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ABSTRACT

KEYWORDS: Lensless imaging, Image reconstruction, Computational Imaging.

Lensless imaging has emerged as a potential solution towards realizing ultra-miniature

cameras by eschewing the bulky lens in a traditional camera. Without a focusing lens,

the lensless cameras rely on computational algorithms to recover the scenes from multi-

plexed measurements. However, the current iterative-optimization-based reconstruction

algorithms produce noisier and perceptually poorer images. In this work, we propose a

non-iterative deep learning-based reconstruction approach that results in orders of mag-

nitude improvement in image quality for lensless reconstructions. Our approach, called

FlatNet, lays down a framework for reconstructing high-quality photorealistic images

from mask-based lensless cameras, where the camera’s forward model formulation is

known.

FlatNet consists of two stages: (1) an inversion stage that maps the measurement

into a space of intermediate reconstruction by learning parameters within the forward

model formulation, and (2) a perceptual enhancement stage that improves the percep-

tual quality of this intermediate reconstruction. These stages are trained together in an

end-to-end manner. We show high-quality reconstructions by performing extensive ex-

periments on real and challenging scenes using PhlatCam which uses a non-separable

cropped-convolution model. Our end-to-end approach is fast, produces photorealistic

reconstructions, and is easy to adopt for other mask-based lensless cameras.
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CHAPTER 1

INTRODUCTION

8–15 g

10–20 mm

0.5 g

< 2 mm

Conventional Lensless

Figure 1.1: Lensless cameras greatly facilitate miniaturisation. Such miniaturisation
is crucial for applications in emerging fields such as IoT, Medical Imaging
and Surviellance. Mask based lensless cameras can be fabricated to a given
thickness and are free from common lens associated limitations. In com-
parison solutions which use either a lens or a lens like focussing element
are always limited by their focal length and depth of field constraints. See
Boominathan et al. (2020) for more details.

Emerging applications such as wearables, augmented reality, virtual reality, biomet-

rics, and many others are driving an acute need for highly miniaturized imaging sys-

tems. Unfortunately, current-generation cameras are based on lenses – and these lenses

typically account for more than 90% of the cost, volume and weight of cameras. While

lenses and optics have been miniaturized by two orders of magnitude, over the last

century, we are inching up against fundamental laws (diffraction limit and Lohman’s

scaling law) precluding further miniaturization.

Over the last decade, lensless imaging systems have emerged as a potential solu-

tion for light-weight, ultra-compact, inexpensive imaging. The basic idea in lensless

imaging is to replace the lens with a mask (an amplitude (Asif et al. (2017)) or a phase

mask (Antipa et al. (2018); Boominathan et al. (2020))), typically placed quite close

to the sensor. These lensless imaging systems provide numerous benefits over lens-

based cameras. The need for a lens, which is a major contributor towards the size and

weight of a camera, is eliminated. This is illustrated in figure 1.1, which demonstrates

over an order of magnitude reduction in size and weight of lensless cameras in com-

parison to conventional ones. In addition, a lensless design permits a broader class of



sensor geometries, allowing sensors to have more unconventional shapes (e.g. spherical

or cylindrical) or to be physically flexible (Tremblay et al. (2007)). Moreover, lens-

less cameras can be produced with traditional semiconductor fabrication technology

and therefore exploit all of its scaling advantages - yielding low-cost, high-performance

cameras (Boominathan et al. (2016)).

Lensless camera to the rescue!

Weight: ~0.2g
Thickness: <500 µm

Figure 1.2: A few applications of lensless cameras. These applications are mainly
driven by the utility of camera miniaturisation and cameras as an inferential
device. We expand more on this idea of cameras as an inferential device
under our concluding notes in chapter 6.

Due to the absence of any focusing element, the sensor measurements recorded in

a lensless imager are no longer photographs of the scene but rather highly multiplexed

measurements. Reconstruction algorithms are needed to undo the effects of this mul-

tiplexing and produce photographs of the scene being imaged. However, the design

of a recovery algorithm for lensless cameras is a challenging task mainly because of

the large support of the Point Spread Functions (PSFs) inherent to lensless design. In

particular, the recovery algorithms face the following challenges. First, large support

of PSFs result in large linear systems which makes such systems difficult to store and

invert. Second, large PSFs also result in a very high degree of global multiplexing. Con-

ventional data-driven methods like convolutional neural networks which are designed

for natural images are not suited to handle this amount of multiplexing. Third, lensless

design results in ill-conditioned systems which affect the quality of reconstruction as

well as noise characteristic of such systems. The poor reconstruction quality can be

observed in the Tikhonov regularized reconstructions shown in Figure 1.3. Therefore,

lensless cameras need robust and efficient algorithms to overcome these challenges.
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Figure 1.3: Lensless cameras require computation to recover the true scene from
measurements. In this work we propose a deep learning based lensless
reconstruction algorithm for both separable (Asif et al. (2017)) and non-
separable mask (Boominathan et al. (2020)) based lensless cameras that
produce photorealistic reconstructions for real and challenging scenarios.

Keeping the above challenges in mind, we propose a feed-forward deep neural net-

work for photorealistic lensless reconstruction, which we refer to as FlatNet. FlatNet

learns a direct mapping from lensless measurements to scene outputs. FlatNet consists

of two stages: the first stage is a learnable inversion stage that brings the multiplexed

measurements back to image space. This stage depends on the camera model. The

second stage enhances this intermediate reconstruction using a fully convolutional net-

work.

It should be noted that the two stages are trained in an end-to-end fashion. It was

shown in Boominathan et al. (2020) that separable lensless mask based lensless cameras

have inferior characteristics as compared to their existing non-separable counterparts.

Khan et al. (2019) had demonstrated such a model for separable lensless systems. But

it cannot be trivially used for non-separable mask based lensless cameras. Here we

extend the previous work to handle non-separable lensless model. In particular, we

propose an efficient implementation of the learnable intermediate mapping for non-

separable lensless model which is based on Fourier domain operations. We also propose

an initialization scheme for this learnable intermediate stage that doesn’t require explicit

PSF calibration. We show that the intermediate mapping is robust for cases where the

lensless model is non-circulant. This happens when the sensor size is smaller than

the full measurement size required for deconvolution. Finally, to verify the robustness

and efficiency of FlatNet, we perform extensive experiments on challenging real scenes

captured using separable mask based lensless camera called FlatCam (Asif et al. (2017))

3



and the non-separable mask based lensless camera called PhlatCam Boominathan et al.

(2020). To summarize, the key contributions in this work are:

• We propose an efficient implementation for the learnable intermediate stage of
non-separable or general lensless model. Khan et al. (2019) had only shown this
for the separable lensless model. Here we non-trivially extend it to the general
lensless case.

• We verify the robustness of the proposed learnable intermediate mapping for the
non-separable lensless model on challenging scenarios where the lensless system
does not follow a full convolutional or circulant assumption.

• We propose an initialization scheme for the non-separable lensless model that
doesn’t require explicit PSF calibration.

• Similar to the display and direct captured measurements collected using the sepa-
rable mask FlatCam and described in (Khan et al. (2019)), we collect correspond-
ing datasets for the non-separable mask PhlatCam (Boominathan et al. (2020)).

• We also collect a dataset of unconstrained indoor lensless measurements paired
with corresponding unaligned webcam images which is finally used to finetune
our proposed FlatNet to robustly deal with unconstrained real-world scenes.

4



CHAPTER 2

BACKGROUND AND PROBLEM SETUP

2.1 Masks as a Linear Multiplexing Element

Figure 2.1: Image formation in lensless cameras interpreted via linear systems. The
Φ matrix in the above system contains M2N2 elements, where the scene is
M and the measurement is N . For a megapixel scene and a megapixel sen-
sor, this results in an order of 1012 elements. Inverting this via conventional
linear algebra methods is not straightforward.

In this chapter, we develop and motivate the forward model used behind lensless

cameras- which can mainly be categorised as separable or non-separable. In this work,

we formulate an efficient reconstruction algorithm for PhlatCam which uses a non-

separable mask. However, for completeness, we shall also cover the separable forward

model here.

Mask based lensless imagers, unlike their lens-based counterparts, measure a global

linear multiplexed version of the scene. This multiplexing is a function of the mask

placed in front of the sensor. Mathematically, this is given as:

y = Φx+ n, (2.1)

where y is the measurement obtained at the sensor vectorized in lexicographic man-

ner, Φ represents the generalized linear transformation, and n is the additive noise. In

general, Φ has a large memory footprint, and hence, storing and computing with Φ is



computationally intractable. Reconstructing a scene with O(N2) pixels from a sen-

sor measurement of O(N2) pixels requires Φ with O(N4) elements. For example, a

1-megapixel scene and a 1-megapixel sensor requires Φ with ∼ 1012 elements. This

aspect is depicted diagrammatically in Figure 2.1. However, by careful design of masks

and using a forward model derived from physics, the computational complexity can be

greatly reduced.

The modulation performed by the mask characterizes the linear matrix Φ. By using

a low-rank separable mask pattern, the huge Φ can be broken down into smaller matrices

(Asif et al. (2017); Adams et al. (2017)). Specifically, in Asif et al. (2017), the single-

separable lensless forward model reduces to:

Y = ΦLXΦT
R +N, (2.2)

where, ΦL and ΦR are the separable breakdown of Φ, X is the 2D scene irradiance, Y

is the 2D recorded measurement, and N models additive noise. This model is followed

by FlatCam (Asif et al. (2017)).

By adding an aperture over a non-separable mask, Antipa et al. (2018); Boomi-

nathan et al. (2020) showed that the lensless forward model can be written as a convo-

lutional model:

Y = P ∗X +N, (2.3)

where P is the point-spread-function (PSF) of the system. PSF of a lensless camera

is the pattern projected by the mask on the sensor when illuminated by a single point

source (Boominathan et al. (2020)). The PSF shifts when the point source moves lat-

erally, and for a general scene, the sensor measurement is the weighted sum of various

shifted PSFs, leading to a convolutional model.

If the sensor isn’t large enough compared to the PSF, the PSF can shift out of the

sensor for an oblique angled scene point. In such a case, Antipa et al. (2018) uses a

cropped convolution model:

Y = C(P ∗X) +N, (2.4)

where C is the sensor cropping operation. Such a system described by Equation 2.4 is

6



no longer circulant. For a separable mask, the cropping is already incorporated in the

model matrices ΦL and ΦR.

In this work, we will be primarily focusing on PhlatCam (Boominathan et al. (2020))

that has a non-separable mask. We explore a data-driven approach that incorporates

the lensless imaging models to produce photorealistic reconstructions from the above

cameras. We also explore an alternate approach to sensor cropping for PhlatCam by

preprocessing the sensor measurement (Reeves (2005)).

2.2 Inversion Stage for Separable Models

In this section we briefly cover the inversion layer used by Khan et al. (2019) for sepa-

rable lensless systems.

Given the lensless model described in Equation 2.2, we learn two layers of left and

right trainable matrices that act directly on 2-D measurements. This can be mathemati-

cally represented as,

Xinterm = f(W1YW 2), (2.5)

where Xinterm is the output of this stage, f is a pointwise nonlinearity, Y is the input

measurement, and W1 and W2 are the corresponding weight matrices for this stage.

The dimension of the weight matrices depends on the dimension of the measurement

and the scene dimension we want to recover i.e. they have the same dimension as the

transpose of the forward matrices. Eventually, these matrices learn to invert the forward

matrices ΦL and ΦR. We refer to this version of FlatNet for separable lensless model

as FlatNet-sep. It is important to initialize the weight matrices of this stage properly, so

that the network does not get stuck in local minima. This can be done in two ways.

Calibrated initialization. For this approach, weight matrices (W1 and W2) are

initialized with the adjoint of the calibration matrices, akin to back-projection. These

calibration matrices are approximations of ΦL and ΦR in (2.2) physically obtained by

the method described in Asif et al. (2017). This mode of initialization leads to faster

convergence while training.

Uncalibrated initialization. Calibration of FlatCam require careful alignment with

display monitor (Asif et al. (2017)), which can be a time consuming and inconvenient
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process especially for large volumes of FlatCams. Even a small error in calibration

can lead to severe degradation in the performance of the reconstruction algorithm. To

overcome the problems involved in calibration, Khan et al. (2019) also proposes a

calibration-free approach by initializing the weight matrices with carefully designed

pseudo-random matrices.

2.3 Fourier Optics Analysis

Figure 2.2: Convolutional model derived via Fourier (Wave) Optics. A similar treat-
ment may be found in Boominathan et al. (2020). Figure courtesy: Boomi-
nathan et al. (2020).

An alternative method to arrive at the convolutional based (or non-separable) model

is to resort to a treatment via Fourier Optics. This method also sheds light on a few

properties of the large support PSFs that characterise lensless cameras and the range of

validity of these properties.

Consider a phase mask with height profile φ(ξ). The following analysis can be car-

ried out for a general mask too, by replacing exp(jφ(ξ)) by any transmittance function

tl(ξ). The former represents the phase delay on account of the thin phase mask. We

shall also carry out the Fourier Propagation in 1D for simplicity, and the same results

can easily be extended to 2D. For a starting reference on the equations used for the

Fresnel Propagation operator and other Fourier Optics relations, one may refer Good-
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man (2005).

If we illuminate this phase mask with a coherent collimated light, the intensity pat-

tern p(x) observed is:

p(x) = |Fd
(
ejφ(ξ)

)
|2

= | 1√
λd

∫
ejφ(ξ) exp[j

π

λd
(x− ξ)2]dξ|2

= |
∫
ejφ(ξ) exp[j

π

λd
(ξ2 − 2xξ)]dξ|2 Neglect the constant distance d

Figure 2.3: Shift-invariance Property of Lensless PSFs. We find the illumination pat-
tern for an off-axis, but distant point source. Figure courtesy: Boominathan
et al. (2020).

The collimated light (or planar waves) can be thought of as originating from an on-

axis point source at infinite distance. If this point were instead off axis by some angle θ

(as depicted in Figure 2.3), then:
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Yθ(x) = |
∫
ej

2π sin θ
λ

φ(ξ) exp[j
π

λd
(ξ2 − 2xξ)]dξ|2

= |
∫
ejφ(ξ) exp[j

π

λd
(ξ2 − 2(x− d sin θ)ξ)]dξ|2

= p(x− d sin θ)

≈ p(x− d

z∞
xh) Using paraxial approximation.

Hence, under the paraxial approximation, the PSF is shift invariant. In other words,

the forward model is convolutional and can be written as:

Y = Pz ∗X Where X is the scene, Y is the resultant intensity.

= P ∗X Assume scene is far enough.

In the preceding equation, we have also implicitly assumed that the scene consists

of incoherent, distant point sources. Hence, the system becomes linear in intensity

response (see Chapter 6 in Goodman (2005)). We exploit this fact in Section 4.1, where

we reduce the forward model of a large dimensional linearly multiplexed system into a

much more tractable convolutional model.

We end this section by examining the depth-dependence of the PSF. For a point

source at distance z from the mask, the spherical waves cannot be assumed to be pla-

nar. However, under the paraxial approximation, they impart an additional phase factor

ej
π
λz
ξ2 , with the result:

Yz(x) = |
∫
ejφ(ξ)+j

π
λz
ξ2 exp[j

π

λd
(ξ2 − 2xξ)]dξ|2

= |
∫
ejφ(ξ) exp[j

π

λ
(
1

d
+

1

z
)(ξ2 − 2

x

1 + d/z
ξ)]dξ|2

≈ |
∫
ejφ(ξ) exp[j

π

λd
(ξ2 − 2

x

1 + d/z
ξ)]dξ|2

= p(
x

1 + d/z
)
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The last approximation is valid since the mask sensor distance (which is typically

in millimetres for lensless cameras) is much smaller than scene depths. This is depicted

in Figure 2.4.

Figure 2.4: PSF Scaling Property of Lensless Cameras. As the point moves closer,
the PSF scales in size. The depth dependence however saturates beyond
a certain distance, leading to a 2D scene approximation. Figure courtesy:
Boominathan et al. (2020).

This implies that the forward model is actually,

Y =
∑
z

Pz ∗X

But for large distances (an order more than d), p( x
1+d/z

) ≈ p(x) and we can neglect

the PSF scaling. Thus, for most scene depths, lensless cameras perceive a 2D scene.

PSF scaling is exploited in applications such as microscopy (Adams et al. (2017); An-

tipa et al. (2018)) where distances are much smaller.
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CHAPTER 3

RELATED WORK

3.1 Lensless Imaging

Lensless imaging involves capturing an image of a scene without physically focusing

the incoming light with a lens. It has been widely used in the past for X-ray and gamma

ray imaging for astronomy (Dicke (1968); Caroli et al. (1987)), but its use for visible

spectrum applications has only recently been studied. In a lensless imaging system,

the scene is captured either directly on the sensor (Kim et al. (2017)) or after being

modulated by a mask element. Types of masks that have been used include phase grat-

ings (Stork and Gill (2013)), random diffusers (Antipa et al. (2018)), designed phase-

masks (Boominathan et al. (2020)), amplitude masks (Shimano et al. (2018); Asif et al.

(2017)), compressive samplers (Huang et al. (2013); Satat et al. (2017)) and spatial

light modulators (Chi and George (2011); DeWeert and Farm (2015)). Replacing lens

with the above masks result in multiplexed sensor capture that lacks any resemblance

to the scene imaged. A recognizable image is then recovered using a computational re-

construction algorithm. In this paper, we develop a deep learning based reconstruction

algorithm for both separable and non-separable mask based lensless cameras.

3.2 Image Reconstruction for Computational Imaging

Image reconstruction is a core aspect of most computational imaging problems (Duarte

et al. (2008); Antipa et al. (2019); Asif et al. (2017); Antipa et al. (2018); Boominathan

et al. (2020)). In general, image reconstruction for computational imaging is ill-posed

and requires regularization. Traditional methods for image reconstruction involve solv-

ing regularized least squares problems. Numerous regularizers based on heuristics have

been developed in the past. These include the sparsity in gradient domain (Li et al.

(2013); Boominathan et al. (2020); Antipa et al. (2018)), wavelet or frequency domain

sparsity (Reddy et al. (2011)), etc. However, these methods suffer from the fact that



often the resulting cost function doesn’t have a closed-form minima and an iterative

approach has to be taken to solve it. Moreover, the regularizers are based on heuristics

and may not be ideal for the specific task at hand.

Deep neural network have also been designed to solve image reconstruction prob-

lems in computational imaging systems. A class of deep learning based solution in-

volves learning of regularizers or proximal mapping stage and then iteratively solving

a MAP problem. Methods like Dave et al. (2018, 2017); Rick Chang et al. (2017)

fall under this category. Another class of algorithm is designed as a feed-forward deep

neural network that has either been trained in a supervised or self-supervised manner.

Works on compressive image recovery (Kulkarni et al. (2016); Mousavi et al. (2015);

Zhang and Ghanem (2018)), Fourier Ptychography (Boominathan et al. (2018)), lens-

less recovery (Monakhova et al. (2019)) fall under this category. Among these feed-

forward networks, Monakhova et al. (2019); Zhang and Ghanem (2018) are inspired by

the physics of the imaging model and are unrolled versions of traditional optimization

frameworks. Although these methods provide interpretability, the drawbacks they offer

include increased computation and higher memory consumption due to large number

of unrolled iterations. The proposed method and Khan et al. (2019) fall under the cate-

gory of physics inspired deep neural network as well. However, they don’t involve any

unrolling thereby avoiding large computational and memory cost.

13



CHAPTER 4

PROPOSED METHOD

Figure 4.1: Overall architecture of the FlatNet. The lensless camera measurement
is first mapped into an intermediate image space using a trainable cam-
era inversion layer. This stage is implemented separately for the separable
and the non-separable case. A U-Net (Ronneberger et al. (2015)) then en-
hances the perceptual quality of the intermediate reconstruction. We use
a weighted combination of three losses in training our network: a percep-
tual loss (Johnson et al. (2016)) using a VGG16 network (Simonyan and
Zisserman (2014)), mean-square error (MSE), and adversarial loss using
a discriminator neural network (Goodfellow et al. (2014)). The separable
case was proposed in prior work (Khan et al. (2019)), but we include it in
this figure for completeness and comparison to our implementation.

To address the challenges involved in lensless image reconstruction, we take a data-

driven approach for scene recovery. We model our reconstruction framework into a two

stage fully trainable deep network. This two stage network is then jointly trained in an

adversarial setup.

Trainable camera inversion. The first stage of FlatNet is a learnable intermediate

mapping called the Trainable Camera Inversion stage that learns to invert the lensless

forward model obtaining intermediate reconstructions from globally multiplexed lens-

less measurements. We implement separate formulations of this trainable inversion

stage for separable and non-separable lensless models exploiting the properties of the

forward model for each type of these lensless systems.



Perceptual enhancement. The second stage of FlatNet, called the Perceptual En-

hancement stage, is a fully convolutional network that enhances the intermediate re-

construction obtained from the trainable inversion stage giving it more photorealistic

appearance.

4.1 Trainable camera inversion

In the first stage of our network, we learn to invert the forward operation of the lens-

less camera model. This allows us to obtain an intermediate representation with local

structures intact. To implement this, we follow a separate approach for separable and

non-separable lensless camera models. The separable model was formulated in Khan

et al. (2019), and we have restated this in Section 2.2. Our implementation, which

extends the idea in Khan et al. (2019) to non-separable models is elaborated here.

Unlike in the separable model, it is infeasible to implement the trainable inversion

stage in the non-separable model as a matrix multiplication layer owing to the extremely

large dimension of Φ. However, one can still implement it in the Fourier domain. In

order to implement the inversion stage efficiently, we analyze the forward model given

in Equations 2.1 and 2.3.

Following the observation that the forward model is purely convolutional for an

appropriate sensor dimension i.e. the forward operation is described by Equation 2.3,

we model our trainable inversion stage for the non-separable case in the form of a

learned inverse implemented as Hadamard product in Fourier domain. This stems from

the fact that the inverse of a circulant system given by Equation 2.3 is also circulant and

can be diagonalized by Fourier transform.

Mathematically, this operation is given as,

Xinterm = F−1(F(W )�F(Y )), (4.1)

where Xinterm is the output of this stage and Y is the measurement, F(.) and F−1(.)

are the DFT and the Inverse DFT operations, W is the filter that is learned (akin to

W1 and W2 in the separable model) and � refers to Hadamard product. For a N ×M

dimensional measurement, the dimension of W is N ×M . The convolutional model
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of Equation 2.3 would require a large sensor as the PSF’s in lensless systems have

large spatial dimension and in some scenarios it would be infeasible to use such a large

sensor.

Such a case would require the lensless model to follow Equation 2.4. Of course, we

cannot accurately represent the inverse of the system described by Equation 2.4 through

a convolutional filter as the system is no longer circulant. As a result, one could ask if

the proposed trainable inversion stage will still be valid if a smaller sensor was used?

To answer this question, we show in Section 5.4.2, that with a small modification to

the trainable inversion stage described in Equation 4.1, we can handle these cropped-

convolutional or non-circulant cases without significant drop in the performance. We

refer to this version of FlatNet for non-separable lensless model as FlatNet-Gen.

Calibrated initialization. Like the separable model, initialization of W is impor-

tant for convergence of the training process. Assuming we have a calibrated PSF

and H is the Fourier transform of this PSF, in our experiments, we initialize W using

F−1( H∗

K+|H|2 ), i.e the regularized pseudo-inverse of the PSF or the well-known Wiener

filter. In this expression, K is a regularization parameter.

Uncalibrated initialization. We also propose an initialization scheme that doesn’t

require explicit PSF calibration. Given the mask pattern and the camera geometry,

one can simulate the PSF of the lensless systems. Specifically, for PhlatCam, given the

height profile of the mask, we use Fresnel propagation to simulate the PSF as described

in Boominathan et al. (2020). This initialization scheme is particularly useful for cases

where the PSF exceeds the sensor size (see Section 5.4.2).

4.2 Perceptual enhancement

Once we obtain the output of the trainable inversion stage, which is of same dimension

as that of the natural image we want to recover, we use a fully convolutional network to

map it to the perceptually enhanced image. Owing to its large scale success in image-

to-image translation problems and its multi-resolution structure, we choose a U-Net

(Ronneberger et al. (2015)) to map the intermediate reconstruction to the final percep-

tually enhanced image. We keep the kernel size fixed at 3x3 while the number of filters

is gradually increased from 128 to 1024 in the encoder and then reduced back to 128 in
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the decoder. In the end, we map the signal back to 3 RGB channels.

For the non-seperable case, we deal with slightly larger dimensional scenes. Similar

to Gu et al. (2019), we find it useful to employ Pixel-Shuffle (Shi et al. (2016)) to down-

sample intermediate image before U-Net. By allowing U-Net to operate on a smaller

spatial resolution (as a result bigger contextual area), we recover finer details for the

increased image dimensions. Moreover, downsampling by Pixel-Shuffle doesn’t throw

away pixels and hence can be inverted exactly unlike other downsampling methods.

4.3 Discriminator architecture

We train FlatNet-sep and FlatNet-gen in an adversarial setup. We use a discriminator

framework to classify FlatNet’s output as real or fake. We find that using a a discrimi-

nator network improves the perceptual quality of our reconstruction. We use 4 layers of

2-strided convolution followed by batch normalization and the swish activation function

(Ramachandran et al. (2017)) in our discriminator. Same discriminator architecture was

used for both FlatNet-sep and FlatNet-gen.

4.4 Loss function

An appropriate loss function is required to optimize our system to provide the desired

output. Pixelwise losses like mean absolute error (MAE) or mean squared error (MSE)

have been successfully used to capture signal distortion. However, they fail to capture

the perceptual quality of images. As our objective is to obtain high quality photorealistic

reconstructions from lensless measurements, perceptual quality matters. Thus, we use

a weighted combination of signal distortion and perceptual losses. The losses used for

our model are given below:

Mean squared error: We use MSE to measure the distortion between the ground

truth and the estimated output. Given the ground truth image Itrue and the estimated

image Iest, this is given as:

LMSE = ||Itrue − Iest||22. (4.2)
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Perceptual loss: To measure the semantic difference between the estimated output and

the ground truth, we use the perceptual loss introduced in Johnson et al. (2016). We use

a pre-trained VGG-16 (Simonyan and Zisserman (2014)) model for our perceptual loss.

We extract feature maps between the second convolution (after activation) and second

max pool layers, and between the third convolution (after activation) and the fourth max

pool layers. We call these activations φ22 and φ43, respectively. This loss is given as,

Lpercept = ||φ22(Itrue)− φ22(Iest)||22 + ||φ43(Itrue)− φ43(Iest)||22. (4.3)

Adversarial loss: Adversarial loss (Ledig et al. (2017); Goodfellow et al. (2014))

was added to further bring the distribution of the reconstructed output close to those of

the real images. Given the discriminator D described in Section 4.3, this loss is given

as,

Ladv = − log(D(Iest)). (4.4)

Our discriminator, consisting of 4 layers of 2-strided convolution followed by batch

normalization and ReLU activation function, classifies the generator output as real or

fake.

Total generator loss: Our total loss for the FlatNet while training is a weighted

combination of the three losses and is given as,

L = λ1LMSE + λ2Lpercept + λ3Ladv. (4.5)

where, λ1, λ2 and λ3 are weights assigned to each loss.

Discriminator loss: Given Iest, Itrue and discriminator D, the discriminator was

trained using the following loss,

Ldisc = − log(D(Itrue))− log(1−D(Iest)). (4.6)

Contextual Loss: For finetuning FlatNet-gen on unaligned PhlatCam and webcam

pairs (described in Section 5.4.4), we use only contextual loss as proposed in Mechrez

et al. (2018). Denoting output image features (φ44(Iest)) as {pi}Ni=1, target image fea-

tures (φ44(Itrue)) as {qj}Nj=1 and number of pixels in each of these feature maps as N ,
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contextual loss finds the nearest neighbour feature match q = arg minq D(p, qj)
N
j=1 for

each p. We then minimize the summed distance of all such feature pairs. The distance

metric we adopt here is cosine-distance, although it could also be L1, L2, etc. This loss

term is given by:

Lcontextual =
1

N

N∑
i=1

minj∈[N ]D(pi, qj) (4.7)

We found φ44 to be a suitable feature extractor based on the computational cost and

sharpness of reconstruction.

19



CHAPTER 5

EXPERIMENTS AND ANALYSIS

In this chapter, we describe all our experiments. We perform all our experiments on

real data. We will refer to the FlatNet for separable model as FlatNet-sep (proposed in

Khan et al. (2019)) and for the non-separable model as FlatNet-gen. They will further

be suffixed by -C and -UC to indicate calibrated or uncalibrated method of initialization

respectively. Unless specifically mentioned, simply using FlatNet-gen or FlatNet-sep

would indicate FlatNet-gen-C or FlatNet-sep-C i.e. FlatNets initialized with the cali-

brated method of initialization.

5.1 Dataset

Supervised training of deep neural networks require large scale labelled dataset. How-

ever, collecting a large scale dataset for lensless images is a challenging task. One could

use the known lensless model to simulate measurements from the available natural im-

age datasets. This, however, will sometimes fail to mimic the true imaging model due

to several non-idealities. To overcome this challenge, we collect a large dataset by pro-

jecting images on monitors and capturing this projection using lensless cameras. This

not only takes care of the true imaging model for lensless camera, it also helps us collect

a labelled dataset for lensless images.

We follow a similar dataset collection procedure as Khan et al. (2019) for PhlatCam

(Boominathan et al. (2020)). For our work, we use a subset of ILSVRC 2012 (Rus-

sakovsky et al. (2015)). Specifically, we used 10 random images from each class as

our ground truth. Of the 1000 classes, we kept 990 classes for training and the rest for

testing. So in total, we used 9900 images for training and 100 images for testing. Be-

fore capturing the dataset, we resize the images displayed on monitor so as to cover the

entire field of view (FoV) of camera. We call this dataset the Display Captured Dataset.

For this dataset, the ground truth images are the ones that were projected on the monitor

screen.



Figure 5.1: Samples from our collected datasets. All our experiments are conducted
on real data captured using PhlatCam (Boominathan et al. (2020)). We
collect Display Captured Dataset using PhlatCam, a non-separable pro-
totype, to train FlatNet-gen. We also collect Direct Captured Dataset
by placing objects in front of the lensless camera under controlled il-
lumination. Finally, to improve the robustness of FlatNet, we collect
a dataset of Unconstrained Indoor Scenes using PhlatCam and Webcam
pairs. For comparison, we have also shown samples used by Khan
et al. (2019) in training FlatNet-sep, which is already publicly available
at https://siddiquesalman.github.io/flatcam_iccv.html.

To test the FlatNet on real scenes, we also capture measurements of objects placed

directly in front of the camera. Using PhlatCam we collect 20 such measurements.

We call this dataset Direct Captured Dataset. This dataset doesn’t have corresponding

ground truths for the measurements. To demonstrate the effectiveness of FlatNet-gen

on unconstrained indoor scenarios, we collect a dataset of unaligned PhlatCam and

webcam captures using the setup described in Figure 5.14. This dataset consists of 475

training samples and 25 test samples. We call this dataset the Unconstrained Indoor

Dataset. Samples from our datasets can be seen in Figure 5.1.
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Figure 5.2: Display Capture Setup. The monitor is placed such that the entire field of
view (FoV) of the camera is occupied. This is aligned by using a checker-
board pattern and aligning the monitor with the Tikhonov reconstruction.
Both cameras are adjusted for white balance.

5.2 Implementation details

5.2.1 Camera Prototype

The PhlatCam prototype used is a Basler Ace4024-29uc with 12.2MP Sony IMX226

sensor with a pixel size of 1.85µm. All the ground truth images were resized to 384 ×

384 which is equal to the FoV of the prototype. We directly used the Bayer measure-

ments of 4 channels (R,Gr,Gb,B) as our input to the network and convert them into 3

channel RGB within the network. We used the same set of λi’s as that for FlatNet-sep.

The full measurements used were of dimension 1280 × 1408 × 4. This size of mea-

surement was selected to account for the non-zero nature of the bright points beyond

the Chief Ray Angle (CRA) of the sensor. For the small sensor experiments of Section

5.4.2, we use measurements of dimension 608× 864× 4.

We set the loss coefficients in Equation 4.5 as: λ1 to be 1, λ2 to be 1.2 and λ3 to be

0.6. The Adam (Kingma and Ba (2014)) optimizer was used for all models. We started

with a learning rate of 10−4 and gradually reduced it by half every 5000 iterations.

5.2.2 Display Capture Setup

To capture a display-captured image using PhlatCam (Boominathan et al. (2020)), the

image is resized so as to occupy the biggest central square on a 24-inch monitor using
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Figure 5.3: Direct Capture Setup. We collect measurements in a dark room, with
the only source of illumination being a controllable light source. These
measurements are more similar in distribution to monitor acquired images
(display capture). Indoor measurements in the wild can however differ sig-
nificantly from this.

bicubic interpolation. The monitor was placed at appropriate distance so that the image

occupied the field of view of the cameras. For PhlatCam this was 8 inches. This setup is

fixed for all image captures such that the alignment of the monitor pixels to the camera

pixels is uniform throughout both training and test. The white balance setting was

estimated once before the capture began by capturing a demo picture. The exposure

was set at 10000 microseconds. Figure 5.2 shows the setup for FlatCam capture. The

setup for PhlatCam is similar.

5.2.3 Direct Capture Setup

We follow the same white balance offsetting procedure for both cameras as mentioned

in the preceding paragraph. As seen in Figure 5.3, we make use of a dark room with just

a single light used to control illumination. This makes direct capture quite similar to

monitor based acquisition (display capture). Indoor measurements in the wild, however,

can differ from display capture. For this reason, as detailed in Sections 5.1 and 5.4.4,

we collect an unconstrained capture dataset.
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Figure 5.4: Unconstrained Capture Setup. We capture Webcam-PhlatCam pairs to
finetune FlatNet on indoor scenes with varying, uncontrolled lighting. Left.
Arrangement used to mount PhlatCam and Webcam. Right. Sample mea-
surement collection of an indoor scene.

5.2.4 Unconstrained Capture Setup

As we elaborate in Section 5.4.4, real measurements may differ from display capture

due to issues like stray light. To offset this, we collect Webcam-PhlatCam pairs and

finetune FlatNet. The setup used for collecting the measurements and a sample scene

collection can be seen in Figure 5.4.

5.3 Comparison with other approaches

For experiments on the non-separable model, we compare FlatNet-gen with traditional

and learning based approaches. We describe these approaches below.

• Traditional approaches. In traditional method, we compare FlatNet-gen with
traditional Tikhonov regularized reconstruction implemented in Fourier domain
(as Wiener restoration filter) and total variation regularized reconstruction imple-
mented using ADMM (Antipa et al. (2018)).

• Learning based approaches. For learning based approach, we use the unrolled
deep network described in Monakhova et al. (2019). However, for fairness,
we use the five stage unrolled ADMM followed by our perceptual enhancement
stage.
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Figure 5.5: Display Captured Reconstructions for PhlatCam. While the learning
based methods clearly outperform traditional methods like Tikhonov and
TV-based ADMM, FlatNet-gen has superior performance in terms of re-
constructing finer details.

5.3.1 Qualitative discussion.

Figure 5.5 shows the display captured reconstruction for PhlatCam. We can clearly

see higher quality reconstruction for FlatNet-gen in comparison to traditional Tikhonov

regularized reconstruction or Wiener deconvolution and ADMM based method. It also

results in better quality reconstruction than the Le-ADMM model. This trend in perfor-

mance is also observed in the direct captured reconstructions in Figure 5.6. It should

also be noted that Le-ADMM, despite having fewer parameters, is extremely memory

and computation intensive due to the large number of intermediates/primal and dual

variables calculated at each stage of the unrolled ADMM. It is due to this significant

increment in memory consumption, that it becomes infeasible to implement this model

on the captured PhlatCam measurements without downsampling.

In our comparison, we downsample the measurements by a factor of 4 (similar to

Monakhova et al. (2019)) before passing them through the Le-ADMM network. Un-

less explicitly mentioned, we will refer to this downsampled Le-ADMM model as Le-

ADMM. Downsampling operation leads to compromise in the reconstruction resolution

resulting in the lack of sharpness observed in the final reconstruction. On the other hand,

the FlatNet-gen has significantly lower memory requirement that doesn’t require any

downsampling pre-processing thereby preventing any loss of sharpness or resolution.
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Figure 5.6: Direct Captured Reconstructions for PhlatCam. FlatNet-gen has fewer
artifacts while Le-ADMM suffers from blurry reconstructions and halluci-
nated artifacts.

Method PSNR (in dB) SSIM LPIPS Inference
Time (in sec)

Tikhonov 12.67 0.25 0.758 0.03
TV-ADMM 13.51 0.26 0.755 180

Le-ADMM-UC 18.35 0.49 0.407 0.08
Le-ADMM-C 20.29 0.51 0.333 0.08

FlatNet-gen-UC 20.53 0.54 0.318 0.03
FlatNet-gen-C 20.94 0.55 0.296 0.03

Table 5.1: Average Metrics on Display Captured PhlatCam measurements.
FlatNet-gen produces higher quality results without compromising on the
inference time for both the real PSF case (FlatNet-gen-C) and the simulated
PSF case (FlatNet-gen-UC). Le-ADMM shows larger difference in quality
between the real and simulated PSF cases owing to its stronger dependence
on the PSF.

We also provide comparison for FlatNet-gen initialized with uncalibrated PSF in

Section 5.4.3. We call this model FlatNet-gen-UC.

5.3.2 Quantitative discussion.

The quantitative results are provided in Table 5.1. Along with the uncalibrated FlatNet-

gen model, we also provide the performance of uncalibrated version of Le-ADMM in

this table. It is referred to as Le-ADMM-UC. The consistency with visual results is

maintained in the quantitative metrics. It can be clearly seen that FlatNet-gen outper-

forms all other methods quantitatively. FlatNet-gen-UC performs almost at par with
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Method Memory
(in MB)

Computation
(in MFLOP)

Le-ADMM-Full 6300 1290
Le-ADMM-

Downsampled 1000 65

FlatNet-gen 990 53

Table 5.2: Memory and FLOP comparison. Comparison of memory consumption
and FLOPs for five unrolled iterations of the ADMM block in Le-ADMM
(full and 4X downsampled versions) and the trainable inversion stage of our
proposed FlatNet-gen. We show here for 5 unrolled iterations of ADMM.
Despite using 4x downsampled measurements, Le-ADMM suffers from
higher computational and memory requirements in comparsion to the train-
able inversion stage of FlatNet-gen.

FlatNet-gen-C and outperforms Le-ADMM-UC. It should be noted that the difference

between FlatNet-gen-C and FlatNet-gen-UC is smaller as compared to Le-ADMM-C

and Le-ADMM-UC. This is primarily due to the stronger dependence of Le-ADMM

on the true PSF while FlatNet-gen requires the knowledge of PSF only for better ini-

tialization and learns to converge to a better inverse after training. We also provide the

runtime for the methods compared. For Wiener and TV-based ADMM, we report the

speed on CPU while for others we report the speed for a forward pass in GPU.

Assuming the true measurement is of dimension 1280×1408, we additionally com-

pare FlatNet-gen’s trainable inversion stage with the unrolled ADMM block of Le-

ADMM (without the U-Net) in terms of memory and computation in Table 5.2. We

provide the memory consumption (in Megabytes, computed on Nvidia GTX 1080 Ti

GPU) and computations (in FLOPs, computed theoretically) required to process one

image using the two methods. We unroll the ADMM for 5 iterations. In the table,

Le-ADMM-Full refers to the unrolled ADMM without any downsampling while Le-

ADMM-Downsampled refers to the case where the PSF and the scene were downsam-

pled by a factor of 4.

It can be observed that a full resolution Le-ADMM requires significant amount of

memory which would have negative implications if deployment is considered. More-

over, appended with dense CNNs like U-Net, Le-ADMM-Full is difficult to implement

on a conventional GPU, thereby necessitating the downsampling of the measurements

which in turn leads to the degradation of the reconstruction quality. One should also

note the amount of computations performed in the unrolled ADMM block for the par-
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ticular dimensions of PSF and scene. Due to a series of intermediate estimates that

depend on Fourier and Inverse Fourier transforms, this computation blows up for Le-

ADMM-Full. FlatNet-gen provides a better trade-off for resolution, and memory and

computational requirements which is essential for lensless systems which, by design,

suffer from poor reconstruction resolution.

5.4 Further analysis

5.4.1 Effect of learning the inversion stage

(a) Tikhonov (b) Tikh+U-Net (c) FlatNet

Figure 5.7: Comparison of FlatNet with Tikh+U-Net. Top row shows the comparison
of FlatNet-sep with Tikh+U-Net while the bottom row shows the compar-
ison of FlatNet-gen with Tikh+U-Net. FlatNet provides sharper and more
photorealistic reconstructions compared to Tikh+U-Net for both separable
and non-separable models.

In this section, we highlight the importance of the end-to-end learning strategy

of FlatNet. We compare FlatNet with a network with just the perceptual enhance-

ment block. We train this network with Tikhonov regularized reconstructions. For

training this network, we use the same loss as defined in Equation 4.5. We call this

method Tikh+U-Net. We compare the performance of FlatNet-gen with its corre-

sponding Tikh+U-Net in Figure 5.7. FlatNet-gen provides sharper reconstructions over

Tikh+U-Net. Tikh+U-Net suffers from blurrier reconstructions with amplified artefacts.

Table 5.3 provides a quantitative flavor to the above analysis. We can see that Flat-

Net outperforms Tikh+U-Net for both in terms of PSNR and LPIPS. One may notice

that the difference between FlatNet-gen and Tikh+U-Net is not very significant, due to

the higher quality of Tikhonov reconstruction in the case of PhlatCam (Boominathan
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Methods PSNR (in dB) LPIPS
Tikh+U-Net 20.60 0.298

FlatNet 20.94 0.296

Table 5.3: Comparison of FlatNet with Tikh+U-Net. FlatNet outperforms Tikh+U-
Net because it learns an end-to-end mapping.

et al. (2020)). However, one should note that Tikh+U-Net is strictly based on convolu-

tional assumption for the forward model, and performs poorly when this assumption is

violated as will be verified in Section 5.4.2.

5.4.2 Performance on cropped measurements

Figure 5.8: Effect of padding on Wiener deconvolution for cropped measurement.
Top row shows the measurement while the bottom row shows the corre-
sponding Wiener reconstruction. (a) Full measurement. Red box indicates
the cropped out region. (b) Zero padded measurement and the correspond-
ing reconstruction. (c) Replicate padded measurement and the correspond-
ing reconstruction. (d) Smoothened replicate padded measurement along
with the corresponding reconstruction. Line artefacts are significantly re-
duced in (d) which is used in this work.

As we have already seen in Section 4.1, the forward operation in a mask-based

lensless camera is no longer convolutional if the size of the sensor is small compared

to the true measurement size i.e. the forward model is given by Equation 2.4. This
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coupled with large PSFs, makes lensless reconstruction challenging for traditional re-

construction approaches which rely on the circulant or convolutional assumptions (e.g.

Wiener deconvolution). This naturally leads to a question: Will the proposed trainable

inversion layer of FlatNet-gen, which is based on learned Fourier domain inversion, be

robust against cases where the deviation from the circulant assumption is significant? In

other words, will FlatNet-gen be able to deal with measurements from which a signifi-

cant amount of pixels have been thrown away due to the finite sensor size and fully open

aperture? In this section, we show that we can deal with the small sensor size case with-

out losing much in terms of reconstruction quality and perform better than Le-ADMM

which explicitly tries to deal with the cropped out pixels. For our experiments, we take

a central crop of size 608 × 864 from our 7MP full sensor measurement. Effectively,

this can be thought as using a 2MP sensor instead of the 7MP sensor.

It was previously observed in Reeves (2005) that estimating the cropped out pixels

followed by a Wiener deconvolution performed very closely to the Wiener deconvo-

lution applied on replicate padded measurement. Following this observation in Reeves

(2005), we replicate pad our cropped measurements as a pre-processing step. To smooth

the discontinuities due to padding, we multiply this padded measurement with a gaus-

sian filtered box. However, in contrast to the edge-tapering operation, our smoothening

operation is significantly cheaper as it doesn’t involve any convolution with the large

lensless PSF.

The effectiveness of our method of padding can be observed in Figure 5.8. Mathe-

matically, the trainable inversion stage changes to,

Xinterm = F−1(F(W )�F(pad(Y ))). (5.1)

This is a modification to Equation 4.1 to account for the cropped measurement.

pad(.) refers to the padding and smoothing operation described above. The same

padding and smoothing procedure is also followed for Tikh+U-Net applied on the

cropped measurements.

We can see that FlatNet-gen with replicate padding followed by smoothing led to

fewer line artifacts. Figure 5.9 shows the reconstruction quality for the display captured

cropped measurement compared with full measurement for Tikh+U-Net, Le-ADMM
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Figure 5.9: Display Captured Reconstructions for cropped PhlatCam measure-
ments. The difference observed in the performance of FlatNet for cropped
and full measurements is small. This difference is, however, large for both
Le-ADMM and Tikh+U-Net.

and FlatNet. It should be noted that for applying Tikh+U-Net approach on cropped mea-

surement, we apply the Wiener deconvolution on the padded measurement i.e. replicate

padded followed by smoothing operation.

Even after padding the measurements, there are artifacts in the Wiener restored

images that cannot be effectively removed using Tikh+U-Net. Le-ADMM performs

slightly better than Tikh+U-Net due to its intermediate stage that approximately esti-

mates the uncropped measurement. However, it is not as robust to crop as FlatNet-gen

is. Similarly, in Figure 5.10, we show the reconstructions for direct captured cropped

measurement. It can be clearly seen that Tikh+U-Net and Le-ADMM suffer from sig-

nificant color artifacts. These artifacts are however not significant in the FlatNet-gen

reconstructions. Table 5.4 gives the comparison of average scores for each model on

the display captured dataset.

It should be noted that for the model used to obtain Figures 5.9 and 5.10 and Table

5.4, the PSF size (608 × 870) exceeds the assumed sensor size (606 × 864). This is

barely 30% of the pixels present in the full measurement. In such a case, estimation

of the true PSF is a tedious process and one can use the uncalibrated FlatNet-gen-UC.

From Table 5.4, we can see that FlatNet-gen outperforms all other learned methods.

FlatNet-gen-UC has a comparable performance to FlatNet-gen, while Tikh+U-Net-UC

and Le-ADMM-UC breakdown: indicating that accurate PSF calibration is required for

these methods. The visual results for FlatNet-gen-UC for cropped measurements are
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Figure 5.10: Direct Captured Reconstructions for cropped PhlatCam measure-
ments. We can see FlatNet-gen performs reasonably well while both Le-
ADMM and Tikh+U-Net breakdown. This can be observed through the
colour of the letters and hazy appearance especially around the borders in
Tikh+U-Net and Le-ADMM.

provided in Section 5.4.3.

Apart from the crop size mentioned above, we also show the performance of the

learning based approaches for various different crop sizes in Figure 5.11. Here, we

normalize the size of the cropped measurements with respect to the full measurements.

It can be seen that FlatNet-gen consistently outperforms Le-ADMM and Tikh+U-Net

for all crop sizes.

5.4.3 Qualitative Comparison for Uncalibrated PSF Case

In Sections 5.3 and 5.4.1, we provided the quantitative comparison for FlatNet-gen

with Le-ADMM and Tikh+U-Net. In this section, we provide the visual results for

the uncalibrated versions of the same. In particular, we use PSF simulated using the

method described in Section 4.1 and use this PSF for learning Le-ADMM, Tikh+U-Net
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Method PSNR(in dB) SSIM LPIPS
Tikh+U-Net-UC 17.53 0.45 0.438
Tikh+U-Net-C 18.34 0.48 0.376
Le-ADMM-UC 17.94 0.45 0.410
Le-ADMM-C 18.72 0.48 0.371

FlatNet-gen-UC 18.72 0.48 0.375
FlatNet-gen-C 19.29 0.50 0.365

Table 5.4: Average Metrics on cropped Display Captured PhlatCam measure-
ments. FlatNet-gen performs consistently better than other learned ap-
proaches for both real (FlatNet-gen-C) and simulated PSF case(FlatNet-gen-
UC). It should be noted that FlatNet-gen-UC performs as good as Le-ADMM
based on real PSF.

and FlatNet-gen. We provide the comparison for both full measurement in Figure 5.12

and cropped measurement in Figure 5.13. We can see clearly that the performance of

FlatNet-gen-UC is very close to its calibrated counterpart i.e. FlatNet-gen-C. However,

this is not the case with Le-ADMM and Tikh+U-Net, demonstrating the effectiveness

of the trainable inversion layer to work effectively with even an inexact copy of the

Point Spread Function.

This can prove to be quite beneficial in practical settings, when lensless cameras

are fabricated on a large scale. Even with tight control on mask lithography and sensor

mounting techniques, the Point Spread Function (PSF) between two cameras may not

be identical. Notice that Le-ADMM which assumes an explicity calibrated PSF being

used as an input parameter cannot effectively handle such discrepancies.

5.4.4 Performance on unconstrained indoor scenes

In the previous sections, we performed all our experiments using FlatNets trained on

display captured dataset. However, real measurements captured in the wild differs from

the dispay captured measurements for the following reasons: a) real world captures

have significantly higher amount of noise compared to display captured measurements,

b) in an unconstrained setup, bright scene points beyond the FoV described by the Chief

Ray Angle (CRA) can also influence the captured measurement which is not the case

with display captured measurements captured with monitors filling the whole of CRA

defined FoV.
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Figure 5.11: Performance of learning based techniques for various amount of
crops. We plot the PSNR and LPIPS of FlatNet-gen, LeADMM and
Tikh+U-Net under various measurement sizes normalized with respect to
full measurement size. We can see FlatNet-gen consistently outperforms
other learning based methods for all crop sizes.

Figure 5.12: Comparison between uncalibrated and calibrated learning based ap-
proaches for full PhlatCam measurement. Tikh+U-Net and Le-ADMM
rely on accurate estimation of PSF while FlatNet-gen relies on PSF only
for initialization and rather learns the inverse of the PhlatCam forward
model. FlatNet-gen higher quality reconstructions with finer details for
both calibrated and uncalibrated case. This is not the case for Le-ADMM
or Tikh+U-Net.

To take these differences into account and make our FlatNet robust to real world

scenarios, we finetune FlatNet using a real world dataset we captured called the Un-

constrained Indoor Dataset. This dataset consists of unaligned webcam and PhlatCam

captures collected using the setup described in Figure 5.14. We collected 500 pairs

of such data, keeping 475 pairs for training and 25 for testing. We finetune the entire
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Figure 5.13: Comparison between uncalibrated and calibrated learning based ap-
proaches for cropped PhlatCam measurement. FlatNet-gen provides
higher quality reconstruction for both calibrated and uncalibrated case
even when the measurement is extensively cropped. This indicates that
FlatNet-gen can be used for small sensor setup without accurately estimat-
ing the PSF.

network with a small learning rate (10−12 for the trainable inversion stage and 10−6 for

the perceptual enhancement stage). To account for misalignment between PhlatCam

and webcam captures, we only use Contextual Loss (Mechrez et al. (2018)) which was

previously proposed for unaligned data. We note that we did unsuccessfully attempt

to use a feature based (such as ORB or SURF) registration method- where we would

use baseline FlatNet reconstructions and Webcam captures to find a homography. This,

however, was not successful, since the artefacts found in the FlatNet reconstructions

lead to poor alignment results.

Figure 5.14 shows some of our reconstruction results with and without finetuning

along with webcam captures for reference. It can be observed that finetuning results

in more photorealistic reconstructions. The strong line artifacts observed in the recon-

structed fire extinguisher image for FlatNet-gen without finetuning indicates that the

signal outside the field of view described by the CRA is significant and as a result, the

full measurement extends beyond the assumed spatial dimension of 1280×1408. These

line artifacts are however suppressed due to finetuning.

It is interesting to observe the effectiveness of the finetuned FlatNet for cropped

unconstrained indoor scenes. In Figure 5.15, we provide visual comparison for the

reconstructions from cropped measurement and full measurement along with the web-
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Figure 5.14: Photorealistic reconstruction for unconstrained indoor scenes. (a) The
PhlatCam-Webcam setup to capture the dataset for finetuning FlatNet-gen.
(b) Tikhonov reconstruction. (c) Reconstructions from FlatNet-gen trained
just on display captured data. (d) Reconstructions using FlatNet-gen fine-
tuned on unconstrained indoor captures. (e) Webcam image for reference.
Finetuning makes the reconstructions more realistic.

cam capture. We show result for crop sizes of 990 × 1254. It should be noted that in

an unconstrained setup, there may be large signals (due to bright objects) outside the

field of view described by the CRA which would result in strong line artifacts in the

reconstructions produced by model without finetuning.
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Figure 5.15: Cropped measurements for Unconstrained Indoor Scenes. We can ob-
serve that FlatNet-gen finetuned on unconstrained scenes provides reason-
able reconstruction quality even for cropped measurements

5.4.5 Effect of Bright Object

For a highly multiplexed lensless imager, every pixel receives light from every point in

the scene. Hence, if there is any really bright object (like a highly reflective object or a

lamp) in the scene, the light from the object can dominate the pixel intensities and result

in severe reconstruction artifacts on the dimmer objects. We show that, using FlatNet,

the artifacts are minimized resulting in a higher quality reconstruction of the scene.

We show the bright object problem by introducing an LED into the scene. Fig-

ure 5.16 shows the reconstruction for PhlatCam (Boominathan et al. (2020)). We can

observe that FlatNet-gen reconstructions have significantly fewer artifacts than other

traditional and learning based approaches.

While such an experiment is not a reliable analysis of high dynamic scene capture

using lensless cameras, it represents an early indicator that learning based techniques

can (to a certain extent) offset sensor saturation. In the future, it would be interesting to

see if learning based techniques such as HDRNet (Gharbi et al. (2017)) can be adapted

to lensless systems.
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(a) Tikhonov (b) Le-ADMM (d) FlatNet-gen(c) Tikh+U-Net

Figure 5.16: Reconstruction of scenes with bright objects (LED) using PhlatCam.
Artifacts occuring in Tikhonov reconstructions are amplified by Tikh+U-
Net reconstruction. While Le-ADMM performs slightly better than
Tikh+U-Net for PhlatCam, they are outperformed by FlatNet-gen

38



CHAPTER 6

Conclusion

In this paper, we propose end-to-end trainable deep network for photorealistic scene re-

construction from lensless measurements. Despite the numerous promises that lensless

imaging provides, it is restricted by the quality of image that can recovered using such a

thin and cheap camera. In this paper, we have attempted to bridge this gap between the

promise of lensless imaging and its performance. Our reconstruction algorithm provides

significant advantage over existing approaches including some deep learning based ap-

proaches. This is naturally reflected in the high quality of reconstructions we get for

both display and real captures under both large and small sensor scenarios. Finally,

we show that by finetuning our model trained on display captured measurements, using

unaligned Webcam-PhlatCam indoor scenes, we can recover extremely photorealistic

images from these tiny cameras.

In future, it would be interesting to look into the co-design of mask or PSF and

reconstruction algorithm for mask-based lensless cameras.
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