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ABSTRACT

KEYWORDS: Reinforcement Learning, Object Detection, Camera Parameters

The performance of a trained object detection neural network depends a lot on the

image quality. Generally, images are pre-processed before feeding them into the neural

network and domain knowledge about the image dataset is used to choose the pre-

processing techniques. In this thesis, an algorithm called ObjectRL is introduced which

chooses the amount of a particular pre-processing to be applied to improve the object

detection performances of a pre-trained network. The main motivation for ObjectRL

is that an image which looks good to a human eye may not necessarily be the optimal

one for a pre-trained object detector to detect objects. We also introduce an algorithm

called hImgRL which is trained with reinforcement learning with a human-based reward

system to recover back a human-pleasing image.
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CHAPTER 1

INTRODUCTION

1.1 Overview

With the advent of convolutional neural networks, object detection in images has im-

proved significantly giving rise to several object detection algorithms like YOLO [Red-

mon et al. (2015)], SSD [Liu et al. (2015)], etc. Most object detection networks work

with raw image pixels as inputs. The networks are highly nonlinear in nature and thus

the output predictions depend a lot on the image parameters like brightness, contrast,

etc. [Osadchy and Keren (2001); Linderoth et al. (2013); Osadchy and Keren (2004);

Maier et al. (2011)]. In real-world scenarios, camera parameters like the shutter-speeds,

gains, etc. with which the images are taken, matter a lot in the performance of an object

detection network [Andreopoulos and Tsotsos (2012)]. A photographer changes a lot of

parameters like the shutter speed, voltage gains, etc. while capturing images according

to the lighting conditions and the movements of the subject. In autonomous naviga-

tion, robotics, etc. there are several instances where the lighting conditions and the

subject speed changes. In these cases, using fixed shutter speed and voltage-gain val-

ues would result in an image which would not be conducive for object detection. Most

cameras rely on the built-in auto-exposure algorithms to set the exposure parameters of

the camera. Although the images obtained from these auto-exposure algorithms may

be pleasing to a human eye, they may not be the best image to perform object detection

on. Also, most of the object detection networks are trained using images from a dataset

which are captured either by using a single operation mode or no control over the pa-

rameters of the camera. Thus, a pre-trained network may have a larger affinity towards

images captured with similar parameters as the ones in the dataset it was trained on.



1.2 Contributions

In this thesis, to tackle the problem of sudden variations in the photography conditions,

we propose to train a Reinforcement Learning (RL) agent to digitally transform images

in real-time such that the object detection performance is maximised. Although we

perform experiments with digital transformations, this method can ideally be extended

to choose the camera parameters to capture the images by using the image formation

model proposed by Hasinoff et al. (2010). We train the model with images which are

digitally distorted, for example: changing brightness, contrast, color, etc. It should be

noted that we do not necessarily want the agent to recover the original image.
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CHAPTER 2

BACKGROUND

In this chapter we briefly review the literature and the existing methods related to image

modifications for object detection improvement provide the necessary background.

2.1 Related Work

Bychkovsky et al. (2011) present a dataset of input and retouched image pairs called

MIT-Adobe FiveK, which was created by professional experts. They use this dataset

to train a supervised model for color and tone adjustment in images. The main motive

of this work is not inclined towards improving object detection but is more focused

towards training a model to edit an image according to the user preferences.

Wu and Tsotsos (2017) create a dataset of images taken with different combina-

tions of shutter speeds and voltage gains of a camera. They create a performance table

which is a matrix of mean average precision (mAP) for detection of objects in images

taken with different combinations of shutter speed and gains. To choose the optimal

parameters to capture images, they propose to choose the combination which gives the

maximum precision. One of the problems with this method is that a dataset with images

taken with different combinations of shutter speeds, voltage gains and illuminations has

to be manually annotated with bounding boxes around the objects which is quite time-

consuming. Also, the dataset consists of images with static objects. Thus, the effect

of changing shutter speed is just on the overall brightness of the image. But one of

the main reasons for changing shutter speed while capturing images is to increase (for

artistic purposes) or (preferably) decrease motion blur in the moving objects.

Park et al. (2018) propose a reinforcement learning based method to recover dig-

itally distorted images. The authors model the agent to take actions sequentially by

choosing the type of modification (brightness, contrast, color saturation, etc.). The main

motive of this model is to recover back the distorted images. The reward for the agent is



the difference of mean square difference of the images at the current time step and the

previous time step. This is slightly similar to our hImgRL model in the sense that both

the models try to recover distorted images but our model is trained with a human-based

reward system which we describe in section 3.1.2. Also, this work is quite different

from our ObjectRL model as our main motive is to maximise the performance of a

pre-trained detector.

Reinforcement Learning has been used in conjunction with computational photog-

raphy in recent works by Yang et al. (2018) and Hu et al. (2018) where the authors

train RL agents to either capture images or post-process images in such a way that the

resultant image is visually pleasing. The agent gets a reward from the users according

to their preferences of exposures on cameras in the former one whereas in the later one

the agent receives a reward based on the discriminator loss of a Generative Adversarial

Network [Goodfellow et al. (2014)].

Another area of research orthogonal to ours is using reinforcement learning to obtain

region proposals for object-detection and object-localization [Mathe and Sminchisescu

(2014); Koenig et al. (2018); Caicedo and Lazebnik (2015); Mathe et al. (2016)]. The

main motivation is to make the agent focus its attention toward candidate regions to

detect objects by sequentially shifting the proposed region and rewarding the agent

according to the Intersection over Union (IoU−explained in Section 2.3.4).

2.2 Reinforcement Learning

Reinforcement learning (RL) tries to solve the sequential decision problems by learning

from trial and error. Considering the standard RL setting where an agent interacts with

an environment E over discrete time steps. In the time step t, the agent receives a

state st ∈ S and selects an action at ∈ A according to its policy π, where S and A

denote the sets of all possible states and actions respectively. After the action, the agent

observes a scalar reward rt and receives the next state st+1. The goal of the agent is to

choose actions to maximize the cumulative sum of rewards over time. In other words,

the action selection implicitly considers the future rewards. The discounted return is

defined as Rt =
∑

∞

τ=t γ
τ−trτ , where γ ∈ [0, 1] is a discount factor that trades-off the

importance of recent and future rewards.
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RL algorithms can be divided into two main sub-classes: Value-based and Policy-

based methods. In value-based methods, values are assigned to states by calculating an

expected cumulative score of the current state. Thus, the states which get more rewards,

get higher values. In policy-based methods, the goal is to learn a map from the states to

actions, which can be stochastic as well as deterministic. A class of algorithms called

actor-critic methods [Konda and Tsitsiklis (2000)] lie in the intersection of value-based

methods and policy-based methods, where the critic learns a value function and the

actor updates the policy in a direction suggested by the critic.

2.2.1 Value-based Method

In value-based methods for RL, we have a value function V (s) which intuitively mea-

sures how good is it to be in a particular state. By definition, value function is the

expected discounted rewards that the agent will get by following a specific policy.

V π(st) =
T
∑

τ=t

Eπθ
[γτ−tr(sτ , aτ )|st] (2.1)

The objective is to find a policy π∗ which maximizes the expected rewards.

V ∗(s) = max
π

E

[

H
∑

t=0

γtr(st, at, st+1)|π, s0 = s
]

(2.2)

2.2.2 Policy-based Method

In policy-based methods for RL, instead of learning a value function over the states,

a policy is learned directly which maps states to actions. The policy learned can be

represented as:

π(a|s, θ) = P (at = a|st = s, θt = θ) (2.3)

which means that the policy π is the probability of taking action a when at state s and

the parameters of function approximator are θ.

5



REINFORCE

REINFORCE [Williams (1992)] is a policy-based algorithm which iteratively updates

the agent’s parameters by computing the policy gradient.

∆θt = α∇θ log πθ(st, at)Rt (2.4)

Where α is the learning rate, Rt is an estimate of Qπ(st, at). We can also use baselines

to reduce the variance of this estimate by keeping it unbiased by subtracting a learned

function of the state bt(st). Therefore the resulting gradient is ∇θlogπ(at|st; θ)(Rt −

bt(st)). A learned estimate of the value function which is commonly used is bt(st) ≈

V π(st).

Proximal Policy Optimization

We use PPO Schulman et al. (2017) which is a type of actor-critic method for optimising

the RL agent. One of the key points in PPO is that it ensures that a new update of the

current policy does not change it too much from the previous policy. This leads to less

variance in training at the cost of some bias, but ensures smoother training and also

makes sure the agent does not go down an unrecoverable path of taking unreasonable

actions. PPO uses a clipped surrogate objective function which is a first order trust

region approximation. The purpose of the clipped surrogate objective is to stabilize

training via constraining the the policy changes at each step.

2.3 Object Detection

Object recognition is an essential research direction in computer vision. Most of the

successful object recognition algorithms use deep convolutional neural networks which

are trained to give the co-ordinates of the bounding boxes around the objects. With the

advent of faster processing units training larger neural networks with more complicated

network structures has become possible to obtain state-of-the-art models even surpass-

ing humans in tasks like image classification.[He et al. (2015a),He et al. (2015b)].
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2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (ConvNet) are a type a network architecture inspired

by the connectivity patterns of neurons in human brain in the visual cortex. Individual

neurons respond only to stimuli in a restricted region of the visual field nown as the

receptive field. The collection of all such receptive fields overlap to cover the entire

visual area.

The advantage of ConvNets over feed forward networks is that a ConvNet is able

to capture the spatial dependencies of an image through the application of filters. Also,

ConvNets have much lesser parameters to learn as compared to a feed forward network

of the same size. Object detection networks take an image as an input and output the

co-ordinates of the bounding boxes of the detected objects, the prediction of class of the

object and the confidence of the prediction.

2.3.2 Single Shot Detector

In Single Shot Detectors (SSD), as the name suggests, the image needs to be passed

only once to detect multiple objects in an image as compared to the two passes in re-

gional proposal network (RPN) based networks. The first pass is for generating region

proposals and the second pass is for detecting the objects in region proposals. Thus,

SSD is much faster than RPN-based approaches.

In SSD, bounding box predictions from the last few layers of the network where

each is responsible for progressively smaller bounding boxes. The final prediction is

the union of all the predictions made by these layers.

2.3.3 You Only Look Once

You Only Look Once (YOLO) is an object detection system targeted for real-time pro-

cessing. The predictions for bounding boxes and object classed are made from a single

network which can be trained end-to-end. Like SSD, YOLO is also a single pass detec-

tor as it predicts the bounding boxes and the class probabilities for each image with a

single network pass.

7



2.3.4 Intersection over Union

Object detection networks output co-ordinates of bounding boxes. To decide whether an

object is detected or not, the Intersection over Union (IoU) criteria is used. Intersection

over Union is the ratio of area of overlap and area of union of the predicted and the

ground truth bounding boxes. Let p be the predicted box, and g be the ground truth box

for the target object. Then, IoU between p and g is defined as IoU(p, g) = area(p ∩

g)/area(p ∪ g). Generally, if IoU > 0.5 an object is said to be a True-Positive.

Figure 2.1: Intersection over Union1

2.3.5 Image Distortions

Different parameters of an image like brightness, contrast and color can be changed

digitally. We describe the formula used to transform the pixel intensity (I) values at the

co-ordinates (x, y). We assume distortion factor α ≥ 0

Brightness

The brightness of an image can be changed by a factor α as follows:

I(x, y)← min (αI(x, y), 255) (2.5)

8



Figure 2.2: Variation in images with varying brightness distortion factor α from 0 to 2

in steps of 0.1.

Color

The color of an image is changed by a factor α as follows:

We evaluate the gray-scale image as:

gray = (I(r) + I(g) + I(b))/3, where I(r), I(g) and I(b) are the R, G & B pixel values

respectively.

I(x, y)← min(αI(x, y) + (1− α)gray(x, y), 255) (2.6)

Figure 2.3: Variation in images with varying color distortion factor α from 0 to 2 in

steps of 0.1.

Contrast

The contrast in an image is changed by a factor α as follows:

µgray = mean(gray)

I(x, y)← min(αI(x, y) + (1− α)µgray, 255) (2.7)

9



Figure 2.4: Variation in images with varying contrast distortion factor α from 0 to 2 in

steps of 0.1.
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CHAPTER 3

ALGORITHMS

3.1 hImgRL

3.1.1 Problem Formulation

We cast the problem of image parameter modifications as a Markov Decision Process

(MDP) [Puterman (1994)] since this setting provides a formal framework to model an

agent that makes a sequence of decisions. Our formulation considers a single image

as the state. To simulate the effect of bad images as well as increase the variance in

the images in a dataset, we digitally distort the images. These digital distortions are

carried out by randomly choosing α for brightness distortion. We have a pre-trained

object detection network which could be trained either on the same dataset or any other

dataset. The main idea of the hImgRL is to suggest a particular change in brightness to

the input image such that a human can identify the objects present in the image.

3.1.2 MDP for hImgRL

The Markov Decision Process Framework for the hImgRL setting is defined in this

section.

States: The states for the agent are 64 × 64 × 3 images from the CIFAR-10 dataset

Krizhevsky (2009) which are distorted by changing the brightness by random factors

α ∈ [0, 2], as described in Section 2.3.5 during training.

Actions: The agent can choose to change the brightness by choosing one of the 41

values from A = {0, 0.05, 0.1, · · · , 1.90, 1.95, 2}. Here, at = 1 does not change the

image, at = 0 gives a dark image and at = 2 gives an image which is quite bright. The

variation of the distorted images is shown in the Figure 2.2.



Reward: During training, the agent is rewarded by a human referee who observes the

distorted image and the image obtained after the transformation. The human gives a

reward of +1 if the image obtained is satisfactory enough and a reward of −1 other-

wise. The notion of a satisfactory image is quite ambiguous and depends on the person

evaluating. This difference may result in an agent which is not robust enough. Thus, we

train the agent with four different human referees by changing the referee after every

200 episodes. An image is termed to be satisfactory if an average person can identify

the objects in the image with a certain degree of confidence.

3.2 ObjectRL

3.2.1 Problem Formulation

We cast the problem of image parameter modifications as a Markov Decision Process

(MDP) [Puterman (1994)] since this setting provides a formal framework to model an

agent that makes a sequence of decisions. Our formulation considers a single image as

the state. To simulate the effect of bad images as well as increase the variance in the

images in a dataset, we digitally distort the images. These digital distortions are carried

out by randomly choosing α for a particular type of distortion (brightness, contrast,

color). We have a pre-trained object detection network which could be trained either on

the same dataset or any other dataset.

3.2.2 MDP for ObjectRL

States: The states for the agent are 128 × 128 × 3 RGB images from the PascalVOC

dataset Everingham et al. (2015) which are distorted by random factors α chosen ac-

cording to the scale of distortion. We consider only one type of distortion (brightness,

color, contrast) at a time, ie. we train different models for different types of the distor-

tion. Combining all the different types of distortions in a single model remains to be a

key direction to explore in future work.

Scales of Distortion: We perform experiments with the following two degrees of dis-

tortion in the image:

12



• Full-scale distortion: The random distortion in the images α ∈ [0, 2].

• Minor-scale distortion: The random distortion in the images α ∈ [0.5, 1.8]. This

constraint limits the images to not have distortions which cannot be reverted back

with the action space, the agent has access to.

The variation of the the distorted images can be seen in Fig 2.2, 2.3, 2.4.

Actions: The agent can choose to change the global parameter (brightness, color, con-

trast) of the image by giving out a scalar at ∈ [0, 2]. Here, at is equivalent to α in

the image distortion equations described in Section 2.3.5. The action at can be applied

sequentially upto n number of times. After n steps the episode is terminated. Here,

we set the value of n = 1 to achieve stability in training as having larger horizons lead

to the images getting distorted beyond repair during the initial stages of learning and

hence does not explore with the better actions.

Reward: First, we evaluate scores dt for the images as follows:

dt(x) = γ(IoU(x)) + (1− γ)(F1(x)) (3.1)

x is the input image to the pre-trained object detector. IoU is the average of all the inter-

section over union for the bounding boxes predicted in the image and F1 is the F1-score

for the image. We set γ = 0.1 because we want to give more importance to the number

of correct objects being detected.

We evaluate:

• do,t = dt(original image)

• dd,t = dt(distorted image)

• ds,t = dt(state)

where the original image is the one before the random distortion, distorted image

is the image after the random distortion and state is the image obtained after taking the

action proposed by the agent.

We define,

βt = 2ds,t − do,t − dd,t (3.2)

13



Here, βt is positive if and only if the agent’s action leads to an image which gives

better detection performance than both the original image as well as the distorted image.

Thus we give the reward (rt) as follows:

rt =











+1, if βt ≥ −ǫ

-1, otherwise

Note that do,t and dd,t do not change in an episode and only ds,t changes over the

episode. We set the hyperparameter ǫ = 0.01 as we do not want to penalise the mi-

nor shifts in bounding boxes which result in small changes in IoU in Eqn[3.1]. Fig 3.1

shows the training procedure for ObjectRL.

Figure 3.1: The overall training procedure for ObjectRL. The image is randomly dis-

torted to simulate the bad images. An episode can be carried out for n steps

which we set to 1 for training stability. Thus, the agent has to take a single

action on each image.

3.3 Motivation for ObjectRL

In scenarios where object-detection algorithms are deployed in real-time, for example

in autonomous vehicles or drones, lighting conditions and subject speeds can change

quickly. If cameras use a single operation mode, the image might be quite blurred or

dark and hence the image obtained may not be ideal for performing object detection. In

14



these cases it would not be possible to create new datasets with images obtained from

all the possible combinations of camera parameters along with manually annotating

them with bounding-boxes. Also, due to the lack of these annotated images we cannot

fine-tune the existing object-detection networks on the distorted images. Our model

leverages digital distortions on existing datasets with annotations to learn a policy such

that it can tackle changes in image parameters in real-time to improve the object detec-

tion performance.

One of the main motivations of ObjectRL is to extend it to control camera parameters

to capture images which are good for object detection in real time. Thus, we propose

an extension to ObjectRL (for future work) where we have an RL agent which initially

captures images by choosing random combinations of camera parameters (exploration

phase). A human would then give rewards according to the objects detected in the

images in the current buffer. These rewards would then be used to update the policy to

improve the choice of camera parameters. This method of assigning a {±1} reward is

comparatively much faster than annotating the objects in the image to extend the dataset

and training a supervised model with this extended model. This methodology is quite

similar to the DAgger method (Dataset Aggregation) by Ross et al. (2010) where a

human labels the actions in the newly acquired data before adding it into the experience

for imitation learning.

15



CHAPTER 4

EVALUATION

4.1 Experimental Setup

We have built our network with PyTorch. For the object detector, we use a Single Shot

Detector (SSD) [Liu et al. (2015)] and YOLO-v3 [Redmon et al. (2015)] trained on

the PascalVOC dataset with a VGG-base network [Simonyan and Zisserman (2014)]

for SSD. We use Proximal Policy Optimization (PPO) [Schulman et al. (2017)] for op-

timising the ObjectRL agent. We train the agent network on a single NVIDIA GTX

1080Ti with the PascalVOC dataset.

For hImgRL, the agent network consists of 6 convolutional layers each with kernel

size=5, stride=1 and padding=2. The number of filters are {32, 64, 64, 64, 64, 64}.

After every two layers we have a maxpooling layer with kernel size=2 and stride=2,

followed by a ReLU activation function. After the convolutional layers, there is one

hidden linear layer with 512 nodes and an output layer with 41 nodes. Each of the 41

nodes correspond to an action from the setA as described in section 3.1.2. The agent is

updated after 20 episodes for 2 epochs with batch-size=10.

For ObjectRL, both the actor and the critic networks consist of 6 convolutional lay-

ers with (kernel size, stride, number of filters)= {(4,2,8), (3,2,16), (3,2,32), (3,2,64),

(3,1,128), (3,1,256)} followed by linear layers with output size 100, 25, 1. The agent is

updated after 2000 episodes for 20 epochs with batch-size=64.

The learning rate for both hImgRL and ObjectRL agents is 10−3. We use Adam

Optimizer [Kingma and Ba (2014)] which is a default optimizer provided in PyTorch.

In the initial episodes, for both, hImgRL and ObjectRL we take actions in an ǫ−Greedy

manner. ǫ is annealed linearly with the number of episodes until it reaches 0.05.



(a) (b) (c) (d) (e) (f)

Figure 4.1: Actions taken by hImgRL on test data. The top row contains images given

to the agent. The bottom row contains images after applying the transfor-

mations proposed by the agent. All the above transformations made by the

agent are with episode horizon=1.

Brightness Color Contrast

Figure 4.2: Episodic return of the ObjectRL while training with a moving average of

size 30. Each iteration represents 1K episodes.

4.2 Results

4.2.1 hImgRL

In Figure 4.1, we show a few of the outputs of the agent on test data, after training. We

terminate the training of the agent when the average reward over previous 200 images

is 200 i.e. it recovers the image satisfactorily for 200 consecutive images after the

exploration phase is over. The first four columns (a-d) in Figure 4.1 are examples of

dark images getting transformed to a brighter image. Column (e) is an example of a

bright image getting transformed to a slightly darker one. Column (f) is an example of

an ideal image not changing much after the agent’s transformation.
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k Brightness

Full-scale Minor-scale

SSD YOLO SSD YOLO

GS ObjectRL GS ObjectRL GS ObjectRL GS ours

1 955± 14 532± 20 1360± 22 976± 18 435± 25 428± 23 1025± 23 883± 24
2 154± 6 87± 3 202± 15 118± 15 87± 12 80± 9 85± 15 63± 15
3 49± 3 32± 4 52± 8 18± 6 14± 5 12± 3 8± 2 5± 1
4 18± 3 7± 1 17± 2 4± 1 5± 1 3± 0 2± 0 0
5 7± 2 2± 0 4± 1 2± 0 0 0 0 0

Table 4.1: TP-Score(k) with brightness distortion. GS stands for Grid-Search.

4.2.2 Measure for evaluation for ObjectRL: TP-Score

To the best of our knowledge, we believe no suitable measure is defined for this problem

and hence we define a measure called TP-Score(k) (True Positive Score). This score is

the number of images in which k−or more true positives were detected which were not

detected in the image before transformation. The TP-Score(k) is initialised to zero for

a set of images I. For example: Let the number of true-positives detected before the

transformation be 3 and let the number of true-positives detected after the transforma-

tion be 5. Then we have one image where 2 extra true-positives were detected which

were not detected in the input image. Thus, we increase TP-Score(1) and TP-Score(2)

by one.

4.2.3 Baseline for ObjectRL

To obtain the baselines, we first distort the images in the original dataset. The images

are distorted with α being randomly chosen from the set S = {0.1, . . . , 1.9, 2.0} or S =

{0.5, . . . , 1.7, 1.8} depending on the scale. The set of available actions to be applied on

on these images are: Ŝ = {1
s
∀s ∈ S}. We evaluate the TP-Score(k) on the distorted

images by applying the transformations by performing a grid-search over all α ∈ Ŝ

and report the scores obtained with the best-performing actions for different types and

scales of distortions in Table 4.1, 4.2 and 4.3. We also report the TP-Scores obtained

after applying the transformations proposed by ObjectRL on the images distorted using

full-scale and minor-scales. The scores reported are averaged over 10 image sets I, each

containing 10,000 images. Note that the means and standard deviations are rounded to

the nearest integers.
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k Color

Full-scale Minor-scale

SSD YOLO SSD YOLO

GS ObjectRL GS ObjectRL GS ObjectRL GS ours

1 973± 17 672± 19 1250± 23 1103± 21 561± 18 532± 22 974± 21 930± 22
2 123± 7 84± 4 210± 16 135± 13 43± 9 37± 9 83± 12 82± 12
3 53± 4 31± 3 63± 7 23± 6 1± 0 0 15± 2 10± 1
4 11± 2 3± 1 19± 2 5± 1 0 0 6± 1 3± 0
5 5± 1 1± 0 6± 1 2± 0 0 0 0 0

Table 4.2: TP-Score(k) with color distortion. GS stands for Grid-Search.

k Contrast

Full-scale Minor-scale

SSD YOLO SSD YOLO

GS ObjectRL GS ObjectRL GS ObjectRL GS ours

1 955± 15 532± 20 1360± 21 976± 19 680± 22 663± 24 1038± 23 975± 24
2 163± 8 101± 4 213± 16 134± 15 62± 10 49± 9 104± 13 85± 15
3 55± 4 36± 4 67± 7 39± 6 14± 3 6± 2 19± 3 16± 2
4 21± 2 11± 1 28± 2 13± 1 1± 0 1± 0 5± 0 3± 0
5 4± 1 2± 0 5± 1 2± 0 0 0 0 0

Table 4.3: TP-Score(k) with contrast distortion. GS stands for Grid-Search.

As seen in Table 4.1,4.2 and 4.3, ObjectRL is not able to perform as well as the

grid-search for full-scale distortions. The reason for this is that many of the images

obtained after the full-scale distortions are not repairable with the action set provided

to the agent.

But with minor-scale distortions, ObjectRL is able to perform as well as the grid-

search. The total time taken for the grid-search over all brightness values for one image

is 12.5094±0.4103s for YOLO and 15.1090±0.3623 for SSD on a CPU. The advantage

of using ObjectRL is that the time taken by the agent is 10 times less than grid-search.

This latency is quite crucial in applications like surveillance drones and robots where

the lighting conditions can vary quickly and the tolerance for errors in object-detection

is low.

4.2.4 Discussion on the outputs of ObjectRL

In this section, we discuss the outputs obtained from ObjectRL with SSD and minor-

scale distortion which are shown in Fig 4.3. In column (a) 4 true positives are detected
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Original

Distorted

Agent

(a) (b) (c)

Figure 4.3: A few of the outputs from ObjectRL with SSD and minor-scale distortion.

The top row contains the original images. The second row contains the

distorted images. The bottom row contains images obtained from the agent.

Bounding boxes are drawn over the objects detected by the detector.

in the original image, 3 true positives are detected in the distorted image and 4 true

positives are detected in the original image. The distorted image is slightly darker the

the original one. ObjectRL is able to recover the object lost after distortion. In column

(b) 3 true positives are detected in the original image, 4 true positives are detected in the

distorted image and 5 true positives are detected in the original image. In this case, even

the distorted image performs better than original image. But the agent-obtained image

performs the best with 5 true-positives. In column (c) 1 true positive is detected in the

original image, 1 true positive is detected in the distorted image and 2 true positives

are detected in the original image. In this case the agent obtained image outperforms

both the distorted and the original image. For a human eye, the agent-obtained image

may not look pleasing as it is much brighter than the original image. Ideally for a

human, the distorted image in column (c) is the most pleasing. Column (c) is one of the

perfect examples to demonstrate the fact that whatever looks pleasing to a human eye

may not necessarily be the optimal one for object-detection. Thus on an average, the

agent is able to recover either as many objects as detected in the original image or more.
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k Brightness Color Contrast

πssd
yolo πyolo

ssd πssd
yolo πyolo

ssd πssd
yolo πyolo

ssd

1 582± 13 1045± 24 800± 15 1249± 26 813± 15 1243± 26
2 36± 6 73± 11 72± 8 138± 11 65± 8 145± 12
3 2± 0 9± 4 10± 1 13± 3 2± 0 19± 4

Table 4.4: TP-Score(k) by crossing the policies.

According to our experiments, there were 8±1 images with SSD and 34±5 images with

YOLO-v3, where the agent-obtained image had lesser number of true-positives than the

original image. Although, this number of true-positives was more than the number of

true-positives detected in the distorted image.

4.2.5 Crossing Policies

In this section we perform experiments by swapping the detectors for the learned poli-

cies. Thus, we use πyolo with SSD, (denoted as πssd
yolo) and πssd with YOLO, (denoted

as πyolo
ssd ). In Table 4.4, we report the number of images where k−or lesser true posi-

tives were detected with the swapped policy than what were detected using the original

policy on their corresponding detectors. As shown in Table 4.4, πSSD on YOLO is

worse than πY OLO on SSD. This is because the range of values for which SSD gives

optimal performance is bigger than the range of values for which YOLO gives optimal

performance. In essence, YOLO is more sensitive to the image parameters than SSD.
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CHAPTER 5

CONCLUSION

This work proposes the usage of reinforcement learning to improve the object detection

of a pre-trained object detector network by changing the image parameters (Objec-

tRL). We validate our approach by experimenting with distorted images and making

the agent output actions necessary to improve detection. Our experiments showed that

pre-processing of images is necessary to extract the maximum performance from a pre-

trained detector. Future work includes combining all the different distortions in a single

model and using it for controlling camera parameters to obtain images. Along with

this, local image manipulations such as changing the image parameters only in certain

regions of the image could be tried out.
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