
ACCELERATION OF HARDWARE VERIFICATION

USING DEEP REINFORCEMENT LEARNING

A Project Report

submitted by

SHILPA N

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2021

THESIS CERTIFICATE

This is to certify that the thesis titled ACCELERATION OF HARDWARE VERI-

FICATION USING DEEP REINFORCEMENT LEARNING, submitted by Shilpa

N, to the Indian Institute of Technology, Madras, for the award of the degree of Dual

Degree(B.Tech+M.Tech), is a bona fide record of the research work done by her under

our supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Prof. Pratyush Kumar
Research Guide
Assistant Professor
Dept. of Computer Science and
Engineering
IIT-Madras, 600 036

Prof. Janakiraman Viraraghavan
Department Co-Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 28th June 2021

ACKNOWLEDGEMENTS

Thanks to all friends, family and faculty of IIT Madras who made this project possible.

i

ABSTRACT

KEYWORDS: Hardware verification; Reinforcement learning; Open source; Met-

ric of Performance; Automation algorithm

Traditional hardware verification which was based on constrained pseudo-random stim-

ulus proved to be inefficient with respect to the time taken for completing the verifica-

tion of functional correctness of designs. There has been significant work done in recent

years on using machine learning for intelligently suggesting inputs to the test generator

so that rare and hard to hit events are targeted more often during the verification task.

This project proposes a open source solution on using Deep Reinforcement Learning

for achieving the same. A metric of performance to evaluate the quality of the event-

coverage results achieved in the Automated-RL verification over the pseudo-random

verification process and an algorithm which automates the process of carefully supply-

ing the reward structure and other hyper-parameters to the RL agent in-order to increase

this metric value of the Automated-RL run over the metric value of the pseudo-random

run are proposed. Additionally the report includes experimental results of this algorithm

tested on two designs - RLE-Compressor and COO-Compressor.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vii

ABBREVIATIONS viii

1 INTRODUCTION ix

2 THEORY AND BACKGROUND x

2.1 Deep RL algorithms used . xi

2.2 The Framework developed . xii

2.3 The automation algorithm . xii

2.3.1 Metric definition . xii

2.3.2 Algorithm . xiv

2.3.3 Implementation in Code xvi

2.3.4 How to Run Code . xvii

2.4 Designs used for experimentation xviii

2.4.1 RLE-Compressor . xviii

2.4.2 COO-Compressor . xviii

3 EXPERIMENTS AND RESULTS xix

3.1 RLE-Compressor . xix

3.1.1 Pseudo random verification xix

3.1.2 Results obtained . xxii

3.1.3 Occurrence probabilities observed for events in DDPG-1 knob
setting . xxvii

3.1.4 Maximum probabilities observed for events xxviii

iii

3.1.5 Evolution of probabilities of various events over the iterations xxviii

3.1.6 Metric Evolution over the iterations xxxi

3.1.7 Comments . xxxii

3.2 COO-Compressor . xxxii

3.2.1 Pseudo random verification xxxii

3.2.2 Results obtained . xxxv

3.2.3 Occurrence probabilities observed for events in DQN setting xl

3.2.4 Maximum probabilities observed for events xl

3.2.5 Evolution of probabilities of various events over the iterations xli

3.2.6 Metric Evolution over the iterations xlii

3.2.7 Comments . xliii

4 FUTURE WORK xliv

5 SUMMARY xlv

LIST OF TABLES

3.1 Occurrence probabilities of events in pseudo random verification pro-
cess . xx

3.2 Occurrence probabilities observed for events in the best setting - DDPG
1-knob . xxvii

3.3 Maximum probabilities observed xxviii

3.4 Occurrence probabilities of events in pseudo random verification pro-
cess . xxxiii

3.5 Occurrence probabilities observed for events in the best setting - DQN xl

3.6 Maximum probabilities observed xl

v

LIST OF FIGURES

2.1 Block diagram of the RL framework developed xi

2.2 File organization in the Automated-RL framework xvi

2.3 run_script.sh file contents . xvii

3.1 Bar graph of occurrence probabilities of events in the random run . . xx

3.2 Histogram of all chosen actions(Z values) by the test generator during
the random run . xxi

3.3 Bar graph of occurrence probabilities of events in the run, X-axis de-
notes the various events monitored, Y-axis denotes the probability of
occurrence of those events . xxii

3.4 Histogram of all chosen actions(Z values) by the test generator during
the run . xxiii

3.5 Bar graph of occurrence probabilities of events in the run, X-axis de-
notes the various events monitored, Y-axis denotes the probability of
occurrence of those events . xxiii

3.6 Histogram of all chosen actions(Z1) by the test generator during the run xxiv

3.7 Histogram of all chosen actions(Z2) by the test generator during the run xxiv

3.8 Bar graph of occurrence probabilities of events in the run, X-axis de-
notes the various events monitored, Y-axis denotes the probability of
occurrence of those events . xxv

3.9 Histogram of all chosen actions(Z values) by the test generator during
the run . xxv

3.10 Bar graph of occurrence probabilities of events in the run, X-axis de-
notes the various events monitored, Y-axis denotes the probability of
occurrence of those events . xxvi

3.11 Histogram of all chosen actions(Z1) by the test generator during the run xxvi

3.12 Histogram of all chosen actions(Z2) by the test generator during the run xxvii

3.13 Evolution of probability of Event-0 over the iterations xxviii

3.14 Evolution of probability of Event-1 over the iterations xxix

3.15 Evolution of probability of Event-2 over the iterations xxix

3.16 Evolution of probability of Event-3 over the iterations xxx

3.17 Evolution of probability of Event-4 over the iterations xxx

vi

3.18 Metric Evolution over the iterations for the RLE-Compressor design xxxi

3.19 Bar graph of occurrence probabilities of events in the random run, X-
axis denotes the various events monitored, Y-axis denotes the probabil-
ity of occurrence of those events xxxiii

3.20 Histogram of all chosen actions(word_width) by the test generator dur-
ing the run . xxxiv

3.21 Histogram of all chosen actions(index_width) by the test generator
during the run . xxxiv

3.22 Bar graph of occurrence probabilities of events in the run, X-axis de-
notes the various events monitored, Y-axis denotes the probability of
occurrence of those events . xxxv

3.23 Histogram of all chosen actions(word_width) by the test generator dur-
ing the run . xxxvi

3.24 Histogram of all chosen actions(index_width) by the test generator
during the run . xxxvi

3.25 Bar graph of occurrence probabilities of events in the run, X-axis de-
notes the various events monitored, Y-axis denotes the probability of
occurrence of those events . xxxvii

3.26 Histogram of all chosen actions(word_width) by the test generator dur-
ing the run . xxxvii

3.27 Histogram of all chosen actions(index_width) by the test generator
during the run . xxxviii

3.28 Bar graph of occurrence probabilities of events in the run, X-axis de-
notes the various events monitored, Y-axis denotes the probability of
occurrence of those events . xxxviii

3.29 Histogram of all chosen actions(word_width) by the test generator dur-
ing the run . xxxix

3.30 Histogram of all chosen actions(index_width) by the test generator
during the run . xxxix

3.31 Evolution of probability of Event-0 over the iterations xli

3.32 Evolution of probability of Event-1 over the iterations xli

3.33 Evolution of probability of Event-2 over the iterations xlii

3.34 Metric Evolution over the iterations for the COO-Compressor design xliii

vii

ABBREVIATIONS

RL Reinforcement Learning

Deep RL Deep Reinforcement Learning

ML Machine Learning

RLE Run Length Encoding

COO COOrdinate list

CDTG Coverage Directed Test Generation

TG Test Generator

DQN Deep Q-Network

DDPG Deep Deterministic Policy Gradient

SAC Soft Actor Critic

LR Learning Rate

TF Train Frequency

viii

CHAPTER 1

INTRODUCTION

As digital designs are getting increasingly complex and sizeable, the time for their

verification, which usually takes up a major amount in their production time, also goes

up significantly. For the verification of hardware designs, the techniques of formal

verification(which includes model checking, theorem proving etc.) or simulation-based

verification or a hybrid of the two are adopted. Simulation-based verification broadly

involves using random input stimulus or carefully designed set of input signals to test

the design for bugs. The output of the design is compared to the output of a reference

golden model, to identify bugs in the design.

Traditionally, for simulation-based verification, constrained random stimulus, which is

the process of random input generation with constraints on their values based on design

specifications, used to be the norm. But as the size of these digital circuits is going

up, the number of inputs required to fully verify the circuit blows up exponentially

and the constrained random stimulus verification method might take forever to ensure

correctness of the designs. So, in this project we model the task of verification as

a reinforcement learning(RL) problem, where the goal of the RL agent is to suggest

more of such inputs to the design-under-test(DUT) which will drive the design to more

uncommon and faulty internal states. This will help us check the system’s behaviour

more rigorously and enable us to catch bugs easily.

This report gives a brief about hardware verification method commonly in use, the

ML/RL algorithms which are used to aid it, the open-source framework that is adopted

as part of this project for the task of verification - which involves a DUT, a cocotb

layer integrated with a RL layer and an automation algorithm which runs on top of it.

The report also includes experimental results of the framework tested on two designs -

RLE-Compressor and COO-Compressor.

CHAPTER 2

THEORY AND BACKGROUND

Simulation-based hardware verification which was traditionally done using constrained

pseudo-random stimulus turned out to be highly inefficient with respect to the time

it took to fully verify designs. Now, there are test benches which work on Coverage

Directed Test Generation(CDTG) (3). In this method, after a round of inputs are sent

to the test generator(TG) or a set of parameters that directly affect input generation is

sent to the test generator(TG), the outputs and the results of coverage(of internal states)

from the DUT is collected. Based on these results the next set of inputs/parameters

to the TG are carefully designed such that the next round of result would close the

coverage holes of the previous round. Researches, both in academia and industry, have

now turned to Machine Learning to help close this gap between coverage results and

test case generation.

Among the Machine Learning algorithms, this project focuses on using Reinforcement

learning(RL) for the above process (2) (1). RL methods have a Markov State Space

defined as part of it and this can be used to capture the internal states of the digital

designs at any point of time. Also, since the number of possible internal states and

available action choices of these designs is huge, we could use Deep RL algorithms

to handle it effectively. In the single-state case, which is the most generic method to

handle most designs, these algorithms take the form of the multi-armed bandit problem.

Figure 2.1: Block diagram of the RL framework developed

2.1 Deep RL algorithms used

The Deep Reinforcement learning algorithms used in the verification framework de-

veloped by us are DQN(Deep Q-Network), SAC(Soft Actor Critic) and DDPG(Deep

Deterministic Policy Gradient). Their respective implementations from the Stable −

Baselines3 package have been used directly.

For designs requiring parameters in the continuous action space, only DDPG and SAC

are used(as DQN deals with discrete actions).

In designs with parameters in the discrete action space, DQN, DDPG and SAC are used.

This is possible by mapping the actions of DDPG and SAC from continuous space to

discrete space.

xi

2.2 The Framework developed

The framework developed consists of four layers - DUT, cocotb, RL and the automation

layer. The innermost layer is the DUT(written in Verilog). The Cocotb layer is the next

one and it consists of the test bench(written in python) which provides inputs to the

DUT and can be used to monitor the internal signals and the outputs of the DUT. The

RL layer interacts with the cocotb layer to intelligently suggest inputs to the DUT such

that the coverage of certain targeted events(generally uncommon/rare events) can be

increased. The automation layer, which acts as a wrapper on the RL layer, takes as

input the accumulated coverage of all monitored events after each round and suggests

reward schemes and hyper-parameters(to direct the testing to certain targeted events) to

the RL layer such that the coverage holes of the last run are met.

The automation algorithm in this project predicts which is the next rare event to be tar-

geted by the RL agent based on the coverage results obtained. A brief of the algorithm

adopted is given in the next section.

2.3 The automation algorithm

The automation algorithm has two main objectives:

• Among the events monitored, we give greater weightage to increasing the prob-
ability of occurrence of relatively rare events and thereby attempting to reach a
more uniform distribution of visited events.

• Drop out from trying to explore events that don’t show much increase in their
probability of occurrence with the aid of RL.

The automation algorithm works based on the metric of performance we define. The

algorithm must target those events during each iteration to increase this metric value

such that it is higher or preferably much higher than the metric value of the random run.

To explain it better, let us first define the metric.

2.3.1 Metric definition

In a given DUT, say, n events are monitored. The pseudo random test-case generation,

when run for sufficient time on the DUT, would show a certain probability of occurrence

xii

of these n events. Let the individual probabilities of occurrence of these events in the

pseudo random test-case generation be denoted by the vector,

P = [p1, p2.., pn]

Note that the values p1, p2 etc. are individual probabilities and do not form a probability

distribution, i.e., p1 + p2 + ..pn = 1 may or may not hold.

Now, we run the Automated-RL test bench on the DUT for the same number of itera-

tions and we note down the new probabilities of occurrence of these events as vector,

Q = [q1, q2.., qn]

NOTE : These individual probabilities are calculated via the monitor_signals()

function. The monitor_signals() function keeps a track of the occurrence/non-

occurrence of these n events by sampling every clock cycle. So the occurrence probabil-

ity of an event is calculated as the number of clock cycles for which the event occurred

in our duration of consideration divided by the total number of clock cycles for which

the monitor_signals()sampled for events in the duration of our consideration.

For defining the metric, we consider the following criteria :

• The random baseline value of the metric should be constant for a given design.

• For a given same proportionate increase in the probabilities of two events from
their respective random test-case generation probabilities, the metric of the Automated-
RL run should increase(w.r.t the metric for the random baseline run) more for the
increase in occurrence probability of the rarer event.

After consideration of multiple mathematical functions, the metric of performance has

been defined as(4):

metricAutomated−RL =
n∑

i=1

−(1− pi)
2 ∗ log(pi) ∗ (qi/pi)

The equation can be broken down as:

metric =
n∑

i=1

factor(pi) ∗ Proportionate Change In Probability Of Event i

xiii

where,

factor(pi) = −(1− pi)
2 ∗ log(pi)

Proportionate Change In Probability Of Event i = (qi/pi)

Now, Proportionate Change In Probability Of Event i refers to the proportionate

change in probability of event i’ in the Automated-RL run when compared to the ran-

dom test-case generator run. factor(pi) is a kind of relevance measure given to the pro-

portionate change in probability of event i. It is a decreasing function w.r.t pi. Hence,

higher this value, more will be the increase in the metric of performance due to a given

proportionate change in the probability of an event.

The metric of the random test-case generator run can be found by substituting qi = pi

in the metric equation of Automated-RL run to obtain,

metricrandom =
n∑

i=1

−(1− pi)
2 ∗ log(pi)

The metric value of the pseudo random run on a design is constant for a given design

in comparison to the metric value of different Automated-RL runs on the design which

keeps changing with the RL algorithm and other hyper-parameters adopted.

Exception of pi = 0 is handled by placing a 0.1 in place of the 0 in the ith coverage

count bin, i.e. p_i = 0.1/total number of events sampled. This is chosen as an

optimistic probability estimate of pi, i.e., we are expecting that the event will show up

at least once when simulated 10 times more than the current number of iterations.

2.3.2 Algorithm

The automation layer takes as input the accumulated coverage of all monitored events

after each round and suggests reward schemes and hyper-parameters(to direct the test-

ing to certain targeted events) to the RL layer of the framework developed such that the

coverage holes of the last run are met.

A descriptive pseudo-code version of the algorithm used is given below.

#initialization

NUM_EVENTS = 5

xiv

MAX_ITERATIONS = 50

start_value = 0.05

factor_array = [start_value] * NUM_EVENTS

reward_function = [0] * NUM_EVENTS

all_events = [0, 1, 2, 3, 4]

for(i=0; i<MAX_ITERATIONS; i++)

{

Run the code with the parameters loaded in the "config

.ini" file using "make SIM=verilator" command

After the run, collect the accumulated coverage of the

events till this point of time in terms of their

occurrence probabilities(Q), and note down the

reward structure used, R. Also note down the

accumulated occurrence probabilities till before

this run, call it Q_prev.

Since the reward structure is such that only a single

event is rewarded in one run, using the R value,

note down the chosen event for rewarding for this

iteration, call it E

Calculate s_i = -((1-q_i)**2)*log(q_i) for each event

i. Call [s_1, s_2.. s_5] = S #exception of q_i=0 is

handled

if(i>0)

{

Calculate t = scaled_sigmoid((Q[E]-Q_prev[E])/Q[E])

#exception of Q[E]=0 is handled

factor_array[E]=t;

xv

}

Event chosen for rewarding in the next run,

E_next = random.choice(all_events, probability=

normalize(S*factor_array))

Update the reward_function in the "config.ini" file by

"R_next = [0] * NUM_EVENTS; R[E_next] = 1".

Also, update other RL run hyperparameters as required.

}

2.3.3 Implementation in Code

The file organization in the automated-RL framework developed for the verification task

is as given below:

Figure 2.2: File organization in the Automated-RL framework

NOTE: The code for the automation algorithm has been inserted into the function called

automation_algorithm_and_logging() in the RL_helper.py.

xvi

2.3.4 How to Run Code

To start the whole verification process, the user must enter into the automated_framework

directory and run the init_process.py file using the command:

python init_process.py

This file initializes all variables and other hyper-parameters used in the automation run.

After this, the user must open the run_script.sh.

Figure 2.3: run_script.sh file contents

Replace the "5" given in this file with the total number of iterations for which you want

the automation algorithm to run, say T iterations. Now run the run_script.sh file using

the commands:

chmod +x run_script.sh

followed by

.\run_script.sh

NOTE: If the user wishes to stall the automation algorithm and run using their own

xvii

desired set of hyper-parameters and reward structures for each iteration, then they have

the provision to do so as the partial coverage results for the runs till then are stored in a

file. They can do so by changing the config.ini file with their desired set of parameters

and then running the command ./run_script.sh again.

If the user is done with the verification task, they should run the end_process.py file

using the command:

python end_process.py

This file saves the output log from all the runs along with the timestamp and also deletes

all intermediate files which were created.

2.4 Designs used for experimentation

2.4.1 RLE-Compressor

The goal of this hardware is to take in a sequence of natural numbers and compress

it using run length encoding. The hardware design thus attempts to reduce the length

sequence by representing the consecutive zeros in the input sequence using their count.

2.4.2 COO-Compressor

COO-Compressor or COOrdinate List compressor compresses the input map supplied

to it based on the index and value of only the non-zero elements in the input map.

The two design configuration parameters word_width and index_width are the only

variables that we alter during the verification process.

xviii

CHAPTER 3

EXPERIMENTS AND RESULTS

This chapter gives the experimentation results on the two designs discussed above.

3.1 RLE-Compressor

In this design we monitor 5 events for the purpose of our experiment.

• Event-0 is dut.rg_word_counter.value == 16.

• Event-1 is dut.rg_zero_counter.value == 64.

• Event-2 is dut.rg_counter.value == (2**count_width - 2).

• Event-3 is dut.rg_next_count != 0.

• Event-4 is (dut.rg_zero_counter.value == 64) and (dut.rg_next_count != 0).

The input suggested by the test generator is a probability value called Z, which is used to

determine the probability by which each of the elements in the input activation map(of

size 400) supplied to the RLE-compressor is 0. So Z=1 implies all 400 elements of

the activation map is 0. This particular choice of action space was because it was

identified that the special functioning of the compression algorithm which treats zeros

in a particular way and any other non-zero number in another particular way(but all

non-zero numbers are treated similarly in the compression algorithm).

3.1.1 Pseudo random verification

When the pseudo random test-case generation is used on the RLE-Compressor design

for 50 iterations/runs, we notice the following occurrence probabilities of events.

Table 3.1: Occurrence probabilities of events in pseudo random verification process

Event Probability

Event-0 0.104

Event-1 019

Event-2 0.00022

Event-3 0.015

Event-4 0.012

Figure 3.1: Bar graph of occurrence probabilities of events in the random run

xx

Figure 3.2: Histogram of all chosen actions(Z values) by the test generator during the
random run

Now we use the Automated-RL framework to predict the Z value. Since Z is a proba-

bility, its value is in the continuous action space. Hence, we use Deep RL methods of

SAC and DDPG, which deal with continuous action space.

We consider two settings - the first with a single probability knob predicting a Z value

with which the entire input activation map is decided, the second with two probability

knobs. The two knobs predict the next element in the activation map based on the value

of the element immediately preceding it, i.e., the first knob predicts the probability of

the next element being 0 if the previous element is 0 and the second knob predicts the

probability of the next element being 0 if the previous element was a non-zero number.

Let us call the probability values in the 2 knob setting as Z = [Z1, Z2].

So, for this design, we run the automation algorithm for 4 settings in total - SAC-1

knob, SAC-2 knob, DDPG-1 knob and DDPG-2 knob.

The 5 events are denoted by 10000, 01000, 00100, 00010 and 00001 and they respec-

tively correspond to Event-0, Event-1, Event-2, Event-3 and Event-4.

xxi

3.1.2 Results obtained

Figure 3.3: Bar graph of occurrence probabilities of events in the run, X-axis denotes
the various events monitored, Y-axis denotes the probability of occurrence
of those events

xxii

Figure 3.4: Histogram of all chosen actions(Z values) by the test generator during the
run

Figure 3.5: Bar graph of occurrence probabilities of events in the run, X-axis denotes
the various events monitored, Y-axis denotes the probability of occurrence
of those events

xxiii

Figure 3.6: Histogram of all chosen actions(Z1) by the test generator during the run

Figure 3.7: Histogram of all chosen actions(Z2) by the test generator during the run

xxiv

Figure 3.8: Bar graph of occurrence probabilities of events in the run, X-axis denotes
the various events monitored, Y-axis denotes the probability of occurrence
of those events

Figure 3.9: Histogram of all chosen actions(Z values) by the test generator during the
run

xxv

Figure 3.10: Bar graph of occurrence probabilities of events in the run, X-axis denotes
the various events monitored, Y-axis denotes the probability of occurrence
of those events

Figure 3.11: Histogram of all chosen actions(Z1) by the test generator during the run

xxvi

Figure 3.12: Histogram of all chosen actions(Z2) by the test generator during the run

3.1.3 Occurrence probabilities observed for events in DDPG-1 knob

setting

DDPG-1 knob setting showed the highest increase in metric of performance of the

Automated-RL run. The occurrence probabilities of each event in the run are given

below:

Table 3.2: Occurrence probabilities observed for events in the best setting - DDPG 1-
knob

Event Probability

Event-0 0.084

Event-1 0.0085

Event-2 0.0034

Event-3 0.0064

Event-4 0.00496

xxvii

3.1.4 Maximum probabilities observed for events

Now, by varying the algorithms(options - SAC, DDPG) used and also by varying the

available hyper-parameters like learning rate or LR(options - 0.0001, 0.001, 0.01, 0.1)

and train frequency or TF(options - (1,’episode’), (2,’episode’), (4,’episode’)) of the RL

agent, the maximum probabilities for each event observed was tabulated.

Table 3.3: Maximum probabilities observed

Event Maximum Probability RL setting for maximum probability Mode of chosen actions

Event-0 0.1479 SAC,1-knob,LR=0.01,TF=1 Z=0

Event-1 0.0325 SAC,2-knob,LR=0.01,TF=1 Z=[0,0]

Event-2 0.00545 DDPG,1-knob,LR=0.001,TF=1 Z=1

Event-3 0.0265 SAC,2-knob,LR=0.01,TF=1 Z=[0,1]

Event-4 0.0210 SAC,1-knob,LR=0.01,TF=1 Z=[1,1]

3.1.5 Evolution of probabilities of various events over the iterations

Figure 3.13: Evolution of probability of Event-0 over the iterations

xxviii

Figure 3.14: Evolution of probability of Event-1 over the iterations

Figure 3.15: Evolution of probability of Event-2 over the iterations

xxix

Figure 3.16: Evolution of probability of Event-3 over the iterations

Figure 3.17: Evolution of probability of Event-4 over the iterations

xxx

3.1.6 Metric Evolution over the iterations

The metric value after each iteration is calculated according to the metric defined for

the Automated-RL run given in Section 3.3.1.

The metric corresponding to the pseudo random test generator is calculated and is set

as a baseline which is constant across iterations. This curve is named as "Random RL

run baseline"

The metric evolution curves corresponding to runs SAC 1-knob, SAC 2-knob, DDPG

1-knob and DDPG 2-knob have been plotted.

The curve named as "Maximum metric" is calculated by taking the probability values of

the events from the Maximum probabilities observed table(Table 4.2). These probabil-

ity values are plugged into the Q array defined in Section 3.3.1 and used in the equation

for metricAutomated−RL. These best probabilities for each each don’t occur in one single

run, but then these can be used as a good upper bound on the best achievable metric.

The curve corresponding to the metric evolution over iterations is given below.

Figure 3.18: Metric Evolution over the iterations for the RLE-Compressor design

xxxi

3.1.7 Comments

• As observed from the probability evolution over iterations curves, we can see that
the metric evolution follows the trend of evolution of probability of event-2, the
rarest event.

• For event-2, we see from the Maximum probabilities table(Table 3.3) that the
mode of chosen actions for run favoring event-2 is Z=1(i.e., its most often pre-
dicting the next number in the activation map to be zero).

• From the histogram of chosen actions curves, we see that DDPG-1 knob predicts
Z=1 more often that other RL settings and hence this design setting shows the
highest increase in the metric of performance over random run.

• Though it maybe puzzling that 1-knob setting does better than the 2-knob setting,
it is mainly because of our time constraint that we set the total number of episodes
of experience collection of the RL agent to 100 and 2-knob setting would require
more iterations to learn the 2-parameters in the setting when compared to the 1-
knob setting which needs to learn only 1-parameter in the same time. The number
of iterations required grows exponentially with number of knobs.

3.2 COO-Compressor

In this design we monitor 3 events for the purpose of our experiment.

• Event-0 is dut.rg_block_counter.value == 16.

• Event-1 is dut.rg_block_length.value % 4 != 0.

• Event-2 is dut.rg_next_count != 0.

The input suggested by the test generator are 2 values - word_width and index_width.

Both these parameters have their valid values in the discrete action space of {1, 2..8}.

So for this design we supply actions in the space {1, 2..8} ∗ {1, 2..8}. Hence, we have

64 sets of valid actions of the form - (1,1), (1,2) .. (8,7), (8,8).

3.2.1 Pseudo random verification

When the pseudo random test-case generation is used on the COO-Compressor design

for 50 iterations/runs, we notice the following occurrence probabilities of events.

xxxii

Table 3.4: Occurrence probabilities of events in pseudo random verification process

Event Probability

Event-0 0.2034

Event-1 0.7205

Event-2 0.1696

Figure 3.19: Bar graph of occurrence probabilities of events in the random run, X-axis
denotes the various events monitored, Y-axis denotes the probability of
occurrence of those events

xxxiii

Figure 3.20: Histogram of all chosen actions(word_width) by the test generator during
the run

Figure 3.21: Histogram of all chosen actions(index_width) by the test generator during
the run

Now we use the Automated-RL framework to predict the index_width and word_width.

xxxiv

We use Deep RL methods of SAC, DDPG and DQN for this experiment. We model

the action space as discrete set of 64 values. For DQN we directly use the discrete

action predicted, and for DDPG and SAC which predicts optimal actions in the contin-

uous space, we map it to one of the 64 discrete actions(by scaling followed by using

math.ceil() function in Python). We then map the discrete set of 64 actions(say, a

discrete action in this set is A) into a word_width and index_width by:

word_width = A%8

index_width = A/8

The 3 events are denoted by 100, 010 and 001 and they respectively correspond to

Event-0, Event-1 and Event-2.

3.2.2 Results obtained

Figure 3.22: Bar graph of occurrence probabilities of events in the run, X-axis denotes
the various events monitored, Y-axis denotes the probability of occurrence
of those events

xxxv

Figure 3.23: Histogram of all chosen actions(word_width) by the test generator during
the run

Figure 3.24: Histogram of all chosen actions(index_width) by the test generator during
the run

xxxvi

Figure 3.25: Bar graph of occurrence probabilities of events in the run, X-axis denotes
the various events monitored, Y-axis denotes the probability of occurrence
of those events

Figure 3.26: Histogram of all chosen actions(word_width) by the test generator during
the run

xxxvii

Figure 3.27: Histogram of all chosen actions(index_width) by the test generator during
the run

Figure 3.28: Bar graph of occurrence probabilities of events in the run, X-axis denotes
the various events monitored, Y-axis denotes the probability of occurrence
of those events

xxxviii

Figure 3.29: Histogram of all chosen actions(word_width) by the test generator during
the run

Figure 3.30: Histogram of all chosen actions(index_width) by the test generator during
the run

xxxix

3.2.3 Occurrence probabilities observed for events in DQN setting

The DQN setting showed the highest increase in metric of performance of the Automated-

RL run. The occurrence probabilities of each event in the run are given below:

Table 3.5: Occurrence probabilities observed for events in the best setting - DQN

Event Probability

Event-0 0.2804

Event-1 0.9215

Event-2 0.2425

3.2.4 Maximum probabilities observed for events

Now, by varying the algorithms(options - SAC, DDPG, DQN) used and also by varying

the available hyper-parameters like learning rate or LR(options - 0.0001, 0.001, 0.01,

0.1) and train frequency or TF(options - (1,’episode’), (2,’episode’), (4,’episode’)) of

the RL agent, the maximum probabilities for each event observed was tabulated.

Table 3.6: Maximum probabilities observed

Event Maximum Probability RL setting for maximum

probability

Mode of cho-

sen actions

Event-0 0.2853 SAC, LR=0.01, TF=1 word_width =

8, index_width =

8

Event-1 0.9346 DQN, LR=0.01, TF=1 word_width =

any, index_width =

any

Event-2 0.2693 DQN, LR=0.01, TF=1 word_width =

7, 8, index_width =

7, 8

xl

3.2.5 Evolution of probabilities of various events over the iterations

Figure 3.31: Evolution of probability of Event-0 over the iterations

Figure 3.32: Evolution of probability of Event-1 over the iterations

xli

Figure 3.33: Evolution of probability of Event-2 over the iterations

3.2.6 Metric Evolution over the iterations

The metric value after each iteration is calculated according to the metric defined for

the Automated-RL run given in Section 3.3.1.

The metric corresponding to the pseudo random test generator is calculated and is set

as a baseline which is constant across iterations. This curve is named as "Random run

baseline"

The metric evolution curves corresponding to runs of SAC, DDPG and DQN are plotted.

The curve named as "Maximum metric" is calculated by taking the probability values of

the events from the Maximum probabilities observed table(Table 3.6). These probabil-

ity values are plugged into the Q array defined in Section 3.3.1 and used in the equation

for metricAutomated−RL. These best probabilities for each each don’t occur in one single

run, but then these can be used as a good upper bound on the best achievable metric.

The curve corresponding to the metric evolution over iterations is given below.

xlii

Figure 3.34: Metric Evolution over the iterations for the COO-Compressor design

3.2.7 Comments

• It can be observed from the metric evolution plot that the metric values for the
COO-Compressor design are much lower than that of the RLE-Compressor. This
is because the event occurrence probabilities in the random test case generation
case of the COO-Compressor are much higher than their counterparts in the RLE-
Compressor example.

• As observed from the probability evolution over iterations curves, we can see that
the metric evolution follows the trend of evolution of probability of event-2, the
rarest event.

• For event-2, we see from the Maximum probabilities table that the mode of cho-
sen actions for run favoring event-2 is word_width = 7, 8, index_width = 7, 8.

• From the histogram of chosen actions curves, we see that the DQN-automated run
predicts the optimal actions in the most similar fashion(to the above discussed
mode of chosen actions) than other RL settings and hence this design setting
shows the highest increase in the metric of performance over random run.

• Since the design configuration parameters(word_width, index_width) are in the
discrete space and since DQN’s action space is also discrete, DQN was able to
show highest increase in metric of performance.

xliii

CHAPTER 4

FUTURE WORK

• Multi-state RL based experiments - meaningful choice of what constitutes as the
Markov states of the RL environment

• Curiosity and Hindsight Experience Replay as methods to deal with sparse re-
wards - coverage holes

• Dealing with large discrete action spaces

• Model based RL and need for good priors

CHAPTER 5

SUMMARY

• The automation algorithm with the desired objectives was successfully imple-
mented in code.

• The algorithm was tested out on two designs-RLE-Compressor and COO-Compressor,
and the results were presented.

• A metric to quantify the performance of the automation algorithm over the pseudo
random test case generator was proposed and was used for evaluating the results
of the two designs.

• The Automated-RL setting which did best in terms of the metric of performance
for each design was identified and meaningful insights on the results were pre-
sented.

REFERENCES

[1] Böttinger, K., P. Godefroid, and R. Singh (2018). Deep reinforcement fuzzing.

[2] Hughes, W., S. Srinivasan, R. Suvarna, and M. Kulkarni (2019). Optimizing
design verification using machine learning: Doing better than random.

[3] Ioannides, C. and K. I. Eder (2012). Coverage-directed test generation automated
by machine learning – a review. ACM Trans. Des. Autom. Electron. Syst., 17. ISSN
1084-4309. URL https://doi.org/10.1145/2071356.2071363.

[4] Tsung-Yi Lin, R. G. K. H. P. D., Priya Goyal (2017). Focal loss for dense object
detection.

xlvi

https://doi.org/10.1145/2071356.2071363

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	THEORY AND BACKGROUND
	Deep RL algorithms used
	The Framework developed
	The automation algorithm
	Metric definition
	Algorithm
	Implementation in Code
	How to Run Code

	Designs used for experimentation
	RLE-Compressor
	COO-Compressor

	EXPERIMENTS AND RESULTS
	RLE-Compressor
	Pseudo random verification
	Results obtained
	Occurrence probabilities observed for events in DDPG-1 knob setting
	Maximum probabilities observed for events
	Evolution of probabilities of various events over the iterations
	Metric Evolution over the iterations
	Comments

	COO-Compressor
	Pseudo random verification
	Results obtained
	Occurrence probabilities observed for events in DQN setting
	Maximum probabilities observed for events
	Evolution of probabilities of various events over the iterations
	Metric Evolution over the iterations
	Comments

	FUTURE WORK
	SUMMARY

