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ABSTRACT

While generating 3D perception on glass-free displays, supporting continuous motion

parallax, greater depths of field and wider fields of view are critical to ensure realism.

Current advances on Layered or Tensor Light Field displays have made them suitable

for such an application. Using only a few light attenuating transparent pixelized layer

displays, a high-resolution 3D image can be displayed supporting multiple viewing

directions simultaneously. This thesis presents a flexible scheme for efficient layer-

based representation and compression of light fields. The proposed coding scheme is

a multi-stage pipeline that systematically removes redundancies to provide an efficient

compression. In addition, the scheme can realise multiple bitrates using a set of hand-

tunable parameters, unlike existing light field compression schemes. Extensive exper-

iments performed demonstrate that the proposed coding scheme achieves substantial

bitrate savings compared to pseudo-sequence-based light field compression approaches

and state-of-the-artHEVC codecs.

KEYWORDS: Light Field Compression; Layered 3D displays; Convolutional

Neural Networks; Randomized Block Krylov Singular Value De-

composition
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CHAPTER 1

Introduction

Realistic 3D presentation on displays has been a long-standing challenge for researchers

in the areas of plenoptics, light fields, and full parallax imaging Surman and Sun (2014);

Li et al. (2020); Watanabe et al. (2019). Glasses-free or naked-eye autostereoscopic

displays have replaced stereoscopic displays that offer motion parallax for different

viewing directions Geng (2013). However, current naked-eye displays fall far short of

truly recreating continuous motion parallax, greater depth-of-field, and a wider field-of-

view for visual reality ?Sharma et al. (2016, 2014); Sharma (2017).

Designs based on a single display panel attached with a parallax barrier or special

lens (lenticular screen or integral photography lens) usually suffer from inherent reso-

lution limitations. The resolution for each view decreases with an increase in multiple

viewing directions. Thus, supporting a full parallax visualization of the 3D scene is im-

practical Geng (2013). On the other hand, both monitor-style and large-scale systems

based on several projectors introduce a wide viewing approach but do not maintain a

thin form factor and require ample space to set up. Besides, such large-scale systems re-

quire costly hardware and compute to reproduce high-quality views Hirsch et al. (2014);

Balogh et al. (2007).

Multi-layered or tensor light field displays offer an optimized solution to support

direction-dependent outputs simultaneously, without sacrificing the resolution in repro-

ducing dense light fields Wetzstein et al. (2012); Takahashi et al. (2015); Saito et al.

(2016); Kobayashi et al. (2017b); Maruyama et al. (2020); Kobayashi et al. (2017a);

Takahashi et al. (2018); Maruyama et al. (2019). A typical structure of a layered 3D dis-

play is demonstrated in Figure 1.1. It is composed of a few light-attenuating pixelized

layers stacked in front of a backlight. The transmittance of pixels on each layer can

be controlled independently. A multi-layered display with multiplicative layers can be

implemented with liquid crystal display(LCD) panels and a backlight and additive lay-

ers are fabricated with holographic optical elements (HOEs) and projectors Maruyama

et al. (2020).



Figure 1.1: A tensor display designed for 3D projection

With this structure, the layer patterns allow light rays to pass through different com-

binations of pixels depending on the viewing directions. As shown in Figure 3.1, mul-

tiplicative layer patterns overlap with different shifts in observed directions, precisely

reproducing multi-view images with a high resolution. Further, compactly representing

the light field using only a few transmittance patterns offers display adaptation.

Thus, it is critical to analyze the intrinsic redundancy in light fields to generate an ef-

ficient 3D production and content delivery pipeline using multi-layer-based approaches.

In this work, the problem of light field dimensionality reduction for existing multi-layer

or tensor 3D displays is addressed. For the sake of convenience, only multiplicative

layer displays are described and used. The corresponding coding scheme for additive

layer displays can be built similarly.
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CHAPTER 2

Related work

The majority of existing light field coding approaches are not directly applicable for

multi-layered displays. Several coding approaches extract the SAIs and encode them

as a pseudo video sequence Liu et al. (2016); Li et al. (2017); Ahmad et al. (2017,

2019); Gu et al. (2019); Sharma and Ragavan (2019). Existing video encoders like

HEVC Sullivan et al. (2012) or MV-HEVC are used for inter- and intra-frame hybrid

prediction. View estimation-based methods Senoh et al. (2018); Huang et al. (2018,

2019); Hériard-Dubreuil et al. (2019) reconstruct the entire light field from a small

subset of encoded views. However, such algorithms fail to remove redundancies among

adjacent SAIs and restrict prediction to the local or frame units of the encoder. Also,

learning-based view-synthesis methods for light field compression Bakir et al. (2018);

Zhao et al. (2018); Wang et al. (2019); Schiopu and Munteanu (2019); Liu et al. (2021);

Jia et al. (2018) require large-scale and diverse training samples. To reconstruct high-

quality views, a significant fraction of the SAIs have to be used as references.

Disparity-based methods

Algorithms that exploit low-rank structure in light field data follow disparity-based

models Jiang et al. (2017); Dib et al. (2020). Jiang et al. (2017) proposed a HLRA

method that aligns light field sub-aperture views by analyzing disparity across views

from different depth planes. The HLRA may not optimally reduce the low-rank approx-

imation error for light fields with large baselines. Geometry-based schemes have gained

recent popularity for efficient compression at low-bit rates Vagharshakyan et al. (2017);

Ahmad et al. (2020); Chen et al. (2020). Such schemes use light field structure/multi-

view geometry and are not suitable for coding layer patterns directly.

Content-based methods

Methods that explicitly consider the content of light field data for compression Liu

et al. (2019); Hu et al. (2020) also do not work in present settings. Liu et al. (2019)

compress plenoptic images by classifying light field content into three categories based



on texture homogeneity. Corresponding Gaussian process regression-based prediction

methods are used for each category. The performance depends on scene complexity and

sophisticated treatment is required to handle the boundaries of the lenslet image. Sim-

ilarly, the GNN-based scheme presented by Hu et al. (2020) separates high-frequency

and low-frequency components in sub-aperture images. This scheme needs an accurate

parameter estimation model and discards specific frequency components permanently.

None of these coding techniques are explicitly designed for layered light field displays.

They also usually support only specific bitrates during the compression.

Proposed Coding Scheme

Differing from existing approaches, the proposed Block Krylov SVD based lossy

compression scheme works for layered light-field displays with light-ray operations

regulated using stacked multiplicative layers and a CNN. The CNN is employed to

produce optimal multiplicative layers obtained from light fields. CNN-based meth-

ods are proven to be computationally more efficient than the previous analytical opti-

mization approaches based on non-negative tensor factorization Wetzstein et al. (2012);

Maruyama et al. (2020, 2019); Lee et al. (2016). The proposed algebraic representation

of stacked multiplicative layers on the Krylov subspace approximates the hidden low-

rank structure of the light field data. Factorization derived from BK-SVD efficiently

exploits the high spatial correlation between multiplicative layers and approximates the

light field with varying low ranks. Further encoding using the HEVC encoder elimi-

nates inter-layer and intra-layer redundancies and considerably improves the compres-

sion efficiency. By choosing varying ranks and quantization parameters, the scheme

allows variable performance considering the device bandwidth constraints. This allows

the delivery of 3D content with limited hardware resources and best meets the viewers’

preferences for depth immersion and visual comfort.
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CHAPTER 3

Proposed Coding Scheme

The pipeline workflow for the proposed coding scheme is shown in Figure 3.2. BLOCK

I and II belong at the transmitter end whereas BLOCK III belongs at the receiver or

device end. BLOCK I represents a CNN that produces multiplicative layers from input

light field SAIs. In BLOCK II, redundancies in the layers are eliminated by performing

a low-rank approximation using BK-SVD. The approximated layers are then fed into the

HEVC encoder that eliminates inter- and intra-frame redundancies. This compressed

bitstream is then transmitted to the device. In BLOCK III, the compressed bitstream is

decoded to reconstruct the layers and individual SAIs at the device end.

3.1 Views to Multiplicative Layers

In the first component, the proposed coding scheme generates multiplicative layer pat-

terns from a given set of light field views. A light field can be defined as a 4-D function

describing light rays travelling straight through free space Levoy and Hanrahan (1996);

Gortler et al. (1996). In this work, a plane and angle representation is considered as

shown in Figure 3.1. A reference frame z = 0 is defined. The intensity of a light ray

passing through (u, v) on the plane making an angle (θ, φ) with the z-axis is described

as L(s, t, u, v), where s = tan(θ) and t = tan(φ).

Figure 3.1: The left image shows the configuration of the display panels and the back-
light; the right image describes the parametrization of a light ray



Multiplicative layers are light attenuating panels stacked at equal intervals from each

other in front of a backlight. The setup is shown in Figure 3.1. A ray passing through

the reference frame at (u, v) and at an angle coordinate (s, t) will intersect the frame at

depth z at (u + zs, v + zt). Thus the intensity of an emitted light ray from this setup,

after normalizing by the intensity of the backlight, is given by

Lmul(s, t, u, v) =
∏
z∈Z

Mz(u+ zs, v + zt) (1)

whereMz(u, v) denotes the transmittance of the pixel (u, v) on a layer at depth z. Here,

Z = {−1, 0, 1} is assumed, where Z denotes the normalized depth instead of physical

depth along the z- axis Maruyama et al. (2020).

Thus the optimization goal for layer patterns is given by

arg min
Mz |z∈Z

∑
s,t,u,v

‖L(s, t, u, v)− Lmul(s, t, u, v)‖2 (2)

where L(s, t, u, v) is the input light field. Instead of performing this optimization ana-

lytically, a CNN can be learnt to generate layer patterns from input SAIs. This can be

mapped as

f : L→M (3)

where M represents a tensor containing all the layer patterns Mz.

Similarly, 1 can be considered as the inverse mapping from layer patterns to the

light field Lmul(s, t, u, v). It can be denoted as

fmul : M→ Lmul (4)

where Lmul contains all the light rays in Lmul(s, t, u, v). During training, a CNN

optimizes the loss function given by

arg min
θf

‖L− Lmul‖2 (5)

6



where θf denotes the weights of the CNN. Note that Lmul=fmul(f(L)) is true from

definition. f(L) is performed by the CNN and fmul reconstructs SAIs from the obtained

layers.

Figure 3.2: The proposed coding scheme pipeline

Earlier works performed this optimization analytically using algorithms based on

non-negative tensor factorization. Analytical methods obtain the three multiplicative

layers of an input light field by carrying out the optimization of one layer at a time

individually Maruyama et al. (2020). The solutions are updated in an iterative manner,

with there existing a definite trade-off between the number of iterations and accuracy of

the obtained solution. On the other hand, learning a CNN proves to be better in terms

of the balance between computation time and accuracy than the previous analytical

optimization approaches. The merits of using a CNN over analytical methods has been

discussed later in this report.

3.2 Low Rank Representation of Layers using BK-SVD

The key goal of the proposed scheme is to remove the intrinsic redundancy in light

field data by analyzing the hidden low-rank structure of multiplicative layers. BLOCK

II of the workflow involves this low-rank representation. The layers are represented

compactly on a Krylov subspace and approximated using BK-SVD.

The three individual color channels from each of the three layers are stacked to-

gether. Let this new matrix be Bch where ch ∈ {R,G,B}, hold the corresponding

7



color channels from the three layer patterns obtained. This is necessary since the in-

dividual color channels have to be decomposed separately. For simplicity, Bch will be

denoted as B.

Figure 3.3: The BK-SVD algorithm and the necessary rearrangements of layers

Given a matrix B ∈ Rc×d of rank r, SVD can be performed as B = UΣV T , where

the left and right singular vectors of B are the orthonormal columns of U ∈ Rc×rand

V ∈ Rr×d respectively. Σ ∈ Rr×r is a positive diagonal matrix containing σ1 ≥

. . . ≥ σr, the singular values of B. Conventional SVD algorithms are computationally

expensive. Thus, there is substantial research done on randomized techniques to achieve

optimal low-rank approximation Halko et al. (2011); Pedregosa et al. (2011); Musco

and Musco (2015). The recent focus has shifted towards methods that inherently do not

depend on the properties of the matrix or the gaps in its singular values.

Traditional Simultaneous Power Iteration algorithms for SVD initialized with ran-

dom start vectors achieve the spectral norm error in nearly Õ(1
ε
) iterations. Block

Krylov SVD algorithm presented in Musco and Musco (2015), a randomized variant

of the Block Lanczos algorithm Cullum and Donath (1974); Golub and Underwood

(1977), guarantees to achieve the same in just Õ( 1√
ε
) iterations. This not only improves

runtime for achieving spectral norm error but guarantees substantially better perfor-

mance practically.

The intuition behind Block Krylov Iteration matches that of many accelerated it-

erative methods. In order to achieve spectral norm error, the iterative algorithm must

reduce this noise down to the scale of σk+1 = ‖B − Bk‖2. It does this by working

with the powered matrix Bq. By the spectral theorem, Bq has exactly the same singular

8



vectors as B, but its singular values are equal to the singular values of B raised to the

qth power. Powering spreads the values apart and Bq’s lower singular values are rela-

tively much smaller than its top singular values and effectively, the spectral value tail is

denoised. For a random matrix Π ∼ N(0, 1)d×k , the Krylov subspace of matrix B is

given by

K = [Π BΠ B2Π B3Π...BqΠ] (6)

Computing Bq directly is costly, so BqΠ is computed iteratively. The fact that

there are better polynomials than Bq for denoising tail singular values is utilized. In

particular, a lower degree polynomial can be used, allowing us to compute fewer powers

of B and thus leading to an algorithm with fewer iterations.

Block Krylov Iteration takes advantage of such polynomials by working with the

Krylov subspace. From the subspace, pq(B)Π can be constructed for any polynomial

pq() of degree q. The very best k rank approximation toB lying in the span ofK at least

matches the approximation achieved by projecting onto the span of pq(B)Π Musco and

Musco (2015).

Algorithm 1: Block Krylov Singular Value Decomposition
Input: B ∈ Rc×d, error ε ∈ (0, 1), rank k ≤ c, d

Output: W ∈ Rc×k

1 q := Õ( log d√
ε

), Π ∼ N(0, 1)d×k

2 Compute K :=
[
BΠ , (BBT )BΠ , · · · , (BBT )qBΠ

]
3 Orthonormalize the columns of K to obtain Q ∈ Rc×qk

4 Compute S := QTBBTQ ∈ Rqk×qk

5 Set Ūk to the top k singular vectors of S.

6 return W = QŪk

The BK-SVD algorithm is presented as Algorithm 1. The algorithm is run on the

rearranged layers Bch. The rank k approximated matrices are denoted as W ch. The

channels can be rearranged to obtain compressed RGB layers M̂z. These are sent to the

HEVC encoder for further compression.

9



3.3 HEVC Encoding of Rank Approximated Layers

The High Efficiency Video Coding (HEVC) Sullivan et al. (2012) is the latest inter-

national standard for video compression. It was standardized by ITU-T Video Cod-

ing Experts Group and the ISO/IEC Moving Picture Experts Group. HEVC achieves

improved compression performance over its predecessors, with at least a 50 percent

bit-rate reduction for the same perceptual quality Sullivan et al. (2012).

Figure 3.4: HEVC Pipeline

The encoding scheme of HEVC partitions each frame into smaller blocks. This in-

formation is relayed to the decoder for reconstruction. Barring the first frame which

is coded using intra-frame prediction(spatial prediction from other blocks of the same

frame), the rest of the frames are coded using intra- and inter-frame prediction based on

one or more reference frames. Motion-compensated prediction is used to remove tem-

poral redundancy across frames during inter-frame prediction. A linear spatial transfor-

mation is then applied to the resulting signal to produce the resulting transform coeffi-

cients. The quantization of transform coefficients is performed which is controlled by

the Quantization Parameters (QP). QP ranges from 0 to 51 and for every 6 increase in

QP, the quantizer step size doubles. Then, the quantized transform coefficients are en-

tropy coded and transmitted along with the prediction information. The entire workflow

pipeline is shown in Figure 3.4.

3.4 Reconstruction

At the receiving end, the compressed bitstream is decoded by the HEVC decoder. This

produces multiplicative layers optimized for the device in specific. These layers can

be displayed directly on the device to render a 3D image. The individual SAIs can be

obtained by applying 1 i.e the mapping fmul on the obtained layers.

The concept of “one network, multiple bitrates” allows the coding scheme to achieve

10



the goal of covering a range of bitrates, leveraging the generality of low-rank mod-

els and data-driven CNNs for different types of display devices. This is enabled by

the hand-tunable set of parameters during the encoding process: BK-SVD Ranks and

HEVC QPs. This allows the user to flexibly adjust the visual quality in accordance

with the bandwidth constraints. In addition, the proposed coding model not just sup-

ports multi-view/light field displays, but can also complement existing light-field cod-

ing schemes, which employ different networks to encode light field images at different

bitrates. The experiments with real light field data demonstrate very competitive results.

11



CHAPTER 4

Experiments

4.1 Experimental Details

The performance of the proposed compression scheme was evaluated on real light fields

captured by plenoptic cameras. From the EPFL Lightfield JPEG Pleno Database Pen-

nebaker and Mitchell (1992), experiments were performed using Bikes, Fountain and

Vincent 2, and Stone Pillars Outside light field samples. The raw images yielded 15x15

SAIs, each with a resolution of 434x625 pixels, using the Matlab Light Field Toolbox.

Liu et al. (2016) and Ahmad et al. (2017) consider only the central 13×13 views of

the light field as the pseudo sequence for compression. In this case, the border SAIs

obtained suffer greatly from geometric distortion and a general loss of detail due to the

lenslet structure in the camera. These SAIs are discarded to facilitate a fair comparison

with the other baselines. Thus, only the central 13x13 SAIs were considered for all the

experiments performed in this work. Figure 4.1 shows the views of the chosen light

field images.

Figure 4.1: The left most image shows all the SAIs of Fountain-Vincent2; images on the
right show the central view of Bikes, Fountain-Vincent2, and Stone-Pillars
Outside respectively.

The network was trained with 30 training images generated from the light fields

Friends 1, Poppies, University and Desktop, and Flowers from the EPFL Lightfield

JPEG Pleno database [58]. Each training sample was a set of 169 64x64 size image

patches extracted from the same pixel location. Various configurations of hyperparam-

eters were analyzed before settling on a learning rate of 1e-4, a batch size of 15 and

20 epochs. The Adam optimizer was used with default parameters. Maruyama et al.



Figure 4.2: Hyperparameter search results

(2020) had demonstrated 3×3 as the optimal filter size for the network and used 64

channels throughout for all the 20 convolutional layers. These were followed in this

work as well. The results of the hyperparameter search are presented in Figure 4.2. The

resultant output layers for Bikes, Fountain and Vincent 2, and Stone Pillars Outside,

obtained from the trained CNN model, are presented in Figure 4.3.

Figure 4.3: The three multiplicative layers of Bikes, Fountain-Vincent2, and Stone-
Pillars Outside light fields generated by the CNN. The columns indicate
layer -1, 0, and 1 respectively.

The described BK-SVD algorithm was then run on the resultant layers, for a set

of ranks between 4 to 60 (15 in all, incremented in steps of four), with 50 iterations

each. The approximated matrices were converted into the YUV420 color space for the

HEVC encoder. The 32 bit HM encoder (version 11.0) is used throughout the work.
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Seven quantization parameters are chosen: QP 2, 6, 10, 14, 20, 26, and 38, to analyze

both high and low bitrates. The encoder compression produces a bitstream for a fixed

rank and QP, that can be stored or transmitted.

The exact reverse procedure was followed on the compressed bitstream to recon-

struct the 13×13 views of the light fields. The HM decoder produces three decoded

layers in the YUV color space that are used to reconstruct all the SAIs back in the RGB

space. A comparison of the original central view of the Bikes, Fountain and Vincent 2,

and Stone Pillars Outside images and the reconstructed central view is shown in Figure

4.4.

Figure 4.4: Comparison of the original and reconstructed views. Column 1: Original
central views of the three datasets; Column 2: Reconstructed central views
- QP2, rank 20; Column 3: Reconstructed central views -QP 2, rank 60

4.2 Baselines

Ahmad et al. (2017) interpret the sub-aperture views of the light field as frames in a mul-

tiview sequence. They use the multiview extension of HEVC to exploit the 2D inter-

view correlation among the views. Bikes, Fountain and Vincent2, and Stone-Pillars

Outside light field images have been used to evaluate this multi-view compression al-

gorithm.
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Liu et al. (2016) formulate a predictive coding approach and treat light field views

as a pseudo-sequence like video. They compress the central view first and the remaining

views in a symmetric, 2D hierarchical order. Motion estimation and compensation in

video coding systems have been used to perform inter-view prediction. Due to the

public unavailability of Liu et al. (2016)’s datasets, only Bikes have been used for the

experiments.

Standard HEVC has been used as a baseline. The SAIs in YUV420 are passed to

the encoder as a pseudo-sequence like video and compressed.

4.3 Implementation Setup

All the experiments were performed on a single high-end HP OMEN X Gaming laptop

with an Intel 9th Gen i7-9750H processor, 16 GB RAM, and an RTX 2080 8 GB GPU

on Windows 10. Chainer (version 7.7.0) was used to implement and train the CNN. The

entire pipeline was built using Matlab and Python.

15



CHAPTER 5

Results

The performance of the proposed coding scheme is compared to the previous pseudo-

sequence based coding schemes and the HEVC encoder (32 bit HM version 11.0).

All the baselines have been tested under the same conditions and parameters - QP ∈

{2, 6, 10, 14, 20, 38} and Ranks r ∈ {4, 8, 12, ..., 56, 60}. Some of the intermediate QPs

and Ranks have been omitted while presenting results for the sake of space and read-

ability. Wherever SSIM scores have been mentioned in this chapter, the metric has been

computed w.r.t. the central view of the original light field image.

5.1 Performance of the Proposed Coding Scheme

Figures 5.1 show the bitrate vs PSNR curves for Ahmad et al. (2017) on the 3 datasets.

They have been plotted separately because of the scale mismatch in the required bitrates

with other schemes. Figure 5.2 presents the rate distortion curves for the proposed

coding scheme and HEVC. The proposed coding scheme well outperforms the other

baselines from the above mentioned plots. The proposed coding scheme significantly

saves bitrate and retains reconstruction quality. Table 5.1 shows the bytes written to

the bitstream by the algorithms. The proposed scheme beats all other baselines by a

significant margin. The mean SSIM score, averaged over all the views and QPs, was

computed. The plots are shown in Figure 5.3. The visual quality produced by the

proposed scheme is comparable to the other baselines at most ranks.

The proposed coding scheme has an edge over the other baselines in maintaining

reconstruction quality. Another assessment was performed using the Bjontegaard Bjon-

tegaard (2001) metric. The Bjontegaard metric is a standard metric that benchmarks

two compression algorithms. This metric compares the two rate distortion curves and

yields bitrate reduction of one curve over the other. The average percent rate savings is

estimated over a range of quantization parameters for the fifteen chosen ranks. These



results are shown in Table 5.2. For the sake of readability, only a few key ranks are

shown.

Figure 5.1: The bitrate vs PSNR graphs of Ahmad et al. (2017) coding scheme for all
three datasets. Each plot describes YPSNR, UPSNR and VPSNR respec-
tively.

Figure 5.2: Rate-distortion curves for the proposed compression scheme and HEVC
codec for the three datasets. Each row represents a different dataset. The
columns indicate YPNSR, UPSNR and VPSNR respectively.

On Bikes, the proposed scheme achieves 98.94%, 40.42%, and 81.37% bitrate re-

duction compared to Ahmad et al. (2017), HEVC, and Liu et al. (2016) respectively.

On Fountain-Vincent 2, the scheme achieves 99.03% and 35.80% bitrate savings com-

pared to Ahmad et al. (2017) and HEVC codec respectively. On Stone-Pillars Outside,
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Figure 5.3: Comparative mean SSIM for the proposed coding scheme and the baselines.

Table 5.1: The total number of bytes written to file during compression using our proposed scheme for
selected chosen ranks. The values are in MB.

Scene Proposed Scheme Ahmad HEVC Liu
QP Rank 4 Rank 32 Rank 60
2 0.47 0.61 0.63 24.31 26.86 13.24
6 0.35 0.47 0.49 16.77 19.35 8.5

10 0.25 0.35 0.37 9.85 13.44 4.33
BIKES 14 0.19 0.27 0.28 5.02 9.08 1.81

20 0.12 0.18 0.19 1.7 4.61 0.53
26 0.06 0.1 0.11 0.58 1.87 0.19
38 0.01 0.03 0.03 0.11 0.31 0.05
2 0.52 0.6 0.61 25.46 28.25 -
6 0.38 0.46 0.47 17.82 20.75 -

10 0.28 0.35 0.36 10.78 14.3 -
FOUNTAIN-VINCENT2 14 0.21 0.26 0.27 5.73 9.45 -

20 0.13 0.17 0.17 2.01 4.61 -
26 0.07 0.09 0.1 0.61 1.78 -
38 0.02 0.02 0.02 0.11 0.28 -
2 0.4 0.52 0.53 24.32 25.69 -
6 0.28 0.39 0.41 16.76 18.18 -

10 0.2 0.28 0.3 9.97 12.18 -
STONE-PILLARS OUTSIDE 14 0.15 0.21 0.22 5.13 7.88 -

20 0.09 0.13 0.14 1.61 3.8 -
26 0.04 0.07 0.08 0.5 1.27 -
38 0.01 0.01 0.01 0.08 0.17 -

Table 5.2: Bjontegaard percentage rate savings for the proposed compression scheme with respect to
Ahmad et al. (2017) and HEVC codec (negative values represent gains) on Bikes data.

Rank Ahmad HEVC Liu
Y U V Y U V Y U V

4 -99.25 -99.28 -99.27 -5.88 0.18 -11.74 -67.97 -71.26 -70.64
12 -99.00 -99.03 -99.07 -33.77 -34.64 -35.47 -77.64 -81.00 -79.17
20 -98.90 -98.95 -99.00 -40.61 -41.39 -41.34 -80.15 -83.15 -81.18
28 -98.85 -98.91 -98.95 -43.64 -43.90 -44.04 -81.26 -83.97 -82.24
36 -98.82 -98.88 -98.92 -45.53 -45.35 -45.57 -81.97 -84.51 -82.85
44 -98.80 -98.86 -98.91 -46.79 -46.65 -46.64 -82.43 -84.91 -83.20
52 -98.78 -98.85 -98.90 -47.65 -47.56 -47.21 -82.75 -85.20 -83.46
60 -98.77 -98.84 -98.89 -48.13 -47.80 -47.63 -82.93 -85.33 -83.61

Average -98.89 -98.94 -98.98 -40.26 -40.01 -40.98 -80.08 -82.86 -81.18

the scheme achieves 99.20% and 22.43% bitrate reduction compared to Ahmad et al.

(2017) and HEVC respectively. These figures clearly show that the proposed coding

scheme outperforms all the other baselines.
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5.2 Usage of CNN over Analytical Methods

In BLOCK I of the proposed coding scheme, the layered representation of the light

field is generated. This can be done analytically one layer at a time until the solution

of 2 converges, or by using a CNN. The 5×5 Bunnies dataset Wetzstein has been used

to compare the performance of the CNN and analytical optimization method. The an-

alytical method was evaluated for 10, 25, 50, 75, 100, 125, and 150 iterations. The

CNN used was trained with the optimal set of hyperparameters. Figure 5.4 illustrates

the PSNR vs computation time plot of this experiment.

Figure 5.4: Computation time accuracy of reproduced light fields using analytical and
CNN-based optimization of multiplicative layers.

Figure 5.5: View 19 of Bunnies reproduced using analytical method (ANA) and CNN
respectively with corresponding difference images. ANA: PSNR:19.94 dB,
SSIM:0.895; CNN: PSNR:22.18 dB, SSIM:0.918

In the case of the analytical approach, accuracy gradually saturates with iterations.

The inference time for the CNN is marginally longer than that of the analytical method

for the same PSNR performance. Nevertheless, Maruyama et al. (2020) have demon-

strated that with better GPUs and more training data, CNN inference can be performed

much faster than the analytical method with the same reconstruction quality. Also,

a random view (view 19) reconstructed using analytical and CNN methods along with

their error images have been shown in Figure 5.5. The CNN results outperform in terms
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Table 5.3: Comparison of computation speed in BLOCK II of proposed scheme for ML(3) and AV(169).
Experiment evaluated on Bikes light field for BK-SVD ranks 20 and 60. The values represent
runtime in s.

Input Rank BK-SVD HEVC
QP 2 QP 20 QP 38

ML(3) 20 1.399 38.892 28.261 15.643
AV(169) 20 37.117 2592.1 1360.4 659.835
ML(3) 60 1.711 38.937 28.355 16.101

AV(169) 60 47.22 3068.9 1460.3 680.548

Table 5.4: Bjontegaard percentage rate savings for the proposed compression scheme with respect to
Ahmad et al. (2017), HEVC and Liu et al. (2016) on Bikes data for ML(3) andAV(169) for
ranks 20 and 60 (negative values represent gain over anchor).

Input Rank Ahmad HEVC Liu
Y U V Y U V Y U V

ML(3) 20 -98.89 -98.94 -98.99 -40.6 -41.39 -41.34 -80.145 -83.14 -81.17
AV(169) 20 -99.5 -99.49 -99.49 64.76 56.71 53.86 -36.78 -50.35 -48.36
ML(3) 60 -98.77 -98.83 -98.88 -48.13 -47.79 -47.62 -82.93 -85.33 -83.6

AV(169) 60 -99.28 -99.29 -99.3 11.08 6.145 5.98 -59.46 -69.2 -67.49

of PSNR and SSIM scores as well. Considering the compute performance tradeoff, the

usage of a CNN over analytical methods is justified.

5.3 Usage of multiplicative layers

The proposed scheme generates three multiplicative layers of the input light field. There

is a clear advantage to approximate and encode just the three multiplicative layers rather

than the entire set SAIs. To confirm this definitively, all 13×13 views of the Bikes light

field were directly fed into BLOCK II of the proposed coding scheme. This experiment

will be called AV(169). These results were then compared with the usage of 3 layers as

described. This will be referred to as ML(3). For both these, BK-SVD was performed

for ranks 20 and 60, followed by HEVC encoding with the entire set of QPs.

Figure 5.6: Mean SSIM scores over each QP of decoded views in BLOCK III of pro-
posed scheme using ML(3) and AV(169). Experiment evaluated on Bikes
dataset for BK-SVD ranks 20 and 60

Table 5.3 highlights the computation time for these experiments. The proposed
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compression scheme works much faster with multiplicative layers. This proves to be

advantageous over using all the views of the light field. The bitrate reduction of ML(3)

and AV(169) w.r.t. to the baselines is depicted in Table 5.4. As expected, this swings

heavily in favor of layers proving that there is a significant amount of redundancy in

transmitting views as such. The SSIM was analyzed on the reconstructed views for

both ML(3) and AV(169). Mean SSIM over the decoded views was calculated for each

QP result and each rank ofBikes. These are illustrated in Figure 5.6. Interestingly,

ML(3) significantly outperforms AV(169) in terms of visual quality. Due to all the

downhill compression, a deterioration in visual quality is observed when all views are

considered. Condensing all the information into a few layer patterns seems to retain

enough information to maintain visual quality.
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CHAPTER 6

Conclusions

An efficient representation and novel lossy compression scheme for layered light-field

displays with light-ray operations regulated using multiplicative layers has been pro-

posed. By allowing the choice of selecting ranks and quantization parameters, it re-

alizes the goal of covering a range of multiple bitrates within a single pipeline. The

experiments with benchmarked light field datasets exhibit very competitive results.

Current solutions are not specifically designed to target layered displays. Broadly,

compression approaches are classified to work for lenslet-based formats or sub-aperture

images based pseudo-sequence representation. The proposed scheme could flexibly

work with different light-ray operations and analytical or data-driven CNN-based meth-

ods, targeting multi-layered displays. It is adaptable for a variety of multi-view/light

field displays. It can also complement existing light-field coding schemes, which em-

ploy different networks to encode light field images at different bit rates. This would

enable deploying the concept of layered displays on different auto-stereoscopic plat-

forms.



CHAPTER 7

Future Work

The future work spans several directions. The proposed idea can be extended to other

light field displays, such as ones with more than three light attenuating layers and

projection-based and holographic displays with optical elements constructed using ad-

ditive layers. Another interesting direction is to extend the proposed mathematical for-

mulation for coded apertures. This could be useful in the compression of dynamic light

field content or a focal stack instead of SAIs in tensor displays. The proposed algo-

rithm uses the RGB space in which all channels are equally important. The analysis

of compression performance under other color spaces and the implications on image

perception would be worth pursuing.
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