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ABSTRACT

KEYWORDS: Automatic Evaluation, Natural Language Generation, Online

Learning, Dueling Bandits, Bayesian Deep Learning

Recent studies have shown the advantages of evaluating NLG systems using

pairwise comparisons as opposed to direct assessment. Given k systems, a naive

approach for identifying the top-ranked system would be to uniformly obtain

pairwise comparisons from all
(k

2

)
pairs of systems. However, this can be very

expensive as the number of human annotations required would grow quadratically

with k. In this work, we introduce Active Evaluation, a framework to efficiently

identify the top-ranked system by actively choosing system pairs for comparison

using dueling bandit algorithms. We perform extensive experiments with 13

dueling bandits algorithms on 13 NLG evaluation datasets spanning 5 tasks and

show that the number of human annotations can be reduced by 80%. To further

reduce the number of human annotations, we propose model-based dueling bandit

algorithms which combine automatic evaluation metrics with human evaluations.

Specifically, we eliminate sub-optimal systems even before the human annotation

process and perform human evaluations only on test examples where the automatic

metric is highly uncertain. This reduces the number of human annotations required

further by 89%. In effect, we show that identifying the top-ranked system requires

only a few hundred human annotations, which grow linearly with k. Lastly, we

provide practical recommendations and best practices to identify the top-ranked

system efficiently.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES 1

1 INTRODUCTION 2

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Active Evaluation Framework 5

2.1 Problem Formulation and Setup . . . . . . . . . . . . . . . . . . . 5

2.2 Identifying the top-ranked system . . . . . . . . . . . . . . . . . . 6

2.3 Choosing System Pairs for Comparison . . . . . . . . . . . . . . . 7

2.3.1 Uniform Exploration . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Dueling Bandit Algorithms . . . . . . . . . . . . . . . . . . 7

3 Pairwise Probability Models 11

3.1 Pairwise Probability Models . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Preprocessing Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Model-based Dueling Bandits 14

4.1 Random Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Uncertainty-aware Selection . . . . . . . . . . . . . . . . . . . . . . 14

4.3 UCB Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Experimental Setup 18

iii



5.1 Tasks & Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.2 Dataset Preprocessing . . . . . . . . . . . . . . . . . . . . . 19

5.2 Automatic NLG Evaluation Metrics . . . . . . . . . . . . . . . . . 20

5.2.1 Direct Assessment Metrics . . . . . . . . . . . . . . . . . . . 20

5.2.2 Pairwise Evaluation Metrics: . . . . . . . . . . . . . . . . . 23

5.3 Annotation Complexity Measure . . . . . . . . . . . . . . . . . . . 23

5.4 Hyperparameters Details . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4.1 Dueling Bandit Algorithms . . . . . . . . . . . . . . . . . . 24

5.4.2 Model-based Algorithms . . . . . . . . . . . . . . . . . . . 25

6 Results & Discussion 27

6.1 Analysis of Dueling Bandit Algorithms . . . . . . . . . . . . . . . 27

6.1.1 Validity of Assumptions . . . . . . . . . . . . . . . . . . . . 27

6.1.2 Annotation Complexity . . . . . . . . . . . . . . . . . . . . 28

6.1.3 Top-rank Prediction Accuracy . . . . . . . . . . . . . . . . . 28

6.2 Performance of Evaluation Metrics . . . . . . . . . . . . . . . . . . 30

6.3 Analysis of Model-based Algorithms . . . . . . . . . . . . . . . . . 33

7 Detailed Analysis 36

7.1 Effect of number of NLG systems . . . . . . . . . . . . . . . . . . . 36

7.2 Comparison between Evaluation Metrics . . . . . . . . . . . . . . 37

7.3 Sensitivity to Hyperparameters . . . . . . . . . . . . . . . . . . . . 39

7.4 Robustness to Delayed Feedback . . . . . . . . . . . . . . . . . . . 39

8 Practical Recommendations & Best Practices 42

8.1 Practical Recommendations . . . . . . . . . . . . . . . . . . . . . . 42

8.2 Best Practices for Choosing Hyperparameters . . . . . . . . . . . . 43

9 Related Work 44

10 Conclusion & Future work 45



LIST OF TABLES

2.1 Various assumptions made by dueling bandit algorithms in the
literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Summary of dueling bandits algorithms in the literature along with
their theoretical assumptions and the target winner of the learner 9

5.1 Description of tasks and datasets with the number of NLG systems,
number of pairwise human annotations, label distribution and the
downloadable links to the datasets before preprocessing . . . . . 19

5.2 Tuned Hyperparameters of Model-based algorithms when used with
the Electra Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Tuned Hyperparameters of Model-based algorithms when used with
the Bleurt Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Validity of various assumptions made by Dueling bandit algorithms
in different NLG datasets . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Annotation complexity of the top 7 best performing dueling bandit
algorithms along with the uniform exploration algorithm on 7 WMT
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3 Annotation complexity of the top 7 best performing dueling ban-
dit algorithms along with the uniform exploration algorithm on
Grammarly (FCE and Wki), E2E NLG, ParaBank and OpenAI TL;DR
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.4 Sentence-level accuracy of direct assessment metrics with three
probability models and our trained Electra metric in predicting the
comparison outcome on WMT, Grammarly and CoNLL’14 shared
task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.5 Sentence-level accuracy of direct assessment metrics with three
probability models and our trained Electra metric in predicting the
comparison outcome on E2E NLG, ParaBank and OpenAI TL;DR
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.6 Annotation complexity of model-based algorithms when used with
RMED and Bleurt/Electra metric. . . . . . . . . . . . . . . . . . . . 34

6.7 Annotation complexity of model-based algorithms when used with
RMED and Bleurt/Electra metric. . . . . . . . . . . . . . . . . . . . 34

v



LIST OF FIGURES

2.1 Our Active Evaluation framework consisting of a learner that chooses
a pair of systems to compare at each time step. The learner receives
feedback from either human annotators or the automatic metric. . 6

6.1 Top-rank prediction accuracy v/s number of human annotations used
on WMT 16 tur-eng dataset . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Top-rank prediction accuracy as a function of the number of human
annotations for (model-free) Uniform exploration and RUCB, RCS,
and RMED dueling bandit algorithms on 12 NLG datasets . . . . 31

6.3 Sentence-level prediction accuracy of direct assessment metrics with
the Linear, BTL, and BTL-Logistic models averaged across the 7
WMT datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Top-rank prediction accuracy as a function of the number of human
annotations for various model-based dueling bandit algorithms with
RMED and Electra metric on 12 NLG datasets . . . . . . . . . . . 35

7.1 Annotation complexity of (model-free) uniform exploration and
dueling bandit algorithms v/s the number of NLG systems on the
ParaBank dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2 Annotation complexity of Random Mixing using the Electra metric
with uniform exploration and dueling bandit algorithms as function
of number of NLG systems on the ParaBank dataset . . . . . . . . 37

7.3 Annotation complexity of Random Mixing with RMED using BLEU,
Emnedding Average, Laser, MoverScore, BertScore, Bleurt and Elec-
tra evaluation metrics and standard RMED (model-free) . . . . . 38

7.4 Variation in annotation complexity with Mixing probability in Ran-
dom Mixing with Bleurt on the left and with BALD threshold in
Uncertainty-aware Selection (BALD) with Bleurt on the right . . . 38

7.5 Prediction accuracy v/s number of human annotations collected
for Random Mixing with Bluert and BLEU for different mixing
probability pm on the WMT 15 deu-eng dataset . . . . . . . . . . . 40

7.6 Annotation complexity of UCB Elimination with Bleurt v/s the
Copland threshold for α = 0.6 . . . . . . . . . . . . . . . . . . . . . 40

vi



7.7 Annotation Complexity v/s delays in feedback on the WMT16 deu-
eng dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



CHAPTER 1

INTRODUCTION

1.1 Overview

In the last few years, the field of NLG has made rapid progress with the advent of

large-scale models trained on massive amounts of data (Vaswani et al., 2017; Xue

et al., 2020; Liu et al., 2020; Brown et al., 2020). However, evaluation of NLG systems

continues to be a challenge. On the one hand, we have automatic evaluation

metrics which are easy to compute but unreliable. In particular, many studies

have shown that they do not correlate well with human judgments (Novikova

et al., 2017; Elliott and Keller, 2014; Sai et al., 2019, 2020a,b). On the other hand, we

have human evaluations, which are relatively more reliable but tedious, expensive,

and time-consuming. Further, recent studies have highlighted some limitations of

human evaluations that involve direct assessment on an absolute scale, e.g., Likert

scale. Specifically, human evaluations using direct assessment have been shown to

suffer from annotator bias, high variance and sequence effects where the annotation of

one item is influenced by preceding items (Kulikov et al., 2019; Sudoh et al., 2021;

Liang et al., 2020; See et al., 2019; Mathur et al., 2017).

In this work, we focus on reducing the cost and time required for human

evaluations while not compromising on reliability. We take motivation from

studies which show that selecting the better of two options is much easier for

human annotators than providing an absolute score, which requires annotators

to maintain a consistent standard across samples (Kendall, 1948; Simpson and

Gurevych, 2018). In particular, recent works show that ranking NLG systems using

pairwise comparisons is a more reliable alternative than using direct assessment

(See et al., 2019; Li et al., 2019; Sedoc et al., 2019; Dhingra et al., 2019). While this is

promising, a naive approach for identifying the top-ranked system from a set of k



systems using uniform exploration is prohibitively expensive. Specifically, uniform

exploration obtains an equal number of annotations for all the
(k

2

)
system pairs; as a

result, the required human annotations grows as O(k2).

To reduce the number of pairwise annotations, we introduce Active Evaluation,

a framework to efficiently identify the top-ranked NLG system. Our Active

Evaluation framework consists of a learner that selects a pair of systems to compare

at each time step. The learner, then, receives a feedback signal indicating the

(human) preference between the selected systems on one input context, randomly

sampled from the test dataset. The learner’s objective is to reliably compute

the top-ranked system with as few human annotations as possible. We adopt

algorithms from the stochastic dueling bandits literature (Bengs et al., 2021) to

decide which pair of NLG systems to compare at each time step. To check if

existing dueling bandits algorithms can indeed provide reliable top-rank estimates

with minimal annotations, we evaluate 13 such algorithms on 13 NLG evaluation

datasets spanning five tasks viz., machine translation, summarization, data-to-text

generation, paraphrase generation, and grammatical error correction. We show

that the best performing dueling bandit algorithm can reduce the number of human

annotations by 80% when compared to uniform exploration.

To further reduce human annotations, we leverage automatic evaluation metrics

in our Active Evaluation framework. We utilize existing automatic metrics such

as BLEU (Papineni et al., 2002), BertScore (Zhang et al., 2020), etc for pairwise

evaluations by converting the direct evaluation scores into preference probabilities

using pairwise probability models. We also develop trained pairwise metrics

that directly predict the comparison outcome given pairs of generated texts and

context or reference as input. To incorporate such evaluation metrics in our Active

Evaluation framework, we propose three model-based dueling bandits algorithms,

viz., (i) Random Mixing: human annotations and evaluation metric predictions are

randomly mixed, (ii) Uncertainty-aware selection: human annotations are obtained

only when the predictions from the evaluation metric is highly uncertain, (iii)

UCB Elimination: poorly performing NLG systems are eliminated using an Upper

3



Confidence Bound (UCB) on the evaluation metric scores. Through our experiments,

we show that the number of human annotations can be further reduced by 89% on

average (this reduction is over and above the 80% reduction that we got earlier).

In effect, we show that given k systems, we can find the top-ranked NLG system

efficiently with just a few hundred comparisons that vary as O(k). Lastly, we provide

practical recommendations to efficiently identify the top-ranked NLG system based

on our empirical study on various design choices and hyperparameters.

1.2 Key Contributions

1. We formulate the problem of finding the top-ranked NLG system in an Active

Evaluation framework and empirically evaluate the performance of 13 dueling

bandit algorithms in 13 NLG datasets spanning 5 tasks.

2. We propose three model-based dueling bandit algorithms to combine auto-

matic evaluation metrics with human evaluations.

3. Through extensive experiments, we show that our proposed model-based

dueling bandit algorithms reduces the number of human annotations by 89%.

4. Based on the results of our large-scale empirical study, we provide practical

recommendations and best practices to efficiently identify the top-ranked

system.
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CHAPTER 2

Active Evaluation Framework

We introduce the problem and our Active Evaluation setup in 2.1. We formalize

the notion of top-ranked system in 2.2. Finally in 2.3, we describe the different

approaches to decide which pairs of NLG systems to compare at each time step.

2.1 Problem Formulation and Setup

We consider the problem of finding the top-ranked NLG system from a given set of k

systems, denoted by S = {1, 2, . . . , k}. Our Active Evaluation framework consist of a

leaner which at each time step t, chooses a pair of systems s(t)
1 , s

(t)
2 ∈ S for comparison.

Then, we ask human annotators to compare the outputs of the chosen systems on a

randomly sampled input context and provide the comparison outcome as feedback

to the learner. Specifically, we first sample an input context X(t) from the test dataset

and obtain the generated texts Y(t)
1 ,Y

(t)
2 from the chosen systems s(t)

1 , s
(t)
2 . We then

display the generated texts Y(t)
1 ,Y

(t)
2 along with the context X(t) to human annotators

and obtain a comparison outcome w(t) = 1, 0, or 0.5 denoting whether Y(t)
1 is of better,

worse, or equal (tie) quality as Y(t)
2 . The learner’s objective is to find the top-ranked

system with as few pairwise comparisons as possible. Note that the feedback w(t)

indicates the preference on only one input sample and not the entire test dataset.

We assume that the annotator preference is stationary over time and its distribution

is denoted by pa(w|Y1,Y2). The dependence of pa on the context and reference is

omitted for brevity. The preference relation between the NLG systems is given by:

pi j = EY1,Y2∼Di jEw∼pa(w|Y1,Y2)w (2.1)

where Di j = {Y(i)
1 ,Y

(i)
2 }

m
i=1 is a dataset consisting of the generated outputs from

the systems i and j respectively. Let ∆i, j = pi j −
1
2 . We assume that the order of



Figure 2.1: Our Active Evaluation framework consisting of a learner that chooses
a pair of systems to compare at each time step. The learner receives
feedback from either human annotators or the automatic metric.

displaying the systems does not affect the preference probabilities, hence pi j = 1−p ji

i.e. ∆i, j = −∆ j,i. The overall framework is depicted in figure 2.1.

2.2 Identifying the top-ranked system

We now formalize the notion of the top-ranked system. We say that a system i

beats system j if ∆i, j = pi j −
1
2 > 0, i.e., if the probability of winning in a pairwise

comparison is larger for i than it is for j. A system i∗ that beats all other systems, i.e.

∆i∗, j > 0,∀ j ∈ S− i∗, is said to be a Condorcet winner. Note that a Condorcet winner

need not always exist, and hence existing literature also considers the concept of a

Copeland winner. A Copeland winner is the system that beats more systems than

any other system does. However, in all our datasets and NLG tasks, we observed

that the Condorcet winner exists. Therefore, we define the top-ranked NLG system

as the Condorcet winner.

6



2.3 Choosing System Pairs for Comparison

2.3.1 Uniform Exploration

The learner should decide the pair of systems (s(t)
1 , s

(t)
2 ) to compare at each time step

t. The naive approach, referred as uniform exploration, is to equally explore all the(k
2

)
system pairs. Specifically, the probability of selecting a pair (i, j), i , j at time t is:

Puni f orm((s(t)
1 , s

(t)
2 ) = (i, j)) =

1(k
2

)
However, as we show in our experiments, the number of human annotations

required to find the top-ranked system by this approach is very expensive and

grows quadratically with the number of systems as we equally explore all
(k

2

)
pairs.

2.3.2 Dueling Bandit Algorithms

To reduce the number of annotations, we use dueling bandit algorithms that actively

choose pairs of systems to compare based on the history of previous observations.

Specifically, letHt−1 = {s(τ)
1 , s

(τ)
2 ,w

(τ)
}
t−1
τ=1 denote the observation history up to t − 1,

then the dueling bandit algorithm defines a mapping from Ht−1 to system pairs

(s(t)
1 , s

(t)
2 ). Many dueling bandit algorithms make assumptions on the true pairwise

preferences and exploit these assumptions to derive theoretical guarantees (Bengs

et al., 2021). In table 2.1, we describe the various commonly used assumptions

by dueling bandit algorithms. For example, the stochastic triangle inequality

assumption (STI), described in row 4 of table 2.1, assumes that the true preference

probabilities between systems obey the triangle inequality. We note here that one

cannot verify the validity of these assumptions apriori since we do not have access

to the true preferences. We describe the 13 dueling bandit algorithms, that we

analyze in this work, along with the assumptions and target winner in table 2.2.

We provide an overview of these 13 algorithms below:

7



Assumption Name Condition

Total Order (TO)
∃ a total order � over S:
i � j ⇐⇒ ∆i j > 0

Strong stochastic
transitivity (SST)

∆i j > 0,∆ jk > 0 =⇒
∆ik ≥ max(∆i j,∆ jk)

Relaxed stochastic
transitivity (RST)

∃γ ≥ 1: ∆i j > 0,∆ jk > 0
=⇒ γ∆ik ≥ max(∆i j,∆ jk)

Stochastic triangle
inequality (STI)

∆i j > 0,∆ jk > 0 =⇒
∆ik ≤ ∆i j + ∆ jk

Condorcet winner (CW) ∃i∗: ∆i∗, j > 0,∀ j ∈ S − i∗

PL model
The underlying rank distribution
follows the Plackett-Luce (PL)
model Plackett (1975); Luce (1979)

Table 2.1: Various assumptions made by dueling bandit algorithms in the literature

IF: Interleaved Filtering (IF) (Yue et al., 2012) algorithm consists of a sequential

elimination strategy where a currently selected system si is compared against the

rest of the active systems (not yet eliminated). If the system s j beats a system si

with high confidence, then si is eliminated, and s j is compared against all other

active systems. Similarly, if the system si beats s j with high confidence, then s j

is eliminated, and si is continued to be compared against the remaining active

systems. Under the assumptions of TO, SST, and STI, the authors provide theoretical

guarantees for the expected regret achieved by IF.

BTM: Beat The Mean (BTM) (Yue and Joachims, 2011), similar to IF, is an elimination-

based algorithm that selects the system si with the fewest comparisons and compares

it with a randomly chosen system from the set of active systems. Based on the

comparison outcome, a score and confidence interval are assigned to the system si.

BTM eliminates a system as soon as there is another system with a significantly

higher score.

Knockout, Seq Elim, Single Elim: Knockout (Falahatgar et al., 2017b), Sequential

Elimination (Falahatgar et al., 2017a), Single Elimination (Mohajer et al., 2017) are all

algorithms that proceed in a knockout tournament fashion where the systems are

randomly paired, and the winner in each duel will play the next round (losers are

knocked out) until the overall winner is determined. During a duel, the algorithm

repeatedly compares the two systems to reliably determine the winner. The key

difference between the three algorithms is the assumptions they use and how they

8



Algorithm Assumptions Target
IF (Yue et al., 2012) TO+SST+STI Condorcet
BTM (Yue and Joachims, 2011) TO+RST+STI Condorcet
Seq-Elim. (Falahatgar et al., 2017a) SST Condorcet
Plackett Luce (Szörényi et al., 2015) PL model Condorcet
Knockout (Falahatgar et al., 2017b) SST+STI Condorcet
Single Elim.(Mohajer et al., 2017) TO Condorcet
RUCB (Zoghi et al., 2014b) CW Condorcet
RCS (Zoghi et al., 2014a) CW Condorcet
RMED (Komiyama et al., 2015) CW Condorcet
SAVAGE (Urvoy et al., 2013) - Copeland
CCB (Zoghi et al., 2015) - Copeland
DTS (Wu and Liu, 2016) - Copeland
DTS++ (Wu and Liu, 2016) - Copeland

Table 2.2: Summary of dueling bandits algorithms in the literature along with their
theoretical assumptions and the target winner of the learner

determine the number of comparisons required to identify the winning system in a

duel with high probability.

Plackett Luce: Plackett Luce Condorcet winner identification algorithm (Szörényi

et al., 2015) assumes that the true rank distribution follows the Placket-Luce model

(Plackett, 1975). The algorithm is based on a budgeted version of QuickSort. The

authors show that it achieves a worst-time annotation complexity of the order

k log k under the Placket-Luce assumption.

RUCB: Relative Upper Confidence Bound (RUCB) (Zoghi et al., 2014b) is an

adaptation of the well-known UCB algorithm (Auer et al., 2002) to the dueling

bandit setup. Similar to UCB, RUCB selects the first system s(1)
t based on ”optimistic”

estimates of the pairwise preference probabilities i.e. based on an upper confidence

bound of preference probabilities. The second system s(2)
t is chosen to be the one

that is most likely to beat s(1)
t .

RCS: Relative Confidence Sampling (RCS) (Zoghi et al., 2014a) follows a Bayesian

approach by maintaining a posterior distribution over the preference probabilities.

At each time step t, the algorithm samples preference probabilities from the

posterior and simulates a round-robin tournament among the systems to determine

the Condorcet winner. The estimated Condorcet winner is chosen as the first system

s(1)
t and second system s(2)

t is chosen such that it has the best chance of beating s(1)
t .

9



RMED: Relative Minimum Empirical Divergence1 (RMED) algorithm (Komiyama

et al., 2015) maintains an empirical estimate of the “likelihood” that a system is the

Condorcet winner. It then uses this estimate to sample the first system s(1)
t and then

selects the second system s(2)
t that is most likely to beat s(1)

t .

SAVAGE: Sensitivity Analysis of VAriables for Generic Exploration (SAVAGE)

(Urvoy et al., 2013) is a generic algorithm that can be adopted for various ranking

problems such as Copeland winner identification. SAVAGE (Copeland) algorithm,

at each time step, randomly samples a pair of systems from the set of active system

pairs (not yet eliminated) and updates the preference estimates. A system pairs

(si, s j) is eliminated if either (i) the result of comparison between si and s j is already

known with high probability, or (ii) there exists some system sk where the estimated

Copeland score of sk is significantly higher than si or s j.

CCB: Copeland Confidence Bound (CCB) (Zoghi et al., 2015) is similar to the RUCB

algorithm but is designed to identify the Copeland Winner (a generalization of the

Condorcet winner). The CCB algorithm maintains optimistic preference estimates

and uses them to choose the first system s(1)
t and then selects the second system s(2)

t

that is likely to discredit the hypothesis that s(1)
t is indeed the Copeland winner. The

algorithm successively removes all other systems that are highly unlikely to be a

Copeland winner.

DTS, DTS++: The Double Thompson Sampling (DTS) algorithm (Wu and Liu, 2016)

maintains a posterior distribution over the pairwise preference matrix, and selects

the system pairs s(1)
t , s

(2)
t based on two independent samples from the posterior

distribution. The algorithm updates the posterior distributions based on the

comparison outcome and eliminates systems that are unlikely to be the Copeland

winner. DTS++ is an improvement proposed by the authors, which differs from

DTS in the way the algorithm breaks ties. Both have the same theoretical guarantees,

but DTS++ has been empirically shown to achieve better performance (in terms of

regret minimization).
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CHAPTER 3

Pairwise Probability Models

We discuss three pairwise probability models to convert the scores from direct

assessment metrics into pairwise preference probabilities in 3.1. Later in 3.2, we

discuss more implementation details.

3.1 Pairwise Probability Models

Our Active Evaluation framework, which we described in the previous chapter,

completely relied on human annotators to compare pairs of generated texts (Y1,Y2)

to provide the preference feedback w. We can further reduce the number of required

human annotations by estimating the human preference feedback using automatic

evaluation metrics. However, most existing evaluation metrics such as BLEU

(Papineni et al., 2002), BertScore (Zhang et al., 2020), Bluert (Sellam et al., 2020), etc,

are designed for direct assessment and not directly suitable for pairwise evaluations.

In this chapter, we describe three pairwise probability models to convert direct

evaluation scores into pairwise preference probabilities. Let f (Y) denote the score

provided by a direct assessment metric f to a generated text Y (The dependence of f

on the reference/context is omitted for brevity). The pairwise preference probability

p̂(Y1 � Y2) between any two hypotheses Y1 and Y2 can be modeled in 3 different

ways:

• Linear:

p̂(Y1 � Y2) =
1
2

+ ( f (Y1) − f (Y2))

• Bradley-Terry-Luce (BTL) (Bradley and Terry, 1952; Luce, 1979):

p̂(Y1 � Y2) =
f (Y1)

f (Y1) + f (Y2)



• BTL-logistic::

p̂(Y1 � Y2) =
1

1 + e( f (Y1)− f (Y2))

As detailed in 3.2, we appropriately preprocess the scores f (Y) to ensure that

preference probability lies between 0 and 1. We can now predict the comparison

outcome w by thresholding the preference probability at two thresholds τ1 and

τ2(≥ τ1) to incorporate ties i.e.:

ŵ =


1, if p̂(Y1 � Y2) > τ2

0, if p̂(Y1 � Y2) < τ1

0.5, Otherwise

We choose τ1 and τ2 using grid search on the validation set.

3.2 Preprocessing Steps

We now discuss the preprocessing steps and the hyperparameters in the pairwise

probability models. Let f̃ (Y) be the unnormalized score given an automatic evalu-

ation metric for an hypothesis Y. We preprocess the score f̃ (Y) to obtain f (Y) to

ensure that the pairwise probability scores is always a valid i.e. lies between 0 and

1. To preprocess the scores, we use the validation dataset consisting of tuples of the

form {Y(i)
1 ,Y

(i)
2 ,w

(i)
}
N
i=1 where Y(i)

1 , Y(i)
2 represent the ith generated texts and w(i) is the

corresponding comparison outcome provided by human annotators.

Linear: Let ∆i = | f̃ (Y(i)
1 ) − f̃ (Y(i)

2 )| and ∆ = maxi ∆i. We divide the unormalized

f̃ (Y) scores by 2∆ i.e.

f (Y) =
f̃ (Y)
2∆

.

BTL: Let f m
i = max{ f̃ (Y(i)

1 ), f̃ (Y(i)
2 )}, f m = maxi f m

i . We now subtract the scores by

12



f m to ensure that the scores are non-negative i.e.

f (Y) = f̃ (Y) − f m

BTL-Logistic: BTL-Logistic model always provides a score between 0 and 1.

However, we found that dividing the scores by a temperature co-efficient γ can

provide better results i.e.

f (Y) =
f̃ (Y)
γ

We tune γ using grid search between 0.005 and 1 on the validation set to minimize

the cross-entropy loss between the preference probabilities p̂(Y1 � Y2) and the

human labels w.

Thresholds: As described in 3.1, we threshold the preference probabilities p̂(Y1 � Y2)

at two thresholds τ1 and τ2 to obtain the predicted comparison outcome ŵ. We

perform a grid search by varying τ1 from 0.4 to 0.5 and τ2 from 0.5 to 0.6 with a

step size of 0.001. We choose the optimal thresholds that maximize the prediction

accuracy on the validation dataset.
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CHAPTER 4

Model-based Dueling Bandits

In the previous chaper, we discussed pairwise probability models to obtain the

estimated preference probability p̂(Y1 � Y2) and the comparison outcome ŵ using

scores assigned by direct assessment metrics. We now propose three model-based

dueling bandit algorithms wherein we combine such predictions from evaluation

metrics with human annotations in the Active Evaluation framework.

4.1 Random Mixing

Inspired by algorithms in model-based reinforcement learning such as Dyna

(Sutton, 1990), we mix the real and evaluation metric predicted feedback given

to the learner. Specifically, given generated text Y1 and Y2 at time t, we use the

predicted comparison outcome ŵ(t) as the feedback with probability pm and use

human annotations w(t) as feedback with probability 1 − pm i.e. the feedback given

to the learner is:

w̃(t) =


ŵ(t), w.p. pm

w(t)
∼ pa(w|Y1,Y2), w.p. 1 − pm

where w.p. denotes ”with probability”, and pm is the mixing probability hyper-

parameter that controls the ratio of estimated and real feedback. As with other

hyperparameters, we choose m on the validation set.

4.2 Uncertainty-aware Selection

In this algorithm, we estimate uncertainty in the evaluation metric predictions

and decide to ask for human annotations only when the evaluation metric is



highly uncertain. We specifically focus on trainable neural evaluation metrics

such as Bleurt (Sellam et al., 2020) where we estimate the prediction uncertainty

using recent advances in Bayesian deep learning. Let p̂(Y1 � Y2|θ) denote the

preference probability modelled by a neural evaluation metric with parameters θ.

Given a training datasetDtr, Bayesian inference involves computing the posterior

distribution p(θ|Dtr) and marginalization over the parameters θ:

p̂(Y1 � Y2|D
tr) =

∫
θ

p̂(Y1 � Y2|θ)p̂(θ|Dtr)dθ

However, computing the true posterior and averaging over all possible parameters

is intractable in practice. Hence, several approximations have been proposed in

variational inference such as finding a surrogate distribution qφ(θ) in a tractable

family of distributions by minimizing the KL divergence between the candidate and

true posterior. Gal and Ghahramani (2016) have shown that stochastic regularization

techniques such as Dropout (Hinton et al., 2012) can be used to perform approximate

variational inference in neural networks. That is Gal and Ghahramani (2016) have

shown that we can use the Dropout distribution (Srivastava et al., 2014) as the

approximate posterior qφ(θ). Specifically, we can perform approximate Bayesian

inference by applying Dropout during test time. Hence, the posterior can now be

approximated with Monte-carlo samples as follows:

p̂(Y1 � Y2|D
tr) ≈

1
L

L∑
l=1

p̂(Y1 � Y2|θl)

where {θl}
L
l=1 are L samples from the Dropout distribution qφ(θ) (i.e. we apply

Dropout L times independently during testing). We now discuss two different

Bayesian uncertainty measures:

BALD: The Bayesian Active Learning by Disagreement (BALD) (Houlsby et al.,

2011) is defined as the mutual information between the model predictions and the

model posterior:

I(w, θ|Y1,Y2,D
tr) := H(w|Y1,Y2,D

tr) − Ep̂(θ|Dtr)H(w|Y1,Y2, θ)
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As shown in (Gal et al., 2017), we can approximate the BALD measure using

samples from the Dropout distribution. Specifically, let pl = p̂(Y1 � Y2|θl), where

θl ∼ qφ(θ), be the evaluation metric prediction using the lth sample θl from the

Dropout distribution. Also, let p̄ = 1
L

∑L
l=1 pl be the mean prediction. Then, the

BALD measure can be approximated as:

Î = H(p̄) −
1
L

L∑
l=1

H(pl)

where H is the binary cross entropy function. The BALD uncertainty score is

essentially the difference in entropy of the mean prediction p̄ and the average

entropy of the individual predictions {pl}
L
l=1. Hence, the BALD uncertainty score

is high when the metric’s mean prediction is uncertain (high entropy) but the

individual predictions are highly confident (low entropy), i.e., when the metric

produces disagreeing predictions with high confidence.

STD: We also adopt the standard deviation of the preference probability taken over

the posterior distribution as a measure of uncertainty:

σ =
√

Varθ∼p̂(θ|Dtr)(p̂(Y1 � Y2|θ))

Similar to BALD, we can approximate the above measure using the empirical

standard deviation of samples drawn from the dropout distribution.

Our proposed algorithm asks for human annotations only if the uncertainty

measure (BALD or STD) is above a particular threshold.

4.3 UCB Elimination

The key idea here is to eliminate a set of ”poorly performing” NLG systems using the

automatic metric and perform human evaluations with the remaining set of systems.

To eliminate sub-optimal systems, we first need to quantify a performance measure

for the systems. We use the Copeland score (Zoghi et al., 2015) which is defined as
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the normalized total number of pairwise wins for a system: Ci = 1
k−1

∑
j,i 1(pi j > 1

2 ).

Copeland score is the highest for the top-ranked system with a value of 1 and it is

less than 1 for all other systems. We estimate the Copeland score by predicting the

pairwise preference probability between any two systems i and j as follows:

Ĉi =
1

k − 1

∑
j,i

1(p̂i j >
1
2

)

p̂i j =
1
N

∑
Y1,Y2∈Di j

p̂(Y1 � Y2|θ)

whereDi j is the test dataset consisting of generated texts from systems i and j, N is

the total number of test examples, θ is the learned model parameters. We can now

eliminate all systems with Copeland scores below a threshold. However, a major

problem with this approach is that evaluation metrics are often inaccurate and

we could wrongly eliminate the true top-ranked system without performing any

human evaluations. For example, consider the example where i∗ is the top-ranked

system with pi∗ j > 0.51 ,∀ j ∈ S − i. If several of the predicted probabilities p̂i∗ j are

less than 0.5, our top-ranked system i∗ will receive a low estimated Copeland score

and will be incorrectly eliminated. To overcome this problem, we define an Upper

Confidence Bound (UCB) on the preference probability using uncertainty estimates

that we described in 4.2. Specifically, the upper confidence bound ûi j is given by

ûi j = p̂i j + ασ̂i j where α is a hyperparameter that controls the size of the confidence

region and σ̂2
i j is the estimated variance given by:

σ̂2
i j =

1
N2

∑
Y1,Y2∈Di j

Varθ∼qφ(θ)p̂(Y1 � Y2|θ)

where qφ(θ) is the Dropout distribution. Using the upper confidence estimates ûi j,

we now define the optimistic Copeland score for a system i as Ĉu
i = 1

K−1

∑
j,i 1(ûi j > 1

2 ).

Here, we consider a system i to beat another system j (ûi j > 0.5) if either the estimated

preference is high (p̂i j is high) or if there is an high uncertainty in the estimation (σ̂i j

is high). In UCB Elimination, we eliminate a system only if the optimistic Copeland

score is below a threshold.
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CHAPTER 5

Experimental Setup

We describe the (i) NLG tasks and datasets used in our experiments, (ii) automatic

evaluation metrics used in our model-based algorithms, (iii) annotation complexity

measure used for comparing dueling bandit algorithms, and (iv) hyperparameter

details in our dueling bandit and model-based algorithms.

5.1 Tasks & Datasets

5.1.1 Description

We use a total of 13 datasets spanning 5 tasks in our experiments which are

summarized in table 5.1.

Machine Translation (MT): We use 7 MT datasets from the WMT shared translation

tasks conducted in 2015 and 2016 (Bojar et al., 2015, 2016). Specifically, we use

the human evaluations collected from the fin→eng, rus→eng, deu→eng language

pairs in 2015 and tur→eng, ron→eng, cze→eng, deu→eng language pairs in 2016.

Grammatical Error Correction (GEC): We utilize two human evaluation datasets

collected by (Napoles et al., 2019) where the source texts are from (i) student

essays in the Cambridge Learner Corpus First Certificate in English (FCE), and (ii)

formal articles in Wikipedia (Wiki). We also use the dataset collected by (Napoles

et al., 2015a) from the CoNLL-2014 Shared Task (Ng et al., 2014) which involves

grammatical correction of short English text written by non-native speakers.

Data-to-Text Generation: We use the human evaluation data released from the E2E

NLG Challenge (Dusek et al., 2020) where the task is to generate natural language

utterance from a dialogue act-based meaning representation.

Paraphrase Generation: For Paraphrase Generation, we use the ParaBank dataset



Task Dataset # Systems # Human
Annotations

Label Distrib.
(0-0.5-1)

Downloadable
Link

Machine
Translation

WMT15 fin-eng 14 31577 37%-26%-37%
Click hereWMT15 rus-eng 13 44539 36%-27%-37%

WMT15 deu-eng 13 40535 32%-36%-32%
WMT16 tur-eng 9 10188 28%-44%-28%

Click hereWMT16 ron-eng 7 15822 38%-24%-38%
WMT16 cze-eng 12 125788 38%-25%-37%
WMT16 deu-eng 10 20937 37%-26%-37%

Grammatical
Error
Correction

Grammarly (FCE) 7 20328 29%-40%-31% Click hereGrammarly (Wiki) 7 20832 29%-40%-31%
CoNLL-2014 Shared Task 13 16209 23%-52%-25% Click here

Data-to-Text
Generation E2E NLG Challenge 16 17089 24%-50%-26% Click here

Paraphrase
Generation ParaBank 28 151148 44%-2%-54% Click here

Summarization TLDR OpenAI 11 4809 49%-0%-51% Click here

Table 5.1: Description of tasks and datasets with the number of NLG systems,
number of pairwise human annotations, label distribution and the down-
loadable links to the datasets before preprocessing

(Hu et al., 2019) consisting of English paraphrases generated using Back Translation

with various lexical constraints.

Summarization: We use the human evaluations (Stiennon et al., 2020) of GPT3-like

models (Brown et al., 2020) on the TL;DR dataset (Völske et al., 2017) mined from

reddit posts.

5.1.2 Dataset Preprocessing

We now discuss the dataset preprocessing steps:

Machine Translation: In WMT 2015 and 2016 tasks, human annotators were

asked to rank five system outputs (translated sentences) relative to each other.

As recommended by the organizers (Bojar et al., 2014), we convert each of these

rankings into
(5

2

)
pairwise comparisons of systems.

Grammatical Error Correction: The Grammarly evaluation datasets follow the

RankME (Novikova et al., 2018) annotation style where annotators were shown 8

outputs side by side for each input and were asked to provide a numerical score

to each of them. We discarded one of the outputs out of the 8, which was human

crafted, and used the remaining 7 model-generated outputs. We then convert

these 7 scores into
(7

2

)
pairwise comparisons of systems. Human evaluations of the
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https://github.com/decompositional-semantics-initiative/ParaBank-Eval-Data
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CoNLL-2014 Shared Task followed the same process as WMT 2015. Hence, we

follow the same preprocessing steps as WMT.

Data-to-Text Generation: The E2E NLG Challenge also follows the RankME

annotation format. We follow the same preprocessing steps as the Grammarly

datasets. Out of the total 21 systems, we held out 5 systems to train the Electra

model and use the remaining 16 systems.

Paraphrase Generation: For ParaBank, we follow the same preprocessing steps as

the Grammarly datasets. Out of the total 35 systems, we held out of 7 systems and

only used the remaining 28 systems.

Summarization: We select 11 systems that have human annotations between each

pair of them. These systems are GPT3-like models with varying model sizes (3B, 6B,

12B) and training strategies. We do not perform any additional preprocessing here.

5.2 Automatic NLG Evaluation Metrics

We can predict the comparison outcome w using two approaches. First, we can use

pairwise probability models with existing direct assessment metrics as discussed in

3.1. Alternatively, we can train evaluation metrics to directly predict the comparison

outcome given pairs of generated texts and context/reference as input. We discuss

both these approaches with the implementation details below.

5.2.1 Direct Assessment Metrics

We experiment with a total of 10 direct assessment metrics viz. chrF (Popovic,

2015), BLEU-4 (Papineni et al., 2002), ROUGE-L (Lin, 2004), Embedding Average

(Wieting et al., 2016), Vector Extrema (Forgues et al., 2014), Greedy Matching (Rus

and Lintean, 2012), Laser (Artetxe and Schwenk, 2019), BertScore (Zhang et al.,

2020), MoverScore (Zhao et al., 2019) and Bleurt (Sellam et al., 2020). We briefly

summarize them below:
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1. Chrf: Chrf compares character n-grams between the hypothesis and the

reference sentences. The metric computes n-gram precision and recall at the

character level for various values of n (up to n = 6) and then combines them

using arithmetic average to obtain the overall precision and recall. The final

score is computed by taking a weighted harmonic mean between the overall

precision and recall.

2. BLEU: BLEU computes word-level n-gram overlap between the hypothesis

and the reference. It uses a clipped n-gram precision score where the count of

an n-gram is clipped by the maximum number of times it appears in any of

the references. It also includes a brevity penalty term where short hypotheses

are penalized.

3. ROUGE-L: ROUGE-L utilizes the longest common sub-sequence between

the hypothesis and the reference. Specifically, it is defined as the F-score

between a precision and a recall score, calculated using the longest common

sub-sequence between the hypothesis and the reference.

4. Embedding Average: Embedding Average metric computes an embedding

for a sentence by averaging the word embeddings of the words present in

the sentence. It then calculates the cosine similarity between the hypothesis

sentence embedding and the reference sentence embedding.

5. Vector Extrema Vector Extrema defines the embedding for a sentence as

the dimension-wise absolute maximum of word embeddings. Similar to

Embedding Average, the final score is obtained by computing the cosine

similarity between the hypothesis sentence embedding and the reference

sentence embedding.

6. Greedy Matching Greedy Matching finds the closest match word in the

reference for each word in the hypothesis based on cosine similarity of the

word embeddings. It then obtains an aggregate score by averaging the closest

match cosine distance over all words in the hypothesis. To make the metric

symmetric, it repeats the same process, but now with reversed direction i.e.
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the reference and hypothesis are interchanged. The final score is defined as

the average score between the two directions.

7. Laser: Laser uses the multilingual contextualized word embeddings from

a pretrained BiLSTM. The BiLSTM is used to jointly pretrained to learn

multilingual sentence representations of 93 languages.

8. BertScore: BertScore computes the cosine similarity of BERT representations

for each pair of words form the hypothesis and the reference. It then uses a

greedy matching approach to calculate precision and recall scores between

the reference and the hypothesis. The final metric is defined as the F-score

between precision and recall.

9. MoverScore: MoverScore uses the Earth Mover distance to define an optimal

matching between the hypothesis and the reference using contextualized

embeddings from BERT.

10. Bleurt: The Bleurt metric uses a pretrained BERT model, which is specifi-

cally trained for NLG evaluation in a self-supervised fashion using various

perturbations of Wikipedia sentences such as masked-infilling with BERT,

back-translation, and dropping words. The Bleurt model is further fine-tuned

on WMT direct judgments data.

Implementation Details: We use the nlg-eval library1 for the implementation of

BLEU-4, ROUGE-L, Embedding Average, Vector Extrema, and Greedy Matching.

For chrF, Laser and BertScore, we use the implementations from the VizSeq library 2.

We use the official implementation released by the original authors for MoverScore

and Bleurt. Among these metrics, Bleurt is the only trainable metric. We use the

publicly released Bleurt-base checkpoint trained on WMT direct judgments data.

As described in 4.2, we apply Dropout to the Bleurt model during test time to

estimate prediction uncertainty.

1https://github.com/Maluuba/nlg-eval
2https://github.com/facebookresearch/vizseq
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5.2.2 Pairwise Evaluation Metrics:

We finetune the pretrained Electra-base transformer model (Clark et al., 2020)

to directly predict the comparison outcome w. We curate task-specific human

evaluation datasets consisting of tuples of the form (context/reference, hypothesis 1,

hypothesis 2, label) for finetuning. For the summarization task alone, we couldn’t

find any pairwise human judgment dataset sufficient for finetuning the Electra

model. We discuss the finetuning datasets and finetuning details below:

Finetuning Dataset: For Machine Translation, we used human evaluations of

WMT 2013 and 2014, consisting of a total of 650k examples. For Grammatical

Error Correction, we curated a training dataset of 180k pairs of texts and human

preference using data released by (Napoles et al., 2015b) and the development set

released by (Napoles et al., 2019). We utilize 11k examples from 5 held-out systems

in the E2E NLG Challenge (apart from the 16 systems used for evaluations) for

Data-to-Text generation. Lastly, we use a dataset of 180k examples from 7 held-out

systems in the ParaBank dataset for paraphrase generation. We use 90% − 10%

split for splitting the dataset into train and validation sets. Note that these datasets

do not have any overlap with the datasets used for evaluating dueling bandit

algorithms.

Finetuning Details: We use the pretrained Electra-base model (Clark et al., 2020)

with 110M parameters (12 layers and 12 attention heads) as our base model. We

finetune the model using ADAM optimizer with β1 = 0.9 and β2 = 0.99. We use

a linear learning rate decay with a maximum learning rate of 1e-5 and warm-up

for 10% of training. We use a batch size of 128 and finetune for four epochs. We

finetune all the models on Google Cloud TPU v3-8. To estimate prediction, we

apply Dropout to the Electra model during test time as described in 4.2.

5.3 Annotation Complexity Measure

To evaluate the performance of dueling bandit algorithms, we define annotation

complexity as the minimum number of human annotations needed by an algorithm
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to identify the top-ranked NLG system with high confidence. Let i∗ be the actual

top-ranked system, and î∗(n) denote the estimated winner by the algorithm after

obtaining n human annotations, then annotation complexity is defined as:

min n′ : ∀n ≥ n′,P(î∗(n) = i∗) > 1 − δacc

where δacc is the allowable failure probability i.e. the learner can make a mistake

with at most δacc probability. To compute the annotation complexity, we run each

dueling bandit algorithm with 200 different random seeds and find the minimum

number of human annotations after which the algorithm correctly returns the

top-ranked NLG system in at least 190/200 runs (we set δacc = 0.05).

5.4 Hyperparameters Details

We discuss the details of the hyperparameters and the tuning procedure used for

dueling bandit algorithm in 5.4.1 and our model-based algorithm in 5.4.2. In all

three cases, we use the validation split of the finetuning datasets described in

5.2.2 as our validation dataset. For example, the validation split of the finetuning

datasets for MT consists of 10% of the WMT 2013 and 2014 datasets. We use this

dataset to tune the hyperparameters for WMT 2015 and 2016 datasets.

5.4.1 Dueling Bandit Algorithms

For all algorithms other than Knockout and Single Elimination, we use the hyper-

parameters recommended by the original authors for all the datasets. For example,

in the RMED algorithm, described in algorithm 1 of (Komiyama et al., 2015), we

use f (K) = 0.3K1.01 as suggested by the authors. For the RCS algorithm, described

in algorithm 1 of (Zoghi et al., 2014a), we use α (exploratory constant) = 0.501.

For RUCB (algorithm 1 of (Zoghi et al., 2014b)), we use α = 0.51. Similarly, for all

algorithms other than Knockout and Single Elimination, we use the recommended

hyperparameters mentioned in the original paper. For knockout and Single Elimina-
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Dataset Rand. Mix.
Uncertainty

(BALD) UCB-Elim.

pm τBALD α τcop

WMT
(all 7 datasets) 0.8 0.025 0.5 0.8

Grammarly
(FCE & Wiki) 0.8 0.07 0.5 0.8

CoNLL’14 0.8 0.07 0.5 0.8
E2E NLG 0.9 0.035 0.5 0.8
ParaBank 0.95 0.15 0.5 0.8

Table 5.2: Tuned Hyperparameters of Model-based algorithms when used with the
Electra Metric

Dataset Rand. Mix.
Uncertainty

(BALD) UCB-Elim.

pm τBALD α τcop

WMT
(all 7 datasets) 0.8 0.005 0.5 0.8

Grammarly
(FCE & Wiki) 0.8 0.0005 0.5 0.8

CoNLL’14 0.01 0.00005 1 0.7
E2E NLG 0.7 0.0025 0.5 0.8
ParaBank 0.4 0.0005 0.5 0.8

Table 5.3: Tuned Hyperparameters of Model-based algorithms when used with the
Bleurt Metric

tion, we found that the performance was very sensitive to the hyperparameters. For

these two algorithms, we manually tuned the hyperparameters on the validation set.

In Knockout, algorithm 3 of (Falahatgar et al., 2017b), we use ε = 0.2, δ = 0.05, γ = 1.0

for WMT’16 ron-eng and TLDR OpenAI datasets. We use ε = 0.2, δ = 0.05, γ = 0.6

for ParaBank and Grammarly-Wiki datasets and ε = 0.2, δ = 0.09, γ = 0.6 for all

other datasets. In Single Elimination, we use m (number of pairwise comparisons

per duel) = 1000 for WMT’16 ron-eng, E2E NLG, Grammarly-FCE, m = 1500 for

CoNLL’14 shared task and m = 500 for all other datasets.

5.4.2 Model-based Algorithms

We manually tune the hyperparameters in our model-based algorithms on the

validation dataset. For clarity, we first describe the hyperparameters in the different
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model-based algorithms. In Random Mixing, we need to choose the mixing

probability pm hyperparameter. In Uncertainty-aware Selection (BALD), we need

to choose a threshold value τBALD for the BALD score at which we decide to ask for

human annotations. For UCB elimination, we should choose a threshold τcop for

optimistic Copeland scores and the α hyperparameter, which controls the size of

the confidence region. In table 5.2 and 5.3, we report the tuned hyperparameter

values when using Electra and Bleurt (with the Linear probability model) as the

evaluation model. Another hyperparameter is the number of Monte-Carlo samples

L to obtain from the Dropout distribution as discussed in 4.2. We set L = 20, i.e. we

independently apply dropout 20 times for each test predictions.
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CHAPTER 6

Results & Discussion

We discuss the results of various dueling bandits algorithms in 6.1, performance of

evaluation metrics in 6.2 and our model-based algorithms in 6.3.

6.1 Analysis of Dueling Bandit Algorithms

We analyze (i) the validity of assumptions made by different dueling bandit

algorithms, (ii) annotation complexity of dueling bandit algorithms in our 13 NLG

datasets, and (iii) the top-rank prediction accuracy of dueling bandit algorithms for

a given number of human annotaitons.

6.1.1 Validity of Assumptions

We now analyze the validity of the assumptions that we discussed in 2.3.2. In table

6.1, we report whether those assumptions hold in each of our 13 NLG evaluation

datasets. We observe that Strong Stochastic Transitivity (SST) and Stochastic

Triangle Inequality (STI) does not hold true in almost all the datasets. Further, the

Total Order (TO) and Relaxed Strong Stochastic Transitivity (RST) does not hold

true in a majority of the datasets. Of these assumptions, only the assumption on the

existence of Condorcet winner (CW), hold true across all the datasets. We note here

that we cannot verify the validity of these assumptions if we do not have access to

the true human preference i.e. before performing human annotations, we cannot

know if these assumptions hold true or not. We present these results here for the

sake of analysis.



AssumptionsTask Dataset TO CW SST RST STI
WMT15 fin→eng True True False True False
WMT15 rus→eng False True False False False
WMT15 deu→eng False True False False False
WMT16 tur→eng True True False True False
WMT16 ron→eng True True True True False
WMT16 cze→eng True True False True False

Machine
Translation

WMT16 deu→eng False True False False False
Grammarly (FCE) True True False True False
Grammarly (Wiki) False True False False False

Grammatical
Error
Correction CoNLL-2014 Shared Task False True False False False
Data-to-Text E2E NLG Challenge False True False False False
Paraphrase ParaBank False True False False False
Summarization TLDR OpenAI False True False False False

Table 6.1: Validity of various assumptions made by Dueling bandit algorithms in
different NLG datasets

6.1.2 Annotation Complexity

We report the annotation complexity of various dueling bandit algorithms on 7

WMT datasets in table 6.2 and the rest of the datasets in table 6.3. We observe that

the annotation complexity of the uniform exploration algorithm is consistently

high across all 13 datasets. In particular, the required human annotations become

prohibitively expensive when the number of NLG systems is high. For example,

in the E2E NLG (16 systems) and ParaBank dataset (28 systems), the annotation

complexity is more than 65k and 820k, respectively. Further, algorithms like RUCB,

RCS, RMED can exploit the CW assumption to quickly eliminate sub-optimal NLG

systems and perform better than algorithms that don’t make any assumptions

(CCB, DTS, etc.). Third, RMED performs the best overall with an average reduction

of 80.01% in human annotations compared with the uniform exploration algorithm.

6.1.3 Top-rank Prediction Accuracy

We now examine an alternative approach to assess the performance of dueling

bandit algorithms. Annotation complexity measures the required number of

human annotations to achieve 95% top-ranked prediction accuracy. We now fix

the number of human annotations and compute the accuracy in predicting the
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Algorithm WMT 2016 WMT 2015
tur-eng ron-eng cze-eng deu-eng fin-eng rus-eng deu-eng

Uniform 19479 24647 10262 3032 2837 12265 17795
IF 117762 282142 135718 75014 101380 162536 261300
BTM 32010 17456 > 105 2249 2926 11108 8328
Seq-Elim. 10824 17514 5899 4440 16590 6881 17937
PL 7011 18513 4774 4618 7859 17049 15215
Knockout 3415 7889 4723 3444 5104 5809 5956
Single Elim. 4830 6000 5885 5340 6953 6465 6453
RUCB 3125 5697 3329 1636 1655 4536 6222
RCS 2442 3924 3370 1537 2662 3867 5296
RMED 2028 5113 1612 864 1707 1929 4047
SAVAGE 10289 18016 6639 2393 2675 12806 12115
CCB 7017 11267 5389 2884 4092 11548 10905
DTS 10089 9214 8618 4654 4850 13317 16473
DTS++ 7626 9483 5532 2729 6465 9394 14926

Table 6.2: Annotation complexity of the top 7 best performing dueling bandit
algorithms along with the uniform exploration algorithm on 7 WMT
datasets

Algorithm Grammarly CoNLL
’14 Task

E2E
NLG

Para-
Bank

TL;
DRrus-eng deu-eng FCE Wiki

Uniform 12265 17795 8115 34443 61369 65739 825211 5893
IF 162536 261300 226625 364304 713522 718492 605825 70071
BTM 11108 8328 2778 > 106 > 106 2541 10175 2038
Seq-Elim. 6881 17937 12851 48068 38554 41037 > 106 9046
PL 17049 15215 8037 13156 5682 60031 > 106 3871
Knockout 5809 5956 3134 3777 8055 7708 17418 4953
Single Elim. 6465 6453 6000 9000 12940 15000 55900 9045
RUCB 4536 6222 2732 5617 19024 10924 41149 1647
RCS 3867 5296 1816 4606 12678 7263 34709 1903
RMED1 1929 4047 2093 5647 9364 3753 24132 1162
SAVAGE 12806 12115 5767 22959 39208 41493 255208 4733
CCB 11548 10905 4386 10020 21392 16960 87138 2518
DTS 13317 16473 4355 11530 18199 19940 170467 1354
DTS++ 9394 14926 9284 17774 31562 15065 52606 6284

Table 6.3: Annotation complexity of the top 7 best performing dueling bandit
algorithms along with the uniform exploration algorithm on Grammarly
(FCE and Wki), E2E NLG, ParaBank and OpenAI TL;DR datasets
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Figure 6.1: Top-rank prediction accuracy v/s number of human annotations used
on WMT 16 tur-eng dataset

top-ranked system. That is we assume we have a fixed human annotation budget

and we compute the top-ranked prediction accuracy obtained by the dueling

bandit algorithms for the given number of annotations. In figure 6.1, we plot the

top-ranked prediction accuracy as function of the number of human annotations for

uniform exploration and the top three best performing dueling bandit algorithms,

viz., RUCB, RCS and RMED. We observe that RMED achieves the highest top-rank

prediction accuracy for any given number of human annotations. As shown in

figure 6.2, we observe similar trends for all 12 other datasets.

6.2 Performance of Evaluation Metrics

Before we utilize automatic evaluation metrics using our proposed model-based

algorithms, we analyze the effectiveness of these metrics for pairwise NLG evalua-

tions. We report the sentence-level accuracy in predicting the comparison outcome

w using existing direct assessment metrics with probability models (as discussed in

3.1) along with our trained pairwise evaluation model (Electra) in table 6.4 for the

WMT, Grammarly, and CoNLL-2014 shared task datasets. For WMT and Gram-

marly, we report the Micro average accuracy across the 7 WMT and 2 Grammarly

datasets. Similarly, in table 6.5, we report the sentence-level accuracy in predicting
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Figure 6.2: Top-rank prediction accuracy as a function of the number of human
annotations for (model-free) Uniform exploration and RUCB, RCS, and
RMED dueling bandit algorithms on 12 NLG datasets
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Metrics
WMT

(Micro Average)
Grammarly

(Micro Average)
CoNLL-2014
Shared Task

Linear BTL BTL-log. Linear BTL BTL-log. Linear BTL BTL-log.
Chrf 62.6 62.0 62.6 75.7 75.3 75.9 78.4 78.3 78.4
Bleu-4 41.5 53.4 41.5 73.2 73.0 73.2 78.9 78.7 78.9
Rouge-L 60.7 60.0 60.7 73.5 73.6 73.6 78.0 78.0 78.0
Emb. Avg. 56.5 59.1 57.5 70.1 70.3 71.5 76.0 76.7 77.0
Greedy Match 59.5 59.8 59.9 68.1 68.4 68.2 77.7 77.4 77.7
Vector Extr 59.4 59.5 59.3 66.0 66.9 66.5 76.3 76.7 76.7
Bertscore 65.9 66.2 65.9 77.4 77.2 77.4 82.0 81.5 82.0
Laser 65.3 65.1 65.3 75.1 73.0 75.1 78.0 76.4 78.0
MoverScore 66.1 66.5 66.1 74.7 70.9 73.0 80.6 79.6 80.3
Bleurt 68.2 67.5 68.2 77.1 76.6 76.0 81.5 81.5 80.8
Electra 65.7 74.0 81.6

Table 6.4: Sentence-level accuracy of direct assessment metrics with three probability
models and our trained Electra metric in predicting the comparison
outcome on WMT, Grammarly and CoNLL’14 shared task

Metrics
E2E NLG
Challenge ParaBank TLDR OpenAI

Linear BTL BTL-log. Linear BTL BTL-log. Linear BTL BTL-log.
Chrf 47.4 48.8 48.3 66.1 66.1 66.1 34.2 35.4 35.4
Bleu-4 45.0 39.0 50.1 63.8 63.2 63.8 42.8 44.0 42.8
Rouge-L 44.6 43.8 50.2 64.3 64.3 64.3 43.3 43.3 43.3
Emb. Avg. 49.8 51.6 51.8 64.9 64.9 64.9 38.2 38.2 38.2
Greedy Match 46.5 48.8 48.9 64.7 64.7 64.5 43.1 43.1 43.1
Vector Extr 44.9 46.2 49.1 63.7 63.7 63.7 47.4 47.1 48.1
Bertscore 45.9 49.3 50.1 68.1 68.1 68.1 44.5 44.4 44.5
Laser 47.2 49.9 50.5 67.0 67.0 67.0 35.4 35.4 35.4
MoverScore 50.1 49.3 50.4 68.0 68.0 67.8 40.7 40.7 40.7
Bleurt 48.1 50.4 50.4 67.7 67.7 67.7 42.5 42.5 42.3
Electra 54.3 81.7 -

Table 6.5: Sentence-level accuracy of direct assessment metrics with three probability
models and our trained Electra metric in predicting the comparison
outcome on E2E NLG, ParaBank and OpenAI TL;DR dataset
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Figure 6.3: Sentence-level prediction accuracy of direct assessment metrics with
the Linear, BTL, and BTL-Logistic models averaged across the 7 WMT
datasets
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the comparison outcome for E2E NLG Challenge, ParaBank and OpenAI TL;;DR

datasets. We observe that n-gram and static word embedding-based metrics give a

modest performance on the Machine Translation and Grammatical Error Correction

tasks. When compared to these, we notice that metrics that utilize contextualized

word embeddings, such as BertScore, perform much better. In Machine Translation,

we observe that the Bleurt metric, which is specifically finetuned on WMT human

judgment data, performs the best. On Data-to-Text generation and Paraphrase gen-

eration tasks, our trained Electra model finetuned on task-specific data significantly

outperforms the existing metrics. Interestingly, on the Summarization task, all the

existing metrics perform much worse than random predictions i.e. existing metrics

do not add any useful value in evaluation. Hence, we exclude the TLDR dataset

from our analysis on model-based dueling bandit algorithms. Lastly, we observe

that there is little variation in performance across the three probability models. To

further illustrate this, we plot the accuracy on the WMT datasets in figure 6.3 and

observe that the performance is largely similar across Linear, BTL, and BTL-logistic

models.

6.3 Analysis of Model-based Algorithms

We use our proposed model-based algorithms and incorporate the two best perform-

ing evaluation models, viz., Bleurt and Electra with the best performing dueling

bandit algorithm, viz., RMED. We compare the annotation complexity of various

model-based algorithms in table 6.6 for the 7 WMT datasets and in table 6.7 for the

remaining datasets. Random mixing with Bleurt and Electra reduces the annotation

complexity by 70.43% and 73.15% respectively on average when compared to the

standard (model-free) RMED algorithm (row 1). Our Uncertainty-aware selection

algorithm with the BALD measure further reduces the annotation complexity on

average by 37.37% and 37.23% (when compared with random mixing) using Bleurt

and Electra, respectively. We observe that the UCB Elimination algorithm also

provide significant improvements in annotation complexity over the standard
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Model-based
Algorithm

Evaluation
Metric

WMT 2016 WMT 2015
tur-eng ron-eng cze-eng deu-eng fin-eng rus-eng deu-eng

None (Model free) None 2028 5113 1612 864 1707 1929 4047

Random Mixing Bleurt 237 1222 315 161 275 304 771
Electra 728 3213 385 152 236 512 650

Uncertainty-aware
Selection (STD)

Bleurt 103 1012 192 84 204 239 530
Electra 978 7251 478 210 388 962 1259

Uncertainty-aware
Selection (BALD)

Bleurt 101 653 136 48 181 162 405
Electra 737 1648 223 114 207 538 488

UCB Eliminination Bleurt 711 2684 1131 573 419 843 3556
Electra 264 649 1131 414 294 1126 3556

Uncertainty
(BALD) + UCB Elim.

Bleurt 31 415 376 25 59 82 305
Electra 721 736 144 51 76 288 280

Table 6.6: Annotation complexity of model-based algorithms when used with
RMED and Bleurt/Electra metric.

Model-based
Algorithm

Evaluation
Metric

Grammarly CoNLL
’14 Task

E2E
NLG

Para-
BankFCE Wiki

None (Model-free) - 2093 5647 9364 3753 24132

Rand. Mix. Bleurt 406 671 9584 1151 15874
Electra 1529 237 3302 326 1044

Uncertainity (Mean STD) Bleurt 270 185 9356 1291 22876
Electra 477 234 4708 199 2137

Uncertainty (BALD) Bleurt 204 128 9356 1167 22619
Electra 281 75 1557 67 858

UCB Elimin. Bleurt 967 1115 8382 2005 14098
Electra 3970 1115 2943 1112 9870

Uncertainty (BALD) +
UCB Elim.

Bleurt 162 39 9995 256 4570
Electra 312 45 782 40 2247

Table 6.7: Annotation complexity of model-based algorithms when used with
RMED and Bleurt/Electra metric.

RMED algorithm. Since UCB Elimination is complementary to Uncertainty-aware

selection, we apply both these algorithms together and we observe the lowest

annotation complexity with a reduction of 89.54% using Electra, and 84.00% using

Bleurt when compared with the standard RMED algorithm.

In figure 6.4, we show the top-rank prediction accuracy as a function of the

number of human annotations for various model-based algorithms using the

Electra metric with RMED. We observe that Random Mixing and Uncertainty-

aware Selection (BALD) algorithms have significantly higher prediction accuracy

than model-free RMED for any given number of human annotations. Further, when

we use UCB Elimination with Uncertainty-aware Selection, we observe the highest

top-rank prediction accuracy for any given number of annotations.
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Figure 6.4: Top-rank prediction accuracy as a function of the number of human
annotations for various model-based dueling bandit algorithms with
RMED and Electra metric on 12 NLG datasets
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CHAPTER 7

Detailed Analysis

We further analyze the factors affecting the query complexity of dueling bandit

algorithms viz. number of NLG systems, automatic evaluation metrics, and

hyperparameters of model-based algorithms. Lastly, we discuss the robustness

of dueling bandit algorithms to delays in feedback arising when multiple human

annotators are used in parallel.

7.1 Effect of number of NLG systems

We analyze how annotation complexity varies with the number of NLG systems.

Specifically, we chose a subset of k systems out of the total 28 systems in the

ParaBank dataset and computed the annotation complexity among these k systems.

As shown in figure 7.1, the annotation complexity of uniform exploration grows

quadratically with k as it explores all system pairs equally. However, for (model-

free) dueling bandit algorithms such as RMED, the annotation complexity is much

lower and only varies as O(k). Similarly, we compare the variations in annotation
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Figure 7.1: Annotation complexity of (model-free) uniform exploration and dueling
bandit algorithms v/s the number of NLG systems on the ParaBank
dataset
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Figure 7.2: Annotation complexity of Random Mixing using the Electra metric
with uniform exploration and dueling bandit algorithms as function of
number of NLG systems on the ParaBank dataset

complexity when we use Random Mixing with the Electra metric. In figure 7.2,

we plot the annotation complexity as function of number of NLG systems for

uniform exploration and dueling bandit algorithms with Random Mixing. Like

the model-free case, the annotation complexity of uniform exploration grows as

O(k2) but the annotation complexity only varies as O(k) for RMED, RCS, and RUCB

dueling bandit algorithms.

7.2 Comparison between Evaluation Metrics

We examine the effect of using different evaluation metrics in our random mixing

algorithm with RMED in figure 7.3. We notice that using the BLEU metric, which

only achieves an accuracy of 41.5% in MT, leads to an increase in query complexity

in many Machine Translation datasets because of its inaccurate preference feedback.

We observe similar trends for Embedding Average in a few datasets, but on average,

we notice a decrease in query complexity by 7.95% relative to the model-free

RMED algorithm. With Laser, MoverScore, and BertScore, we obtain an average

reduction in query complexity by 51.27%, 57.34%, and 50.85%, respectively, relative

to model-free RMED. The improvements are even greater with Bleurt and Electra

at 70.43% and 73.15%, respectively.
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Figure 7.3: Annotation complexity of Random Mixing with RMED using BLEU,
Emnedding Average, Laser, MoverScore, BertScore, Bleurt and Electra
evaluation metrics and standard RMED (model-free)
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7.3 Sensitivity to Hyperparameters

We study how hyperparameters in our proposed model-based algorithms affect

annotation complexity. Recall that in Random Mixing, the mixing probability

pm controls the ratio of real and model generated feedback given to the learner.

In Uncertainty-aware Selection (BALD), we obtain human annotations when the

BALD score is above a threshold τBALD. Here, as well τBALD implicitly controls

the fraction of real and predicted feedback. In figure 7.4, we show the effect of

pm in Random Mixing with Bleurt and τBALD in Uncertainty-aware Selection with

Bleurt. We observe that with increases in both the hyperparameters, the annotation

complexity decreases, i.e., with a greater amount of feedback received from Bleurt,

the number of required human annotations is lower. However, as shown in figure

7.5, we observe the opposite trend when we use metrics such as BLEU, which are

highly inaccurate. In these cases, we require a greater number of human annotations

to compensate for the highly erroneous feedback received from the evaluation

metric. Therefore, the optimal mixing probability pm in such cases is close to 0 i.e.

equivalent to the model-free case. For moderately accurate metrics such as Laser,

we observed the optimal pm was close to 0.4 to 0.6. The key insight from these

observations is that the higher the accuracy of the metric, the higher amount of

feedback can be obtained from the metric to identify the top-ranked system. In

figure 7.6, we analyze how the annotation complexity of UCB Elimination with

Bleurt varies with the optimistic Copeland threshold τcop hyperparameter. We fixed

α hyperparameter to 0.6. We observed that UCB Elimination is much more robust

to τcop and a general value of τcop = 0.8 worked well across all datasets and metrics.

7.4 Robustness to Delayed Feedback

In some instances, human annotations are obtained from multiple crowdsourced

annotators in parallel to reduce the time taken for annotations. In such cases, the
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Figure 7.5: Prediction accuracy v/s number of human annotations collected for
Random Mixing with Bluert and BLEU for different mixing probability
pm on the WMT 15 deu-eng dataset
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Figure 7.6: Annotation complexity of UCB Elimination with Bleurt v/s the Copland
threshold for α = 0.6
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dataset
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learner is required to choose the system pairs (s(t)
1 , s

(t)
2 ) to give to some annotator i

even before we obtain the result w(t−1) of the previous comparison from some other

annotator j. In other words, the learner may experience a delay d > 0 in feedback

where at time t, the learner may only have access to the comparison history up to

time t − d − 1. As shown in figure 7.7, we observe that the top-performing dueling

bandit algorithms tend to be robust to delays in feedback. We notice that the

variation in the annotation complexity of RMED and RCS as measured by standard

deviation is only 64.49 and 62.86, respectively.
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CHAPTER 8

Practical Recommendations & Best Practices

8.1 Practical Recommendations

We summarize the key insights from this large-scale empirical study and provide

practical recommendations on efficiently identifying the top-ranked NLG system.

1. Use RMED dueling bandit algorithm to actively choose system pairs for

comparison.

2. If human evaluation datasets are available, train a metric to predict the

comparison outcome directly. Otherwise, use Bleurt with any of the Linear,

BTL, BTL-logistic models.

3. Manually annotate a few examples from the test dataset and evaluate the

sentence-level accuracy of the metric. If the performance is poor (e.g.,

accuracy near the random baseline), do not use model-based approaches,

obtain feedback only from human annotators.

4. If the metric is reasonably accurate, use UCB Elimination with Uncertainty-

aware Selection (BALD). Tune the hyperparameters of these algorithms, if

possible. Otherwise, refer 8.2 for best practices developed based on analyzing

the sensitivity of model-based algorithms to hyperparameters.

5. We can reduce the annotation time if we use multiple annotators in parallel.

We observed that dueling bandit algorithms, though originally proposed for

sequential annotations, are robust to asynchronous feedback from multiple

annotators.



8.2 Best Practices for Choosing Hyperparameters

The optimal approach to choose hyperparameters is usually to tune them on a

validation set. But, at times, it may not be possible either because of computational

reasons or because a human-annotated validation dataset may not be available. In

such cases, we provide a few heuristics based on our previous analysis to choose

hyperparameters in our model-based algorithms:

1. Choose the mixing probability pm in Random Mixing proportionately with

the accuracy of the metric. For example, we observed that for metrics with

sentence-level prediction accuracy greater than 70%, pm = 0.8 tend to work

well. For accuracy between 65% to 70%, pm in the range of 0.5-0.7 worked

well.

2. Once we choose a value of pm, we can find an appropriate BALD threshold

τBALD where 100× pm% of BALD scores are above τBALD and 100× (1− pm)% of

BALD score are below τBALD. Choosing the BALD threshold this way ensures

that we can directly control the desired amount of model-predicted feedback

given to the learner.

3. For UCB Elimination, we recommend using the default values of α = 0.6 and

τcop = 0.8, which we found to work well across tasks and metrics.
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CHAPTER 9

Related Work

Several works (Bojar et al., 2014, 2015; Sakaguchi et al., 2014, 2016) in Machine

translation and Grammatical Error Correction adopt the TrueSkill algorithm (Her-

brich et al., 2006), originally used for ranking Xbox gamers, to efficiently rank NLG

systems from pairwise annotations. A recent work (Sakaguchi and Durme, 2018)

proposes an online algorithm to rank NLG systems when we receive pairwise

preference feedback in the form of a continuous scalar with bounded support.

The key difference in our work is that we focus on the problem of identifying the

top-rank system instead of ranking all the systems. Apart from pairwise evaluations,

a few other approaches (Novikova et al., 2018; Kiritchenko and Mohammad, 2016)

have been proposed in the literature to overcome the issues with direct assessment.

Specifically, (Novikova et al., 2018) proposes RankME, an extension of pairwise

evaluation to multiple items. In RankME, human annotators rank several outputs

provided to them. Another approach explored by (Kiritchenko and Mohammad,

2016) is Best–Worst Scaling where annotators are shown four outputs and asked to

select the best and worst outputs. Experimental study of dueling bandit algorithms

have been limited to synthetic simulations in a few works (Yue and Joachims, 2011;

Urvoy et al., 2013). Most others (Zoghi et al., 2014b,a; Komiyama et al., 2015; Zoghi

et al., 2015; Wu and Liu, 2016) focus on information retrieval applications that

involve evaluating search retrieval algorithms (Radlinski et al., 2008). To the best

of our knowledge, ours is the first work to extensively study the effectiveness of

dueling bandit algorithms for NLG evaluation.



CHAPTER 10

Conclusion & Future work

In this work, we focused on the problem of identifying the top-ranked NLG system

with few pairwise annotations. We formulated this problem in an Active Evaluation

framework where we actively decide the pairs of system to compare on one input

sample from the test dataset. We used dueling bandit algorithms to choose the

system pairs for comparison at each time instance. We extensively evaluated the

performance of 13 dueling bandit algorithms proposed in the literature on 13 NLG

evaluation datasets spanning five tasks. We showed that showed that dueling

bandit algorithms can reduce the number of human annotations by 80% when

compared to the uniform exploration baseline algorithm. We then proposed three

model-based algorithms to combine automatic metrics with human evaluations.

We showed that human annotations can be reduced further by 89% and thereby we

required only a few hundred human annotations to identify the top-ranked system.

We then provided practical recommendations and best practices to efficiently

identify the top-ranked systems based on the results of our large-scale empirical

study. In future work, we would like to extend our analysis to the general problem

of finding the top-k ranked systems.
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