B.Tech Project Final Report
Android Security

Akshay Anand (EE16B046)
June 28, 2020

Abstract

In this project, we first took a look at kernel modifications in the Linux
kernel, both when booting into a desktop and into a Raspberry PI 3. Cus-
tom proc entries and system calls were also added to the kernel. Then, An-
droid was compiled from source and booted in a Raspberry PI 3 with kernel
modification after which its performance counters were recorded. Due to
unavailability of lab equipment at this point due to institute closure, other
methods like kernel emulation and implementing TrustZone were then ex-
plored.

1 Problem Statement

The main aim of this project was to figure out a way to boot Android 10
on a Raspberry PI 3 and modify its kernel to add security features to it. To
do this, hardware level performance counters had to be read so as to detect
attacks, and using this information, security features could be added.

We also looked at TrustZone implementation in a custom Android build.

2 Background and Key Idea

2.1 Definitions

Performance Monitoring Counters or PMCs are special purpose hardware
counters (separate registers at the hardware level) that can be accessed via
processor registers, and enabled and read via certain instructions. PMCs
provide low-level CPU performance statistics that aren’t available anywhere
else. Since they are directly connected to the CPU at the hardware level,

Page 1

Project Report Android Security

they can be recorded and read to know the CPU state without using up a
lot of CPU cycles and thus not adding a high performance overhead.

As part of performance monitoring, the main metric used to determine per-
formance in IPC or Instructions Per Cycle and is measured by counting the
instruction count and cycle count PMCs. The more instructions that can be
completed with fixed cycles resource, the better.

2.2 Use of PMCs in security

With the measurement of PMCs, in Intel machines (taken as an example to
demonstrate its usefulness in security), we would be able to detect attacks
that exploit Meltdown and Spectre, as explained below:

Meltdown and Spectre are attacks that take advantage of the speculative
execution and branch predictions features of the processors to fetch higher
privilege data without the proper access rights and store it in cache. At this
point, the CPU would find out the program does not have enough rights and
exit from it, but the data is already in cache. Once, it is present there, a
separate program can probe the cache for the malicious data and then read it.

PMCs can be used to detect this attack. In the last step, a separate program
probes the cache to find the location in cache with a cache hit. During this
process, there is bound to be a lot of cache misses. Since cache misses in-
volve fetching data from RAM, which is slower, we can measure/detect these
cache misses via cache related performance counters. So, if we find unusual
behaviour in these counters, we can detect these attacks.

Thus, as is seen from the example, in regular x86 systems, PMCs can be
used to detect hardware level attacks, without much performance overhead
to the system.

2.3 Extension to ARM

These PMCs are present on almost all devices, including smartphones. For
this project, we decided to read those of a Raspberry PI 3, which uses ARM

Page 2

Project Report Android Security

processors very similar to that of modern day smartphones, and then in case
this needs to be extended to smartphones, just the location/command to get
the value from PMC registers need to be changed.

2.4 Raspberry Pi 3

To emulate an Android smartphone, we used a Raspberry PI 3. Raspberry
Pis are single board computers that run on ARM cortex processors, similar
to modern smartphones. They boot directly from an SD card, and has video
output as well. So, if we build Android from source, with the target as
Raspberry Pi 3, we would have an OS image that is compatible with it, and
which it would boot. Connecting it to a display would also be useful for
getting information like IP address and kernel logs from it.

It also has built in WiFi and LAN connectivity which are also essential.
As will be explained in the Design section, we used a utility called Android
Debug Bridge to get access to the PI’s terminal from an external device which
requires both of these to be connected to the same network.

2.5 TrustZone

ARM’s TrustZone technology offers an efficient, system-wide approach to se-
curity with hardware-enforced isolation built into the CPU. Using this, we
can split CPU execution into a secure world and normal world. This is com-
patible with Cortex-A processors as well, which are the ones used in the
Raspberry PI 3.

The secure and normal world are hardware separated in the processor, so
that they cannot access the other’s data which is the key idea for it. To
utilize this, the OS has to be built for it, i.e the OS running on it should be
a "Trusted OS’ which can make use of the 2 worlds to handle sensitive tasks,
like entering and storing passwords and biometric data. The combination of
TrustZone based hardware isolation, trusted boot and a trusted OS make up
a Trusted Execution Environment (TEE), which can be used alongside other
security technology.

This is also useful (as mentioned above) to handle a secure boot process
as well, since there can be attacks that exploit vulnerabilities in the boot
process, which cannot be detected any software running on the system as it
wouldn’t be initialized yet.

Page 3

Project Report Android Security

The main use of TrustZone is in embedded devices, since security is a big con-
cern for embedded hardware, especially for connected devices. Connection to
the internet provides a venue for hacking, which can range from Distributed
Denial of Service (DDoS) attacks to unauthorized access to internal networks.
The vulnerability of the Internet of Things (IoT) is especially concerning since
DDoS attacks have used millions of unsecured internet-connected devices like
Closed Circuit Televisions (CCTVs) to launch massive attacks, like the Mirai
attack.

TrustZone can secure a software library or an entire OS to run in the se-
cure area. Non-secure software is blocked from access to the secure side and
resources that reside there. TrustZone is based on the principle of least priv-
ilege, which means that system modules like drivers and applications do not
have access to a resource unless necessary. Software runs in the secure or
the non-secure environment. Work that must transpire between the secure
and non-secure environments takes place via software called the secure mon-
itor. According to Arm, "This concept of secure (trusted) and non-secure
(non-trusted) worlds extends beyond the processor to encompass memory,
software, bus transactions, interrupts and peripherals within an SoC. By cre-
ating a security subsystem, assets can be protected from software attacks
and common hardware attacks".

Cryptographic operations execute in the secure world. Not even Linux kernel
operations have access to security features or keys that are isolated in the
secure world. Awareness of the TEE is not obvious for end users with kernel
access and rights.

Having said all these, TrustZone is not the be-all and end-all of embedded
systems security since to implement it correctly requires a lot of development
work and any mistake by the developer in implementing it, is potentially a
vulnerability that can be exploited.

3 Design and Process Followed

3.1 Desktop Linux Kernel modification

To get familiar with the Linux kernel and the code associated with it, the
basic structure of which wouldn’t vary much going from an x86 device to an

Page 4

Project Report Android Security

ARM device, a Linux kernel was built from source on an Ubuntu machine
and installed. Then, the machine was restarted into the newly built kernel
image, which was verified by running 'uname -1’.
At this point, the kernel was slightly modified and "printk’ statements were
added in various location of the boot code of the kernel, to print custom
messages and to get familiar with kernel modification.

o cluckeieziefég??iﬁﬁegxffffffff max_cycles: OxFEFFFFFf, max_idle ns: 79635855245 ns

: Detected 2800.000 MHz processor
Hello World

Calibrating delay loop (skipped), value calculated using timer frequency.. 5616.08 BogoMIPS (lpj=112320080)
: default: 32768 minimum: 301
: Core revision 20170728
: 11 ACPI AML tables successfully acquired and loaded

Figure 1: printk output

Now, the kernel was modified to add proc entries to read from and write
to, a variable. For this, a proc entry called "sample process" was created
and used, to read and write data (in this case, a string) to a variable. Then,
"printk" statements were added to this process and the kernel logs checked,
to verify its working.

oot@aﬂshayﬁsi: # echo "hello world" = /proc/sample\ process
oot@akshay681: # cat fproc/sample\ process

ello world
oot@akshay681:

Figure 2: Writing to and reading from a variable

: loading out-of-tree module taints kernel.
: module verification failed: signature and/or required key missing - tainting kernel
In write process

In read process
root@akshay681: id I

Figure 3: Kernel logs

Apart from proc entries, a new system call was also added to the kernel
(‘mew_call read’) that reads a value passed into it and logs it in the kernel
logs.

Hello World
First message

Second message

Figure 4: Kernel log with syscall with different values

Page 5

Project Report Android Security

The output above was obtained by writing a C code that called the system
call that was created using the 'syscall’ command.

3.2 Booting an OS in Raspberry PI

At this stage, the PI board was booted with a normal cross-compiled linux
kernel image (not Android) to test if everything in the board worked fine.
For this method, the steps mentioned in this official raspberry website were
followed. So, first the Raspberry linux github repo was cloned and then, the
steps were followed to run the various 'make’ commands.

Then. once the image was created as arch/arm/boot/bzlmage, the SD card
that had the precompiled Raspbian OS was inserted into the laptop (this
was downloaded separately). Then, the image file and the various library
files were copied onto the correct locations in the SD card. For Pi 3, the
fat32/kernel7.img in the precompiled SD card was overwritten by the com-
piled bzlmage.img (renamed to kernel7.img).

As a minor edit, in the initial source code, before any compilation, the
init /main.c file was modified by adding 'pr notice("Hello World, this is a
compiled kernel.")’. The "pr_notice()’” function just runs printk()’ with the
given message. Then, the kernel was compiled again, the Raspberry PI was
booted with this and 'dmesg’ was run to check the kernel message.

pi@raspberrypi: uname -r
4.19.102-v7+
pi@raspberrypi: dmesg
Booting Linux on physical CPU exe
Linux version 4.19.182-v7+ (aks681@akshay681) (gcc version 4.8.3 20148303 (prerelease) (crosstool-NG linaro-1.13.1+bzr2656 - Linaro GCC
2014.03)) #3 SMP Tue Feb 11 19:32:31 IST 2820
Hello World, this is a compiled kernel.
: ARMv7 Processor [410fd0©34] revision 4 (ARMv7), cr=10c5383d
: div instructions available: patching division code
: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
: fdt: Machine model: Raspberry Pi 3 Model B Plus Rev 1.3
: Data cache writealloc
: Reserved 8 MiB at 0x3ac00000
1 242688
: 2133 pages used for memmap
: @ pages reserved
: 242688 pages, LIFO batch:63
: get_random_bytes called from start_kernel+8x84/0x49c with crng_init=0
: Embedded 16 pages/cpu 536864 r8192 d20480 u65536
: 536864 rg8192 d20480 u65536 alloc=16*4096
: [0] o [6] 1 [8] 2 [6] 3
: 240555

: coherent_pool=1M 8250.nr_uarts=0 bcm2708_fb.fbwidth=656 bcm2708_fb.fbheight=416 bcm2768_fb.fbswap=1 vc_mem.mem_bas

Figure 5: Custom message displayed on the PI

We can also see the source from which the kernel was compiled is shown
in the second line where (aks681@akshay681) is shown which is the username
and laptop name of the used Ubuntu OS.

Page 6

https://www.raspberrypi.org/documentation/linux/kernel/building.md

Project Report Android Security

3.3 Booting Android on Raspberry PI 3

Now, Android was downloaded and built from source, using the target as
'rpi3-eng’ (an engineering build for raspberry pi 3) for it to be compatible
with the Raspberry PI. This was over a 100GB download and therefore took
some time to download and then to build.

There were some issues here, like the build not completing on Ubuntu 18.04.
Then, it was run on an Ubuntu 16.04 machine at which point, it completed.
After this, the file system format given in the instructions wasn’t right as the
PI didn’t boot with it, which was later fixed as well.

Now, once Android was running on the PI 3, we needed a way to connect
to it from an external device so as to monitor kernel logs and install exter-
nal apks. For this, we used the Android Debug Bridge utility. Using this,
knowing the IP address of the Android device (in this case, by connecting

the Raspberry PI 3 to a LAN and using the UI to find the IP address), we
were able to connect to it remotely and monitor kernel logs and install apps.

Now, the kernel code was edited to add a ’printk’ statement, and call an
existing function to display a kernel message (similar to that done in the
desktop kernel). The kernel itself was then recompiled and booted to view
the kernel messages:

% root@akshay- OptiPlex -5060: ~

akshay@akshay-OptiPlex-5060: /media/aksha... akshay@akshay-OptiPlex-5060: ~ + 8

root@akshay-OptiPlex-5060:~# adb connect 192.168.1.231
connected to 192.168.1.231:5555
root@akshay-0ptiPlex-5060:~# adb shell 1s
debug_ramdisk init.zygote32.rc sbin
default.prop 1ib sdecard
dev lost+found sepolicy
s etc mnt storage
init odm sys
init.environ.rc oem system
init.rc proc ueventd.rc
init.usb.configfs.rc product vendor
init.usb.rc product_services vendor_service_contexts
root@akshay-optiPlex-5060:~# adb shell dmesg
Booting Linux on physical CPU 0x8

Linux version 4.19.71-v7+ (aks681@akshay681) (gcc version 7.4.0 (Ubuntu/Linaro 7.4.0-1lubuntul~18.04.1)) #1 SMP P
:507:16 2020

Processor [410fde34] revision 4 (ARMv7), cr=10c5383d
div instructions available: patching division code
PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
fdt: Ma(hlne model: Raspberry Pi 3 Model B Plus Rev 1.3
policy: Data cache wrltealloc

: 196608
ges used for memmap
0 pages reserved
: 196608 pages, LIFO batch:63
: get_random_bytes called from start_kernel+8xb8/0x4d8 with crng_init=0
: Embedded 18 pages/cpu s42060 r8192 d23476 u73728

Figure 6: Custom message displayed on the PI

Page 7

Project Report Android Security

®' root@akshay-OptiPlex-5060: ~

root@akshay-OptiPlex-5060: ~ akshay@akshayﬂpthlex 5060: /media/aksha... akshay@akshay-OptiPlex-5060: ~ + 8

rpi3 androidboot. <E11HUK perm1<<1ve
31872 (order: 7, 524288 bytes)
hash » 65536 (order: 6, 262144 bytes)
: 497972K/786432K available (10240K kernel code, 701K rwdata, 3088K rodata, 1024K init, 874K bss, 26316K r
d

: OxfFffeeee - exffffieee (4 kB)\x0a fixmap : @xffcooeoo -
- 800000 (240 MB)\x0a lowmem : Oxc0000080 - OxfOOOOOOO (768 M

oxbfoO0000 - OxCOOBOBOO (16 MB)\x0a .text : @x(ptrval) - ex(ptrval) (11232 kB)\x0a .init :
(1624 kB)\x0a .data : ex(ptrval) - ex(ptrval) (782 kB)\x8a .bss : @x(ptrval) - Ox(ptrva

HWalign=64, Order=0-3, MinObjects=0, CPUs=4, Nodes=1
allocating 35053 entries in 103 pages
Preemptible hierarchical RCU implementation.
CU enabled.
nr_irgs: 16, preallocated irgs: 16
p15 timer(s) running at 19.20MHz (phys).
arch_sys_counter: mask: Oxffffffffffffff max_cycles: 0x46d987e47, max_1idle_ns: 448795202767 ns
50 bits at 19MHz, resolution 52ns, wraps every 4398046511078ns
| -based delay loop, re<01ut10n 52ns
i

y Loop (skipped), value calculated using timer frequency.. 38.48 BogoMIPS (1lpj=192008)

(order: 1, 8192 bytes)
2048 (order: 1, 8192 bytes)
y: ok

Figure 7: Custom message displayed on the PI

3.4 Exploring Performance Monitoring on PI 3

Right before institute closure, we were working on performance monitoring
on the PI board and had some progress. We found the code location, in
kernel that had the variables related to performance monitoring. Though
just displaying those variables didn’t show anything (showed the default 0
value), as it, in its default state didn’t monitor anything. This was because it
was found that the counters were initialized only after a certain stage during
the Android boot process, so we would have to record activities, only after
it was initialized. So, we tried incrementing it and recording some values, by
setting manual time delays and calling other functions.

It was at this point, that the institute closed. Thus, without access to the
PI board any more, kernel emulation using QEMU was tried.

3.5 Kernel emulation using QEMU

To do this, the earlier, already built, version of Android could not be used, as
QEMU required the device target to be 'goldfish’ instead of 'rpi3-eng’ since
‘goldfish’ had certain features that allowed process emulation on x86 devices,
which was what was being done.

Though we were able to use QEMU to boot the image and kernel modi-

Page 8

Project Report Android Security

fications did work (like in the PI 3), since the kernel itself was different and
it was being emulated, the results with performance counters wouldn’t trans-
late to real hardware, and so this was not taken further.

The reason for that is that the performance counters are hardware level
registers, so when emulating a kernel, those registers would also be emu-
lated using either locations in RAM of the host device or something similar,
but would not correspond to the actual address in the device, and hence we
wouldn’t be able to get reliable values from the counters, which are required
for when we use it to detect attacks.

3.6 Other Areas Explored - TrustZone

Since, hardware performance monitoring couldn’t be done any longer due to
the unavailablity of the device itself, we then tried looking into TrustZone
and whether a secure app that uses TrustZone could be implemented.

We found Google’s Trusty API which can be used by apps to communicate
with the secure world via ports, similar to a network connection, but this also
required hardware to compile the OS, with the secure world enabled, to test
it, which wasn’t available. Since, as mentioned earlier, in the background
section, TrustZone requires the OS to be compiled in such a way that it can
make use of it. It also uses hardware separation between the normal and
secure worlds. So, emulating it was also not an option.

4 Results

Thus, from our work, we were able to:
e Compile a custom linux kernel and boot it in a desktop.

e Modify the above compiled kernel, by adding custom proc entries and
system calls.

e Compile and modify a custom linux kernel and boot it in a Raspberry
Pi 3.

e Build Android from source, for Raspberry Pi 3.

Page 9

Project Report Android Security

e Modify the Android kernel and read performance counters in the Rasp-
berry Pi 3, verifying it by connecting to it via Android Debug Bridge.

e Emulate the Android kernel on an x86 machine using QEMU.

As an extension, We also found out that using a custom build of Android
OS, with the secure mode enabled, TrustZone could be leveraged, via the
Trusty API, to create secure apps for Android.

5 Conclusion

Thus, we have seen that, just like in x86 devices, we can read performance
counters in ARM devices as well. This can be very useful to detect attacks
which we may not be able to detect, using software only approaches.

Apart from this, TrustZone is a very useful technology implemented by ARM
in their processors which can be used to create secure apps for an operating
system configured to use it.

References

[1] ARM TrustZone website
https://developer.arm.com/ip-products/security-ip/trustzone

|2] Kernel building in Raspberry Pi 3
https://www.raspberrypi.org/documentation/linux/kernel/building.md

[3] Building Android for Raspberry Pi 3
https://github.com/android-rpi/deviceyrem,pi3

[4] Building Android for QEMU: instructions

[5] Using Trusty API for Android
https://source.android.com/security/trusty/trusty-ref

[6] Using Android Debug Bridge
https://developer.android.com/studio/command-line/adb

|7] Brendan Gregg’s blogs on performance counters.

[8] Code created/modified for the project, corresponding to some of the
screenshots:
BitBucket repo

Page 10

https://developer.arm.com/ip-products/security-ip/trustzone
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://github.com/android-rpi/device_brcm_rpi3
https://fadeevab.com/build-android-kernel-and-run-on-qemu-minimal-step-by-step/
https://source.android.com/security/trusty/trusty-ref
https://developer.android.com/studio/command-line/adb
https://bitbucket.org/nikhileshksingh/android-security/src/master/

	Problem Statement
	Background and Key Idea
	Definitions
	Use of PMCs in security
	Extension to ARM
	Raspberry Pi 3
	TrustZone

	Design and Process Followed
	Desktop Linux Kernel modification
	Booting an OS in Raspberry PI
	Booting Android on Raspberry PI 3
	Exploring Performance Monitoring on PI 3
	Kernel emulation using QEMU
	Other Areas Explored - TrustZone

	Results
	Conclusion

