
An Open Source Solution for Digital Hardware

Verification using Reinforcement Learning

A Thesis

submitted by

Aebel Joe Shibu

in partial fulfilment of the requirements

for the award of the degree of

B.Tech and M.Tech

Department of Electrical Engineering
Indian Institute of Technology Madras

June 2021

THESIS CERTIFICATE

This is to certify that the thesis titled An Open Source Solution for Digital Hardware

Verification using Reinforcement Learning, submitted by Aebel Joe Shibu, to the

Indian Institute of Technology, Madras, for the award of the degree of B.Tech and

M.Tech, is a bonafide record of the research work done by him under our supervision.

The contents of this thesis, in full or in parts, have not been submitted to any other

institute or university for the award of any degree or diploma.

Dr. Pratyush Kumar
DDP Guide
Assistant Professor
Dept. of Computer Science and
Engineering
IIT-Madras, 600 036

Dr. Janakiraman Viraraghavan
DDP Co-guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 18th June 2021

ACKNOWLEDGEMENTS

I sincerely thank my project guide, Dr. Pratyush Kumar, for his valuable insights and

constant guidance throughout my Dual Degree Project timeline. His friendly support

contributed significantly towards the successful completion of this project. I also ex-

press my gratitude towards my teammate Sadhana S for the technical support on the

hardware design aspects and the countless useful discussions that we had. I am also

indebted to my parents and brother for their love and support, which has helped me

through uncertainties time after time.

i

ABSTRACT

KEYWORDS: Digital Hardware Verification, Reinforcement Learning

Digital hardware design verification has traditionally been done by simulating various

input signals and comparing how the design behaves for those inputs with respect to a

reference model. The inputs are chosen randomly, ensuring that they lie within some

valid constraints as per the hardware design specifications. This means that sufficiently

exploring different parts of the design are left to chance and might take very long sim-

ulation times depending on how infrequent certain events occur in the design. The

objective of this project is to provide a open-source software framework capable of

seamlessly incorporating some of the existing reinforcement learning (RL) approaches

into the hardware verification pipeline for improving the process using AI. The frame-

work allows the development of testbenches without significant additional overhead in

terms of engineering effort when compared with traditional hardware design verifica-

tion environment development, and serves as a starting point for further research and

development aimed at making the process more intelligent using AI.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vii

ABBREVIATIONS viii

NOTATION ix

1 INTRODUCTION 1

2 BACKGROUND 3

2.1 Hardware Verification . 3

2.2 Reinforcement Learning . 5

2.3 Why RL is a good candidate for hardware verification 7

3 RELATED WORK 8

4 FRAMEWORK 12

4.1 Overview . 12

4.2 Verilog layer . 13

4.3 RL layer . 14

4.4 Cocotb layer . 16

4.5 Usage . 16

5 EXPERIMENTS 21

5.1 RLE compressor . 22

5.2 COO compressor . 26

5.3 COO decompressor . 27

iii

5.4 RLE decompressor . 33

6 FUTURE WORK 37

LIST OF TABLES

4.1 Mapping of the framework functions to their respective triggers . . . 17

5.1 Functional events tracked in RLE compressor 23

5.2 Functional events tracked in COO compressor 27

5.3 Functional events tracked in COO decompressor 30

5.4 Functional events tracked in RLE decompressor 33

v

LIST OF FIGURES

2.1 State diagram of a 1-bit branch predictor 4

2.2 Block diagram showing a typical digital hardware verification pipeline 5

2.3 The RL feedback loop . 6

2.4 A typical sequential circuit . 7

4.1 An illustration of state aggregation. 13

4.2 A top level view of the framework 13

4.3 Illustration of the definition of an episode in OpenAI Gym environments 15

4.4 Block diagram of the complete framework with the component layers
demarcated using magenta (cocotb layer), blue (Verilog layer) and or-
ange (RL layer) . 17

4.5 Software architecture of the framework 18

5.1 Comparison of functional coverage achieved with the RLE compressor
after 1000 iterations. The x-axis corresponds to e0, e1, e2 and e3, the
four functional events tracked as part of coverage. 24

5.2 Histograms of action component 1 chosen with and without RL feed-
back . 25

5.3 Histograms of action component 2 chosen with and without RL feed-
back . 25

5.4 Histograms of action component 3 chosen with and without RL feed-
back . 25

5.5 Comparison of plots showing the evolution of reward as the steps progress
for the RLE compressor . 26

5.6 Comparison of functional coverage achieved with the COO compressor
after 1000 iterations. The x-axis corresponds to e0, e1, and e2, the three
functional events tracked as part of coverage. 28

5.7 Histograms of action component 1 chosen with and without RL feed-
back . 29

5.8 Histograms of action component 2 chosen with and without RL feed-
back . 29

5.9 Comparison of plots showing the evolution of reward as the steps progress
for the COO compressor . 29

vi

5.10 Comparison of functional coverage achieved with the COO decompres-
sor after 1000 iterations. The x-axis corresponds to e0, e1, and e2, the
three functional events tracked as part of coverage. 31

5.11 Histograms of action component 1 chosen with and without RL feed-
back . 32

5.12 Histograms of action component 2 chosen with and without RL feed-
back . 32

5.13 Comparison of plots showing the evolution of reward as the steps progress
for the COO decompressor . 32

5.14 Comparison of functional coverage achieved with the RLE decompres-
sor after 1000 iterations. The x-axis corresponds to e0, e1, ..., e6, the
seven functional events tracked as part of coverage. 35

5.15 Histograms of action component 1 chosen with and without RL feed-
back . 36

5.16 Comparison of plots showing the evolution of reward as the steps progress
for the RLE decompressor . 36

vii

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

RL Reinforcement Learning

MDP Markov Decision Process

FSM Finite State Machine

DUT Device Under Test

UVM Universal Verification Methodology

RLE Run Length Encoding

SAC Soft Actor Critic

viii

NOTATION

R Reward
S State space
A Action space
st state at the end of timestep t
at action for timestep t
Rt reward at the end of timestep t
ei i-th functional event being tracked
mi weight of event ei in the reward computation
ni number of clock cycles in which event ei was hit

ix

CHAPTER 1

INTRODUCTION

The ability to process and store huge amounts of data has been one of the key enablers

of AI’s recent successes. Even with the vast amounts of useful data that is available

from various spheres, the limitations in how efficiently it is being used lately have been

because of the rapid improvements in hardware technology coming to a halt in the post-

Moore era. With the increasing demand for more powerful hardware, including but not

limited to domain-specific processors, compressors and storage elements, it is necessary

to make the development pipeline of hardware as robust and efficient as possible.

Hardware verification is the procedure of testing if a given hardware design correctly

implements the specification. It is recognized as the largest task in silicon development

and has the biggest impact on the key business drivers of quality, schedule, and cost. As

hardware designs get more complicated, the engineering effort involved for testing and

verification of it becomes one of the key aspects where improvements are possible. A

significant barrier in enabling efficient techniques to come into this sphere is the need

for human intervention in the process. The advent of powerful AI methods which can

now be deployed using nominal resources offers the prospect of replacing some of this

human intervention to save time and effort in the verification procedure.

In addition to demonstrating the successful use of AI in hardware verification, there

arises a need to establish a framework that can serve well as a starting point for fur-

ther research and development on the topic since the various open-source tools that

are required for the individual components of such a framework already exists. Using

AI successfully in the realm of hardware design verification could also speed up the

adoption of such techniques for software design verification in the future.

The key contribution of this project is the development of a framework for ver-

ification of hardware leveraging the existing open-source tools available in the field

of Reinforcement Learning(RL) and hardware verification. The framework is used to

build the verification environments for some hardware designs, examining its usability

in terms of the additional engineering effort involved due to the inclusion of RL into the

development pipeline as well as the improvements in the verification results when the

RL feedback is present. This thesis also identifies why it is a good time to tackle this

problem now and provides a possible roadmap for how this framework could evolve in

the future.

The rest of the thesis is organized as follows. Chapter 2 goes over the preliminaries

of hardware verification and RL. Chapter 3 surveys some of the existing literature on

RL and its applications in the systems field. In addition, some of the open-source tools

available for RL are also examined. Chapter 4 explains the framework developed in

terms of its individual components as well as how those components interact with each

other. Chapter 5 describes some of the experiments performed with this framework and

discusses the results from them. Chapter 6 concludes with the possible next steps in the

context of the framework and its usage.

2

CHAPTER 2

BACKGROUND

2.1 Hardware Verification

Digital hardware verification currently involves the designer specifying a set of con-

straints for the input stimulus to the device under test (DUT) to be valid. The verifi-

cation tests comprise of selecting the input signal values randomly from within these

constraints and simulating the DUT to test the correctness of the design. Although the

sheer randomness in this type of constrained random verification approach is beneficial

for discovering bugs in the design, a more principled approach for hardware verification

currently in use relies on evaluating the quality of the verification in terms of functional

coverage.

The functionality that is to be verified is mapped to certain events in the hardware

design as part of the verification plan and these events are converted to code to define

what are called functional coverage points. The events could be certain signals/registers

taking certain values, certain buffers getting full, etc. completely dependent on the de-

tails of the hardware design. The occurrence of these events during the verification tests

signifies that the required functionality associated with these events has been exercised.

Functional coverage is thus a description of the events that need to happen in the hard-

ware for some functionality to be exercised. It is different from a typical test description

in that, a test description describes how to exercise a design in order to test some func-

tionality while the functional coverage point exists just to ensure that the functionality

was exercised rather than describe the logic for how to test it. Thus evaluating the out-

comes of a verification run using functional coverage is a way to ensure that the design

does indeed meet the corresponding functionality of the design specification correctly.

The functional coverage achieved in a verification run is typically collected by sam-

pling events and combinations of values that have occurred in the DUT, pertaining to

different parts of the design specification. For example, consider a DUT that corre-

sponds to a 1-bit branch predictor. The state diagram is fairly trivial and is shown in

Figure 2.1. It has two states and can be represented using a single bit. Let this bit be

stored in a register REG of the DUT and REG taking the value of 0 correspond to the

Predict "do not take branch" state whereas REG taking the value of 1 correspond to

the Predict "take branch" state. Then, REG == 1 serves as the functional coverage

point for when the DUT has entered the Predict "take branch" state. Thus, if during

the verification run, it is observed that the condition REG == 1 is sampled a sufficient

number of times, the functional correctness of the Predict "take branch" state is more

guaranteed.

Figure 2.1: State diagram of a 1-bit branch predictor

A typical verification pipeline is shown in Figure 2.2. The input generator provides

inputs to the DUT and the reference model. The outputs from both are compared against

each other to verify correctness while the functional coverage gets tracked.

Using functional coverage provides the verification engineer with a measure of the

functional completeness of the testing, and tells them when the goals set out in the

verification plan have been met, and the simulation can be stopped. Instead of writing

tests to exercise specific features of the design, these features are fully enumerated in

the functional coverage model, and the tests are written only to steer the constrained

random stimulus generation towards filling the functional coverage points. The iter-

ative process involving the formulation of these tests is one of the key aspects of the

verification pipeline where human intervention is needed. As part of this work, some

of this feedback using human intelligence has been automated using Reinforcement

Learning(RL) thus making the process more intelligent by itself.

4

Figure 2.2: Block diagram showing a typical digital hardware verification pipeline

2.2 Reinforcement Learning

Reinforcement Learning (RL) refers to an area of machine learning where the problem

is modeled in terms of an environment wherein an agent is expected to make decisions

that should ultimately lead to the solution of the problem. The environment and the

agent are typically referred to as the RL environment and the RL agent respectively, and

the latter is where the intelligence for solving the problem is made to manifest. This

is achieved by allowing the RL agent to learn about the consequences of the decisions

that it takes by feeding it with appropriate rewards.

RL formalizes the problem statement as a Markov Decision Process (MDP) to define

the interaction between the RL agent and the RL environment. The MDP framework is

simple in terms of the components while allowing the representation of a wide variety of

problems. The feedback loop given in Figure 2.3 represents how the RL agent learns.

In each timestep t, the action at chosen by the RL agent results in consequences in

the environment. The environment is represented in such a way that the effects in the

environment in the timestep t has no dependence on the past and is completely specified

(either stochastically or deterministically) by the action taken at and the state at the start

of the timestep st−1. At the end of each timestep, the agent receives the updated state

5

st from the environment. In addition, since the goals of the problem being solved are

modeled in terms of a reward signal, the RL agent also receives a reward Rt at the end

of each timestep indicating whether the consequences of the action at were favorable or

not.

Figure 2.3: The RL feedback loop

Typically, RL attempts to solve the problem by learning through trial and error.

Since the reward signal is formulated such that a positive reward is given to the RL

agent when it chooses an action that results in effects that bring the environment closer

to the goal state, the agent learns to favor that action since it resulted in favorable con-

sequences and in turn led to a positive reward. Therefore, how the reward function is

defined has a significant impact on the ability of the RL agent to solve the problem and

needs to be done with care. In addition, since this process of learning is reliant on the

agent being able to explore actions and discover ones that are rewarding, it results in

the classic exploration vs exploitation tradeoff in RL problems.

Similarly, what each state and action of the MDP represents in terms of the problem

domain is also important. The MDP definition can essentially be seen as a way to

distill the important domain knowledge about the problem in such a way that it can be

represented in a manner solvable using RL algorithms. The MDP definition as well as

the exploration vs exploitation tradeoff are important in the specific context of digital

hardware verification.

6

2.3 Why RL is a good candidate for hardware verifica-

tion

The MDP framework used by RL is a simple way of representing the essential features

of the artificial intelligence problem [Sutton and Barto (2018)]. The underlying similar-

ities between an RL environment and the finite state machine of a hardware design are

what make RL a strong candidate for artificial intelligence to be added into the feedback

loop of hardware verification. The hardware implementation of a finite state machine

(FSM) consists essentially of just two types of components, namely, the combinational

elements and the memory elements as shown in Figure 2.4.

Figure 2.4: A typical sequential circuit

The state of the finite state machine is completely specified by the contents of the

memory elements. This structure of what comprises a state in the hardware naturally

fits into the RL framework as the RL environment is formalized as an MDP which

inherently involves defining states, abstracting the details of what happens in the envi-

ronment. The DUT on which the verification is performed can thus be considered as

the RL environment and the RL agent replaces the human intelligence which steered

the verification procedure towards higher coverage in traditional verification. From this

point on, in order to avoid ambiguity, the state of the FSM is referred to as the hardware

state, and the state of the MDP is referred to as the Markov state wherever applicable.

7

CHAPTER 3

RELATED WORK

Although the essential components of many of the RL algorithms currently in use have

been in existence since the 90s, RL has achieved dramatic breakthroughs only after the

advent of deep learning. Some of the recent achievements in the field involve massive

success in Atari games [Mnih et al. (2013)], Go [Silver et al. (2016)], Chess [Silver

et al. (2017)] and StarCraftII [Vinyals et al. (2019)]. The approximation power of neural

networks along with the ample availability of computing resources is what allowed to

extend the success of RL from tabular low-dimensional problems to problems that are

much larger in scale.

One of the oldest RL algorithms, Q-learning [Watkins and Dayan (1992)] was made

usable for high-dimensional problems in the form of Deep Q-learning [Mnih et al.

(2015)] and is a common algorithm in use today. The value function is approximated

using a neural network which is referred to as a Deep Q-network (DQN). DQNs were

the first among RL algorithms able to work directly from raw visual inputs [Arulku-

maran et al. (2017)] and are now used for RL environments having a discrete action

space.

Another class of RL algorithms that tries to learn the optimal policy of the RL agent

directly exists. These policy search methods could either be based on backpropagation

or gradient-free methods. Some examples of these methods include Trust Region Pol-

icy Optimization (TRPO) [Schulman et al. (2017a)] and Proximal Policy Optimization

(PPO) [Schulman et al. (2017b)]. In contrast to DQNs, these methods are usable in RL

environments with continuous action spaces as well.

Actor-Critic algorithms are another kind of popular RL algorithms that combine

some of the advantages of policy search methods with traditional learned value func-

tions. These methods involve the training of one neural network for the policy of the

RL agent and another neural network for the value function and another neural network

for the policy. These two networks are called the Actor network and the Critic network

respectively and together they constitute the Actor Critic algorithm. An example of

this class of algorithms is Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al.

(2015)]. DDPG is closely related to deep Q-learning and can be considered as deep

Q-learning for continuous action spaces rather than discrete action spaces.

Soft Actor Critic (SAC) [Haarnoja et al. (2018)] is an actor-critic method the train-

ing of which involves maximizing the expected return while regularizing entropy of the

policy. This algorithm is used as part of the RL feedback in the framework developed

in this project as it achieves state-of-the-art performance in some of the RL benchmarks

and seemed more robust to randomness.

RL has seen a notable amount of success in the systems field. DeepRM [Mao et al.

(2016)] and DeepRM2 [Ye et al. (2018)] are two of the recent success stories in the

resource management domain. Policy gradient methods were used to solve the prob-

lem of handling tasks with different resource demands. Liu et al. (2017) proposes a

hierarchical framework using RL for resource allocation as well as power management

in cloud computing systems. The hierarchical nature of the framework was adopted to

reduce the complexity of the state/action space and to enable distributed operation of

power management [Li (2018)].

Several applications of RL can be seen in the field of network routing protocols

as discussed by Mammeri (2019). A notable algorithm called Q-routing [Boyan and

Littman (1993)] which is based on Q-learning serve as the starting point for many of the

existing RL based routing algorithms. Chen et al. (2020) proposes RLRouting which

uses network throughput and delay to compute the reward for the RL agent. The agent

learns a policy that predicts the future behavior of the network and suggests better rout-

ing paths between switches.

In the context of hardware systems, RL has been successfully used for building a

solution to the problem of chip placement, one of the important stages of the hardware

chip design process. Mirhoseini et al. (2020) formulates the reward signal using the

wirelength required as a measure of the placement quality as the RL agent attempts to

map the nodes of a chip netlist onto a chip canvas. Another application of RL in the

systems field, related to security can be seen in [Böttinger et al. (2018)] where deep RL

is used to aid fuzzing to find security vulnerabilities in input-processing code.

Specific to hardware verification, with simulation-based verification as the predom-

9

inant method for hardware verification, many sophisticated approaches using Bayesian

networks, genetic algorithms, Markov models, and inductive logic have been tried to

improve its effectiveness, as reviewed by Ioannides and Eder (2012). One such recent

work involves [Wang et al. (2018)] in which artificial neural networks(ANN) are used in

the verification pipeline to extract critical features of the test transactions and also learn

the priority of coverage groups based on previous test iterations. Using this information

which the neural network learns over multiple previous iterations, the input stimulus to

the DUT is modified in the subsequent test iterations. Another recent work by Singh

et al. (2019) involves the use of RL to generate all possible sequences of vectors needed

to approach a target state as well as the corresponding path to the target state which

contains a potential design error. This approach uses prior information in the form of

the state diagram of the FSM to devise the RL feedback. Hughes et al. (2019) recom-

mends the use of RL for design verification, where the verification problem is modeled

as a single step MDP and serves as a key starting point for this project.

The use of AI in providing feedback to coverage-based hardware verification pipelines

introduces the need for verification engineering personnel to be knowledgeable in the

related techniques. Therefore, an important criterion for selecting such a method for

practical use is how technically demanding it would be to construct and fine-tune the

verification environment [Ioannides and Eder (2012)]. In addition, ease of problem rep-

resentation, the extent of prior knowledge about the design required, and how well the

framework can accommodate different kinds of designs are some other important crite-

ria to be considered. Taking into account all these factors, the framework built as part

of this work is believed to be a good choice.

Although test benches for verification of hardware have been traditionally written

using hardware description languages(HDLs) like VHDL or SystemVerilog, cocotb has

been used for this project. Cocotb is a free and open-source package using which the

test benches for verification can be written in a higher-level general-purpose program-

ming language like Python. It encourages the same philosophy of design re-use and

randomized testing as Universal Verification Methodology(UVM) and was specifically

designed to lower the overhead of creating a test [Higgs and Hodgeson (2013)]. The

advantage of being able to use Python for the tests is twofold. Firstly, test benches are

easier to write and set up since Python is a programming language that is much more ac-

cessible and widely used compared to conventional HDLs. Secondly, and more relevant

10

to this work, the testbench logic being completely written in Python provides access to

a plethora of open-source software packages which are compatible with Python. This is

paramount in letting us efficiently leverage the existing work in the field of AI since a

major chunk of the research and development done in this regard has been using Python.

One such open-source tool used as part of this work in order to build a robust frame-

work with RL is OpenAI Gym. One of the key problems in the field of RL that OpenAI

Gym tried to solve was the lack of standardization of RL environments used in pub-

lished research [Brockman et al. (2016)]. The RL environments provided as part of

Gym were made to adhere to a specific structure that was general enough to be able to

represent a wide variety of RL environments using the library. In addition, tools were

provided for new RL environments to be defined in the same structure. Since Gym does

not make any assumptions about the structure of the RL agent, it is compatible with the

various numerical computation and RL algorithm packages available.

Complementing the RL environment implemented with the help of OpenAI Gym,

Stable Baselines3, a set of reliable implementations of reinforcement learning algo-

rithms in PyTorch [Raffin et al. (2019)], has been used for the RL agent as part of this

work. In essence, the usage of cocotb has made the implementation of the verification

testbench to be in Python which results in access to RL tools like OpenAI Gym and Sta-

ble Baselines3 and easy interfacing of these tools with the verification pipeline using

the sophisticated control available in Python. There are also projects like RL Baselines3

Zoo [Raffin (2020)] which consist of supporting resources for aiding the successful use

of Stable Baselines3 by providing scripts for training, evaluating agents, tuning hyper-

parameters and plotting results. In addition it contains tuned hyperparameter values for

common RL agents and environments.

The final building block used in the framework is the open-source tool Verilator

[Snyder (2001)] which is compatible with cocotb and is used to simulate the hardware

design written in Verilog for the verification procedure.

11

CHAPTER 4

FRAMEWORK

4.1 Overview

The hardware verification problem has been modeled as an episodic RL task where each

run of the verification procedure corresponds to one RL episode. Each episode could

comprise multiple timesteps (used interchangeably with step) where each step involves

the RL agent receiving the state and reward signal from the environment, followed by

generating the next action based on some policy. As part of the MDP definition, the

input stimulus to the DUT has to be parameterized suitably using the action space.

Thus each action chosen by the agent should result in a sequence of valid input signals

driving the DUT for that step of the RL episode. Subsequently, the reward signal can

be defined as a function of the number of times each of the functional events that need

to be covered in the verification procedure are hit.

Although the most natural way to define the Markov state space would be to have

it similar to the state space of the FSM of the DUT, this is impractical since the state

space of the FSM could be huge with potentially thousands of registers. Instead, some

of the key registers associated with the DUT could be identified and used to define the

Markov state space. Such a representation is still meaningful and can be considered as a

way of state aggregation wherein a large number of the states of the FSM are combined

to form aggregated states that map to the Markov states in the MDP. An illustration of

this concept is shown in Figure 4.1. Since this sort of state aggregation results in the

loss of details about how the component states of the aggregated state interact, it has to

be done without losing sight of what the key registers that can be used to represent the

DUT are. The choice of what these registers are is essentially a way of providing prior

domain knowledge to the RL agent by better representing the problem.

The architecture of the framework consists of three layers that interact with one

another as shown in Fig. 4.2. The Verilog layer consists of the hardware design writ-

ten using Verilog and the cocotb layer consists of the testbench written using cocotb.

Figure 4.1: An illustration of state aggregation.

These two layers interact with each other, simulating the DUT according to the verifica-

tion logic. A conventional verification environment for hardware, written using cocotb,

consists only of these two layers. The RL layer has been added on top of this to inter-

act directly with the cocotb layer and indirectly with the Verilog layer (that is, DUT),

thus completing the feedback loop for adding intelligence to the process. The details

associated with the three layers are discussed in the following sections.

Figure 4.2: A top level view of the framework

4.2 Verilog layer

Everything written using Verilog constitutes this layer. Although in traditional verifi-

cation environments, both the hardware design and the test bench logic can be written

13

using Verilog/SystemVerilog, in cocotb-based verification, only the hardware design is

written using Verilog. The testbench logic is instead using cocotb/Python. Therefore

in our framework, the Verilog layer contains only the DUT design. The DUT is instan-

tiated as the top level in the simulator and receives stimulus from the cocotb layer to

drive the input signals for verification. Further, it interacts with the cocotb layer so that

the verification run can be monitored for the coverage and computing the necessary data

for the RL feedback.

4.3 RL layer

The RL agent makes up the core of the RL layer. The agent was implemented using

Stable Baselines3 but can be replaced with any RL algorithm library as long as it is

compatible with OpenAI Gym environments as the verification environment was mod-

eled in the Gym format. The RL layer logic is executed in a process of its own which

runs in parallel with the process that handles the cocotb and Verilog layers. This process

can be thought of as the agent process, while the process which contains the logic of

the cocotb layer and Verilog layer is the environment process.

The execution flow of each RL episode in a Gym environment can is in phases as

shown in Figure 4.3. Every episode starts with a call to the reset function of the Gym

environment. The reset function is used to reset the RL environment to the start state

before the beginning of the next episode. Followed by this, the step function which

executes the logic for each timestep gets called. One episode of RL could comprise of

just a single step or could have multiple successive steps as shown in Figure 4.3. The

number of steps in each RL episode, as well as, what each step corresponds to in terms

of the DUT verification procedure is a property of the environment and hence decided

by the user who devises the verification logic for that DUT.

The agent process and the environment process communicate with each other with

the help of a Pipe object which is native to the multiprocessing module of Python.

Through this pipe, the RL agent sends the action for the next step, as dictated by the

policy it follows, to the environment process. Similarly, at the end of each step, the

RL agent receives the information related to the state and reward, from the environment

process, through this pipe.

14

Figure 4.3: Illustration of the definition of an episode in OpenAI Gym environments

15

4.4 Cocotb layer

The cocotb layer contains the testbench for verifying the DUT. It interacts with the

DUT during the simulation and acts as the bridge between the Verilog and RL layers.

The logic of this layer executes as part of the environment process that runs in parallel

with the agent process discussed in Section 4.3. The action chosen by the RL agent at

the start of each timestep is received at this layer through the pipe and is processed to

generate the exact input signal sequence that must be driven to the DUT as part of that

step. While the DUT gets simulated with that input sequence, the elements of interest

within the DUT like registers, buffers, etc., are monitored using cocotb coroutines,

similar to how it is done in a traditional cocotb-based hardware verification setup. Once

the verification logic for that step completes, the information required for the Markov

state and reward computation is communicated back to the agent process via the pipe.

The complete block diagram of what happens in the framework in one timestep,

along with which layer each block belongs to, is shown in Figure 4.4.

Although the OpenAI Gym environment-related function definitions reside in the

RL layer, the verification logic associated with the environment is in the cocotb layer.

The verification logic in the cocotb layer is triggered when the RL agent calls the reset()

and step() functions of the Gym environment. Similar to how a conventional Gym

environment is implemented by defining the state and action spaces and overriding the

reset() and step() functions provided in the Gym module, for implementing the hardware

verification testbench logic, abstract function definitions that can be overridden by the

user, are provided in the cocotb layer. These functions get called in the simulation loop

in a specific sequence based on triggers from the RL agent and RL environment. The

cocotb layer architecture is defined with abstract functions like this so that the user can

write verification logic of any complexity using cocotb without having to deal with the

details of interfacing between the RL and cocotb layers. The key abstract functions and

their respective triggers are shown in Table 4.1.

4.5 Usage

The overall software architecture of the framework is presented in Figure 4.5.

16

Figure 4.4: Block diagram of the complete framework with the component layers de-
marcated using magenta (cocotb layer), blue (Verilog layer) and orange (RL
layer)

Table 4.1: Mapping of the framework functions to their respective triggers

Cocotb layer function Trigger
setup_rl_episode() reset() of Gym environment

rl_step() step() of Gym environment
terminate_rl_episode() End of 1 episode

17

Figure 4.5: Software architecture of the framework

18

Building a verification testbench using this framework requires formalizing the

problem as an MDP and implementing the verification logic for the DUT as discussed in

the previous sections. The MDP formalization starts with defining what each timestep(step)

of an RL episode involves in terms of the verification logic that must be executed on the

DUT.

In each such step, the RL agent chooses an action from the action space of the MDP

based on some policy. The framework offers an action space that is based on probability

knobs that parameterize the input stimulus to the DUT. Each individual knob results in

a real number lying in the range [0, 1] and can collectively be considered as a set of

independent probability values which can be used to stochastically specify the input

signal sequence for that step. The user can choose the number of such knobs required

in the action space and how the input sequence should be generated from these knobs.

In addition to this, the user also has the option of specifying finite sets of discrete values,

which need to be included as part of the action space. Such discrete sets are supported

as part of the action space by mapping equal ranges of the continuous interval [0, 1], in

which the knob value lies, to the values of the discrete set.

By default, the framework assumes a single step, single Markov state environment.

However, the user can provide the implementation of the function which calculates the

Markov state based on the internals of the DUT if the verification requires a multi-state

MDP.

Identifying the functional events of interest in the DUT is the next step. These

events are what is being targeted for increased functional coverage and how much each

of them is covered is used to compute the reward that is given to the RL agent. The

events can be tracked using coroutines in the cocotb layer of the framework.

The user can also specify the reward function that needs to be associated with the

functional coverage observed in each step of the RL episode. Let ei denote the i+ 1-th

functional event of interest that needs to be covered. For each such event that occurs

during a step, an integer specified by the user is multiplied with the number of times

that event occurred in the step in order to compute the contribution of that particular

19

event to the reward. That is, reward

R =
i=N−1∑
i=0

ni ×mi (4.1)

where N denotes the number of events being monitored in the step, ni denotes the num-

ber of times ei occurred in the step and mi denotes the user-specified integer multiplier

that decides the contribution of ei to the reward.

This manner of defining the reward function is also handy for reward shaping. Con-

sider an event e5 that occurs only when the events e3 and e4 occur together. In such a

case, assigning a reward only for e5 by setting just m5 as positive (say, 1) might not

lead to e5 getting covered sufficiently if e3 and e4 themselves are rare. In such a case, a

reward function where m3 and m4 is set as 1 and m5 is set as 2 leads to a better-shaped

reward function that has a higher chance of hitting e5 since the events e3 and e4 which

lead to e5 is encouraged too.

The framework also supports a mode where conventional random verification with-

out the RL feedback loop can be performed in order to obtain a baseline for comparison

with the methods involving RL.

20

CHAPTER 5

EXPERIMENTS

The objectives of the following experiments involved testing the usability of the frame-

work when applied to different hardware designs as well as studying the improvements

when using RL. The hardware designs were written in Bluespec SystemVerilog and the

testbenches were built using the framework developed.

The verification experiment was first done without using RL for 1000 iterations to

obtain a baseline based on traditional random verification. Subsequently, the verifica-

tion experiment was performed after enabling the RL feedback for the same number

of iterations. To demonstrate the advantage of using RL, the experiments attempted to

increase the functional coverage of certain events of interest which occurred relatively

less frequently in the DUT during simulation under a conventional random verification

run. The N functional events tracked as part of coverage, in each of the following ex-

periments, are denoted by e0, e1, e2, ..., eN−1. Thus when using RL, the objective is to

increase the number of times a certain ei is hit. This is a useful goal as the states of the

DUT which are hard to hit and thus constitute corner cases in conventional verification

can be made easier to hit by increasing the coverage of the events that in turn lead to

those corner cases.

The algorithm used by the RL agent during the experiments was Soft Actor Critic.

SAC optimizes a stochastic policy in an off-policy way and is trained to maximize a

tradeoff between expected reward and entropy, a measure of randomness in the policy.

The verification task was modeled as an episodic task comprising a single step. Each

RL step involved simulating the DUT and reference model with some inputs. The

action space involved different parameters that control these inputs that were supplied

to the DUT while the Markov state space consisted only of a single unchanging state

throughout. The RL agent explored the action space by perturbing the last chosen action

with normal noise sampled from N (0, 0.1).

5.1 RLE compressor

The RLE compressor design takes in a sequence of natural numbers and compresses

it using run length encoding. Thus, it attempts to reduce the length of the sequence

by representing the consecutive zeros in the input sequence using their count. The de-

sign involved two design configuration parameters count_width and word_width which

defined the number of bits used to represent each zero count and each non-zero ele-

ment respectively. The internal working and details of the component registers of the

compressor are omitted.

Since the execution logic of the DUT is dependent on the number of zeros in the

sequence that is to be compressed, the ability to generate this sequence was given to

the RL agent by making the probability of each element of the sequence being zero

as a parameter in the action space of the agent. In addition to this, since the design

configuration parameter count_width, as well as the length of the sequence that needs to

be compressed, can affect the coverage, they are added to the action space as well. The

action space thus becomes the cross product [0, 1]×{1, 2, ..., 8}×{100, 200, ..., 1000}.

Each action from this space can be represented using three components, the first of

which will be used as the generator probability knob for the sequence while the second

will be used as the value for the parameter count_width and the third will be used as the

length of the sequence. For example, if the action that gets chosen by the agent is (0.4,

6, 300), then a sequence of 300 natural numbers will be generated, where each number

will be 0 with a probability of 0.4 and the count_width parameter would be set as 6.

The word_width parameter was set constant as 4 throughout this experiment.

During the verification process, there were 4 events of interest tracked as part of the

functional coverage. The exact conditions associated with these events in the hardware

are not important for the results, but are provided in the second column of Table 5.1 for

the sake of completeness.

The results presented below involve comparisons against a baseline involving con-

ventional random verification with the same input space and parameterization as the RL

experiment. e3 was the functional event which was targeted to test if the coverage could

be increased using RL. Therefore, the reward multiplier m3 associated with it was set

as 1 while the other multipliers were set to 0 as shown in Table 5.1. Thus a positive

22

Table 5.1: Functional events tracked in RLE compressor

Functional event (ei) Condition Reward multiplier(mi)
e0 rg_word_counter == 16 0
e1 rg_zero_counter == 64 0
e2 rg_counter == (2count_width − 2) 0
e3 rg_next_count != 0 1

reward was given to the RL agent for each clock cycle in which the event e3 was hit.

Figure 5.1 shows the comparison between functional coverage involving the 4 events

tracked in both the cases. Event e3 occurred 12,290 times in the random verification

baseline as shown in Figure 5.1a whereas when RL feedback was used, its coverage

increased to 59,160 times as shown in Figure 5.1b. The event e3 happens only when a

special case in the design logic gets exercised. Therefore the increase in its coverage

gives more confidence to the correctness of that logic.

The increase in functional coverage observed was due to the RL agent favoring

certain actions from the action space based on the reward that was received. Figures

5.2, 5.3 and 5.4 show the comparison between the choices made by the RL agent for

each of the three components of action. In the histograms of the action choices in the

baseline, the distribution is uniform as the actions are sampled randomly from the action

space whereas in the histograms of the action choices when RL feedback was provided,

there is a preference to certain actions which gets learnt over time as the agent receives

more training experience samples during the experiment.

Although the baseline does not involve the training of a RL agent, the reward com-

putation is still done based on equation 4.1, for comparison. The rewards thus calculated

in each step has been plotted in Figure 5.5. In Figure 5.5a, the resulting reward in each

step has no notable trend since the action choices are completely random in the base-

line, whereas in Figure 5.5b, the reward increases as more steps are completed and the

experiment progresses. This is because the RL agent learns from the reward signal and

starts favoring the actions which lead to better rewards as discussed above.

23

(a) Baseline without RL feedback

(b) With RL feedback

Figure 5.1: Comparison of functional coverage achieved with the RLE compressor af-
ter 1000 iterations. The x-axis corresponds to e0, e1, e2 and e3, the four
functional events tracked as part of coverage.

24

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.2: Histograms of action component 1 chosen with and without RL feedback

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.3: Histograms of action component 2 chosen with and without RL feedback

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.4: Histograms of action component 3 chosen with and without RL feedback

25

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.5: Comparison of plots showing the evolution of reward as the steps progress
for the RLE compressor

5.2 COO compressor

Given an input sequence, the COO compressor compresses it by denoting only the non-

zero elements and their corresponding indices as part of the compressed sequence. COO

is short for “co-ordinate list". The design involved two design configuration parameters

word_width and index_width which defined the number of bits used to represent each

non-zero word and the number of bits used to represent its corresponding index in the

sequence. Both of these parameter values were chosen by the RL agent for the verifica-

tion. The details of the component registers and their internal working is omitted.

The action space was the cross product {1, 2, ..., 8}×{1, 2, ..., 8} as both index_width

and word_width. Thus each action from this space had two components, the first being

the index_width value and the second being the word_width value. For example, if the

action that gets chosen by the agent is (3, 7), then the index_width and word_width

values were set as 3 and 7 respectively for the decompression operation the hardware

performed. The input sequence which the DUT was supplied was 100 elements long.

There were 3 events of interest tracked as part of the functional coverage. The exact

conditions associated with these events in the hardware are not important for the results,

but are provided in the second column of Table 5.2 for the sake of completeness.

The results presented below involve comparisons against a baseline involving con-

ventional random verification similar to the previous experiment. e2 was the functional

event which was targeted to test if the coverage could be increased using RL. Therefore,

26

Table 5.2: Functional events tracked in COO compressor

Functional event (ei) Condition Reward multiplier(mi)
e0 rg_block_counter == 16 0
e1 rg_block_length % 4 != 0 1
e2 rg_next_count != 0 0

the reward multiplier m2 associated with it was set as 1 while the other multipliers were

set to 0 as shown in Table 5.2. Thus a positive reward was given to the RL agent for

each clock cycle in which the event e2 was hit.

Figure 5.6 shows the comparison between functional coverage involving the 3 events

tracked in both the cases. Event e2 occurred 196,314 times in the random verification

baseline as shown in Figure 5.6a whereas when RL feedback was used, its coverage

increased to 364,874 times as shown in Figure 5.6b.

The comparison between the histograms of the action choices made as well as the

reward plots are given below like in Section 5.1. The RL agent favoring certain actions

in the action space is observable in Figures 5.7 and 5.8. The higher value of computed

rewards is observable in Figure 5.9.

5.3 COO decompressor

Given a compressed sequence which denotes the elements of the original sequence

using just the indices and values of the non-zero elements in it, the COO decompressor

produces the original sequence. That is, the functionality of this design is essentially the

inverse of that of the COO compressor discussed in Section 5.2. The design involved

two design configuration parameters word_width and index_width which defined the

number of bits used to represent each non-zero word and the number of bits used to

represent its corresponding index in the sequence. Both of these parameter values were

chosen by the RL agent for the verification. The details of the component registers and

their internal working is omitted.

The action space was the cross product {1, 2, ..., 8}×{1, 2, ..., 8} as both index_width

and word_width. Thus each action from this space had two components, the first being

the index_width value and the second being the word_width value. For example, if the

27

(a) Baseline without RL feedback

(b) With RL feedback

Figure 5.6: Comparison of functional coverage achieved with the COO compressor af-
ter 1000 iterations. The x-axis corresponds to e0, e1, and e2, the three func-
tional events tracked as part of coverage.

28

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.7: Histograms of action component 1 chosen with and without RL feedback

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.8: Histograms of action component 2 chosen with and without RL feedback

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.9: Comparison of plots showing the evolution of reward as the steps progress
for the COO compressor

29

action that gets chosen by the agent is (4, 6), then the index_width and word_width

values were set as 4 and 6 respectively for the decompression operation the hardware

performed. The compressed sequence which the DUT was supplied was 20 elements

long.

There were 3 events of interest tracked as part of the functional coverage. The exact

conditions associated with these events in the hardware are not important for the results,

but are provided in the second column of Table 5.3 for the sake of completeness.

Table 5.3: Functional events tracked in COO decompressor

Functional event (ei) Condition Reward multiplier(mi)
e0 rg_block_counter == 16 0
e1 (rg_word_width + rg_index_width) %4 != 0 1
e2 rg_next_count != 0 0

The results presented below involve comparisons against a baseline involving con-

ventional random verification similar to the previous experiments. e1 was the functional

event which was targeted to test if the coverage could be increased using RL. Therefore,

the reward multiplier m1 associated with it was set as 1 while the other multipliers were

set to 0 as shown in Table 5.3. Thus a positive reward was given to the RL agent for

each clock cycle in which the event e1 was hit.

Figure 5.10 shows the comparison between functional coverage involving the 3

events tracked in both the cases. Event e1 occurred 105,938 times in the random ver-

ification baseline as shown in Figure 5.10a whereas when RL feedback was used, its

coverage increased to 189,241 times as shown in Figure 5.10b.

The comparison between the histograms of the action choices made as well as the

reward plots are given below like in the previous sections. The RL agent favoring certain

actions in the action space is observable in Figures 5.11 and 5.12. The higher value of

computed rewards is observable in Figure 5.13.

30

(a) Baseline without RL feedback

(b) With RL feedback

Figure 5.10: Comparison of functional coverage achieved with the COO decompressor
after 1000 iterations. The x-axis corresponds to e0, e1, and e2, the three
functional events tracked as part of coverage.

31

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.11: Histograms of action component 1 chosen with and without RL feedback

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.12: Histograms of action component 2 chosen with and without RL feedback

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.13: Comparison of plots showing the evolution of reward as the steps progress
for the COO decompressor

32

5.4 RLE decompressor

Given an input sequence which is compressed using run length encoding, the RLE de-

compressor produces the original sequence. The functionality of this design is thus the

inverse of that of the RLE compressor from Section 5.1. The design involved two de-

sign configuration parameters word_width and count_width which defined the number

of bits used to represent each zero count and each non-zero element respectively. The

internal working and details of the component registers of the compressor are omitted.

The verification logic started with generating a sequence of length 400 and com-

pressing it using run length encoding with the values of word_width and count_width

as 4 and 6 respectively. The probability of each element of this sequence being 0 is

The action space of the RL agent was the interval [0, 1] and the value chosen, say p

where p ∈ [0, 1] was used to generate a sequence where each element of the sequence

was 0 with p probability. The length of this sequence was set as 400. The sequence

was then compressing using run length encoding with the values of word_width and

count_width as 4 and 6 respectively. It was this compressed sequence that was supplied

as input to the RLE decompressor for its verification test.

There were 7 events of interest tracked as part of the functional coverage. The exact

conditions associated with these events in the hardware are not important for the results,

but are provided in the second column of Table 5.4 for the sake of completeness.

Table 5.4: Functional events tracked in RLE decompressor

Functional event (ei) Condition Reward multiplier(mi)
e0 rg_count_valid == 0 0
e1 rg_word_valid == 0 0
e2 rg_counter_valid == 0 0
e3 rg_zero_counter == 64 0
e4 rg_word_counter == 16 0
e5 rg_counter == 2**count_width - 2 1
e6 rg_next_count != 0 0

The results presented below involve comparisons against a baseline involving con-

ventional random verification similar to the previous experiment. e5 was the functional

event which was targeted to test if the coverage could be increased using RL. Therefore,

33

the reward multiplier e5 associated with it was set as 1 while the other multipliers were

set to 0 as shown in Table 5.4. Thus a positive reward was given to the RL agent for

each clock cycle in which the event e5 was hit.

Figure 5.14 shows the comparison between functional coverage involving the 3

events tracked in both the cases. Event e5 occurred 3,397 times in the random veri-

fication baseline as shown in Figure 5.14a whereas when RL feedback was used, its

coverage increased to 4,756 times as shown in Figure 5.14b.

The comparison between the histograms of the action choices made as well as the

reward plots are given below like in Section 5.1. The RL agent favoring certain actions

in the action space is observable in Figure 5.15. The higher value of computed rewards

is observable in Figure 5.16.

34

(a) Baseline without RL feedback

(b) With RL feedback

Figure 5.14: Comparison of functional coverage achieved with the RLE decompressor
after 1000 iterations. The x-axis corresponds to e0, e1, ..., e6, the seven
functional events tracked as part of coverage.

35

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.15: Histograms of action component 1 chosen with and without RL feedback

(a) Baseline without RL feedback (b) With RL feedback

Figure 5.16: Comparison of plots showing the evolution of reward as the steps progress
for the RLE decompressor

36

CHAPTER 6

FUTURE WORK

Although the inclusion of RL into the hardware verification procedure is believed to

be a valuable step in the right direction, there are still challenges that need to be ad-

dressed. The exploration vs exploitation tradeoff plays a significant role in the context

of applying RL to hardware verification. With setups involving just a single Markov

state as part of the state space (like in the experiments presented in Chapter 5), hit-

ting coverage holes are difficult. The rewards assigned to reaching these coverage holes

could be high but since by definition coverage holes are difficult to reach by exploration,

these rewards will be exceedingly sparse leading to no significant learning for the RL

agent. The most natural way of tackling this challenge involves expanding the Markov

state space and using more sophisticated RL algorithms that are better suited for sparse

reward environments.

Even for moderately complex designs, if an MDP with multiple states is required,

it involves carefully defining what each Markov state represents in terms of the DUT

elements. Intrinsic reward signals like Curiosity [Pathak et al. (2017)] and count-based

exploration techniques involving hashing [Tang et al. (2017)] are possibilities for aiding

the agent to explore when the MDP state space grows more, whereas the discrete action

space growing too large can be handled by the method suggested by Dulac-Arnold et al.

(2016).

Another idea that is worth pursuing to target coverage holes during verification in-

volves Hindsight Experience Replay (HER) [Andrychowicz et al. (2018)]. The cover-

age holes serve as the goal states that need to be reached by the agent using hindsight

in such a setup. The recent work by Lee and Moon (2021) suggests an approach where

HER is used with SAC, the RL algorithm used in this project.

The open-source framework developed as part of this work was found to be viable

for building RL-based verification setups for various digital hardware designs without

significant overhead in terms of the engineering effort required. The interfacing be-

tween the cocotb and the RL components of the framework is seamless, allowing the

user to implement any verification logic that is possible in traditional verification setups.

It also serves as a starting point for integrating more sophisticated RL ideas mentioned

above into the hardware verification procedure and experimenting with them.

38

REFERENCES

1. Andrychowicz, M., F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-
Grew, J. Tobin, P. Abbeel, and W. Zaremba (2018). Hindsight experience replay.

2. Arulkumaran, K., M. P. Deisenroth, M. Brundage, and A. A. Bharath (2017). A
brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866.

3. Boyan, J. A. and M. L. Littman, Packet routing in dynamically changing networks: A
reinforcement learning approach. In Proceedings of the 6th International Conference on
Neural Information Processing Systems, NIPS’93. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1993.

4. Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba (2016). Openai gym.

5. Böttinger, K., P. Godefroid, and R. Singh (2018). Deep reinforcement fuzzing.

6. Chen, Y.-R., A. Rezapour, W.-G. Tzeng, and S.-C. Tsai (2020). Rl-routing: An
sdn routing algorithm based on deep reinforcement learning. IEEE Transactions on
Network Science and Engineering, 7(4), 3185–3199.

7. Dulac-Arnold, G., R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt,
T. Mann, T. Weber, T. Degris, and B. Coppin (2016). Deep reinforcement learning in
large discrete action spaces.

8. Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor.

9. Higgs, C. and S. Hodgeson (2013). cocotb. URL https://github.com/
cocotb/cocotb.

10. Hughes, W., S. Srinivasan, R. Suvarna, and M. Kulkarni (2019). Optimizing design
verification using machine learning: Doing better than random.

11. Ioannides, C. and K. I. Eder (2012). Coverage-directed test generation automated by
machine learning – a review. ACM Trans. Des. Autom. Electron. Syst., 17(1). ISSN
1084-4309. URL https://doi.org/10.1145/2071356.2071363.

12. Lee, M. H. and J. Moon (2021). Deep reinforcement learning-based uav navigation
and control: A soft actor-critic with hindsight experience replay approach.

13. Li, Y. (2018). Deep reinforcement learning: An overview.

14. Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra (2015). Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971.

15. Liu, N., Z. Li, Z. Xu, J. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang (2017). A hi-
erarchical framework of cloud resource allocation and power management using deep
reinforcement learning.

39

https://github.com/cocotb/cocotb
https://github.com/cocotb/cocotb
https://doi.org/10.1145/2071356.2071363

16. Mammeri, Z. (2019). Reinforcement learning based routing in networks: Review and
classification of approaches. IEEE Access, 7, 55916–55950.

17. Mao, H., M. Alizadeh, I. Menache, and S. Kandula, Resource management with deep
reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot Topics in
Networks, HotNets ’16. Association for Computing Machinery, New York, NY, USA,
2016. ISBN 9781450346610. URL https://doi.org/10.1145/3005745.
3005750.

18. Mirhoseini, A., A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee,
E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong, K. Srinivasa, W. Hang,
E. Tuncer, A. Babu, Q. V. Le, J. Laudon, R. Ho, R. Carpenter, and J. Dean (2020).
Chip placement with deep reinforcement learning.

19. Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

20. Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015). Human-level
control through deep reinforcement learning. nature, 518(7540), 529–533.

21. Pathak, D., P. Agrawal, A. A. Efros, and T. Darrell (2017). Curiosity-driven explo-
ration by self-supervised prediction.

22. Raffin, A. (2020). Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo.

23. Raffin, A., A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann (2019).
Stable baselines3. https://github.com/DLR-RM/stable-baselines3.

24. Schulman, J., S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel (2017a). Trust region
policy optimization.

25. Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017b). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

26. Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. (2016). Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587),
484–489.

27. Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-
tot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis
(2017). Mastering chess and shogi by self-play with a general reinforcement learning
algorithm.

28. Singh, K., R. Gupta, V. Gupta, A. Fayyazi, M. Pedram, and S. Nazarian, A hybrid
framework for functional verification using reinforcement learning and deep learning.
In Proceedings of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI ’19. Asso-
ciation for Computing Machinery, New York, NY, USA, 2019. ISBN 9781450362528.
URL https://doi.org/10.1145/3299874.3318039.

29. Snyder, W. (2001). Verilator. URL https://veripool.org/verilator/.

40

https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/stable-baselines3
https://doi.org/10.1145/3299874.3318039
https://veripool.org/verilator/

30. Sutton, R. S. and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

31. Tang, H., R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. D.
Turck, and P. Abbeel (2017). #exploration: A study of count-based exploration for
deep reinforcement learning.

32. Vinyals, O., I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al. (2019). Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782), 350–354.

33. Wang, F., H. Zhu, P. Popli, Y. Xiao, P. Bodgan, and S. Nazarian, Accelerating cover-
age directed test generation for functional verification: A neural network-based frame-
work. In Proceedings of the 2018 on Great Lakes Symposium on VLSI, GLSVLSI
’18. Association for Computing Machinery, New York, NY, USA, 2018. ISBN
9781450357241. URL https://doi.org/10.1145/3194554.3194561.

34. Watkins, C. J. and P. Dayan (1992). Q-learning. Machine learning, 8(3-4), 279–292.

35. Ye, Y., X. Ren, J. Wang, L. Xu, W. Guo, W. Huang, and W. Tian (2018). A new
approach for resource scheduling with deep reinforcement learning.

41

https://doi.org/10.1145/3194554.3194561

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	BACKGROUND
	Hardware Verification
	Reinforcement Learning
	Why RL is a good candidate for hardware verification

	RELATED WORK
	FRAMEWORK
	Overview
	Verilog layer
	RL layer
	Cocotb layer
	Usage

	EXPERIMENTS
	RLE compressor
	COO compressor
	COO decompressor
	RLE decompressor

	FUTURE WORK

