph points. This shall provide us with even better neighbourhood

for the points. Due to lack of sufficient time, we couldn’t perform enough experiments

with varying r(radius threhshold) and K(Number of neighbourhood points per point).

A better set of hyperparameters can definitely provide us better results for our setting.

Another possibility that builds up is to find the connected components in the model

directly. Currently we are finding the connected components only along surface of the

3D model. We can port this problem as a pose detection problem and find the connected

components of the model and build up on that. We can use similar multiple abstraction

layer which looks at actual connected components of the 3D model at multiple levels.

This can provide even better feature representation for the point cloud. The PyTorch

Extension that we provide which forms the very heart of our work can be elevated and

used for multiple other tasks including but not limited to Pose Detection, 3D Semantic

Segmentation etc. It ultimately ends up on researcher’s idea and creativity to do further

research using the tool we provide.
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APPENDIX A

Graph representation of objects constructed from their

corresponding CAD models

In this chapter, we describe the method we use to construct a graph representing an

object from its corresponding triangular mesh. The graph resulting from this approach

consists of as many connected components as the number of disconnected parts in the

object. Most of the objects in the dataset are such that their corresponding parts form

one connected object. The graphs corresponding to these objects which are generated

using the approach presented in this section should have only one connected component.

The triangular mesh of an object might contain discrepancies such as isolated ver-

tices, duplicated vertices and self intersecting submeshes. These discrepancies might

arise due to the software that is generating these triangular meshes or due to some other

manual errors in CAD model generation. Isolated vertices in a mesh are the vertices

that are not part of any of the triangular faces. The first step in our approach is to re-

move all of the isolated vertices and update the vertex indices in the list of triangular

faces that reflect this change. Duplicated vertices are vertices which have the same 3D

coordinates. Duplicated vertices might result in disconnected triangular meshes if two

or more disconnected meshes use the same set of 3D coordinates but with a different

vertex index. The next step in our approach is to remove duplicated vertices by assign-

ing a single index to each set of duplicated vertices and update the vertex indices in

the list of triangular faces that reflect this change. Self intersecting submeshes are sub-

meshes that are spatially intersecting with each other but are disconnected as there no

common vertices (and faces) where the meshes intersect. Such self intersecting meshes

are usually a result of combining two CAD models of parts of object to form the one

single part, but the part CAD models are still represented using their individual surface

representations. These self intersections can be resolved by adding more vertices and

faces that connect the intersecting parts. Most of the surfaces of the parts of the object

become connected after removing the three discrepancies. In our implementation, we

use functions provided by PyMesh library to resolve these three discrepancies.



(a) Disconnected parts of a chair with 41 disconnected parts.

(b) Parts of the chair after removing isolated vertices, duplicated
vertices and resolving self intersection. Number of discon-
nected parts in this figure is 10.

Figure A.1: Figure a shows a chair taken from an unprocessed triangular mesh. Figure
b shows the parts of the chair after removing isolated vertices, duplicated
vertices and resolving self intersections. It can be seen that most of the
parts of the chair are connected after removing the three discrepancies in
the triangular mesh of the chair.
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After resolving discrepancies in the triangular mesh, the 3D coordinates of all of the

vertices are normalized into a unit sphere using the same parameters (mean and scaling

factor) that are used to normalize the 3D coordinates of points in the corresponding

point cloud. In some of the objects, if the part of an object consists of a plane surface,

the corresponding triangular mesh contains triangular faces with long edges. For our

purpose of approximating geodesic distance between points in a point cloud as the

shortest distance between their corresponding nearest vertices, we need a triangular

mesh with high resolution even on plane surface. In order to generate such a triangular

mesh with high resolution, we split all of the long edges in the mesh into smaller ones

and add corresponding vertices and edges to the mesh. In our current implementation,

we allow a maximum edge length of 0.05 and split any edge longer than this length into

smaller edges.

In the next step, if there are any disconnected parts present in the object, we find dis-

tances between the vertices corresponding to each pair of disconnected parts. If any pair

of disconnected components have vertices which are within a certain distance threshold,

we add edges between all of those vertices, thus connecting that pair of disconnected

components. In our implementation we use a distance threshold of 0.1 (twice the maxi-

mum edge length in the high resolution triangular mesh generated in the previous step)

to connect vertices across disconnected parts with edges. In the final step, we generate

a graph from the processed triangular mesh of the object. The vertices of the triangu-

lar mesh become the vertices of the graph and the sides of the triangular faces and the

edges connecting vertices across disconnected components become edges of the graph.

The high resolution graph with one connected component (in most of the objects)

generated in the final step is used to determine geodesic distances between points in the

point cloud of an object.
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APPENDIX B

Finding Geodesic Neighbourhood Using Model Data

In this chapter, we shall discuss about method to find the geodesic neighbourhood of

a point belonging to the sampled point set Ps, from the unsampled point set Pus(point

is Ps and neighbourhood from Pus. As discussed in Appendix A, we now have a con-

structed graph and face data of the 3D model. Using that we proceed to create the

geo-neighbourhood.

In the preprocessing, we extract the number of points in the graph. We extract the

Index Pointer for the graph. We extract the beginning pointers for the the graph vertex

array, faces data and extracted graph data across a batchSize. As the number of graph

vertices is variable across samples, we need to concatenate this data and need to extract

the beginning pointers for each sample in order to process them in a batch. The concept

of Indptr for a csr is beautifully illustrated in Fig. B.1. The data and indices represent

the non-zero data and indices respectively in the graph.

Figure B.1: IndPtr for a CSR graph IMGUR

After doing this pre-processing step we pass this through a custom collate function

that appropriately clubs together the data across the batches and passes through to the

cuda kernel via a Torch c++ wrapper.

https://i.stack.imgur.com/12bPL.png


Inside the cuda kernel, we perform the actual computation parallelized across the

batch. For each point p in the sampled space, we first calculate the nearest face point

using euclidean distance. The face data is provided as the input. Now the computation

revolves around this nearest face point pnfp for the current point in sampled space. Once

that is done, we calculate the nearest graph points to the current point using euclidean

distance metric same as the threshold r used in the respective abstraction module. Here

as we can not go on take an un-specified number of points as is the case, we restrict

ourselves to 450 nearest points which are within the r threshold.

The nearest graph points set indices {ing} is used to build the subgraph for the point

p on which we apply dijkstra. As these point indices are nothing but the indices of the

rows of the original graph, we select those rows from graph and calculate the subgraph

of size (450, 450) in a smart way. We perform dijkstra’s shortest path algorithmDijkstra

et al. (1959) on this point set with pnfp as the source point and find the shortest path

distance dng. One thing to note here is all the points selected in the graph are not

necessarily points from the face but include points from inside parts of model. Hence

once the shortest distances along the graph is calculated, we need to find only those

specific points which form a part of the face of the model and hence make the geodesic

neighbourhood of the point p.

For that, we perform an Euclidean search on the Pus for point p. All the points in Pus

that lie within the threshold r(same as r for the abstraction module) are found. For all

those points, we find the nearest face point. If the index of nearest face point lies in the

{ing} set and its distance dng ∈ {dng} is less that r, then the respective point in Pus is

classified as the geodesic neighbour of the point p. This process in parallely performed

for all N ′ points across b samples in a batch and the geodesic neighbourhood set of size

(b,N ′, K, 3) is calculated, where K is the maximum number of neighbourhood points

selected.

42



REFERENCES

1. Arras, K. O., O. M. Mozos, and W. Burgard, Using boosted features for the detection
of people in 2d range data. In Proceedings 2007 IEEE international conference on
robotics and automation. IEEE, 2007.

2. Atzmon, M., H. Maron, and Y. Lipman (2018). Point convolutional neural networks
by extension operators. arXiv preprint arXiv:1803.10091.

3. Ben-Shabat, Y., M. Lindenbaum, and A. Fischer (2018). 3dmfv: Three-dimensional
point cloud classification in real-time using convolutional neural networks. IEEE
Robotics and Automation Letters, 3(4), 3145–3152.

4. Bogdan Rusu, R., A. Sundaresan, B. Morisset, K. Hauser, M. Agrawal, J.-C.
Latombe, and M. Beetz (2009). Leaving flatland: Efficient real-time three-dimensional
perception and motion planning. Journal of Field Robotics, 26(10), 841–862.

5. Chen, J., B. Lei, Q. Song, H. Ying, D. Z. Chen, and J. Wu, A hierarchical graph
network for 3d object detection on point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020.

6. Dijkstra, E. W. et al. (1959). A note on two problems in connexion with graphs.
Numerische mathematik, 1(1), 269–271.

7. Graham, B., M. Engelcke, and L. Van Der Maaten, 3d semantic segmentation with
submanifold sparse convolutional networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018.

8. Hart, P. E., N. J. Nilsson, and B. Raphael (1968). A formal basis for the heuris-
tic determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2), 100–107.

9. Ioffe, S. and C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning.
PMLR, 2015.

10. Kanezaki, A., Y. Matsushita, and Y. Nishida, Rotationnet: Joint object categorization
and pose estimation using multiviews from unsupervised viewpoints. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

11. Klokov, R. and V. Lempitsky, Escape from cells: Deep kd-networks for the recognition
of 3d point cloud models. In Proceedings of the IEEE International Conference on
Computer Vision. 2017.

12. Lantuéjoul, C. and F. Maisonneuve (1984). Geodesic methods in quantitative image
analysis. Pattern recognition, 17(2), 177–187.

13. Li, C.-L., M. Zaheer, Y. Zhang, B. Poczos, and R. Salakhutdinov (2018). Point cloud
gan. arXiv preprint arXiv:1810.05795.

43



14. Lin, Z.-H., S.-Y. Huang, and Y.-C. F. Wang, Convolution in the cloud: Learning
deformable kernels in 3d graph convolution networks for point cloud analysis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020.

15. Liu, Y., B. Fan, S. Xiang, and C. Pan, Relation-shape convolutional neural network
for point cloud analysis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019.

16. Maturana, D. and S. Scherer, Voxnet: A 3d convolutional neural network for real-time
object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2015.

17. Moenning, C. and N. A. Dodgson, Fast Marching farthest point sampling. In Euro-
graphics 2003 - Posters. Eurographics Association, 2003. ISSN 1017-4656.

18. Navarro-Serment, L. E., C. Mertz, and M. Hebert (2010). Pedestrian detection and
tracking using three-dimensional ladar data. The International Journal of Robotics
Research, 29(12), 1516–1528.

19. Qi, C. R., H. Su, K. Mo, and L. J. Guibas, Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017a.

20. Qi, C. R., L. Yi, H. Su, and L. J. Guibas (2017b). Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413.

21. Riegler, G., A. Osman Ulusoy, and A. Geiger, Octnet: Learning deep 3d representa-
tions at high resolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017.

22. Shi, S., Z. Wang, J. Shi, X. Wang, and H. Li (2020). From points to parts: 3d ob-
ject detection from point cloud with part-aware and part-aggregation network. IEEE
transactions on pattern analysis and machine intelligence.

23. Simonovsky, M. and N. Komodakis, Dynamic edge-conditioned filters in convolu-
tional neural networks on graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017.

24. Uy, M. A., Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, Revisiting point
cloud classification: A new benchmark dataset and classification model on real-world
data. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
2019.

25. Wu, Z., S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, 3d shapenets: A
deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015.

26. Xiang, T., C. Zhang, Y. Song, J. Yu, and W. Cai (2021). Walk in the cloud: Learning
curves for point clouds shape analysis. arXiv e-prints, arXiv–2105.

27. Xu, K., W. Hu, J. Leskovec, and S. Jegelka (2018). How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826.

28. Zaheer, M., S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola
(2017). Deep sets. arXiv preprint arXiv:1703.06114.

44


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	Object classification and part segmentation on point clouds
	Challenges of applying deep learning methods on 3D point clouds
	Related Works
	Proposed solution to use all the points and local shape feature representation

	REVIEW OF POINT BASED METHODS FOR 3D POINT CLOUD UNDERSTANDING
	Point Based Methods
	PointNet
	PointNet++
	Hierarchical Point Set Feature Learning


	Multi Abstraction Geodesic Neighbourhood-based network(magNet)
	Issues with Euclidean Neighbouhood
	Geodesic Distance And Geodesic Neighbourhood
	magNet Architecture
	Problem Statement
	Method
	Sampling
	Grouping
	Convolution Layer
	magNet for classification
	magNet for part segmentation


	Experimental Results
	Dataset description and preprocessing
	Classification
	Implementation Details

	Part Segmentation

	CONCLUSION AND FUTURE WORK
	Future Work

	Graph representation of objects constructed from their corresponding CAD models
	Finding Geodesic Neighbourhood Using Model Data

