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ABSTRACT

It has been established in the literature that scale recurrent approaches, which

are approaches that progressively restore images from lower resolutions can be

successfully employed. Different attention schemes have been proposed which

gives the network ability to focus on certain aspects of the task and improve its

performance. Many supervised methods are present for image restoration tasks,

but the main disadvantage of them is the demand for paired datasets which are

cumbersome to obtain. Moreover, the strong supervision of such networks bias

them towards specific deformations in the training dataset and when exposed to

new deformations during inference it entails sub-optimal performance.

To address the issues stated above, we propose unsupervised domain-specific

deblurring using a scale-adaptive attention module (SAAM). As the network is

unsupervised, it does not require paired blurred-sharp images for training. Our

network is guided by adversarial loss, thus making our network suitable for a

distribution of blur functions. Given a blurred image input, different resolutions

of the same image are used in our model during training and SAAM allows an

effective flow of feature information from different resolution layers seamlessly.

Ablation studies show that our coarse-to-fine mechanism outperforms end-to-end

unsupervised models and SAAM is a better attention scheme than other proposed

attention models in the literature. Quantitative and Qualitative comparisons show

that our method performs existing unsupervised methods.

We also analyse the frequency perspective of attention and propose a learning-

based frequency attention mechanism, Fourier Attention, where we aim to focus

on important frequencies and reject trivial frequencies. This proposed method of

attending in the frequency domain is a task agnostic module, which can be used

in any task and any part of the network.
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Chapter 1

INTRODUCTION

When an object of interest has a non-trivial relative motion relative to the camera,

we get an undesired phenomenon known as a blur. Though blur can be used for

aesthetic purposes, it affects the performance of several downstream computer

vision tasks like face recognition (Lu et al., 2019a), object recognition (Kupyn

et al., 2018) and classification (Pei et al., 2018). Given a blurred image, the

deblurring task aims to recover the underlying latent sharp image. The significant

progress in single image blind deblurring can be attributed to the advancement

of inference algorithms, various natural image priors, availability of more general

blur.

There are presently two methods to approach the problem, namely the con-

ventional traditional methods and the recent deep learning models. In the domain

of conventional methods, we estimate either the underlying camera motion or the

blur kernel using an optimization framework. As this estimation problem is ill-

posed, different methods use different assumptions and informative priors (Fang

et al., 2020; Xu et al., 2013; Yan et al., 2017; Vasu and Rajagopalan, 2017) on

the image model and the nature of the blur kernel. These methods do not have

any domain-specific conditions (specific for face images and text images) incorpo-

rated in them which can be exploited to boost the performance. Different priors

have been proposed to handle domain-specific blur (Pan et al., 2014b,a). How-

ever, the heavy dependence on the prior selection and their stoppage points during

optimization is a limitation.

Deep learning has tremendously helped the field of deblurring. Convolutional

neural networks (CNN) based supervised methods (Kupyn et al., 2018,?; Nah et al.,

2017; Shen et al., 2018; Simonyan and Zisserman, 2014; Purohit and Rajagopalan,

2020; Suin et al., 2021; Nimisha et al., 2017; Vasu et al., 2018) were proposed for

the task of deblurring. These algorithms forgo the need to define any priors due



to implicit learning of weight parameters during training. The main limitation of

these methods is the demand for large amounts of paired training data which is

complicated to obtain. Additionally, due to the strong supervision of loss functions

during training, these networks incorporate dataset-specific biases which yield sub-

optimal performances during deployment.

Unsupervised deblurring was proposed recently to relax the necessity of paired

training data. (Madam Nimisha et al., 2018) used generative adversarial networks

(GAN) to transfer images from blur domain to sharp domain. An additional

re-blurring network and gradient loss was used to maintain fidelity. (Lu et al.,

2019b) proposed an unsupervised network where blur can be disentangled into an

encoder network using KL divergence loss. Methods consider deblurring as an

end-to-end problem where GAN loss is used for training at a single scale. As a

result, these methods give a suboptimal performance while handling coarse as well

as fine details.

We address the above challenges by using a multi-scale architecture with a

scale-adaptive attention module (SAAM). Several multi-scale supervised deblur-

ring algorithms have been proposed in the past that use coarse-to-fine mechanism

take advantage of processing different scales. These multi-scale methods use su-

pervision loss to guarantee stability during training. In this thesis, we propose

a multi-scale network for deblurring in an unsupervised setting. Training insta-

bility in GANs is well-studied in literature, and several solutions were proposed

(Radford et al., 2015). In this approach, instead of cascading the multi-resolution

features, we use SAAM to attend to feature maps of lower scales as a function

of the present scale. There are many advantages of such a procedure. Firstly,

the hidden state uses information from different scales due to shared parameters.

Secondly, the multi-scale approach reduces the training instability problems such

as mode collapse and unwanted artefacts in the final image. Lastly, the SAAM

module helps select relevant information from the lower scales, further improving

the deblurring quality.

Different ablation studies show that the coarse-to-fine mechanism using SAAM

gives better deblurring results than end-to-end counterparts devoid of recurrent

2



connections.

Our contributions in this area are summarized below:

We propose an unsupervised deblurring network with multi-scale architecture

and a scale-dependent attention module. Different ablation studies show that scale

recurrent networks give superior performance compared to end-to-end methods in

an unsupervised setting.

We further show that SAAM facilitates better information flow across different

scales, in contrast, to directly cascading or adding feature maps. We further show

the efficacy of using SAAM over different attention modules.

We provide extensive comparisons on supervised and unsupervised methods

and show that our method performs favourably against supervised and outper-

forms unsupervised methods qualitatively and quantitatively (on no-reference met-

rics) when tested on different datasets.

3



Chapter 2

CONVENTIONAL DEBLURRING METHODS

In this chapter, we will visit various works which fall in the traditional or conven-

tional methods of deblurring. These methods use mathematical models to model

the blur phenomenon and attempt to formulate it as an optimization problem.

Depending on the nature of the blur, the models differ so as to best perform given

a situation.

It’s well known that the result of averaging intensity values on a frame due to

the relative motion between the camera and the scene due to the exposure time

is a significant cause for motion blur. Motion blur for all practical purposes is a

nuisance, with an exception in the areas of image forensics (Zhang et al., 2019b),

depth reconstruction (Hu et al., 2014) and to increase the aesthetic appeal of

the images. The research in this area began with non-blind deblurring where

significant restrictions were imposed on motion blur kernel (Point spread function

(PSF)) such as assuming the camera motion to be uniform etc. Research then

naturally shifted to PSF estimation to account for arbitrarily shaped blur kernels

resulting from real-life hand-held camera movements and object movements in

scenes. This marked the beginning of blind deconvolution algorithms where the

PSF, as well as the underlying latent image, has to be estimated.

Efforts in solving the motion blur problem from the image acquisition stand-

point were also undertaken. Traditional deblurring has are agnostic to image

acquisition and only treat it as a post-processing problem. Recent advances in

computational photography have helped in developing sensors with integrated

motion deblurring characteristics. From simple inertial sensor data processing to

building hybrid system architectures consisting of multiple cameras with different

characteristics to suitably tailor the PSF have been tried out.

With this in mind, we explore different classes of conventional mathematical

models for image deblurring in the following sections.



2.1 Uniform Single Image Motion Deblurring

Works that fall under this class generally assume that the motion blur kernel is

shift-invariant. This assumption reduces the problem to that of image deconvolu-

tion. In non-blind deconvolution, the motion blur kernel is computed separately,

and the task is to estimate the unblurred latent image. The main challenge in these

algorithms is the appearance of ringing artefacts near strong edges, increased noise

and compute time. Blind deconvolution is a more difficult problem as both the

blur kernel and the latent images are treated as unknowns. Both blind and non-

blind deconvolution find excessive use in various fields such as image processing,

computer vision, medical and astronomical imaging and digital communication.

2.1.1 Non-blind deconvolution

In accordance with our assumption, the blur observed is a linearly filtered version

of the latent unblurred image, which can be represented as,

b = I ⊗ f (2.1)

where b, I, f are the blurred image, latent unblurred image and the PSF re-

spectively. In the frequency domain,

F(b) = F(I) · F(f) (2.2)

where F is the Fourier transform.

If F(f) has numerically favourable values to take element wise inverse, and

the blurred image is noise free then using the properties of an LTI system, we can

solve for I using the follwoing equation,

F(I) = F(b)/F(f) (2.3)

This in theory seems to work, but practical constraints make this method

unfavourable. The inverse of f may not exist if some entries in f are zero or close

to zero. The motion PSFs caused by object or camera motion are typically band-
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limited in nature and therefore they have very small values at band ends. Lastly,

the noise-free image assumption is infeasible as there are many near-inevitable

and sometimes inevitable sources of error such as image noise, quantization error,

colour saturation and non-linear camera response function. This violation can be

modelled in a more flexible form as,

b = I ⊗ f + n (2.4)

where n denotes error in the blurred image. Many advanced non-blind decon-

volution methods are Wiener Deconvolution, Least Square Filtering, Richardson-

Lucy method and recursive Kalman Filtering.

In the bird’s eye view, many algirthms minimize energy consisting of two

terms, the data term Edata (corresponding to the likelihood in probability) and

regularization (also known as prior) Eprior. Edata measures the difference between

the convolved image and the blur image which can be written as,

Edata = Φ(I ⊗ f − b) (2.5)

where Φ is any function holding the notion of distance. The widely used dis-

tance function is the L2-norm of all elements. Its exactly taking the likelihood of

a Gaussian distribution. Eprior is denoted as a function Ψ(I) which has different

specifications for different algorithms which can yield different results. The esti-

mation of latent unblurred image I can be formulated as an optimization problem

which is expressed as,

min
I

||I ⊗ f − b||2 + λΨ(I) (2.6)

where λ is a scalar weight determining the influence of the prior (regularization

term) on the solution.

Early approaches use squared regularization constraints. Two forms are Ψ(I) =

||I||2 and Ψ(I) = ||▽I||2 where ▽ is the gradient operator. This regularizer enforces

smoothness on image intensity and gradient values and is referred to as Tikhonov

and Gaussian regularizers. Substituting them in the Eq. (2.6) gives
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min
I

||I ⊗ f − b||2 + λ||I||2 (2.7)

and

min
I

||I ⊗ f − b||2 + λ||▽I||2 (2.8)

for optimization. As the regularization is simple, this leads to a simple solution

quite similar to that of the inverse filter. In fact the closed form solution for Eq.

(2.7) can be obtained and is,

ν(I ) =
F T

F TF + λΛ
ν(b) (2.9)

where ν(.) is a vectorizing operator, F is the sparse convolution matrix gener-

ated from f and Λ is the identity matrix of the same dimension as F TF . Note that

regularization induces a bias and is known as an error of deconvolution. Moreover,

the noise, if present in the image tends to lose its structural properties after this

process.

Recent works such as (Chan and Wong, 1998) used a total variation regularizer

known as Laplacian prior,

Ψ(I) = ||▽I||1 (2.10)

where ▽ denotes the first-order derivative operator. (Shan et al., 2008) used a

custom natural prior for the latent image by concatenating two piecewise contin-

uous convex functions,

Ψ(I) =

a|▽I| if |▽I| ≤ ζ

b|▽I|2 + c if |▽I| > ζ

(2.11)

(Levin et al., 2007) suggested a hyper-Laplacian prior which can be expressed

as,

Ψ(I) = ||▽I||α (2.12)
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where α < 1 representing a norm corresponding to a sparser distribution.

(Yang et al., 2009) and (Xu and Jia, 2010) suppressed noise by using Laplacian

data term which can be written as,

min
I

||I ⊗ f − b||1 + ||▽I||1 (2.13)

This likelihood can suppress strong Gaussian and impulse image noise.

2.1.2 Blind deconvolution

Blind deconvolution requires estimation of both f and I. (Ayers and Dainty,

1988) iterated between updating blur PSF and the latent unblurred image. (Fish

et al., 1995) solved blind deconvolution in a maximum likelihood format using

Richardson-Lucy iteration and (Chan and Wong, 1998) applied total variation

regularizers to both PSF and the latent image.

The main challenge in these algorithms is that the solution space is high di-

mensional. This requires a more meaningful constraints for the optimization to

converge to a good optima. Moders objective functions can be expressed as,

min
I,f

Φ(I ⊗ f − b) + λ1Ψ(I) + λ2γ(f) (2.14)

where λ1, λ2 are two weights, Φ,Ψ and γ are different functions to constrain

noise, latent image and PSF respectively. Similar to the non-blind convolution

case, L2-norm, L1-norm , hyper-Laplacian prior can be used. A notable observa-

tion is that the above objective function corresponds to the posterior probability,

p(I, f |b)α p(b|I, f)p(I)p(f) (2.15)

α exp (−Φ(I ⊗ f − b)) · exp(−λ1Ψ(I)) · exp(−λ2γ(f)) (2.16)

we can also theoretically estiamte PSF by maximizing the marginalized pos-

terior probability function. Due to the intractability of the posterior normaliza-

tion,(Fergus et al., 2006) approximated the posterior distribution using parametric
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factorization,

p(I, f |b) ≈ q(f, I) = q(f)q(I) (2.17)

= Πiq(fi)Πjq(Ij) (2.18)

where f and I are assumed to be independent, even pixels within f and I are

considered independent as well giving us the equation.

Alternative energy minimization has achieved great success in uniform blind

deconvolution. Works like (Cho and Lee, 2009; Xu et al., 2013; Xu and Jia, 2010)

which use this method when written in C++ takes around seconds to process an

800 x 800 image. The main idea in these methods is to make the solver avoid

trivial solutions by generating an intermediate sharp edge representation. This is

based on the observation that a sharp edge will have its boundary blended into

the background due to motion blur

As a derivative of this method, we have edge recovery methods that predict

edges from the blurred image to guide PSF estimation. These methods can be

explicit or implicit in nature. (Shan et al., 2008) iterates between PSF estimation

and latent image discovery by minimizing two equations alternatively,

min
f

||If − b||2 + λ2||f ||1 (2.19)

and

min
I

||If − b||2 + λ1||▽I||1 (2.20)

This iteration continues till convergence is achieved. By tailoring the hyper-

parameters we can mitigate the problem of ring artefacts, maintain strong edges

and improve the quality of the final image.

An algorithm similar to (Shan et al., 2008) was later proposed by (Krishnan

et al., 2011) which uses the idea of normalized L1 regularization term on image

gradients. By the design of the regularization function, trivial image solutions
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aren’t favoured by the optimization. This algorithm iteratively solves,

min
▽I

||▽I ⊗ f − ▽b||2 + λ3
||▽I||1
||▽I|| (2.21)

and

min
f

||▽I ⊗ f − ▽b||2 + λ4||f ||1 (2.22)

2.2 Spatially Varying Motion Deblurring

The blur induced on the image due to general camera shake can violate the as-

sumptions of space-invariance of the blur kernel. This gives rise to a phenomenon

known as the space-variant blur.

2.2.1 A Unified Camera Shake Model

Let i be the latent image of the scene and b be the recorded blurred image. This

can be mathematically formulated as,

b = k ⊗ i+ n (2.23)

where n ∈ N (0, σ2). This model doesnt account for depth dependent and

illumination dependent blur in a general case. The convolution model can be

rewritten as,

B = KI +N (2.24)

where I, B,N denote the column vector forms of i, b, n respectively. K is an

image resampling matrix that applies the convolution, with each row of K being

the blur kernel placed at each pixel location and unravelled into a row vector.

This definition can incorporate spacially variant blur as in this kind of a blur,

each row of K will be a shifted version of each other. As is known that the camera

can have six degrees of freedom, three translations and three rotations. Therefore,

any camera motion can be represented as a 1D continuous path in six-dimensional
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space, which is also called as camera pose space. This path is discretized for

analysis, and it’s taken that the camera spends a fraction of its exposure time

at each discretized pose steps and this proportion is called the density of that

pose. These densities together form the motion density function (MDF) form

which the blur kernel can be estimated. The MDF for all the camera poses form

a column vector (A) over positions of the camera in the camera pose space.

The blurred image B is an integration over the images seen by the camera at

all these discrete poses in the path. Therefore the unified camera shake image

generation model becomes,

B =
∑
j

aj(KjI) +N (2.25)

where Kj is a warping transformation form I (unblurred latent image seen in

original camera pose) to the image seen in pose j, and aj is the MSF at pose j. N

is the Gaussian noise. Given a 6D pose of the camera at pose j, the homography

that warps the scene at depth d is Pj

Pj = C

(
Rj +

1

d
tj[0 0 1]

)
C−1 (2.26)

where Rj and tj are the rotation and translation matrices for pose j, and C

is the matrix of camera intrinsics. Assuming that the depth d is known, Kj is a

resampling matrix where each row contains the weights used to compute the values

of the pixels in the warps by applying inverse homography. From Eq. (2.24) and

(2.25), we can write the blur matrix K as

K =
∑
j

ajKj (2.27)

Once the values of K are known, the image can be deblurred using non blind

deconvolution methods. We have discussed methods for non blind convolution, a

more popular method is maximum a posteriori (MAP) technique. In this method

of bayesian estimation, we calculate the posterior distribution and maximize it to

obtain the best parameters. The objective of the optimization is,
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P (I|B,A) = P (B|I) P (I)
P (B)

(2.28)

argmaxIP (I|B) = argminI [L(B|I) + L(I)] (2.29)

Similar to our definition of likelihood term (Edata), we can define a data neg-

ative log-likelihood as

L(B|I) = ||B −KI||2

σ2
(2.30)

With the overview of the method, we are ready to understand the estimation

procedure in the area of single image deblurring using motion density functions.

Eq. (2.25) relates the MDF to the latent image and the blurred image. This is

posed as a Bayesian estimation problem to estimate MDF and the latent unblurred

image, given the observation and the priors on the image and MDF. Using the

MAP estimate Eq. (2.29) we formulate the problem as,

E =

∣∣∣∣∣
∣∣∣∣∣
[∑

j

ajKj

]
I −B

∣∣∣∣∣
∣∣∣∣∣
2

+ prior(A) + prior(I) (2.31)

prior(A) = λ1||A||γ + λ2||▽A||2 (2.32)

prior(I) = ϕ(|∂xI|) + ϕ(|∂yI|) (2.33)

Note that we have sparsity prior on the MDF values, and a smoothness prior

which incorporates the concept of MDF representing a path.

The proposed optimization in Eq. (2.31) is non-linear in I, A. There are several

methods to solve the above optimization problem such as alternating coordinate

descent and expectation-maximization procedure. The initial estimate can be

obtained by selecting uniformly distributed patches on the blurred image, which

can be independently deblurred using blind deconvolution procedure as suggested

by (Shan et al., 2008). (Joshi et al., 2008) filtered out patches having a low average
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value of Harris corner metric as kernel estimation requires good distribution of edge

orientations.

2.2.2 Image Deblurring using Inertial Measurement Sen-

sors

In this class of methods, both hardware and software approach for estimating the

spatially varying blur and uses hardware equipment that is attached to any cam-

era. This equipment uses inexpensive gyroscope and accelerometers to measure

a camera’s acceleration and angular velocity during an exposure. The potential

problem with this approach is the phenomenon known as ’drift’. This phenomenon

is due to the integration of noisy measurements tracked over time.

Due to the excessive noise in the measurement, we instead use both inertial

data and recorded burry image together with an image prior in the ”aided blind

deconvolution” method that computes camera-induced blur and the latent image

using energy minimization framework.

Accelerometers measure the total acceleration at a given point along an axis,

while the gyroscopes measure the angular velocity at a given point around an

axis. As the camera is a rigid body with a three-axis accelerometer and a three-

axis gyroscope, we can measure accelerations and angular velocities.

ωtt = Rtωt (2.34)

btt = Rt(at + g + (ωt × (ωt × r)) + αr × r)) (2.35)

ωtt, b
t
t is the angular velocity and the accelerometer reading at time t in the

coordinate frame at time t. Rt is the rotation from the initial coordinate frame

to the frame at time t. θt, ωt, αt denote the angular position, angular velocity

and angular acceleration at time t in the initial frame. g is the gravitational

acceleration in the camera’s initial frame of reference. Then standard processing

on the data using computational kinematics we can recover the necessary motion

to aid the image deblurring exercise.
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These measurements cannot be directly used for analysis as integrating these

signals with small noise can result in a temporally growing deviation from the

computed motion from the true motion. In order to compensate for the effect

of drift by assuming it is linear in time. Using this information, we can reduce

the number of unknowns to solve, thereby improving the optimization and its

performance. Specifically, the work defines a function g that given a potential

endpoint (u, v) computes the camera’s translational path that best describes the

observed acceleration (in the least-squares sense)

g(a, u, v) = argminx
T∑
t=0

(
d2xt
dt2

− at

)2

+ (θx,T − u)2 + (θy,T − v)2 (2.36)

To maintain simplicity, lets define function ρ that forms the blur sampling

matrix from the camera intrinsics, extrinsics and scene depth using the rigid-body

dynamics and temporal integration,

A(d) = ρ(θ, x, d,K) (2.37)

Therefore, the drift compensated blur matrix and deconvolution equations are

A(d, u, v) = ρ(ω, g(a, u, v), d,K) (2.38)

I = argminI,d,u,v
[
||B − A(d, u, v)I||2/σ2 + λ||▽I||0.8

]
(2.39)

Then the optimization searches over the space of (u, v) to find the (u, v) that

results in the image I that has the maximum likelihood given the observation

and the image prior which can be obtained via energy minimization using the

Nelder-Mead simplex method.
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2.3 Honorable Mentions

Deblurring attempts have been made by altering the image acquisition method by

incorporating hardware assistance. This new hybrid-imaging system can combine

a high-resolution camera with an auxiliary low-resolution camera to effect deblur-

ring. The secondary camera is used to obtain information about the spatially

invariant or variant discrete parametric 2D motion field. This flow field is then

used to derive PSF and then to finally obtain the non-blurred image.

Some works depend on a compact global parameterization of camera shake

blur, based on the 3D rotation of the camera during exposure. A model-based

three-parameter homographies is used to connect the camera motion to image

motion and this formulation can be viewed as a generalization of the standard,

spatially invariant convolutional model of image blur. Several algorithms have

been proposed to reduce the computational complexity of these algorithms.

Some methods propose a semi-blind implementation of image deblurring on a

smartphone device. It leverages the accuracy of inertial measurements on modern

smartphones to make an accurate estimation of camera motion trajectory and

which consequently helps in estimating PSF. These methods can be used to handle

both image blur problems and rolling shutter issues. These methods run quite fast

enough to be acceptable to end-users.

Works that use more than one sensor have also been gaining traction among the

computer vision community. These methods can work in low-light conditions, can

combine the advantages of high speed and high resolution for reducing motion blur.

A hybrid sensor configuration for an extension to low-light imaging conditions is

also discussed in this area.

In some areas, researchers have modified the imaging process to avoid the

loss of high-frequency information during capture time using coded exposure pho-

tography. Projective motion path blur model which in comparison to conven-

tional methods based on space-invariant blur kernels is more effective at modelling

spatially-varying motion blur. Some methods operate in the irradiance domain to

estimate the high dynamic range irradiance of a static scene from a set of blurred
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and differently exposed observations captured with a handheld camera. The two-

step procedure is to derive the camera motion and then estimate the latent scene

irradiation.

2.4 Acknowledgement

Portions of text in this chapter are based on the (Rajagopalan and Chellappa,

2014). I would like to thank the authors and the contributors.

16



Chapter 3

LEARNING METHODS IN DEBLURRING

In this chapter, we will go over the different methods presented by the deep learn-

ing community in an attempt to solve the single image blind deblurring problem.

We will inspect different deep learning solutions and architectures proposed and

their performance against standard metrics. Introductory works in deep learning

estimate some features of the blur kernel and then moved to estimate the blur

kernel, which enters the realm of non-blind deblurring. The most recent meth-

ods which give the state of the art performance are what we call the end to end

methods where the networks estimate the latent unblurred image directly and blur

kernel isn’t explicitly estimated. Some parts of this chapter follow the explanation

given in the survey conducted by (Sahu et al., 2019).

3.1 Introduction

Deep learning based image deblurring can be classified broadly into areas where

the blur kernel is estimated from the given blurred image using Fourier transform

(Chakrabarti, 2016) or motion flow (Gong et al., 2017; Sun et al., 2015) which will

then be used to sharpen the image and end to end methods where the network

doesn’t explicitly estimate the blur kernel, but estimate the latent blurred image.

Some of the methods rely on generative models (Kupyn et al., 2018; Nah et al.,

2017; Ramakrishnan et al., 2017) which are trained in an adversarial method.

We will also briefly look into the architecture proposed by other works and

understand the specific details in them. The main advantage of deep learning

methods is that despite their computational demand and time taken to train are

relatively large when compared to that of statistical and conventional methods,

their inference time can be accelerated and in general, it’s much faster than their

counterparts. Needless to mention, they have a better ranking on benchmarking



Fig. 3.1: The multi-stage architecture proposed by (Schuler et al., 2015) Note that
the first stage takes only blurred image as input and the subsequent
stages taken a concatenation of both the refined image in the previous
stage and the blurred image.

metrics (PSNR and SSIM).

3.2 Estimation of Blur Kernel

Deblurring requires global information from different parts of the image. In order

to have connectivity across all the pixels in the image, we need to maintain a large

number of parameters to an extent where the optimization becomes inefficient.

So (Schuler et al., 2015) proposed a method of using CNNs to extract features

locally and then use those features in a multi-scale multi-stage architecture to

estimate the latent image. There are three modules namely feature extraction,

kernel estimation and latent image estimation modules. In the first stage, the

blurry image is given as input and using the CNN extracted features the kernel is

estimated which is used to estimate the latent image. This forms the first stage.

From the second stage, both the estimated latent image from the previous stage

and the blurred image is concatenated and passed through the three modules

similar to the first stage for iterative refinement. The architecture diagram is

shown in Fig. 3.1.

The paper used tanh activation on the extracted features fj from the CNNs
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to induce non-linearity. These hidden features are linearly recombined using coef-

ficients αij and βij to form the hidden images xi and yi for stage i used for kernel

estimation,

xi =
∑
j

αijtanh(fj ∗ y) (3.1)

yi =
∑
j

βijtanh(fj ∗ y) (3.2)

where y is the blurred image B for the first stage or concatenation of B and the

predicted sharper image L for later stages.

Given xi and yi, the kernel estimation module estimates the kernel K by min-

imizing,

∑
i

||K ∗ xi − yi||2 + βk||K||2 (3.3)

Given K, we can find the latent image by minimizing,

∑
i

||K ∗ L−B||2 + βx||L||2 (3.4)

where L is the latent image, βx, βk are regularization weights.

Another subclass within this class of methods are the methods that employ

Fourier transform. Given a blurry image B[n] where n ∈ Z2 are the indexes of the

pixels. The task is to find the latent sharp image L[n] such that it resembles the

sharp image I[n] closely,

B[n] = (I ∗K)[n] +N [n] (3.5)

whereK[n] is the blur kernel such thatK[n] ≥ 0 (positivity constraint),
∑

nK[n] =

1 (unit sum constraint) and N [n] the noise.

In the method given in (Chakrabarti, 2016), a blurry image B[n] is divided

into several overlapping patches. The surrounding pixels of the blurry patch Bp =

{B[n] : n ∈ p} is considered while computing the Fourier coefficients for better
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results. Let the patch with the neighbouring pixels is called Bp+ = {B[n] : n ∈ p+}

where p ⊂ p+.

They use neural network to predict the Fourier coefficients of the deconvolution

filter Gp+ [z] for the blurry patch Bp+ , where z is the two dimensional spatial

frequencies in DFT. Then the filter is applied to the DFT of Bp+ to obtain the

latent sharp image Lp+ [z],

Lp+ = Bp+ [z]× Gp+ [z] (3.6)

Upon computing Lp+ , we can use inverse discrete Fourier transform to get the

latent image patch Lp+ from which Lp can be extracted.

To generate the coefficients of the filter the neural network uses a multi-

resolution decomposition strategy, where the initial layers of the neural network

are connected to only the adjacent bands of frequencies. The image is sampled

into various patches which are then used to sample a higher frequency band using

DFT. The loss function of this network is,

L =
1

|p|
∑
n∈p

(Lp[n]− Ip[n])
2 (3.7)

It’s assumed that the entire image is blurred by a single motion kernel Kλ

which is obtained from the different kernels (from different patches) using the

following,

Kλ = argmin
∑
i

||(K ∗ (fi ∗ LN))− (fi ∗B)||2 + λ
∑
n

|K[n]| (3.8)

where fi are the different derivative filters. After the estimation of Kλ, this be-

comes akin to that of a non-blind deblurring problem and deconvolution is used

for final prediction.

Some methods use a motion vector for each patch of the input blurred image.

Similar to that of (Chakrabarti, 2016), the method proposed by (Sun et al., 2015)

divides the image into overlapping patches and for each of them, a probability

distribution of motion kernels is computed. The architecture diagram is shown in
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Fig. 3.2: The architecture diagram of the method proposed by (Sun et al., 2015)

Fig. 3.2. Given a patch Ψp, centred at the pixel p, the network finds a probability

distribution,

P (m = (l, o)|Ψp) (3.9)

where m = (l, o) is the motion kernel with length l and orientation o. Here l ∈ Sl

and o ∈ So both Sl and So are discretized sets of length and orientation. This

discretization results in artifacts which can be tackled by rotating the image and

its motion kernel to get the new data entry. As they treat this like a multi class

classification problem, the prediction is given as,

p(m = (l, o)|Ψ) =
exp(zi)∑n
k=1 exp(zk)

(3.10)

where z is the output of the final fully connected layer and n = |Sl| × |So| i.e

n is the total number of motion kernels. The loss function used to train is the

loss function used in classification, cross-entropy. To compute the confidence of

motion kernel from overlapping patches they use,

C(mp = (l, o)) =
1

Z

∑
q:p∈Ψp

Gσ(||xp − xq||2)P (m = (l, o)|Ψq) (3.11)

where q is the center pixel of patch Ψq such that p ∈ Ψq. The weight Gσ is the

Gaussian function which weights pixels closer to the centre more than pixels lying

21



in the outer perimeter. Z is the posterior normalization constant.

Post estimation of the motion kernels for all the patches, a Markov Random

Function (MRF) is used to merge them all together and smoothen the transition

of motion kernels. The dense motion field is generated by minimizing the energy

function,

∑
p∈Ω

[−C(mp = (lp, op)) +
∑
q∈N(p)

λ[(up − uq)
2 + (vp − vq)

2)]] (3.12)

where Ω is a image region and up, uq, vp, vq are defined as ui = licos(oi), vi =

lisin(oi) for i = p, q. N(p) is the neighborhood of p. After predicting the motion

field, they deconvolve the blurred image and obtain the prediction of the deblurred

image.

The previous approach Sun et al. (2015) predicts the motion flow for each

patch, but methods (Gong et al., 2017) have been proposed which use a CNN to

estimate the pixel-wise dense motion flow for the entire image. The assumption

of uniform homogeneous motion kernel assumption of (Sun et al., 2015) is relaxed

and this end to end method of estimating motion flow can handle real-life situa-

tions more effectively. No post-processing like MRF is required in this case. The

architecture diagram of (Gong et al., 2017) is shown in Fig. 3.3.

Fig. 3.3: The architecture diagram of the method proposed by (Gong et al., 2017)

The network that estimates the motion field M is represented as f , if the

22



blurred image is B, then

f(B) =M (3.13)

where the motion field can be represented as,

M = (U, V ) (3.14)

where U, V are horizontal and vertical motion maps respectively. Motion vectors

are discretized and let Du and Dv be the set that denotes the discretization. If the

image of dimension P ×Q is sent as input to the network, outputs of the network

is of size P × Q × D where D = |Du| + |Dv|. The feature map is divided into

P ×Q×|D+
u | and P ×Q×|Dv| which are passed through the softmax layer to get

the probabilities of the motion fields. Once the motion fields are obtained then

the deblurring problem reduces to the deconvolution problem to obtain the sharp

image.

3.3 Supervised End to End Methods

Works in this area can be broadly divided into methods that fall under the ad-

versarial category (which employ adversarial loss) and non-adversarial methods

which are in general supervised.

3.3.1 Non - Adversarial Methods

Deblurring in general requires a large receptive field so that it can gather enough

information to engage effectively. Primarily, for this reason, (Nah et al., 2017)

propose a multi-scale convolutional neural network that restores the sharp images

in an end to end manner where the blur can be caused by many sources. They

also present a loss function that mimics conventional coarse-to-fine methods. The

multi-scaled approach increases the receptive field of the network but also makes

the convergence much harder. They add residual connections to make the gradient

flow much more profound. (Tao et al., 2018) also explores the multi-scale strategy,
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Fig. 3.4: Scale Recurrent Neural Network Architecture (Tao et al., 2018)

but the proposed network has a lot less learnable parameters (which is convergence

friendly when compared to the previous work) by using a small encoder-decoder

type network with the recurrent module that also shares weights across resolution

layers.

The scale recurrent network as shown in Fig. 3.4 consists of three parts the

encoder (NetE), recurrent layer (NetR) and decoder (NetD). The equations which

represent the network functioning are,

f i = NetE(B
i, Li−1↑; θE) (3.15)

hi, gi = NetR(h
i−1↑, f i; θR) (3.16)

Li = NetD(g
i; θD) (3.17)

where θE, θR, θD are the weights of their respective modules.

The encoder is a CNN with residual connections. For the first scale, the input

is only the blurred image, but for the subsequent scales, the blurred image Bi is

concatenated with the previous scale sharp image Li−1,↑. The feature is extracted

from the encoder which we call f i.
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The module following the encoder module is the recurrent layer where Convo-

lution LSTM (ConvLSTM) (Shi et al., 2015) have been employed to give the best

results. Ablation studies show that the addition of recurrent network across reso-

lutions indeed contributes to improved performance. The inputs to the recurrent

module are hi−1↑ the previous layer hidden state, and f i the current layer encoder

features. To mitigate the problem of gradient explosion, they use the gradient

clipping method. The output of this module is the modified set of features gi and

the current resolution hidden state hi.

The decoder module is again a small CNN with residual connections followed

by a deconvolutional layer which increases the spatial dimension and the final

estimate of the latent image is obtained for the current scale Li. The combination

of all these modules can be written as follows,

Li, hi = NetSR(B
i, Li−1↑, hi−1,↑; θSR) (3.18)

where θSR is the weight shared across all scales. The loss function which guides

the optimization is the Euclidean loss,

L =
n∑
i=1

κi
Ni

||Li − I i||22 (3.19)

where Li and I i are the latent restored image and the ground truth sharp image

respectively. {κi} are the weights assigned to the different resolutions with Ni

being the normalization constant.

(Noroozi et al., 2017) deblurs generic motion-blurred image by estimating the

latent image directly through its three pyramid stages which allow removing blur

gradually from a small amount in the lowest scale to the full amount in the input

image scale. The three pyramid stages consist of several convolutional and decon-

volutional layers which recreate the multiscale pyramid approach used in many

other methods. The main idea of this paper is that the downsampled version of

the image has a smaller blur compared to the full resolution image. Hence the

network gradually mitigates the blur at that corresponding scale thereby turning

the complex problem into manageable small units. Let N1, N2, N3 refer to the
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Fig. 3.5: Architecture Diagram of (Noroozi et al., 2017). The three CNNs start-
ging from the left denotes N1, N2, N3 respectively.

pyramid units which is a combination of convolution and transpose convolution

layers. Firstly the blurred image is given as input to N1 which is a purely convo-

lutional network and its output is concatenated with the downsampled version of

the same blurred image which is sent to N2, the second stage and then to the last

stage N3. The loss function is calculated as follows,

L1 =
∑
B,I

|N1(B) + d1/4(B)− d1/4(I)|2 (3.20)

L2 =
∑
B,I

|N2(N1(B) + d1/4(B)) + d1/2(B)− d1/2(I)|2 (3.21)

L3 =
∑
B,I

|N3(N2(N1(B) + d1/4(B)) + d1/2(B)) +B − I|2 (3.22)

where dx is a downsampling operator which reduces the dimension to x times the

original dimension.

As we saw before the demand for a large receptive field for deburring increases

the number of learnable parameters which makes the convergence more difficult.

To address this challenge (Zhang et al., 2018) proposed a network that is composed
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Fig. 3.6: Architecture Diagram of (Zhang et al., 2018).

of three deep convolutional networks and a recurrent neural network. RNN is

used as a deconvolution operator performed on feature maps extracted from the

input image by one of the CNNs. Another CNN is used to learn the weights for

RNNs in different spatial locations. Therefore, RNNs is spatially variant and could

implicitly model the deblurring process with spatially variant kernels. The third

CNN is used to reconstruct the final deblurred feature maps into the final restored

image. The whole network is end to end trainable. The network architecture is

shown in Fig. 3.6. By using this approach, they could achieve a large receptive

field with a small network which increases both performance and speed by reducing

computational complexity. As RNNs generate a receptive field in one direction,

they use a convolutional layer after every RNN t fuse the receptive fields and

obtain a two-dimensional structure. The architecture proposed by (Zhang et al.,

2018) can be summarized as,

F = f(B) (3.23)

θ = w(B) (3.24)

F
′
= rnn(F ; θ) (3.25)

L = r(F
′
) (3.26)
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Fig. 3.7: Basic Structure of Generative Adversarial Network

where B is the blurry image, F is the extracted features, θ is the pixel-wise

generated weights, F ′ are the modified features after passing through the RNN

and L is the latent image.

3.3.2 Adversarial Methods

Blind deblurring can be solved in an end-to-end manner by using generative models

like Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Isola et al.,

2017; Arjovsky et al., 2017). The architectural block diagram is shown in Fig.

3.7. The generative adversarial networks consist of two networks which we call

generator and discriminator. The generator tries and generates data and the

work of the discriminator is to examine whether the data is coming from the

true real distribution. The generator aims to fool the discriminator into believing

that its output is from the real distribution. These generator and discriminator

are differentiable neural nets and can be trained via backpropagation. As the

game proceeds, eventually, the generator will be forced to generate data from a

distribution that is as close to the real world distribution as possible.

(Nah et al., 2017) also uses the Multiscale convolutional network architecture

that we saw in several other works. The architecture diagram is shown in Fig. 3.8.

The network restores sharp images across scales in an end to end manner where

the blur can be potentially caused by various sources. The lower resolution layers

are used to obtain the global information in the image and the higher resolution

layers are used to fine-tune the deblurring process. Residual connections used to

ensure that all the parts of the network get ample gradient flow to train. MSE

(Mean Squared Error) is used on each resolution and backpropagation is done.
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Fig. 3.8: Architecture Diagram proposed by (Nah et al., 2017)

Lcontent =
1

2K

K∑
k=1

1

ckhkwk
||Lk − Ik||2 (3.27)

Here K is the total number of scales and ck, hk, wk are the channels, height

and width of the kth scale while Lk, Ik are the latent and sharp images in the kth

resolution layer.

The output of the current scale is given as an input along with the blurred

image to the resolution layer above it. Upconvolution (transposed convolution)

layers are present in all the resolution layers except the highest resolution. The

generated deblurred image of the last scale is given as input to the discriminator

which tells whether the image is coming from the true sharp images distribution

or from the multiscale generator. It’s trained with the Discriminator loss function,

Ladv = ES∼psharplog(D(S)) + EB∼pblurred [1− log(G(B))] (3.28)

where G,D are the generator and the discriminator respectively. Note that the im-

ages are generated across resolutions. The total loss function to train the network

is given below,

Ltotal = Lcontent + λLadv (3.29)
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where λ is a weight constant. (Ramakrishnan et al., 2017) uses a generator with

a global skip connection in a way similar to (Huang et al., 2017). There is no

resolution reduction across the generator, the dimension of the feature maps are

maintained throughout the generator. The benefits of DenseNet such as reduction

in the vanishing gradient problem and stronger feature propagation help this small

generator to perform better in this task of deblurring.

The generator is divided into three parts, namely head, dense field and tail.

The generator head creates the activations which are then processed by the dense

field which has several dense blocks with ReLU non-linear activation. The dense

connection is achieved by feature concatenation of the previous layer features to

the current layer. The output of the head is connected to the output of the tail

via a global skip connection which enables rich gradient flow to the head.

Similar to (Nah et al., 2017), the loss function here are divided into two parts,

but with minor differences. MSE loss is taken from the features of VGG16 which

is known as Perceptual Loss function (Johnson et al., 2016).

Lprecep =
1

W ×H

W∑
x=1

H∑
y=1

(ϕ(I)x,y − ϕ(L)x,y) (3.30)

where ϕ denotes the function used to generate the features.

The adversarial loss used in this paper is conditional adversarial loss as the

predicted image along with the corresponding blurred image is sent to the dis-

criminator.

Ladvcon = −Eb∈B[log(D(G(B))|B)] (3.31)

where D is a discriminator. The total loss function used is, therefore,

Ltotal = Lpercep + λ1Ladvcon + λ2LL1 (3.32)

where LL1 is known as the L1 loss, λ1, λ2 are the weights.
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3.4 Unsupervised End to End Methods

Works in applying unsupervised methods in deblurring are relatively new and

began with (Madam Nimisha et al., 2018) and since then is a very active area of

research. The method we propose also is an attempt to incorporate attentive scale

recurrent training in the unsupervised domain.

Their work consists of a GAN which is used to learn a strong prior on the

clean image domain using adversarial loss and maps the blurred image to its clean

counterpart. There are three CNNs in this architecture, which are generator,

discriminator and the re-blurring network. The generator takes as input a blurry

image and transforms it to the estimate of a clean image. The discriminator’s job

is to find out whether the image sent to the discriminator is from the generator or

from the true distribution. As the complete process is unsupervised, in order to

maintain fidelity, we have a re-blur network that processes the generated restored

image and reconstructs the blur. This image is expected to be identical to the input

blurry image and therefore supervised losses can be applied. The architecture

diagram along with the losses are shown in Fig. 3.9.

Apart from the contribution of unsupervised deblurring, they introduced a

scale-space gradient module that effectively guided the training and stabilized the

GAN training. The main idea is that the effect of blur reduces as the resolution of

the image is decreased. This point is leveraged in the network and gradient losses

are used in a multi-scale framework.

The adversarial loss was used to train the GAN setup.

Ladv = min
θ

1

N

∑
i

log(1−D(Gθ(Bi))) (3.33)

where the unpaired blur and sharp domain datasets are {Bi}, {Li} and the train-

able parameters is θ with G,D being generator and discriminator respectively.

With the re-blurring module, the generator is more constrained to estimate

the ground truth image. Let the clean image from the generator be L = G(B)

which is passed again through the CNN module to obtain a reconstructed blurry

image. The re-blurring loss can be expressed as,
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Fig. 3.9: Architecture Diagram proposed by (Madam Nimisha et al., 2018)

Lreblur||B − CNN(L)||22 (3.34)

Along with the above losses, the authors use gradient loss at different scales

which can be represented as,

Lgrad =
∑

s∈{1,2,4,8,16}

λs||▽Bs↓ − ▽L̂s↓| (3.35)

Here ▽ denotes the gradient operator. In thier case, they use the Lapla-

cian operator



0 1 0

1 −4 1

0 1 0


 to calculate the gradients at different scales as

shown in the summation (s). The weights increase with s and are set to be

[0.0001, 0.001, 0.01, 0.1, 1]. Its demonstrated that addition of gradient loss removes

the unwanted ringing artifacts in the final image and smoothens the result. The

inclusion of the supporting loss functions (reblurring loss and gradient loss) makes

output image comparable to the ground truth. Finally, the generator is trained

with the combined loss function as shown below,

LG = γadvLadv + γreblurLreblur + γgradLgrad (3.36)

More recent work in this area of unsupervised blind deblurring is (Lu et al.,

32



Fig. 3.10: Architecture Diagram proposed by (Lu et al., 2019b)

2019b). They deal in domain-specific cases where they apply an unsupervised

method based on disentangled representations. The disentanglement is achieved

by splitting the content and the blur features in a blurred image using the content

and the blur encoders. KL Divergence loss is used to regularize the blur attributes

to minimize the leakage of content information in them. To maintain the fidelity

of the generated images, they use re-blurring branch and cycle consistency loss.

The network proposed by them consists of four parts namely, 1) the content

encoders Ec
B and Ec

S which denotes the blurred and sharp image generators, 2)

blur encoder Eb; 3) blurred and sharp image generators GB and GS; 4) blurred

and sharp image discriminators DB and DS. The architecture diagram is shown

in Fig3.10. Given a blurry image b, and a sharp image s (note that they needn’t

be paired) the content encoders Ec
B, E

c
S extract the content information from their

corresponding images and Eb estimates the blur information from the blurry image

b. With the representations disentangled we can proceed with the generation of

the sharp image. The generator GS takes Ec
B(b) and Eb(b) as input and generates

the sharp image sb while GB takes Ec
S(s) and Eb(b) to generate a blurred image bs.

Then the discriminators are employed to distinguish the samples and the entire

architecture is trained in an end-to-end manner.

Let’s discuss the different loss functions used by them to ensure proper con-

vergence and performance. The authors use KL divergence loss to regularize the
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extracted representations. As we know that sharp images do not have a blur com-

ponent associated with them, Ec
S tends to be a good content extractor. The last

layers of Ec
B and Ec

S share weights so as to guide Ec
B to effectively extract content

information.

For Eb to encode only the blur information, the authors propose two methods.

In first one, they feed Eb(b) together with Ec
S(b) into GB to generate bs. Since bs

is a blurred version of s, the content information of b will be present in a minimal

fashion. This discourages Eb(b) to encode content information of b. Second, a KL

divergence loss is used to regularize the distribution of the representation. Let the

blur features be zb = Eb(b) and its assumed to be close to the normal distribution

p(z) ∼ N(0, 1). This is shown in (Bao et al., 2018) to further suppress content

information in the blur representation. The KL loss can be expressed as follows,

KL(q(zb)||p(z)) = −
∫
q(zb)log

p(z)

q(zb)
dz (3.37)

Minimizing the KL loss is equivalent to minimizing the following,

LKL =
1

2

N∑
i=1

(µ2
i + σ2

i − log(σ2
i )− 1) (3.38)

where µ, σ are the mean and standard deviation of zb and N is the dimension of

zb. Here zb is sampled as zb = µ + z ⊙ σ where p(z) ∼ N(0, 1) and ⊙ represents

element-wise multiplication.

Adversarial losses are used to make the generated images look more realistic.

The adversarial losses for the two discriminators DS, DB are shown below.

LDS
= Es∼p(s) [logDS(s)] + Eb∼p(b) [log(1−DS(GS(E

c
B(b), zb)))] (3.39)

LDB
= Eb∼p(b) [logDB(b)] + Es∼p(s) [log(1−DB(GB(E

c
S(s), zb)))] (3.40)

The adversarial loss ensures that the images are generated from a distribution
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that is near the true distribution. In order for the images to be visually similar

(maintain fidelity) as there is no pairwise supervision, we need cycle consistency

loss. The loss ensures that the deblurred image sb can be re-blurred to reconstruct

the original blurred image and the bs can be translated back to the original sharp

domain.

sb = GS(E
c
B(b), E

b(b)), bs = GB(E
c
S(s), E

b(b)) (3.41)

b̂ = GB(E
c
S(sb), E

b(bs)), ŝ = GS(E
c
B(bs), E

b(bs)) (3.42)

The cycle consistency loss can be formulated as,

Lcc = Es∼p(s)||s− ŝ||1 + Eb∼p(b)||b− b̂||1 (3.43)

To further enhance the perceptual quality of the images, they use perceptual

loss (Johnson et al., 2016) between deblurred and the originally blurred image

which is defined as

Lp = ||ϕl(sb)− ϕl(b)||22 (3.44)

where ϕl(x) is the features of the l-th layer of the pretrained VGG-19 network.

The full objective function therefore is the weighted sum of the losses,

L = λadvLadv + λKLLKL + λccLcc + λpLp+ (3.45)

where Ladv = LDS
+ LDB

.

3.5 Performance Evaluation

There are several metrics that measure the similarity between the restored image

and the ground truth image. Peak Signal to Noise Ratio (PSNR) can be thought

of as a reciprocal of MSE which is,
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PSNR =
m2

MSE
(3.46)

where m is the maximum possible intensity value since we are using an 8-bit

integer to represent a pixel in the channel, m = 255.

SSIM estimates the structural similarity between two images and the compu-

tation is as follows,

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.47)

where x, y are the windows of equal dimension for B, I respectively. µx, µy denotes

mean of x, y σx, σy denotes the variances of x, y respectively. σxy is the covariance

between x and y. c1, c2 are constants that are used to stabilize the division.
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Chapter 4

UNSUPERVISED SCALE ADAPTIVE

DEBLURRING

Deep learning has tremendously helped the field of deblurring. Convolutional

neural networks (CNN) based supervised methods (Kupyn et al., 2018,?; Nah et al.,

2017; Shen et al., 2018; Simonyan and Zisserman, 2014; Purohit and Rajagopalan,

2020; Suin et al., 2021; Nimisha et al., 2017; Vasu et al., 2018) were proposed for

the task of deblurring. These algorithms forgo the need to define any priors due

to implicit learning of weight parameters during training. The main limitation of

these methods is the demand for large amounts of paired training data which is

complicated to obtain. Additionally, due to the strong supervision of loss functions

during training, these networks incorporate dataset-specific biases which yield sub-

optimal performances during deployment.

Unsupervised deblurring was proposed recently to relax the necessity of paired

training data. (Madam Nimisha et al., 2018) used generative adversarial networks

(GAN) to transfer images from blur domain to sharp domain. An additional

re-blurring network and gradient loss was used to maintain fidelity. (Lu et al.,

2019b) proposed an unsupervised network where blur can be disentangled into an

encoder network using KL divergence loss. Methods consider deblurring as an

end-to-end problem where GAN loss is used for training at a single scale. As a

result, these methods give a suboptimal performance while handling coarse as well

as fine details.

We address the above challenges by using a multi-scale architecture with Scale-

Adaptive Attention Module (SAAM). Several multi-scale supervised deblur-

ring algorithms have been proposed in the past that use a coarse-to-fine mechanism

that takes advantage of processing different scales. These multi-scale methods use

supervision loss to guarantee stability during training. In this thesis, we propose



(a) Blurred (b) Lu et al. (2019b) (c) Ours

(d) Blurred (e) Zhu et al. (2017) (f) Ours

Fig. 4.1: Comparison of deblurring results on real blurred images with prior unus-
pervised mathods. (a) Blurred image from (Lai et al., 2016), (b) result
using pretrained model of (Lu et al., 2019b) and (c) Our result. (d) is
the text image taken from (Hradis et al., 2015) and (e) is the result of
(Zhu et al., 2017) retrained on text datset (Hradis et al., 2015). (f) Our
result.

a multi-scale network for deblurring in an unsupervised setting. Training insta-

bility in GANs is well-studied in literature, and several solutions were proposed

(Radford et al., 2015). In this approach, instead of cascading the multi-resolution

features, we use SAAM to attend to feature maps of lower scales as a function

of the present scale. There are many advantages of such a procedure. Firstly,

hidden states use information from different scales due to shared parameters. Sec-

ondly, the multi-scale approach reduces the training instability problems such as

mode collapse and unwanted artefacts in the final image. Lastly, the SAAM mod-

ule helps select relevant information from the lower scales, further improving the

deblurring quality.

Different ablation studies show that the coarse-to-fine mechanism using SAAM

gives better deblurring results than end-to-end counterparts devoid of recurrent

connections.

Our contributions are summarized below:

We propose an unsupervised deblurring network with multi-scale architecture
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and a scale-dependent attention module. Different ablation studies show that scale

recurrent networks give superior performance compared to end-to-end methods in

an unsupervised setting.

We further show that SAAM facilitates better information flow across different

scales, in contrast, to directly cascading or adding feature maps. We further show

the efficacy of using SAAM over different attention modules.

We provide extensive comparisons on supervised and unsupervised methods

and show that our method performs favourably against supervised and outper-

forms unsupervised methods qualitatively and quantitatively (on no-reference met-

rics) when tested on different datasets.

This is a collaborative work done by me and one of my labmates. For com-

pleteness, the entire work is mentioned in this report. My specific contributions

are mentioned here. I participated in the discussion of multi-scale architecture and

was involved in the Scale Adaptive Attention Module ideation. I helped in imple-

menting the model architecture and the attention module in PyTorch. I worked

extensively in enabling fast, effective and optimized execution (in both time and

memory terms) of these programs. In the experiments section, my contribution

lies in running the ablation studies and comparison tests, analysing the results

and individual model performance.

4.1 PROPOSED METHOD

Our proposed network, unsupervised scale adaptive attention deblurring network

(USAAD), is illustrated in Fig. 4.2, along with the scale-adaptive attention module

(SAAM) in Fig. 4.3. Our network architecture is inspired by the recent success of

scale recurrent structures in image restoration tasks. Given a blurred image IbM ,

three samples of input image are used for training i.e., IbM , IbM/2 and IbM/4 where Ibp
denotes input image downsampled to p×p dimension. The training mechanism of

our algorithm has three steps for every input image. First, at the coarsest scale,

generator GB→S converts IbM/4 from blur to sharp domain using adversarial loss.

GB→S consists of three networks, a encoder network GE
B→S, followed by a series of
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Fig. 4.2: Proposed unsupervised scale adaptive attention deblurring network (US-
AAD).

nine residual blocks (He et al., 2016) and decoder network GD
B→S. GS→B blurs the

generated sharp image which is then compared with the input image to maintain

the fidelity of contents. The same procedure is followed in the next scale with

IbM/2, except that the decoder, GD
B→S , takes the output of SAAM instead of the

final residual block. SAAM helps the present scale to use important information

from the previous scale to improve deblurring quality (see Sec. 3.1). The same

procedure is repeated at the finest scale with IbM , and the estimated sharp image

is the final restored output. The deblurring mechanism of our method can be

represented as

I i,F i = NetUSAAD(I i−1,F i−1,Bi; θUSAAD) (4.1)

where i denotes the present scale and i ∈ 1, 2, 3. Inspired by (Nah et al., 2017),

we use three resolutions of the input image to train the network and M = 256

unless mentioned otherwise. I, F and B denote estimated sharp image, output

features of last residual block and input blurry image, respectively, and θ denotes

learnable parameters of our network. The generator and discriminator networks

in our architecture share the same parameters. Although supervised methods
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Fig. 4.3: Proposed scale adaptive attention module (SAAM). The cyan block (N×
C × H ×W ) is the input feature map from the lower resolution layer,
while the yellow block (N × C × H ×W ) is the feature map from the
higher resolution layers. Pa refers to the average pooling layer, and AF
is a convolutional network block. Note that there are two independent
AF ’s each operating on the feature maps of its respective resolution layers
(best viewed in colour).

(Zhang et al., 2019a; Suin et al., 2020) regress only for residual at each scale, our

unsupervised network regress for sharper images to counter training instability due

to GANs. Along with the sharing parameters of the network across resolutions,

the information across different resolutions is passed effectively using SAAM to

improve deblurring quality. The following subsections give a detailed discussion

of the SAAM module followed by loss functions used in our model and network

architecture.

4.1.1 Scale-adaptive attention module (SAAM)

The objective of SAAM is to use information from the previous scale to improve

the deblurring quality at the present scale. A trivial way to achieve this is to

directly concatenate or add features from the last residual blocks of both the

scales and pass them to the decoder. However, not all the lower-scale features are

equally important in improving the deblurring quality. Therefore, concatenating or

adding the entire set of lower-scale features can result in sub-optimal performance

due to irrelevant channels. Instead of considering each channel equally, SAAM

uses both the lower and higher scale feature maps to selectively pay attention to

more relevant channels in the lower-scale features. Similar to channel attention

(Chen et al., 2017), SAAM can be seen as a process of selecting relevant semantic
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attributes.

SAAM takes two feature maps U2X , UX ∈ RN×C×H×W , from the last residual

block in GB→S at the present scale and the immediate previous scale, respec-

tively. Here N denotes the batch size, C is the total number of channels and H,

W are the height and width of the feature map, respectively. Without loss of

generality, we consider N = 1 and we represent both the input feature maps as

U = [u1, u2, ..., uC ], where ui ∈ RH×W for ∈ {2X,X}. We apply mean pooling

(Pa) for each channel and get channel vectors for both the feature maps as

uM2X = [ū12X , ū
2
2X , ..., ū

C
2X ] ∈ RC (4.2)

uMX = [ū1X , ū
2
X , ..., ū

C
X ] ∈ RC (4.3)

where ūi is the mean of channel ui features. The channel vectors uM2X , uMX are

passed through convolutional network Φ2X and ΦX , respectively (denoted as AF
in Fig. 4.3), to obtain the learned scale attention representations v2X , vX where

v = Φ(uM∗ ) ∈ {2X,X} (4.4)

The effective channel attention vector β ∈ RC is defined as a function of v2X
and vX as follows,

β = σ (v2X × vX) ∈ RC (4.5)

where σ denotes the sigmoid function, and × refers to element wise multiplica-

tion. Sigmoid activation is used to normalize the attention weights between 0

and 1 to represent the channel importance. The multiplication of scale attention

representations (v′s) ensures that the channel representations which are aligned

get greater attention than misaligned channels.

Channel attention is applied on UX by multiplying channel-wise the attention
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coefficients β , which can be represented as Ua
X ∈ RN×C×H×W ,

Ua
X = β ⊙ UX (4.6)

where ⊙ refers to channel-wise multiplication. The resultant lower scale feature

map is concatenated with the higher resolution feature map U2X along the channel

dimension and passed through the decoder. This procedure ensures that lower

scale feature information relevant for deblurring is effectively passed on to higher

resolution layers.

4.1.2 Loss functions

Given a real blur image (Ib), the generator network GB→S transfers the image from

blur to sharp domain. The output Îs of decoder GD
B→S is used by discriminator

Ds to distinguish if the resultant image is sharp or not.

Îs = GB→S(I
b)

The following loss function is used to optimize both generator GB→S and discrim-

inator Ds simultaneously

LGAN(GB→S, DS) = EIs∼p(Is)
[

logDS(Is)
]
+ EIb∼p(Ib)

[
log(1−DS(GB→S(Ib)))

]
(4.7)

where E is the error function, p denotes the data distribution, Ib ∼ p(Ib) and Is ∼

p(Is) denote images sampled from blur and sharp image distributions respectively.

Akin to Eq. 1, the output of decoder GD
S→B is used by discriminator DB to

distinguish if the resultant image is blurred or not. The loss function used to

optimize both generator GS→B and discriminator DB simultaneously is
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LGAN(GS→B, DB) = EIb∼p(Ib)
[

logDB(Ib)
]
+ EIs∼p(Is)

[
log(1−DB(GS→B(Is)))

]
(4.8)

The above adversarial loss functions are sufficient to generate visually sharp

images. However, the estimated sharp image’s content need not exactly match

that of the input image due to the unavailability of supervised pairs. Inspired by

cycleGAN (Zhu et al., 2017), we use cycle consistency loss, where the estimated

sharp image is projected into blur domain using GS→B and compared with the

input blur image. The projected blur image can be represented as

Îb = GS→B(I
s)

The cycle consistency loss function can be defined as

Lcyc_b(GB→S, GS→B) = EIb∼p(Ib)
[
||GS→B(GB→S(Ib))− Ib||1

]
(4.9)

Similarly, the cycle consistency loss can be applied for the other domain by pro-

jecting the estimated blur image to the sharp domain using GB→S and comparing

with the real sharp image. The resultant loss function can be defined as

Lcyc_s(GS→B, GB→S) = EIs∼p(Is)
[
||GB→S(GS→B(Is))− Is||1

]
(4.10)

These loss functions are calculated at a single scale; however, since our network

is trained for n scales, the total loss function can be written as
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LTotal(GS→B, GB→S, DS, DB)

=
n∑
i=1

λadvLiGAN(GB→S, DS)

+λadvLiGAN(GS→B, DB)

+λcycLicyc_s(GS→B, GB→S)

+λcycLicyc_b(GB→S, GS→B)

(4.11)

where n is the number of scales the network is trained on. We used n = 3 for our

model following (Nah et al., 2017). Following (Zhu et al., 2017), the weights for

λadv and λcyc are set as 1 and 10 respectively. The whole network is trained in a

min-max fashion as

arg min
GS→B ,GB→S

max
DB ,DB

LTotal(GS→B, GB→S, DS, DB) (4.12)

4.1.3 Network architecture

The encoder network GE
B→S in Fig. 4.2, consists of two convolutional layers with

stride two, thus downsampling the input sample by a factor of four. A series of

nine residual blocks follow the encoder network. At the coarsest level, the net-

work cannot take features from the previous scale. However, the last residual

block features are concatenated with the next level using the SAAM module. Fi-

nally, the concatenated features are passed through a decoder network, GD
B→S, a

mirror representation of the encoder, but deconvolutional layers replace the con-

volutional layers. The decoder’s output is passed through GS→B, which transfers

the image from sharp to blur domain. GS→B is a lightweight network with four

convolutional layers using a filter size of 3 and maintaining the same spatial size

using padding. Our reason for the simple architecture for GS→B is to reduce the

number of parameters and computational time. Also, the deblurring task is far

more complicated than inducing blur into a sharp image. For discriminators DS

and DB, we use PatchGAN (Isola et al., 2017) to differentiate between real and
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 4.4: Visual comparisons with start of the art results on face test dataset (Lee
et al., 2020). (a) Blurred (b) Xu et al. (2013) (c) Kupyn et al. (2018)
(d) Kupyn et al. (2019) (e) Zhang et al. (2019a) (f) Nah et al. (2017) (g)
Suin et al. (2020) (h) Zhu et al. (2017) (i) Lu et al. (2019b) (j) Ours (k)
Sharp

fake samples.

4.2 Experiments

This section is arranged as follows 1. Dataset creation and metrics used 2. Ab-

lation studies, 3. Comparisons on the face and text test sets and 4. Visual

comparisons on real face dataset.

4.2.1 Dataset and metrics:

CelebA dataset: We use the face dataset of (Lee et al., 2020) to train our

model. (Lee et al., 2020) contains 30K face images and 700 images randomly

selected and used as a test dataset for comparisons with state of the art methods.

The remaining 29.3K images are grouped into two halves, and the blur model of

(Kupyn et al., 2018) is applied to one of the groups keeping the other intact. Thus

unsupervised pairs of clean and blur face images are created for training.

Text dataset: We used the text dataset provided by (Hradis et al., 2015)

which contains a large collection of 66K blur text images generated using motion

and defocus blur. The 66K images are grouped into two halves, with one group

containing the sharp images, while the other contains only blur images. The
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4.5: Visual comparisons with start of the art results on real blurred face
images of Lai et al. (2016). (a) blurred image (b) Xu et al. (2013) (c)
Kupyn et al. (2018) (d) Kupyn et al. (2019) (e) Zhang et al. (2019a) (f)
Nah et al. (2017) (g) Suin et al. (2020) (h) Zhu et al. (2017) (i) Lu et al.
(2019b) (j) Ours

dataset is created such that there is no correspondence between the two groups.

Since the images are already blurred, we did not apply any blur model, and the

above dataset is used for training. We used a separate test dataset provided by

(Hradis et al., 2015) to compare with competing methods.

Table 4.1: Quantitative comparisons of different ablation studies of our model on
the face dataset. Scales indicate the number of resolutions the network
was trained on. A.F and C.F indicate that feature maps across the
resolution are added and concatenated respectively, while C.A and S.A
indicate channel Hu et al. (2018) and spatial attentionWoo et al. (2018)
respectively.

Design Scales A.F C.F C.A S.A SAAM brisque
Net1 1 7 7 7 7 7 32.89
Net2 2 7 7 7 7 7 31.29
Net3 3 7 7 7 7 7 30.34
Net4 3 ✓ 7 7 7 7 33.53
Net5 3 7 ✓ 7 7 7 30.21
Net6 3 7 ✓ ✓ 7 7 29.52
Net7 3 7 ✓ 7 ✓ 7 27.38
Net8 3 7 ✓ 7 7 ✓ 25.52

We used PSNR, NIQE and BRISQUE to provide quantitative comparisons

with state of the art results. While PSNR requires ground truth or reference image,

NIQE and BRISQUE do not require any reference image and can be calculated
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 4.6: Visual comparisons with start of the art results on text dataset (Hradis
et al., 2015). (a) Blurred (b) Xu et al. (2013) (c) Pan et al. (2014b) (d)
Kupyn et al. (2018) (e) Kupyn et al. (2019) (f) Zhang et al. (2019a) (g)
Nah et al. (2017) (h) Suin et al. (2020) (i) Zhu et al. (2017) (j) Lu et al.
(2019b) (k) Ours (l) Sharp

given a single image. A brief discussion of BRISQUE and NIQE is given below.

BRISQUE (Mittal et al., 2012) stands for Blind/Referenceless Image Spatial

Quality Evaluator. BRISQUE uses scene statistics instead of distortion stats to

calculate the naturalness of the given image. The low computational capacity of

BRISQUE makes it well-suited for real-world applications. A lower BRISQUE

score on an image indicates good perceptual quality, and its values range between

1-100.

PIQE (Venkatanath et al., 2015) stands for Perception-based Image Quality

Evaluator. PIQE is a no-reference image metric that calculates the distortion

present in the image based on block-level characteristics. PIQE estimates the

quality of the image from perceptually significant portions rather than the whole

image. Similar to BRISQUE, a lower score of PIQE indicates a better perceptual

score, and its value ranges between 1-100.

4.2.2 Ablation studies

Since ours is the first take on using multi-scale architecture for image restoration

in unsupervised settings, we first show that multi-scale helps to improve the de-

blurring quality and training stability of GANs compared to end-to-end methods

(Table 4.1, row 2 to row 4). To further improve the deblurring quality, we pro-
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pose to employ SAAM. We further show that information flow across different

resolutions during training is better attended by the proposed SAAM block than

standard attention modules Hu et al. (2018); Woo et al. (2018) used in literature.

(Table 4.1, row 5 to row 9).

Net1 (Table 4.1, row 1 and Fig. 4.7 (b)): This network is the same as described

in Section 3.3, except that it is trained for only a single resolution (256x256). From

now, this network is defined as a base network. The loss used to train the network

is Eq. (5) with i ∈ 1. Although the network deblurs the image, there are visible

artefacts and several colour changes compared to the input image.

Net2 (Table 4.1, row 2 and Fig. 4.7 (c)): The base model is trained with two

scales using loss function in Eq. (5) with i ∈ 1, 2, i.e. two resolutions of the input

image are used to train the network. The artefacts are visibly reduced compared

to Net1, although the deblurring quality remains the same.

Net3 (Table 4.1, row 3 and Fig. 4.7 (d)): Like Net2, the base network is

trained with three scales using loss function in Eq. (5) with i ∈ 1, 2, 3, i.e. the

network is trained with three resolutions of the input image. As can be seen, the

estimated sharp images are free of artefacts. However, the deblurring quality has

only minor improvements compared to Net1.

It can be inferred from the above ablation studies that multi-scale training

helps to stabilize GAN training. However, for both Net2 and Net3, there are no

intermediate connections across different scales while training. We used different

attention mechanisms for relevant information flow across resolutions to improve

deblurring quality. For all the models below, the network is trained for three

scales.

Net4 (Table 4.1, row 4 and Fig. 4.7 (e)): Features maps of last residual blocks

in the present and previous scale are added during training, i.e. instead of using

SAAM in Fig. 4.3, feature maps are directly added and passed through decoder

GD
B→S. Interestingly the deblurring quality is reduced compared to Net3. We

reason that the dip in performance is due to the loss of information while adding

feature maps across resolutions.

Net5 (Table 4.1, row 5 and Fig. 4.7 (f)): Inspired by Wang et al. (2018), fea-
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 4.7: Ablation study. (a) input blurry image and (j) is the sharp image. (b-i)
are the resultant images of Net1-Net8. See section for detailed explana-
tion section 4.2.2

ture maps across different scales are concatenated. As can be seen, the deblurring

quality improves compared with Net3. Different cues from lower resolutions are

aiding to improve deblurring quality.

Net6 (Table 4.1, row 6 and Fig. 4.7 (g)): Channel attention Hu et al. (2018) is

applied on the feature maps from the last residual block in the previous scale and

are concatenated with present scale ones. The deblurring quality of Net6 improves

compared to Net5 due to the attention on feature maps of a lower scale.

Table 4.2: Quantitative comparisons with state of the art methods on the face and
text dataset.

Method Face datset Text dataset
brisque piqe PSNR brisque piqe PSNR

Pan et al. (2014b) 7 7 7 42.35 76.06 17.04
Xu et al. (2013) 36.82 55.41 18.07 45.15 77.87 15.30

Kupyn et al. (2018) 43.54 57.32 18.61 47.34 80.43 17.67
Kupyn et al. (2019) 44.36 57.78 19.34 46.58 80.76 17.90
Zhang et al. (2019a) 48.25 71.0 19.00 43.92 76.23 17.48

Nah et al. (2017) 47.88 77.73 18.62 46.69 81.33 17.84
Suin et al. (2020) 44.77 66.09 19.21 46.46 81.74 18.97
Zhu et al. (2017) 31.07 42.83 18.68 48.32 80.32 14.56
Lu et al. (2019b) 29.97 45.03 19.05 47.19 79.94 18.49

Ours 25.52 35.93 19.24 39.64 74.05 18.68

Net7: (Table 4.1, row 7 and Fig. 4.7 (h)): Similar to Net6, spatial attention

Woo et al. (2018) is applied instead of channel attention on previous scale fea-

tures and the resultant concatenated features are passed through the decoder. As

observed, due to pixel-wise attention, the previous scale feature maps are better

attended, further helping the deblurring quality.

Net8: (Table 4.1, row 8 and Fig. 4.7 (i)): For both Net6 and Net7, the
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feature maps of the present scale do not play any role in attending to previous

scale features. Motivated by this, we propose to use SAAM. SAAM attends to

feature maps from the previous scale as a function of the present scale. As can be

seen, Net8 gives improved deblurring performance compared to previous networks.

4.2.3 Competing methods

The results of our model are compared with conventional methods (Pan et al.,

2014b; Xu et al., 2013), supervised methods (Zhang et al., 2019a; Kupyn et al.,

2018, 2019; Nah et al., 2017; Suin et al., 2020) and unsupervised methods (Zhu

et al., 2017; Lu et al., 2019b). Among conventional methods, (Pan et al., 2014b) is

a text deblurring method, while (Xu et al., 2013) is a generic deblurring algorithm.

In CNN based methods, (Lu et al., 2019b; Zhu et al., 2017) are domain-specific

methods and (Suin et al., 2020; Zhang et al., 2019a; Kupyn et al., 2019, 2018) are

natural scene deblurring methods. For conventional methods, we ran the codes

with default parameters provided by authors, while for CNN methods, we used the

pretrained models provided by authors except for CycleGAN (Zhu et al., 2017).

We used the official code provided by authors to retrain the CycleGAN(Zhu et al.,

2017) on the face and text training datasets.

4.2.4 Comparisons

Test dataset results: Fig. 4.4 and Fig. 4.6 shows visual comparisons, while Ta-

ble 4.2 illustrates quantitative comparisons with competing methods on the faces

and text test set (described in Sec. 4.1). Our method outperforms conventional

and unsupervised methods on all three metrics. Compared with supervised meth-

ods, our method performs comparably on the PSNR metric while giving superior

performance on no-reference metrics. From Fig. 4.4 and 4.6, we can see that Xu

et al. (2013) over blurs the image at specific regions and neglects the other por-

tions, while the deblurring quality is poor in Kupyn et al. (2019, 2018). Among

supervised methods, Zhang et al. (2019a); Suin et al. (2021); Nah et al. (2017)

gives comparably good results due to recurrent structure but fails to deblur specific
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portions. In unsupervised methods, CycleGANZhu et al. (2017) induces artifacts

in the restored image (Fig. 4.6 (i)) while Lu et al. (2019b) fails to properly recover

the latent image when encountered by complex blur (Fig. 4.4 (i).

Real dataset results: We cropped nine face images from the real world blurry

images provided by Lai et al. (2016) and the corresponding visual comparisons are

shown in Fig. 4.5. Consistent with test dataset results, Xu et al. (2013) tends to

over blur some portions of the image while Kupyn et al. (2019, 2018) leave most of

the portions to remain blurred. Zhang et al. (2019a); Suin et al. (2021); Nah et al.

(2017) gives good results on the first image due to scale recurrent nature; however,

some second image portions remain blurred. In unsupervised methods, Zhu et al.

(2017) fails to recover the clean domain while Lu et al. (2019b) struggles to restore

the clean image when a large amount of blur is present. Compared to the above

methods, our methods give superior performance while handling blurred faces of

the test dataset and real-world face images.
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Chapter 5

FOURIER ATTENTION

5.1 Introduction

In this chapter, we propose the Fourier Attention module a simple and effective

attention module for convolutional networks. It’s a general-purpose module that

can be present anywhere in the neural network preferably in the intermediate

processing layers. Attention modules aim to increase the representation power of

the network by enabling the network to focus on selective areas and ensure that

information is best utilized to boost the performance of the network. Attention can

be applied in various settings like in LSTM networks, CNN networks and various

tasks such as image classification, image segmentation and language generation (no

means an exhaustive list) have benefited from them. (Vaswani et al., 2017) has

introduced transformers that revolutionized Natural language processing, is build

completely on an attention network and it has replaced the dominance of LSTM

in this area. In Natural Language Generation (NLG) and NLP, transformers are

the state of the art models today. The computer vision community have also used

attention to boost performance for various tasks including image restoration.

Importance of attention is a well studied subject in deep learning (Mnih et al.,

2014; Ba et al., 2014; Bahdanau et al., 2014; Xu et al., 2015; Jaderberg et al., 2015).

The main theme of attention modules is to streamline the information flow by

enabling the network to highlight the relevant features and suppress the irrelevant

and trivial features that have largely contributed to improved performance across

various tasks as shown by many works. Fourier attention module unlike the other

attention modules proposed in the literature enables the network to attend to

specific frequency spectrum and reject trivial and redundant frequencies. Some

recent works aim to attempt solve problems in this direction like (Xu et al., 2020).

We take FFT to obtain the frequency spectrum and learn a filter to selectively



amplify and suppress the frequency spectrum which can be trained in an end to end

manner. Cubic spline interpolation is used to ensure that the filter behaves in a

smooth manner and behaves as a regularizer. Though this attention module can be

applied to any task, we apply it in the generic scene single image blind deblurring

task to investigate its performance. Our main contributions are described as

follows,

We propose a general-purpose task agnostic attention module, Fourier At-

tention module that can be used to increase the representation power of CNN

networks and be applied to a large basket of tasks.

We analyse the effectiveness of the attention module through extensive ablation

studies.

We investigate the performance of the proposed Fourier attention on blind

single image deblurring problem with GoPro dataset (Nah et al., 2017).

This is a collaborative work done by me and one of my labmates. For complete-

ness, the entire work is mentioned in this report. My specific contributions are

mentioned here. I participated in formulating the Fourier attention. I was actively

engaged in drafting different key aspects of the Fourier attention pipeline such

as radial allocation filter generation scheme, interpolation module, and reducing

run-time. I ran experiments with different interpolation nodes and participated

in analysing the performance of the unsupervised generic scene deblurring task.

5.2 Related Work

A lot of attention mechanisms have been proposed and in this section we will par-

ticularly look into channel attention (Hu et al., 2018), spatial attention (Woo et al.,

2018), pixel attention (Zhao et al., 2020) and Laplacian attention (Anwar and

Barnes, 2020). Channel attention (Hu et al., 2018) which they call as Squeeze and

Excitation network address the fundamental architectural unit in CNNs, which is

the channel relationship in the network. Each kernel convolves the input feature

map and produces an output feature map. Multiple kernel outputs are concate-

nated and are sent down for further processing by the convolutional layers. In this
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Fig. 5.1: Architecture Diagram of the Channel Attention. f(·) is the operation
described in Eq. (5.2). (Woo et al., 2018)

routine setup, there is an inherent assumption of channel independence as channels

aren’t weighted according to their importance. This work proposes an architec-

tural unit which is termed as a ”Squeeze-and-Excitation” block that re-calibrates

channel-wise feature responses by explicitly modelling inter-dependencies between

channels. The incoming feature map and a global average pooling are taken to

obtain global receptive contextual information of each channel. This can be rep-

resented as,

zc = Pa(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (5.1)

After the information aggregation phase, the second operation aims to capture

the channel-wise dependencies. The authors use a fully connected network to

model the channel dependencies and it can be formulated as,

s = σ(W2δ(W1z)) (5.2)

where δ is the ReLU function, W1 ∈ RC
r
×C and W2 ∈ RC×C

r where r is a

hyperparameter which decides the complexity of the attention block. Excitation

operation follows this where each channel is multiplied with the corresponding

excitation obtained in Eq. (5.2). The final attended feature map is given by,

ūc = scuc (5.3)

By multiplying sc along the channels, the network can selectively focus on

some kernels and learn to ignore some kernels feature maps.
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Fig. 5.2: Architecture Diagram of the Spatial Attention (Woo et al., 2018)

Spatial attention (Woo et al., 2018) aims to create a spatial attention map using

the inter-spatial relationship of features. Schematic diagram of spatial attention

is shown in Fig. 5.2. Different from channel attention, spatial attention focuses

on the spatial location of the informative part. To compute spatial attention,

we first compute the average pooling and max pooling outputs of the feature

map along the channel dimension and concatenate them along the channel axis

to obtain representation statistic of the spatial locations. On the concatenated

feature output, we apply a convolutional layer to obtain the spatial attention map

Ms(F ) ∈ RH×W which encodes where to emphasis or suppress. This attention

map is multiplied to input feature map to streamline the information flow.

The spatial attention can be expressed as,

Ms(F ) = σ(f 7×7([AvgPool(F ),MaxPool(F )]) (5.4)

= σ(f 7×7([F s
avg;F

s
max])) (5.5)

where σ denotes the sigmoid function and f 7×7 represents a convolutional

operation with a filter size of 7× 7.

(Zhao et al., 2020) proposes efficient image super-resolution using pixel atten-

tion. Pixel attention is similar to channel and spatial attention in the formulation.

Pixel attention produces a 3D attention map instead of a 1D (channel attention)

or 2D (spatial attention) attention maps. This attention scheme enabled the per-

formance in the case of image super-resolution to increase.

Pixel attention is a 1 × 1 convolutional layer with a sigmoid activation func-
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Fig. 5.3: Architecture Diagram of the Laplacian Attention (Anwar and Barnes,
2020)

tion to compute the attention coefficients. The point to note that is the di-

mension of the attention map is exactly equal to the input feature map. So, if

F ∈ C×H×W, the pixel attention operation can be represented as,

Mp(F ) = fPA(F ) · F (5.6)

where Mp(F ) is the processed feature map and fPA(·) is a 1× 1 convolutional

layer followed by a sigmoid function.

(Anwar and Barnes, 2020) introduced the Laplacian attention again in the

context of image Super-resolution. Laplacian attention is pyramid-level attention

to model the features non-linearly. The Laplacian attention weights the residual

features at different sub-frequency bands. Schematic representation of Laplacian

Attention is shown in Fig. 5.3. To produce attention differently at the Laplacian

pyramids, the authors use a global descriptor to capture the statistics of the entire

image. Laplacian attention weights the sub-band frequencies of high importance

progressively to exploit the relationship between the features. The global feature

descriptor used here is global average pooling.

gd =
1

H ×W

∑
i=1h

w∑
j=1

fc(i, j) (5.7)

where Fc(i, j) is the value at the position (i, j) in the feature map.

To capture the channel relationship, the authors use a gated appraoch. To

implement gateing formally, they use a series of parallel feature reduction operators
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(dilated convolution layers) and non linear activation functions (ReLu, Sigmoid).

This can be expressed as,

r3 = τ(Df6(gd)) (5.8)

r5 = τ(Df5(gd)) (5.9)

r7 = τ(Df7(gd)) (5.10)

(5.11)

where D denotes the dialated convolution operator, τ represents the ReLu

function. These multi-level representations r3, r5, r7 are concatenated to obtain

the global descriptor denoted as gp.

gp = [r3; r5; r7] (5.12)

To regain the dimension lost due to dilated convolution operators, they use an

upsampling operator Uf followed by sigmoid activation σ as shown.

Lp = σ(Uf (gp)) (5.13)

This learned statistic of Laplacian attention is utilized by rescaling the feature

map.

f̂c = Lp × fc (5.14)

5.3 Our Model

5.3.1 Network Architecture

The encoder network GE
B→S in Fig. 5.4, consists of two convolutional layers with

stride two, thus downsampling the input sample by a factor of four. A series

of nine residual blocks follow the encoder network. In each residual block, we

have a Fourier attention module. Finally, the concatenated features are passed
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Fig. 5.4: Architecture diagram of the model for unsupervised deblurring. A de-
notes the Fourier attention module.

through a decoder network, GD
B→S, a mirror representation of the encoder, but

deconvolutional layers replace the convolutional layers. The decoder’s output is

passed through GS→B, which transfers the image from sharp to blur domain.

GS→B is a lightweight network with four convolutional layers using a filter size of

3 and maintaining the same spatial size using padding. Our reason for the simple

architecture for GS→B is to reduce the number of parameters and computational

time. Also, the deblurring task is far more complicated than inducing blur into a

sharp image. For discriminators DS and DB, we use PatchGAN Isola et al. (2017)

to differentiate between real and fake samples.

I = NetUFAN(B; θUFAN) (5.15)

where I,B and θUFAN represent the estimated latent sharp image, input blurry

image and the learnable parameters in the network. In the next section, we will

look in detail as to how the Fourier attention module architecture.

5.3.2 Fourier Attention

The objective of Fourier attention as stated before is to use information in the

frequency spectrum of the feature maps to improve the deblurring quality of the

estimated sharp image. This entire effort hinges on the premise that not all the

frequencies are equally important and some need more focus than others. So as a
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Fig. 5.5: Fourier attention architecture diagram. Fgen(·) represents the 2D filter
generation stage of the module

first step, the Fourier attention module computes the 2D Fourier transform of the

feature map. The architectural diagram of Fourier attention is shown in Fig. 5.5.

2D Discrete Fourier Transform

Let’s take a feature block U , denoted as fu(x, y) with size A × B, the DFT is

computed according to the following expression,

Fu(i, j) =
A−1∑
x=0

B−1∑
y=0

fi(x, y)exp

(
−j2π

(
ix

A
+
jy

B

))
(5.16)

Note that we are computing the DFT for each channel of dimension H ×W

for a feature map of dimension u ∈ RN×C×H×W . Since DFT yields a matrix of

complex numbers, we obtain the magnitude and phase of the spectrum according

to the expression below,

Mu(i, j) =
√
Real(Fu(i, j))2 + Imag(Fu(i, j))2 (5.17)

Φu(i, j) = tan−1

(
Imag(Fu(i, j))

Real(Fu(i, j))

)
(5.18)

In the DFT domain, the frequencies radially vary from low frequencies in

the centre of the spectrum to high frequencies in the borders of the spectrum.
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(a) DFT Frequency Bands (b) Low Pass Filter (c) Band Pass Filter

Fig. 5.6: The radial arrangement of frequencies in DFT is shown in Fig. 5.6
(a). The lower and of the frequency spectrum occupy the smaller radial
bands, and as the radius increases, the frequency also increases. (b)
shows a 2D low pass filter where only the inner radial bands are non zero
and others are blocked. (c) is a band pass filter as only an intermediate
band of frequencies are allowed. The black circular demarcations are
shown for illustration purposes only.

Considering this arrangement, the filtering is done commonly in a radial way as

shown in Fig. 5.6. The width of the frequency bands influences the number of filter

weights that are needed to be estimated by the network. A detailed explanation

of DFT is given in Appendix A.

Frequency Filter Weights Estimation

In this step, the filter weights will be learnt and the frequency-filter will be con-

structed. Let gd represent the global average pooling layer. We subject both the

magnitude and the phase of the frequency spectrum to a global average pooling

layer to obtain global receptive contextual information of each channel in both

the magnitude and phase spectrum. The global average pooling is defined in Eq.

5.7. This operation can be denoted as,

mu = gd(Mu) (5.19)

ϕu = gd(Φu) (5.20)

where mu, ϕu ∈ RN×C . These channel descriptors are subject independently to
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a series of 1×1 convolutions to obtain a vector of dimension magnitude and phase

samples of the filter which will serve as the attention map in the frequency domain.

Let the two convolutional networks processing the mu and ϕu to obtain the final

filter’s magnitude and phase samples be denoted as τm, τϕ. The filter we learn

would enable the network to selectively focus on certain frequencies and reject

the irrelevant frequencies. We use a learnable way to estimate the weights of the

complex filter which will be used in the attention block. We sample a fixed number

of points both in the magnitude and phase spectrum. Let the filter magnitude and

phase be represented as Mf ,Φf ∈ RN×H×W . From the previous section, we know

that DFT frequency arrangements are radial in nature. We discretize the filter

by predicting the filter magnitude and phase along with the circular blocks in the

frequency domain. As the magnitude and phase of the filter are constant radially,

we predict the values of the magnitude and the phase of the filter at integer radii

from the centre.

The dimensions of the filter depend on the input blurry image dimensions and

this can vary during inference time. This necessarily means that the number of

discretized magnitude and phase points of the filter to be estimated varies with

the inference image dimensions. To mitigate this problem, we estimate a fixed

number of samples (ψ ∈ Z+) of magnitudes and phase responses of the filter along

with equidistant radial location from the networks τm, τϕ. We later interpolate

values for all integer radii from these samples. The exact radii where the samples

are estimated is given below.

d =
⌊
0.5

√
H2 +W 2

⌋
(5.21)

ri =

(
d

ψ − 1

)
i ∀i ∈ {0, 1, . . . , ψ − 1} (5.22)

where d is the integer part of the semi-diagonal distance of the input fea-

ture map u and the values ri i ∈ {0, 1, . . . , ψ − 1} denotes the radii where the

convolutional networks τm, τϕ estimates the magnitude and phase response of the

final filter. We use cubic spline interpolation to interpolate the magnitude and
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(a) ψ = 5 (b) ψ = 15 (c) ψ = 31

Fig. 5.7: Sample magnitude interpolated spectrum shown for different nodes.
Note that the blue dots represent the samples from the CNN τm, and
the green line is the cubic spline interpolation.

phase spectrum from the CNN generated samples. To formulate, let ms, ϕs ∈ Rψ

represent the samples estimated by CNN τm and τϕ.

ms = τm(mu) (5.23)

ϕs = τm(ϕu) (5.24)

We interpolate the values for all integer radii from 0 to d (defined in Eq. (5.22))

so that we can cover till the corners of the filter in our radial filter generation

scheme. The cubic spline interpolation operator can be expressed as,

mI
s = Spline(r,ms) (5.25)

ϕIs = Spline(r, ϕs) (5.26)

where mI
s, ϕ

I
s ∈ Rd are the interpolated magnitude and phase spectrum and

r = [r0, r1, . . . , rψ−1] ∈ Rψ. In Fig. 5.10 we have shown some sample mI
s obtained

in our experiments.
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Frequency Filter Generation

The next step is to generate the complex filter Ff from the interpolated magnitude

and phase spectrum samples mI
s and ϕIs. We propose a radial grouping scheme

in accordance with radial arrangement of frequency bands in DFT. There are no

learnable parameters in this part of the module. From the interpolated 1D vectors

we create a 2D filter matrix using which the filtering will be done on the feature

maps. Let mf , ϕf ∈ RN×H×W denote the magnitude and the phase of the filter

Ff . We follow a radial filter generation scheme expressed below as,

mf (i, j) = mI
s[rd(i, j)] (5.27)

ϕf (i, j) = ϕIs[rd(i, j)] (5.28)

[·] operator here denotes the 1D array indexing as in many popular programming

languages and rd(i, j) ∈ Z+ computes the integral part of the radial distance of

the point (i, j) from the center of the filter (H/2,W/2) which is,

rd(i, j) =

√(
i− H

2

)2

+

(
j − W

2

)2

 ∈ Z+ (5.29)

In Fig. 5.8, we demonstrate this scheme by taking a representative vector

of non negative consecutive integers ζ ∈ Z+, (ζ = [0, 1, . . .]) and constructing the

filter of different dimensions to illustrate scheme listed in Eq. 5.28. The circular

contours aren’t profound in Fig 5.8 (a) as the dimension of the filter is small

(5×5). The arrangement takes a square form as shown. But as the filter dimension

is increased the radial arrangement of entries in ζ is clearly visible as in Fig.

5.8 (c). In Fig. 5.8 (b) we can see the transition of square arrangement of ζ

entries to a smoother radial arrangement which is more clearly visible as the

filter size is increased. This arrangement is different from the Chebyshev distance

grouping suggested by (Stuchi et al., 2020). This radial grouping scheme proposed

is approximated by (Stuchi et al., 2020) for small dimension filters, but significant

deviation can be reported at higher dimensions as in Fig . 5.8 (b), (c)
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(a) 5× 5 Filter (b) 7× 7 Filter (c) 21× 21 Filter

Fig. 5.8: Sample Filters generated via our scheme explained in Eq. (5.28). The
values taken are shown in the colorbar adjacent to each image. Each unit
in the color bar corresponds to filter parameter estimated from the spline
interpolation on the CNN predictions in the Fourier attention modules.
In (a) there are three distinct values present which correspond to three
distinct weights (each for magnitude and phase spectrum) parameters
which correspond to radius r = 0, 1, 2. The representative vector mI

s is
shown in the colorbar in these images.

The advantage in terms of reduction in the number of parameters to be esti-

mated via this scheme is shown in Fig. 5.9.

Frequency Filtering

The complex FFT of the feature map Fu and the estimated complex filter Ff
are multiplied following the rules of complex number multiplication. This ensures

that the regions in the frequency spectrum that the network wants to attend to are

indeed amplified and the trivial and irrelevant frequencies are suppressed. Note

that the filter Ff ∈ CN×H×W can be constructed from the 2D magnitude and the

phase response calculated in the radial grouping scheme. This 2D filter is applied

along the channels of the input feature map’s Fourier transform which can be

represented as,

F = Fu ⊙ Ff (5.30)

where ⊙ refers to the element-wise multiplication by broadcasting along the chan-

nel dimension. Then inverse FFT is taken so that we can obtain the representation

of the processed representation in the feature domain.
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Fig. 5.9: Advantage of using this radial scheme than learning all the filter weights
via the CNN. It’s clear that in the log-log we are getting an order re-
duction in this scheme. For a R× R filter, the number of weights to be
estimated from post interpolation is O(R) whereas, if the scheme is to
learn all the weights in the filter (Learn-all scheme), then it’s O(R2).

up = iFFT (F ) (5.31)

where up is the processed output of the Fourier attention network.

5.3.3 Loss Functions

Given a real blur image (Ib), the generator network GB→S transfers the image from

blur to sharp domain. The output Îs of decoder GD
B→S is used by discriminator

Ds to distinguish if the resultant image is sharp or not.

Îs = GB→S(I
b)

The following loss function is used to optimize both generator GB→S and discrim-

inator Ds simultaneously

LGAN(GB→S, DS) = EIs∼p(Is)
[

logDS(Is)
]
+ EIb∼p(Ib)

[
log(1−DS(GB→S(Ib)))

]
(5.32)
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where E is the error function, p denotes the data distribution, Ib ∼ p(Ib) and Is ∼

p(Is) denote images sampled from blur and sharp image distributions respectively.

The output of decoder GD
S→B is used by discriminator DB to distinguish if

the resultant image is blurred or not. The loss function used to optimize both

generator GS→B and discriminator DB simultaneously is

LGAN(GS→B, DB) = EIb∼p(Ib)
[

logDB(Ib)
]
+ EIs∼p(Is)

[
log(1−DB(GS→B(Is)))

]
(5.33)

The above adversarial loss functions are sufficient to generate visually sharp

images. However, the estimated sharp image’s content need not exactly match

that of the input image due to the unavailability of supervised pairs. Inspired by

cycleGAN (Zhu et al., 2017), we use cycle consistency loss, where the estimated

sharp image is projected into blur domain using GS→B and compared with the

input blur image. The projected blur image can be represented as

Îb = GS→B(I
s)

The cycle consistency loss function can be defined as

Lcyc_b(GB→S, GS→B) = EIb∼p(Ib)
[
||GS→B(GB→S(Ib))− Ib||1

]
(5.34)

Similarly, the cycle consistency loss can be applied for the other domain by pro-

jecting the estimated blur image to the sharp domain using GB→S and comparing

with the real sharp image. The resultant loss function can be defined as

Lcyc_s(GS→B, GB→S) = EIs∼p(Is)
[
||GB→S(GS→B(Is))− Is||1

]
(5.35)

We optionally add the regularization loss on the magnitude spectrum of the

frequency filters in the GB→S Fourier attention blocks. Observed that the magni-

tude spectrum reaches large values in the course of optimization and therefore this

loss ensures that the extreme values in the magnitude spectrum is discouraged.
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(a) Blurry Image (b) Restored Image (c) Sharp Image

Fig. 5.10: Effect of ψ (number of interpolation nodes) is shown. In the first row
ψ = 5, in the second row ψ = 15 and the last row has ψ = 31. ψ = 15
performs better when compared to other values.

Let mi
f represent the 2D magnitude spectrum of the ith Fourier attention block in

GB→S. Then the regularization loss is represented as,

Lreg(GB→S) =
n∑
i=1

||mi
f ||2F (5.36)

where ||||F represents the Frobenius norm of the matrix and n is the total number

of Fourier blocks attention blocks in GB→S.

Total loss function can be written as
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LTotal(GS→B, GB→S, DS, DB)

= λadvLGAN(GB→S, DS)

+λadvLGAN(GS→B, DB)

+λcycLcyc_s(GS→B, GB→S)

+λcycLcyc_b(GB→S, GS→B)

+λregLreg(GB→S)

(5.37)

Following (Zhu et al., 2017), the weights for λadv and λcyc are set as 1 and 10

respectively. The value of λreg is set to a small value to ensure sufficient space for

the filter magnitude spectrum in optimization (λreg = 0.0001) The whole network

is trained in a min-max fashion as

arg min
GS→B ,GB→S

max
DB ,DB

LTotal(GS→B, GB→S, DS, DB) (5.38)

5.4 Experiments

In this section, we will analyse the results and inferences of different experiments.

5.4.1 Datasets and Metrics

GoPro dataset: We use the dataset proposed in (Nah et al., 2017) which used

GOPRO4 Hero Black camera to generate the dataset. The dataset was shot at

240 fps and the blurred image was generated by averaging varying number (7-13)

number of successive latent frames to produce blurs in different scales. The dataset

is composed of 3214 pairs of blurry and sharp images at 1280x720 resolution.

5.4.2 Effect of the number of samples

The interpolation module acts as a regularizer which ensures that no all weights

go to zero and stabilize the optimization of the frequency filter weights. The

spline interpolation is added to impose a smoothness and continuity prior to the
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(a) (b) (c) (d)

Fig. 5.11: (a),(c) are the regularized magnitude spectrum, and the corresponding
phase spectrum is shown in (b),(d) respectively. Phase is shown in
degrees (-180 to 180)

magnitude and the phase-frequency weights. Spline interpolation ensures that the

network can run for arbitrarily shaped images by interpolating the values of the

frequency spectrum.

Fourier attention CNN’s τm semi-diagonally spaced radial values of the magni-

tude and the phase spectrum which are denoted as ms respectively. We run exper-

iments only with magnitude spectrum and muting the phase branch by assuming

that the phase is 0, or in other words, the frequency-filter is completely real. From

our experiments, we find that if the number of samples (ψ) are higher, then the

spline interpolation cannot effectively exploit the correlation in the neighbourhood

in both the phase and the magnitude spectrum. On the contrary, if the number of

samples is very small, then the resultant frequency spectrum couldn’t effectively

attend to relevant frequencies, which caused a dip in performance. Therefore,

there exists an optimal number of sample points, which balances the smoothness

prior and also the representative capacity of the attention module. Refer to Table

5.1 for the results. In Fig. 5.10 some sample magnitude spectrum samples and

the spline interpolation are plotted.

5.4.3 Effect of Phase on Fourier Attention

Phase plays an important role in FFT as it denotes the initial information of the

sinusoid at the origin. When the phase is assumed to be uniformly zero, this

assumption is equal to assuming that the filter is completely real. Therefore this

assumption curtails the representation ability of the module. As expected, the
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Experiment PSNR SSIM pique brisque niqe
Base Model 23.34 0.78 31.71 27.25 2.92
ψ = 5 samples 22.96 0.74 31.86 23.57 2.83
ψ = 15 samples 23.64 0.79 37.50 25.00 3.19
ψ = 31 samples 22.57 0.74 23.72 18.84 3.19

Both Magnitude and Phase 26.13 0.85 49.75 33.69 3.66

Table 5.1: Quantitative Comparison of different experiments on the GoPro
Dataset. The experiments with varying ψ was done by assuming the
entire phase spectrum is zero. The final experiment (both magnitude
and phase) was done with ψ = 15.

inclusion of phase (τϕ) in the attention module improves the model performance.

Its relative performance is shown in Fig. 5.12. For quantitative comparison, look

in the last row of Table 5.1.

5.4.4 Effect of magnitude regularization

To constrain the optimization, we add a frequency magnitude regularization loss

which penalizes large values in the magnitude spectrum as expressed in Eq. (5.36).

This loss successfully ensured that the stability of the magnitude spectrum is

guaranteed and the performance of the model is shown. The regularized spectrum

is shown in Fig. 5.11. The last row in Fig. 5.12 displays the results of weight

regularization. For quantitative comparison, look in the last row of Table 5.1.
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(a) Blurry Image (b) Restored Image (c) Sharp Image

Fig. 5.12: Effect of Φ (phase) and magnitude regularization is shown. In the
first row, the unit magnitude spectrum is assumed uniformly and the
attention block can adjust only the phase spectrum. In the second row,
both magnitude and phase spectrum are learnable and the last row
has both magnitude and phase spectrum learnable optimized with the
regularization loss.
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Chapter 6

FUTURE WORK AND CONCLUSION

6.1 Future Work

The works such as (Karras et al., 2017) emphasise the difficulty of generating high-

resolution images using GANs. They proposed a progressive approach to generate

high resolution (1024 x 1024) images and they show that their approach generates

higher quality images with variation and good training stability. We can aim to

extend our scale recurrent approach to higher resolution images and deblur them.

This approach of using selective information from the lower scales can stabilize

training and can also potentially ease the high-resolution image generation process.

As the model is domain-specific, we can incorporate selective attention models

to make it suitable for generic scene deblurring problem. Extending to generic

scene deblurring using GoPro dataset (Nah et al., 2017).

Currently, the unsupervised scale adaptive attention deblurring network at-

tends to the nearest lower resolution branch. We can investigate the effect of

the addition of multiple connections to more scales and observe its effect on the

performance.

Improving the computational speed of Fourier attention is left for future work.

The cubic spline interpolation due to an expensive matrix inversion takes consider-

able computation time increasing the computational load of the attention module.

The benefits of using optimized FFT is not realized due to the bottleneck caused

by these operations. Making the module lightweight without considerable reduc-

tion in performance is best kept as future work in this area.



6.2 Conclusion

We proposed a multi-scale unsupervised network for deblurring domain-specific

data. We used a coarse-to-fine approach to stabilize GAN training and a scale

adaptive attention module (SAAM) to aid relevant information flow across scales.

Ablation studies show the importance of using our multi-scale approach in con-

junction with SAAM. Qualitative and quantitative comparisons show that our

methods perform on par with supervised methods while outperforming conven-

tional and unsupervised methods.

In the second part, we proposed Fourier attention to extend the representative

ability of the network to focus on the relevant frequency spectrum. Experiments

are run by modifying the generator GB→S to gain robust performance. Though

this is a general-purpose module, we expect it to be generally useful in image

restoration tasks, where the frequency spectrum plays an important role. Improv-

ing the computational speed of Fourier attention is left for future work in this

area.

74



LIST OF PUBLICATIONS

I. CONFERENCE PRESENTATION

1. Praveen Kandula, Lokesh Kumar T, Rajagopalan AN; ”Unsupervised
Domain-Specific Deblurring with Scale-Adaptive Attention”; Manuscript
under preparation



Appendix A

FREQUENCY DOMAIN IMAGE

PROCESSING

A.1 Discrete Fourier Transform

Any image f(x, y) ∈ RM×N can be represented in frequency domain F (u, v) using

two dimensional discrete Fourier transform (DFT) as (j =
√
−1),

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y) exp
(
−j2π

(ux
M

+
vy

N

))
(A.1)

The main theme behind Fourier transform is that any waveform can be rep-

resented as a sum of sines and cosines. This can be seen in Eq. (A.1) where the

exponential term can be expressed in terms of sines and cosines in the variables i

and j determining these frequencies.

The inverse discrete Fourier transform can be obtained by,

f(u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

F (x, y) exp
(
j2π

(ux
M

+
vy

N

))
(A.2)

It can be useful to note that F (0, 0), the value of the spectrum at the origin of

the frequency domain is called the DC component which is equal to the average

value of the image signal f(x, y).

F (0, 0) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y) (A.3)

A.2 Image Filtering

The convolution theorem reveals the relationship between spatial domain convo-

lution and frequency domain multiplication operation which can be related as,



(a) Ideal Lowpass Filter (b) Gaussian Lowpass Filter

Fig. A.1: Frequency domain representations of lowpass filters

f(x, y) ∗ h(x, y) ⇔ H(u, v)F (u, v) (A.4)

and alternatively,

f(x, y)h(x, y) ⇔ H(u, v) ∗ F (u, v) (A.5)

where ∗ indicates the image convolution operator. This conveys that the multi-

plication of Fourier transforms corresponds to convolution in the spatial domain.

Therefore, this theorem can be used to our advantage to apply some spatial filters.

A.3 Frequency Domain Filters

The filters which can be created directly in the frequency domain are,

• Lowpass filters: Filters that cause blur on the image

• Highpass filters: Filters that sharpen the image (edge detectors)

• Notch Filters: Filters which are referred to as band-stop filters

A.3.1 Lowpass Filters

Lowpass filters are special filters that allow only low-frequency components of the

image and attenuate the high-frequency spectrum in the Fourier domain. This act,
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(a) Ideal Highpass Filter (b) Gaussian Highpass Filter

Fig. A.2: Frequency domain representations of highpass filters

therefore, results in the output image dominantly have low-frequency components.

This causes a blurry effect on the resultant image.

If D(u, v) denotes the distance from point (u, v) from the center of the filter,

then an ideal lowpass filter in the frequency domain can be represented as,

H(u, v) =

1 if D(u, v) ≤ D0

0 if D(u, v) > D0

(A.6)

where D0 is a non-negative real number. Note that the DFT frequency bands are

radial in nature and increase with the radius from the center. This is called ideal

lowpass filter because the higher frequency radial bands are completely attenuated

by this filter which therefore is a purely ’lowpass’ filter. Fig. A.1 shows the 2D

representation of lowpass filters.

Another lowpass filter is the Gaussian filter which can be represented as,

H(u, v) = exp

(
−D

2(u, v)

2D2
0

)
(A.7)

A.3.2 Highpass Filters

As opposed to lowpass filters, these filters attenuate low frequencies and allow

higher frequencies to pass. This behaviour causes the resultant image to look like

the edge map of the original input image. This is due to the attenuation of lower

frequencies. The relation between lowpass and highpass filters can be expressed
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as follows,

Hhp(u, v) = 1−Hlp(u, v) (A.8)

An ideal highpass filter does not allow any low frequency to leak through the

filter operation. Some standard highpass filters are shown in Fig. A.2
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(a) (b) (c) (d) (e)

Fig. A.3: Ideal Lowpass filter acting on a flower image. (a) is the input image,
(b) is the DFT of the image (a), (c) is the ideal lowpass filter, (d)
is the output image’s DFT computed as explained in Eq. (A.4), (e)
is the resultant output image. In the first row, the lowpass filter is
aggressive in the sense that most of the frequencies are blocked which
caused a lot of noticeable blurs, but as the lowpass filter allows more
and more frequencies, we see the blur decreasing (as higher frequencies
also allowed). In the last few rows, no visible difference is seen between
the input and the output images.
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(a) (b) (c) (d) (e)

Fig. A.4: Ideal Highpass filter acting on a flower image. (a) is the input image,
(b) is the DFT of the image (a), (c) is the ideal lowpass filter, (d) is the
output image’s DFT computed as explained in Eq. (A.4), (e) is the re-
sultant output image. In the first row, the highpass filter is aggressively
blocked low frequencies and allowed higher frequencies which caused a
strong excitation of edges, but as the highpass filter blocks more and
more frequencies (the increasing black circle in (c),(d)), we see the edge
strength decreasing (as higher frequencies are blocked also causing loss
of power). In the last row, the entire frequency spectrum is blocked
which causes the power of the output to zero (no excitation in output
image).
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