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ABSTRACT

KEYWORDS: Virtual Reality; Light Fields; Foveated Rendering, View Synthesis;

CNN.

Near-eye light field displays provide a solution to visual discomfort when using head

mounted displays by presenting accurate depth and focal cues. However, light field

HMDs require rendering the scene from a large number of viewpoints. This computa-

tional challenge of rendering sharp imagery of the foveal region and reproduce retinal

defocus blur that correctly drive accommodation is tackled in this thesis. We designed a

novel end-to-end convolutional neural network that leverages human vision to perform

both foveated reconstruction and view synthesis using only 1.2% of the total light field

data. The proposed architecture comprises of log-polar sampling scheme followed by

an interpolation stage and a convolutional neural network. To the best of our knowl-

edge, this is the first attempt that synthesizes the entire light field from sparse RGB-D

inputs and simultaneously addresses foveation rendering for computational displays.

Our algorithm achieves fidelity in the fovea without any perceptible artifacts in the pe-

ripheral regions. The performance in the fovea is comparable to state-of-the-art view

synthesis methods, despite using around 10× less light field data.
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CHAPTER 1

INTRODUCTION

Emerging Virtual Reality (VR) and Augmented Reality (AR) head-mounted displays

(HMDs) are revolutionizing many different fields such as gaming, entertainment, medicine,

education, etc. Two main features are critical in HMDs to display stunningly vivid vir-

tual objects right in front of the user: 1) reproduce an extended depth-of-focus (eDoF)

with sharp imagery over the user’s full accommodation range, 2) drive correct accom-

modation by depicting perceptually accurate retinal defocus blur. However, existing

HMDs display virtual objects at a fixed optical focus and do not accurately reproduce

retinal blur all over the extended scene. This leads to vergence-accommodation conflict

(VAC). Sustained VAC in long hour wearing of HMDs has been associated with poten-

tial health concerns caused by biased depth perception and visual fatigue. Computa-

tional displays are evolving which integrate optics and rendering algorithms to enhance

the capabilities of conventional HMDs by producing correct visual depth and focus cues

that makes the entire experience feel natural.

There are three main contenders of computational VR/AR display technologies

which receive particular attention: Varifocal, Multifocal, and Light field displays. The

Varifocal and Multifocal displays create eDoF. Varifocal HMDs continuously adjust the

virtual image distance, whereas Multifocal HMDs generate the multiple focal planes

across the viewing zone. These advanced HMDs partially depend on synthetically ren-

dered blur. However, do not account blur created optically due to the natural accom-

modative response of the user. These displays may produce incorrect focus cues without

rendered blur. Recent findings establish that rendered blur is critical to effectively drive

accommodation. While promising, synthesizing retinal defocus blur with perceptual ac-

curateness is computationally expensive. In addition, accurate eye tracking is required

in HMDs based on synthetically rendered blurring.

Near-eye light field displays provide a solution to these issues while maintaining a

thin form factor and optimal field-of-view. Light field based HMDs approximate retinal

blur by displaying an optical superposition of many novel viewpoints. However, still



require to render the scene from from tens or even hundreds of viewpoints. This is yet

another formidable computational challenge.

In this work, we present a novel integrated learning framework for efficient render-

ing of sparse light fields to reduce the computational cost associated with light field

based HMDs. Our proposed ResUNet end-to-end convolutional neural network archi-

tecture effectively solves the computational tasks associated with sharp foveated re-

construction, reproduce retinal defocus blur to drive natural accommodation and high

quality multi-view rendering using modest RGB-D light field inputs. The main contri-

butions of our proposed model are:

• We propose a new method that renders virtual content for near-eye light field

displays, contingent on the user gaze, using only a fraction of the total light field

data, maintaining acceptable rendering quality.

• The proposed ResUNet network architecture is flexible in terms of sampling the

patterns and performs foveated reconstruction of the full light field with high

foveal fidelity from sparse color image(s) and depth map(s) inputs.
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CHAPTER 2

RELATED WORK

In this section, we briefly review light field view synthesis and foveated rendering algo-

rithms designed for VR/AR head mounted displays.

2.1 Light Fields & View Synthesis

Conventional 2D displays fail to provide accurate visual cues for comfortable 3D per-

ception. In human visual perception, Vergence & Accomodation (VA) are neurally

coupled which helps maintain a fused sharp image. In the real world, VA is matched

to the distance of the object of fixation. As the eye accommodate to the object, natural

depth-of-field blur is generated on retina for the rest of the scene. In HMDs, no blur is

generated on the retina. The virtual scene appears at different distance, but light comes

from the fixed distance of the display. Thus, VA is generally not matched because the

eye accommodates to the fixed distance of the display screen, while converging to the

varying distance of the virtual object. This VA conflict often causes visual discom-

fort and nausea. Koulieris et al. (1) results demonstrate that only focus-adjustable-lens

combined with gaze-contingent depth-of-field blur successfully drives accommodation

to the simulated distance of virtual object. Other conditions alone, such as, depth-of-

field rendering and monovision are not very effective.

An alternate solution, 4D light field based displays provide natural viewing expe-

rience by presenting virtual objects at the correct focus to match their distance. It al-

lows users to accommodate at different depths while approximating retinal defocus blur.

However, rendering content for such a setup requires a large computation cost and typi-

cally has high latency. View Synthesis is an approach to reduce the number of rendered

views. Wu et al. (2) reconstructs a 9 × 9 light field using 9 input views, Kalantari et

al. (3) use only the four 4 corner views. Srinivasan et al. (4) render the 4D light field by

sampling the input central view image. Xiao et al. (5) proposes a network architecture



for generating all the views using 9 or 5 sampled views which produces state-of-the-art

results with low latency for real-time applications.

2.2 Foveated Rendering

Humans have a 135◦ vertical and 160◦ horizontal field of view. However, the perception

of details is not uniform. The highest resolution vision occurs in a 5◦ central circle (6),

where highest concentration of color receptors occur. Acuity quickly falls off radially

as the sampling period decreasing roughly linearly with eccentricity, i.e., the angular

distance from the centre.

Araujo and Dias (7) estimate the cortical activation using a log-polar mapping,

which has been used for GPU rendering of 2D images (8) and 3D images (9). Sun

et al (10) proposed a scheme for foveated rendering of light fields using 16% to 30%

of light rays while maintaining perceptual quality. DeepFovea (11) performed foveated

reconstruction of images corrupted by a random binary mask using learned statistics

from natural images. All of these approaches require fast gaze-tracking to drive the

displays without degradation in visual quality. With recent advances in eye tracking

technology, it is now possible to track user gaze in real-time often leveraging learning

based techniques.

4



CHAPTER 3

PROPOSED SCHEME

There are three broad stages in our proposed foveated rendering scheme: sampling,

interpolation and a convolutional neural network. At the first stage, the virtual scene is

sampled for RGB intensity and depth data according to the log-polar scheme (7). Next

second stage, interpolation of the color intensity image is performed for unsampled

pixels. Finally, at the last third stage, a novel end-to-end convolutional neural network

is employed to predict the full light field data for each color channel separately. Each

stage is described in detail in the coming sections:

3.1 Log Polar Sampling

We use log-polar mapping to generate a binary mask for sampling RGB-D pixels (7).

A log-buffer of size R × Θ is defined first. Then, for each pixel in the buffer, the

corresponding pixel in the image is selected to be part of the mask. The x, y pixels in

the image corresponding to r, θ in log-buffer are related by

x = exp(
r · log(L)

R
) cos(

2πθ

Θ
), (3.1)

and

y = exp(
r · log(L)

R
) sin(

2πθ

Θ
) (3.2)

where, L denotes the maximum distance from the centre of fovea to the corners of the

image. Choosing only integral values of x, y leads to far fewer than R ∗ Θ sampled

pixels in the generated mask. We control the sampling rate using a parameter S dubbed

as log-buffer scale. Further, we choose R = W
S

and Θ = W
S

, where W is defined as the

width of the image. Example sampling masks are shown in Fig. 3.1.

Incorporating polynomial kernel functions help in achieving an efficient control over

the sampling density (9). In our proposed approach, the actual pixels sampled can be

varied while using the same density by selecting offsets r
′

and θ
′

. These parameters



(a) (b)

Figure 3.1: Example binary sampling masks. White pixel locations are sampled. (a)

Log-buffer scale 2, Gaze location is top left, (b) Log-buffer scale 4, Gaze

location is the centre.

are used to obtain different masks for each of the nine input views. The proposed new

formulation is defined as

x = r
′

× exp(
r

1

K · log(L)

R
) cos(

2πθ

Θ
+ θ

′

) (3.3)

and

y = r
′

× exp(
r

1

K· log(L)

R
) sin(

2πθ

Θ
+ θ

′

) (3.4)

where, K is the kernel parameter. The inverse transformation from x, y to r, θ can be

determined by

r = (
log(

√

x2 + y2 × 1

r
′ ) ·R

log(L)
)K (3.5)

θ =
arctan( y

x
) ·Θ

2π
− θ

′

(3.6)

The interpolation stage is described in the next section.

3.2 Interpolation

Kaplanyan et al. (11) employ Generative Adversarial Networks (GAN) and rely on

in-hallucinating the video content based on the learned statistics to achieve foveated

compression. However, the GAN model used by DeepFovea is not very efficient as it is

6



(a) (b) (c)

Figure 3.2: Example interpolation. (a) Original image, (b) Sampled image using a bi-

nary mask (log-buffer scale 2, gaze location at the centre), (c) Interpolated

image.

difficult to train because of issues related to non-convergence and modal collapse.

We adopted a different strategy to avoid perceptual artifacts in the periphery. In our

sampling strategy, peripheral regions have very sparse input data to correctly predict the

intensity. Due to this nature, we propose an interpolation step for the color channels and

simplify processing by formulating the problem as an image enhancement. Inverse dis-

tance interpolation using the nearest four pixels is adopted in our scheme. The formula

used in the computation is given by

p =

∑

4

i=1

pi
di

∑

4

i=1

1

di

(3.7)

where, p is the target pixel intensity, pi is the neighbourhood pixel intensity, and di is

distance from the target to the neighbourhood pixel. Interpolation strategy works very

well, since near the foveal region, there is adequate information to correctly predict the

image pixels, whereas in the peripheral region only low frequency content is perceived

by our eyes. Our method adequately captures this information. An example of our

strategy is shown in Fig. 3.2.

3.3 Neural Network Architecture

In this section, we explain our proposed convolutional network architecture, dubbed as

ResUNet. A block diagram is illustrated in Fig. 3.3. The objective of proposed ResUNet

is to strike a balance between quality and runtime complexity, while rendering foveated

7



Figure 3.3: Our proposed ResUNet network architecture.

contents from input sparse RGB-D light fields. The ResUNet is built up of two compo-

nents: 1) a fully efficient convolutional neural network made up of residual blocks, 2)

an encoder-decoder U-Net that induces smoothness in the periphery of rendered light

field images.

As shown in Fig. 3.3, each convolution layer in proposed ResUNet is followed by a

batch normalization layer (13) along with an “exponential linear unit” activation func-

tion (14). The inputs to the network are sampling mask, sampled depth and interpolated

intensity map of a single color image concatenated along the depth axis. Note that

each color channel is processed separately with the sampling mask and sampled depth

duplicated for red, blue and green channels. Further, the proposed ResUNet CNN archi-

tecture efficiently learns viewpoint translations. Applying the CNN presented by Xiao

et al. (5) separately is not effective since their architecture has a small receptive field

which makes it difficult for the network to correctly handle distorted content in the pe-

riphery. To overcome this issue, we introduced the U-Net in parallel with Residual-Net

that helps to smooth out the blocky structures from the interpolation step.

8



3.3.1 Interleaving layers

We include an interleaving layer to reduce the spatial dimensions. This step is motivated

by (5). In general, CNNs have a roughly linear relationship between run-time and

spatial dimensions. Interleaving layers reshape an input with dimensions (C,H,W )

to (C × r2, H
r
, W

r
), where r is the interleaving rate. This preserves the volume of the

input while increasing the depth. We find using empirical analysis that r = 2 increases

the performance without much degradation in quality. Besides, a de-interleaving layer

in the network restores the outputs to original spatial dimensions of the input. The

individual components of our network are described below:

3.3.2 Residual Network

A series of the residual blocks (16) with skip connections are employed in ResUNet

without downsizing. To preserve the high frequency information of the input image,

a long range skip connection from the inputs to the next-to-last layer is present. The

residual network allows us to train deeper networks. It is beneficial in learning close

to identity mappings with changes such as small translations. Thus, residual network

in present view synthesis formulation proves to be much useful. Next, we introduce a

U-Net architecture (12) to correct the blocky structure introduced in the interpolation

step caused by a small receptive field.

3.3.3 U-Net

We proposed a U-Net style network that can effectively handle a larger receptive field.

The proposed U-Net works parallel to the residual block chain. Average pooling and

upsampling layers are used to downsize and upsize features respectively. Skip connec-

tions from down blocks to up blocks help in better estimating the gradient flow. The

input features after the first convolutional block are downsized four times. The output

of the proposed U-Net is added to the output of the series of residual blocks. This helps

in producing the smoothness in the periphery of rendered light field images and reduce

the undesired blocky effects.

9



3.3.4 Losses

The final prediction is done using a tanh activation function. The function is normalized

to [0, 1]. The loss function used in the proposed model is defined as

Loss =
∑

N

(−10 log‖ŷ − y‖2
2
− 10 log‖∇ŷ −∇y‖2

2
) (3.8)

where, ŷ is the predicted output and y is the target. The loss is computed by measuring

the pixel-wise PSNR and a pixel-wise gradient PSNR components using the predicted

output ŷ and the target y.

10



CHAPTER 4

IMPLEMENTATION

The dataset provided by (5) is used for the experiments and training our network. A

procedural scene generator Houdini (15) is used to create the dataset. The dataset con-

sists of 85 rendered scenes consisting of light field data with 81 (9 × 9) intensity and

depth images. The RGB-D images used for the experiments is of resolution 512× 512

pixels.

A sampling mask as described in section 3.1 is selected for a scene by randomly

choosing a location for gaze from a set of 9 predetermined locations. The inputs for

the network are generated using the mask by sampling pixels from the RGB-D images.

Unsampled pixels are assigned the value 0 by default. The color intensity maps are in-

terpolated by our proposed scheme explained in section 3.2. The robustness of proposed

model is improved by training with multiple sampling rates at once. Sampling rate is

varied by changing log-buffer scale S as defined in section 3.1. We choose S = 4

(∼ 3.6% pixels) for 40% of scenes, S = 2 (∼ 10.6% pixels) for 40% of scenes and

S = 0 (100% pixels) for the remaining. The depth and sampling mask is replicated

for each color channel. We extract overlapping patches of size 128 × 128 pixels from

each scene to produce 147 data points (49 patches × 3 color channels). This resulted

in a training dataset of size 4,165. The training data size is not affecting our model

performance, since the receptive field is smaller than the individual patches. We used

75 scenes for training and the rest for evaluation. Testing is performed on the additional

scene provided in the dataset. We trained our model using TensorFlow open-source

software library. The weights in our proposed ResUNet model are initialized following

He et al. (16). We used Adam gradient-based stochastic optimization algorithm with the

recommended hyperparameters for around 300 epochs choosing a batch size of 16.



CHAPTER 5

EXPERIMENTS

We simulate the retinal image by refocusing the light field image to the gaze position

using shift and add algorithm (21). Each of the light fields used for experiments has a

spatial resolution of 512 × 512. A maximum disparity of 2.5 pixels between adjacent

views is considered.

The quality assessment is performed by measuring standard Peak Signal to Noise ra-

tio (PSNR) and Structural Similarity Index (SSIM) metrics on the synthesized foveated

images. We estimated PSNR and SSIM measures at three radial regions: Fovea, Periph-

ery 1 (P1) and Periphery 2 (P2). The generated images could be perceived through a

near-eye light field display with a 35◦ field of view. We computed the diameter of fovea

as 0.1L considering 5◦ central foveal region (6), where L is the diagonal length of the

display. The diameters of P1 and P2 are considered to be 0.4L and 1L. An illustration

is provided in Fig. 5.1.

Table 5.1: Results at Near Focus

Model
% of Total

Light Field Sampled

SSIM / PSNR (dB)

Fovea P1 P2 Full

DeepFocus 11.11 0.9963 / 45.37 0.9936 / 44.04 0.9961 / 49.49 0.9955 / 47.47

ResUNet (S=2, K=1) 1.18 0.9892 / 41.81 0.9381 / 30.64 0.9585 / 32.98 0.9548 / 32.47

ResUNet (S=1.5, K=1) 1.82 0.9859 / 40.64 0.9407 / 30.83 0.9611 / 33.71 0.9577 / 33.04

ResUNet (S=2, K=3) 2.01 0.9854 / 40.45 0.9382 / 30.27 0.9569 / 33.16 0.9536 / 32.43

ResUNet (S=4, K=1) 0.38 0.9519 / 33.64 0.8368 / 25.08 0.9068 / 25.08 0.8914 / 26.73

Table 5.2: Results at Far Focus

Model
% of Total

Light Field Sampled

SSIM / PSNR (dB)

Fovea P1 P2 Full

DeepFocus 11.11 0.9964 / 50.64 0.9969 / 51.02 0.9967 / 50.76 0.9968 / 50.92

ResUNet (S=2, K=1) 1.18 0.9883 / 43.27 0.9269 / 32.33 0.9145 / 28.88 0.9021 / 28.38

ResUNet (S=1.5, K=1) 1.82 0.9917 / 44.88 0.9408 / 33.27 0.9367 / 32.15 0.9274 / 31.49

ResUNet (S=2, K=3) 2.01 0.9891 / 43.59 0.9353 / 32.89 0.9321 / 31.41 0.9206 / 30.56

ResUNet (S=4, K=1) 0.38 0.9376 / 34.11 0.8932 / 30.30 0.8084 / 21.14 0.8081 / 21.35



(a) (b)

Figure 5.1: Different radial regions at near (a) and far (b) focus. Blue: Boundary of

Fovea, Green: Boundary of P1, Red: Boundary of P2.
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Figure 5.2: Qualitative results at near focus. Red dot in the original image shows the

gaze location (centre of the head).
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Figure 5.3: Qualitative results at far focus. Red dot in the original image shows the gaze

location (on the chair).
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CHAPTER 6

COMPARATIVE ANALYSIS

The performance of our proposed scheme is compared with latest work DeepFocus (5).

Visual results are depicted in Fig. 5.2 and Fig. 5.3. The quantitative results are shown

in Table 5.1 and Table 5.2. The results reported here are obtained from a single trained

model. The network differs in sampling patterns for the input. At both near and far

focus, our model has comparative foveal SSIM score, when per view sampling is greater

than 10.6%. The SSIM map in Fig. 5.2 and Fig. 5.3 shows error near the eyes since it

is most sensitive at 0 pixel intensity. Most of the errors are visible around the edges.

Our model is flexible in terms of log-polar sampling patterns. Quite encouraging results

are shown in Fig. 5.2-5.3 at both focal distances with S = 2. The reconstruction in P1

and P2 regions is of lower quality compared to the fovea. This is acceptable because of

lower visual acuity in these regions.

In Table 6.1, the runtimes of our ResUNet and DeepFocus (5) CNN are reported.

The models performance is tested on Nvidia GTX 1080 processor without TensorRT

optimization. Our ResUNet runs slightly slower than (5). However, the number of light

field rays to be sampled are considerably lower. We would further optimize our network

architecture runtime performance by tuning hyperparameters.

Some more results are shown in Fig. 6.1 and reported in Table 6.2 of our model

using S = 2. These results are computed on additional scenes provided by (19) which

consists of color(s) and depth map(s) obtained using Blender’s (20) renderer.

Table 6.1: Comparison of CNN Runtime (in ms)

Resolution DeepFocus Ours

5122 733.3 1018.6

1282 52.5 65.5



Table 6.2: Results for Additional Scenes

Scene
SSIM

Fovea P1 P2 Full

Town 0.9842 0.9298 0.7855 0.8184

Tomb 0.9724 0.9594 0.9591 0.9602

Kitchen 0.9607 0.8465 0.8472 0.8527

Original ResUNet, S=2 SSIM map
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Figure 6.1: Qualitative results for additional scenes. Red dots in the original images

point to the gaze locations.
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CHAPTER 7

CONCLUSION

In this paper, we have proposed a novel flexible computational scheme that synthesizes

realistic light field contents and foveated reconstruction using only sparse RGB-D light

fields. The rendered light field images are contingent on the gaze location that leverages

human vision. The potential advantage of our model is that it greatly reduces the num-

ber of pixels rendered while producing imagery for near-eye light field accommodation-

supporting HMDs. We would only need to render approximately 1.2% of the total light

fields. Thus, substantially reducing computational burden compared to the state-of-

the-art algorithms without compromising with the reconstruction quality. Further, our

model is also flexible in terms of sampling patterns. The results demonstrate that recon-

struction in the foveal region is of high quality. Simultaneously, it avoids perceptible

artifacts in the peripheral regions.



REFERENCES

[1] George-Alex Koulieris, Bee Bui, Martin S Banks, and George Drettakis, Accom-

modation and comfort in head-mounted displays, ACM Trans. Graph., Vol. 36, No.

4, Article 87, 2017.

[2] G. Wu, M. Zhao, L. Wang, Q. Dai, T. Chai and Y. Liu, Light Field Reconstruction

Using Deep Convolutional Network on EPI, IEEE CVPR, Honolulu, HI, 2017, pp.

1638-1646.

[3] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi, Learning-

based view synthesis for light field cameras, ACM Trans. Graph. 35, 6, Article 193,

2016, 10 pages.

[4] Pratul P. Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi Ramamoorthi, and Ren

Ng, Learning to Synthesize a 4D RGBD Light Field from a Single Image, In Proc.

ICCV, 2017, 2262–2270.

[5] Lei Xiao, Anton Kaplanyan, Alexander Fix, Matthew Chapman, and Douglas Lan-

man, DeepFocus: learned image synthesis for computational displays, ACM Trans.

Graph., 37, 6, Article 200, 2018, 13 pages.

[6] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder,

Foveated 3D graphics, ACM Trans. Graph. 31, 6, Article 164, 2012, 10 pages.

[7] H. Araujo and J. M. Dias, An introduction to the log-polar mapping [image sam-

pling], Proceedings II Workshop on Cybernetic Vision, Sao Carlos, Brazil, 1996,

pp. 139-144.

[8] M. Antonelli, F. D. Igual, Ramos, F. Ramos, V. Javier Traver, Speeding up the log-

polar transform with inexpensive parallel hardware: graphics units and multi-core

architectures, J Real-Time Image Proc 10, 533-550, 2015.

[9] Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney, Kernel

Foveated Rendering, Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 5,

2018, 20 pages.

[10] Qi Sun, Fu-Chung Huang, Joohwan Kim, Li-Yi Wei, David Luebke, and Arie

Kaufman, Perceptually-guided foveation for light field displays, ACM Trans.

Graph. 36, 6, Article 192, 2017, 13 pages.

[11] Anton S. Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev,

Todd Goodall, and Gizem Rufo, DeepFovea: neural reconstruction for foveated

rendering and video compression using learned statistics of natural videos, ACM

Trans. Graph. 38, 6, Article 212, 2019, 13 pages.

[12] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomed-

ical Image Segmentation, Medical Image Computing and Computer-Assisted Inter-

vention – MICCAI 2015, Lecture Notes in Computer Science, vol 9351. Springer.

18



[13] Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift, arXiv:1502.03167, 2015.

[14] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter, Fast and Accu-

rate Deep Network Learning by Exponential Linear Units, Conference on Learning

Representations, ICLR 2016.

[15] Houdini Procedural Generator. Side Effects. 1996–2018. https://www.

sidefx.com/

[16] K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recogni-

tion, CVPR, Las Vegas, NV, 2016, pp. 770-778.

[17] Kingma, Diederik and Ba, Jimmy, Adam: A Method for Stochastic Optimization,

International Conference on Learning Representations, 2014.

[18] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli, Image

quality assessment: from error visibility to structural similarity, IEEE Transactions

on Image Processing, 13, 4, 2004, 600-612.

[19] Katrin Honauer1, Ole Johannsen, Daniel Kondermann , Bastian Goldluecke, A

Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields,

Asian Conference on Computer Vision, 2016.

[20] Community, B.O., Blender - a 3D modelling and rendering package, Stichting

Blender Foundation, Amsterdam, 2018, Available at: http://www.blender.

org.

[21] Ren Ng, Digital light field photography, PhD Dissertation, Stanford University,

July 2006.

19

https://www.sidefx.com/
https://www.sidefx.com/
http://www.blender.org
http://www.blender.org


LIST OF PAPERS BASED ON THESIS

1. Vineet Thumuluri, Mansi Sharma, An Integrated Learning Approach for Foveated

Rendering & Novel View Synthesis from Sparse RGB-D Light Fields, Submitted

to the 25th International Conference on Pattern Recognition, 2020.

20


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	RELATED WORK
	Light Fields & View Synthesis
	Foveated Rendering

	PROPOSED SCHEME
	Log Polar Sampling
	Interpolation
	Neural Network Architecture
	Interleaving layers
	Residual Network
	U-Net
	Losses


	IMPLEMENTATION
	EXPERIMENTS
	COMPARATIVE ANALYSIS
	CONCLUSION

