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ABSTRACT

KEYWORDS: Online Learning; Online Convex Optimisation; Inventory Manage-

ment; Online Gradient Descent; Regret;

Online learning is a subset of machine learning, where the learner receives data and

suffers losses sequentially. Such a structure is seen in many real-life problems such as

in finance, capital management etc. Inventory management is an important problem

which falls under this structure. Online learning algorithms can thus be applied to the

inventory management problem.

One caveat is that the classical online learning framework is memoryless, in that,

the current decisions do not affect the future costs. However, the inventory manage-

ment problem has an element of memory in the form of future storage or delay costs

associated with the current decision. Initially, we begin by considering a memoryless

version of the inventory management.

There have been some works in the area of online learning with memory which

propose algorithms for this setting. The standard inventory problem with memory is

thus a candidate for this setting. In this work, we verify the same. The adversary

however can be dynamic, hence, we finally consider the notion of dynamic policy regret

for problems with memory. We propose an algorithm which is an adaptation of an

existing algorithm, establish its regret guarantees, and apply it to the inventory problem.
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CHAPTER 1

INTRODUCTION

1.1 Preamble

Online Learning frameworks have been efficiently used to solve a lot of complex prob-

lems in real life. The main advantage of using online learning algorithms are due to

the strong theoretical guarantees which come embedded with them. There have been

several works particularly in recent times to explore and expand the context of these

algorithms to serve the expanding complexity of problems which could potentially be

solved through the application of techniques from online learning. Although a lot of

these complex problems which are solved under the online learning framework could

be solved using classical probability theory, for example using the theory of Markov

Decision Processes, such classical methods require some probabilistic assumptions on

the underlying data-generating process. Under the online learning framework, however,

no such assumption are made on the process in which the underlying data-generation

occurs. Almost all problems which have been solved using classical theory, are well-

suited candidates for the application of online learning algorithms.

One such problem studied quite extensively under the Markov Decision Process set-

ting is the inventory problem. The optimal algorithm, albeit in expectation, has been

well known and presented extensively. However, there are quite a few shortcomings

of the same. First of all, the only guarantee of the optimality of the algorithm is in

expectation and moreover such an algorithm requires the knowledge of the underlying

probability distribution. In other words, this means that only if infinitely many instances

of the data sequence underlying the problem is generated by a probability distribution,

which is assumed to be known to us, the average performance of the algorithm is op-

timal. However, there is no guarantee how good or bad its performance is for a single

sequence of data. Attempting to solve the same problem under the online learning

framework and if the corresponding algorithm used has a regret upper bound, there is

a strong guarantee what the worst performance of the algorithm for any data sequence

could be.



1.2 Online Learning Framework

In many scenarios, data received by learning algorithms is sequential and not always

instantaneous whereas decisions must be made instantaneously. Online learning al-

gorithms were developed to account for this fact and to learn from data sequentially.

There are several examples such cases of sequential data flow and instantaneous deci-

sions like stock investing decisions and obviously inventory management. In a typical

online learning problem, a sequence of data is made available to a learner but the frame-

work is restrictive in the sense that the learner has to make a decision before receiving

further data. In making the decision, the learner suffers some loss or obtains some re-

ward chosen by the environment. From this point, the environment which generates

both the reward and the loss is referred to as the adversary for the reason that such a

nomenclature is followed while defining the regret. The online learning framework is

very vast and covers a wide range of problems. However a general problem posed under

this framework follows,

for t = 1, ..., T do

1: the adversary chooses a context xt ∈ X and reveals it to the learner; the adversary

chooses the true yt ∈ Y;

2: the learner chooses a decision ŷt ∈ Y;

3: the adversary reveals the true yt ∈ Y;

4: the adversary reveals the loss ft : Y 7→ R;

5: the learner suffers a loss of ft(ŷt);

end for

Note that it isn’t necessary for the adversary to reveal the context and/or the true

label, all that is required is the loss/reward to be received by the learner. In fact a true

value need not even exist as is the case with the inventory problem. This means that

steps 1 and 3 needn’t necessarily occur. Also, we will consider only losses and not re-

wards as any problem with rewards can be posed as a loss problem by simply negating

the reward. Such a framework generally covers most online learning problems. For ex-

ample, the ’simple’ problem of bit prediction can be brought into this framework where

there is no context xt and the true labels yt are bits i.e 0,1 revealed after a prediction .

The learner is supposed to predict the next incoming bit yt based on the history of re-

ceived and predicted bits. The adversary generated loss function is simply the 0-1 loss

2



ft(yt) = |ŷt−yt|. The above framework is only a vanilla backbone of the online learn-

ing framework. There can be several modifications to this above discussed framework

as is the case with learning in the presence of experts.

1.3 Prediction with Experts and Regret

In many scenarios, the learner will have access to the advice of several experts to make

his decision. Formally, the prediction with experts problem is posed as,

decision space D, outcome space Y , set of experts E
for t = 1, ..., T do

1: the adversary chooses the next outcome yt ∈ Y
2: the expert advice

{

fE,t ∈ D : E ∈ E
}

is chosen and revealed to the forecaster

3: the learner chooses the prediction ŷt ∈ D;

4: the adversary reveals the true yt ∈ Y;

5: the adversary reveals the loss ft : Y 7→ R;

6: the learner suffers a loss of ft(ŷt); and each expert E incurs a loss of ft(fE,t);

end for

Note that as before, a true outcome need not exist and it is only the loss which is

required by the learner. In such a setting comparing the performance of the learner with

that of the performance of the expert which incurs the least loss cumulatively in the time

horizon. Mathematically, we can define a quantity which does the above comparison

as,

RT = max
E∈E

T
∑

t=1

(

ft(ŷt)− ft(fE,t)
)

=
T
∑

t=1

ft(ŷt)−min
E∈E

T
∑

t=1

ft(fE,t)

= L̂T −min
E∈E

LE,T

where L̂T =
∑T

t=1
ft(ŷt) and LE,T =

∑T
t=1

ft(fE,t). The quantity which we have

defined is the static regret for the prediction with experts problem. Most literature in

online learning focuses on regrets, although the regrets defined could be different as per

3



the goals of the works. However even though different regrets are defined, the main

goal of regret analysis is to compare the performance of an algorithm or learner with

that of a comparator.

1.4 Online Convex Optimisation

Online convex optimisation (OCO) problems involve a slightly more restrictive study

involving convexity constraints on the sets of decisions and the loss functions. It is a

slightly more generic setting than prediction with experts. A learner under the online

convex optimisation setting makes decisions iteratively without knowing the outcome

which a loss function chosen by an adversary. The loss function is revealed to the learner

once he makes the decision. Formally, the online convex optimisation is a process

described by the following steps,

for t = 1, ..., T do

1: the learner chooses xt ∈ K
2: the adversary chooses the loss ft : K 7→ R;

3: the learner suffers a loss of ft(xt);

end for

Additionally there are certain constraints on the decision set and the loss function.

The decision set K ⊆ R
n is constrained to be a bounded convex set under the OCO

setting. The loss functions ft : K 7→ R too are assumed to be bounded and convex. The

goal of the algorithms is to sequentially minimise the loss suffered. However, how good

or bad an algorithm performs should be measured in an absolute sense because the loss

function can keep varying with iteration. This leads us to considering a measure which

compares the performance of a learner/algorithm to a comparator. As in the previous

case of prediction with expert advice, we define the regret. The static regret for the

OCO problem is defined as,

RT =
T
∑

t=1

ft(xt)−min
x∈K

T
∑

t=1

ft(x)

The comparator in this case is static in the sense that it doesn’t vary with iteration and

4



thus the regret defined above is termed as static regret.

1.5 Inventory Management Process

So far, the frameworks of online convex optimisation and prediction with experts have

been described. We can now outline the inventory management process. The inventory

process is a standard one in which, iteratively, goods of a single type are purchased by

an inventory manager/seller to replenish the inventory and sold to consumers/buyers.

Additional goods are stored in the inventory for demands in the future. Of course the

purchasing and storage incur costs to the inventory manager. There are two ways to

view the profits associated with goods sold to buyers/customers. The first trivial way is

the total revenue earned by selling the goods and the profits thus earned. Another non-

trivial way is to consider the loss of sales, i.e. revenue lost because of inability to sell the

demanded amount of goods to customers due to insufficient levels of inventory, to incur

a delay cost. While the first model is a profit based model, the second model is a delay

cost model. We consider both these models for further basic analysis and then choose

one for application of online learning algorithms and obtain theoretical guarantees on

the regret.

1.5.1 Profit based model

We mathematically describe the inventory process in which the reward is based on the

profit model. Formally, the process can be described by the following series of steps,

initial inventory level x1 = 0

for t = 1, ..., T do

1: the learner chooses the amount of goods to be purchased yt ∈ Y to replenish the

inventory xt

2: the intermediate inventory level x′
t = xt + yt

3: the adversary chooses the demand for the goods ut;

4: the amount of goods sold is min(x′
t,ut)

5: the carried over inventory to the next step is xt+1 = max(0,x′
t − ut)

6: the learner suffers a cost of lt(yt) = cyt + hxt+1;
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7: the learner earns a reward of rt(yt) = pmin(x′
t,ut)

8: the total loss suffered by the learner is ft(yt) = lt(yt)− rt(yt)

end for

The intermediate level of inventory x′
t represents the amount of goods in the inven-

tory at step t after replenishing it but before goods being sold to customers. The amount

of goods sold is trivially the minimum of the amount of goods in inventory and that de-

manded which is embedded in step 4 above. Obviously, the amount of goods remaining

in inventory which is carried over to the next step t+1 is the amount of intermediate in-

ventory minus the amount of amount of goods sold which is represented in step 5. The

carrying over of inventory incurs a holding cost h per unit and the purchasing of goods

incurs a cost of c per unit both of which are embedded in the cost lt while the revenue

earned is p per unit sold which is the sole component of rt. The total loss incurred is the

total cost minus total revenue. For practical purposes we assume p > c. Additionally,

the inventory is always non-negative in this model which is of course what we would

expect.

1.5.2 Delay Cost based model

The delay cost model considers the lost sales rather than the revenue. However, the

inventory evolution differs from the previous case and in fact is a linear process. In fact

the ease of representing this process is one of the reasons why we chose this model for

our survey of online learning algorithms. Formally, the delay cost inventory model can

be described by the following steps,

initial inventory level x1 = 0

for t = 1, ..., T do

1: the learner chooses the amount of goods to be purchased yt ∈ Y to replenish the

inventory xt

2: the adversary chooses the demand for the goods ut;

3: the carried over inventory to the next step is xt+1 = xt + yt − ut

4: the learner suffers a cost of ft(yt) = cyt +max(hxt+1,−dxt+1);

end for

The first point to note here is that the loss function simply includes only a cost and

6



no revenue which was of course the goal of this model i.e, to eliminate the use of rev-

enue in the loss function. Additionally, the inventory can be negative where a negative

inventory indicates that the inventory levels were not sufficient to satisfy incoming de-

mand. Essentially, for a delay of a unit item for every step incurs a cost of d. As in the

previous model, the purchase of goods to replenish inventory incurs a cost of c per unit

item and a positive inventory carried over to the next step incurs a holding cost of h per

step per unit item. Thus, if the inventory level is positive, we incur holding cost and if

the inventory level is negative, we incur delay cost both these costs are embedded in the

expression, max(hxt,−dxt). This model is the main model which we shall consider

for future survey on online algorithms and their theoretical regret guarantees, although

we analyse the optimal stationary policy in hindsight for the profit based model.

Although both models of the inventory management problem seem to fall under

the online convex optimisation and prediction with experts framework, there are minor

modifications required so that they are wholly compatible with the model. To be more

specific, the upper bound on the loss functions, without any modifications to the prob-

lem setup, is not necessarily independent of the time horizon which we shall cover in

more detail while analysing the online algorithms. These changes are either related to

the way decisions are made by the algorithm or the way in which previous purchases

and demands are included in the current inventory level.

Another way to view the inventory management problem is through the use of states.

States of system wholly describe the current properties of a system which would not

change unless external factors act on it. In this case, the state of the inventory level is

simply the inventory level which wouldn’t change unless purchases are made or goods

are sold. The state of the inventory system basically captures the previous amounts of

purchases made and the amounts of goods sold. Thus, the inventory problem is not

memoryless. Whereas memoryless problems are ideal candidates for OCO algorithms,

we consider the state variable as an input variable to the loss function chosen by the

adversary. We also consider modifications of the vanilla OCO algorithms to deal with

the case of memory.

7



CHAPTER 2

RELATED WORK AND LITERATURE SURVEY

2.1 Caching

A concept with is different from inventory management albeit related to it is caching.

In fact an inventory is very similar to a cache in the sense that both represent the levels

of items available to be sold to customers, goods in the case of inventory and files

in the case of cache. The difference lies in the fact that while goods sold from an

inventory need to be replenished, files stored in a cache need no replenishing even if

they are hit by user requests. It is therefore worth exploring works on caching to gain an

understanding on how online learning algorithms might be great tools for the inventory

management problem. Bhattacharjee et al. (2020) establish the fundamental limits of

the caching problem under the online learning setting. In fact they devise an Follow

the regularised leader (FTRL) like algorithm called follow the perturbed leader (FTPL)

to achieve a sub-linear upper regret bound under the single cache setting. The bound

they achieve is O(
√
T ). Additionally, hey devise aregret lower bound on the caching

problem agnostic of the algorithm. This lower bound is very interesting because it is

also O(
√
T ) and essentially, the upper bound on the regret of FTPL differs only by a

constant factor thus proving its asymptotic optimality. They consider a reward based

learning setup although it can be converted to a loss based setup by simply negating the

reward. In addition to this, they consider a network of caches and devise a modification

of the FTPL algorithm which achieves a similar O(
√
T ) regret upper bound. They also

describe an online gradient ascent (OGA) algorithm, which is essentially the reward

setting equivalent of the online gradient descent (OGD) algorithm which also achieves

a similar regret upper bound. By establishing, a fundamental regret lower bound of

O(T ) for the network caching problem, they establish the asymptotic optimality of the

FTPL and OGA algorithm. In fact, under the future works section, they mention the

problem of inventory management as a variant of the caching problem and that was a

great basis for our current work.



2.2 Inventory Management Markov Decision Process

A classical approach to the inventory management problem is by formulating it as a

Markov Decision Process (MDP). Bertsekas (2000) formulates the inventory manage-

ment problem as an MDP and proceeds to devise an optimal algorithm based on Dy-

namic Programming. The delay-cost model of inventory process is presented in this

book. Dynamic programming is a standard approach to solve MDPs optimally. The

usage of an MDP formulation and the look-ahead approach in dynamic programming

to derive an optimal algorithm requires knowledge of all the underlying probability dis-

tributions. Moreover, the optimality referred to , in this case, is the optimality of the

total loss or reward, in expectation with respect to the transition probabilities of the en-

vironment. It essentially means that on several repetitions of the process, the average

total rewards/losses obtained are optimal. There are no derived theoretical guarantees

or bounds on the worst-case performance of the algorithm. However, the dynamic pro-

gramming algorithm devised has certain interesting properties. In fact, we incorporate

some characteristics of this algorithm in our initial online learning algorithm.

The interesting aspect of this algorithm is that even through it controls the amount

of goods purchased, it does so in an indirect way by monitoring the inventory levels.

Specifically, the inventory is reset every time it falls beyond a particular value called

the base-stock. Drawing inspiration from this algorithm, we formulate and analyse

online algorithms which attempt to control the purchases to inventory via the base-stock.

Additionally, the structure of the problem under the base-stock assumption makes is

possible to prove bounds on the loss function which is an essential requirement for

the underlying regret guarantees of some algorithms based on experts. Additionally,

the work considers the MDP under both the finite-horizon and the discounted infinite-

horizon setting. Although structurally different, it is indeed remarkable that under both

these settings the optimal policy in expectation is a similar base-stock policy.

The delay-cost based inventory process, in addition to that discussed before, in the

MDP formulation involves the specification of the probability distribution of the incom-

ing demand ut. Precisely, the inventory level, xt, the purchase amount yt, and the

incoming demand, ut at step t evolves as,

xt+1 = xt + yt − ut

9



Thus, the conditional probability of the next state P(xt+1|yt,xt) which is the state tran-

sition probability depends only on the probability distribution of ut. The per-step total

cost function is ft(y) = cyt+max(hxt+1,−dxt+1) which is exactly the same which we

consider under the delay-cost inventory process with the parameters c, h, d representing

the purchase, holding and delay costs per unit item respectively.

2.3 Works in Online Convex Optimisation

Research in online learning is an active area with several works dealing with increas-

ingly complex scenarios. Algorithms like Hedge (exponentially weighted) in the case

of prediction with experts and online gradient descent in the case of online convex op-

timisation have well-established and well-known regret upper bounds. However, these

bounds are conditional on the loss functions and/or the decision set satisfying certain

assumptions. Naturally, as the complexity of the framework increases, the assumptions

become stronger in nature. Although, many of these assumptions are either easily sat-

isfied or could be modelled into the problem on which these algorithms are applied.

Shalev-Shwartz (2012) and Cesa-Bianchi and Lugosi (2006) establish the theoretical

regret guarantees of several of the algorithms which are considered basic. These algo-

rithms like Online Mirror Descent, Online Gradient Descent, Hedge, and Follow the

Perturbed Leader (FTRL) are considered basic in the sense that several works which

consider complex frameworks have proven that adaptations of these algorithms have

strong regret upper bound guarantees. It is indeed a requirement that regret upper

bounds are sublinear in nature. We consider the two basic algorithms OGD and Hedge

in our initial analysis under different settings.

The inventory management problem is slightly unique in the sense that there is an

involvement of memory. Initially, we consider the memory involved as an input of

the adversary, thus isolating the a current step of the problem from the previous steps,

making the problem memoryless. However, such an assumption has several drawbacks

which we shall consider. Additionally, it is worth noting that in these cases, the regret

is with respect to the instantaneous decisions where the cummulative effect of deci-

sions taken together is not considered. Thus, there is a need to consider the memory

involved too. Essentially, this memory is represented by the inventory state and can be

10



decomposed as a result of the previous decisions made. This memory reflects itself in

the loss function. We consider, a bounded memory case, where only the most recent

m decisions are a part of the memory of the inventory process. Merhav et al. (2002)

considers the experts with memory framework and presents an algorithm with O(T 2/3)

regret upper bound. György and Neu (2011) establishes an algorithm which satisfies a

regret upper bound of O(
√
T ) in the same experts with memory framework as Merhav

et al. (2002). Anava et al. (2015) presents a general upper bound on the policy regret

of loss functions with memory in the more general framework of OCO with memory

under certain assumptions, using which algorithms with a regret upper bound of O(
√
T )

can be derived. This general upper bound can be decomposed into components and we

design an algorithm that achieves the a specific regret upper bound which is sub-linear

in time. In fact, the order of this upper bound is as good as the order of the upper bound

obtained by the OGD algorithm.

Most of the works which we had described so far consider the notion of the static

regret, where the comparator is stationary. However, when the environment is changing

a stronger comparator which is non-stationary becomes necessary. Such a comparator

is considered in the concept of dynamic regret. Certain works consider the dynamic

comparator with some constraints on the degree of change in the comparator. In fact,

the classical Fixed-share algorithm of Bousquet and Warmuth (2003) and it’s adapta-

tion in Rooij and Erven (2009), and an adaptation of the weighted-majority algorithm

presented in Geulen et al. (2010) consider a switching comparator in the experts setting

where the comparator can change by atmost O(
√
T ) for establishing their correspond-

ing regret bounds. There have also been several works in the case of dynamic regret for

the memoryless OCO setting such as Hall and Willett (2013), Jadbabaie et al. (2015),

Mokhtari et al. (2016), Yang et al. (2016), Zhang et al. (2017), and Shi et al. (2020).

Many of these works such as present algorithms which have strong sub-linear regret

upper of the order O(
√
T ) for convex and O(log T ) for strongly convex loss functions.

Some of these works retain some restrictions on the dynamic comparator. Zinkevich

(2003) presents a very general notion of dynamic regret for the memoryless OCO set-

ting where the comparator sequence can be any sequence within the decision set. Zhang

et al. (2018) and Zhao et al. (2020) present algorithms which satisfy O(
√
T ) dynamic

regret bounds for the framework established in Zinkevich (2003). These algorithms are

adapted to the OCO with memory setting in this work.
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CHAPTER 3

MEMORYLESS OCO AND INVENTORY

MANAGEMENT

3.1 Analysis of the Inventory Process

Let {ut}Tt=1 be the demand sequence for a single good. The demand is chosen by the

adversary. Let {xt}Tt=1 denote the inventory level at every step. The learner makes deci-

sions {yt}Tt=1 which represent the amount of goods procured to replenish the inventory.

A practical limit on the purchases would pertain to the capacity of transporting goods.

Let the transporting capacity be C. Thus, the decision set Y ⊆ R is [0, C].

The inventory evolution process as described before is,

xt+1 = xt + yt − ut (3.1)

x1 = 0

The loss function in this case would be the cost of purchasing goods, cost of storing

goods and the cost associated with delaying the demand. Also, we assume that the new

stock is added to inventory before sales everyday. Assuming that unit cost of the good

is c,its holding cost is h per unit and its delay cost is d per unit, the one-step reward can

be expressed as,

ft(yt) = cyt +max(h(xt + yt − ut),−d(xt + yt − ut)) (3.2)

The total loss thus is the summation of all the one-step losses accumulated within a

horizon. In this case it is,

FT ({yt}Tt=1) =
T
∑

t=1

ft(yt)

= c
T
∑

t=1

yt +
T
∑

t=1

max(h(xt + yt − ut),−d(xt + yt − ut))

(3.3)



The policy generated by the learner/algorithm A in this case is π = {yt}Tt=1. We always

define the regret for a particular learner’s decisions.

3.1.1 Regret and Memoryless Nature

Consistent with the definition of static regret for the OCO formulation we define the

regret of an algorithm A with decisions {yt}Tt=1 as,

RT (A) =
T
∑

t=1

ft(yt)−min
y∈Y

T
∑

t=1

ft(y)

For ease of notation, we simply refer to the above term by RT since is embedded

that a regret is defined for an algorithm. We consider the memoryless setting in the

sense that xt is generated by the adversary. What this means is that the sequence of

xt is assumed to be an inherent part of the loss function. So for the purpose of regret,

the same sequence xt is generated for both the learner and the comparator. However,

there is no restriction on the adversary with respect to how it generates this sequence. In

fact, the adversary needn’t disclose the way xt is generated. So as far as the algorithm

is concerned irrespective of the way xt is generated, the sequence is independent of

its decisions. This means that recursion 3.1 is not unrolled in the loss represented in

equation 3.2 and xt is assumed to be a wholly generated by the adversary. The sequence

could, however, be generated as xt+1 = xt + yt − ut but this is known only to the

adversary and the adversary simply reveals xt while abstracting how it is generated.

Although this means that there is an abstraction of the inventory evolution process (3.1),

it is a good starting point for our analysis. The decision thus taken are in a sense

instantaneous, i.e. decisions made given an inventory level irrespective of the influence

of previous actions. When we consider the case of OCO with memory we will deal with

a more original version of the problem where the inventory evolution process is known

to the learner.

This can be described as,

for t = 1, ..., T do

1: the learner chooses the amount of goods to be purchased yt ∈ Y to replenish the

inventory;
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2: the adversary chooses the demand for the goods ut and the inventory level xt;

3: the learner suffers a cost of ft(yt) = cyt+max(h(xt+yt−ut),−d(xt+yt−ut));

end for

3.1.2 Analysis of the step-wise loss function

The step-wise loss function is a piecewise linear function. In fact, it can be written as,

ft(yt) = cyt +max(h(xt + yt − ut),−d(xt + yt − ut))

= max(cyt + h(xt + yt − ut), cyt − d(xt + yt − ut))

= max((c+ h)yt + h(xt − ut), (c− d)yt − d(xt − ut))

Note that the functions over which max is taken are linear. An important assumption

we make is that the delay-cost is greater than the purchase cost per unit item, i.e d >

c. Since, maximum taken over a finite number of linear functions results in a convex

function (Boyd and Vandenberghe (2004)), clearly the loss function per step is a convex

function over yt. Additionally, due to our assumption that c − d < 0, one of these

linear functions has a non-positive slope while the other has a non-negative slope. In

fact, the point of intersection of these linear functions is yt = ut − xt and this is where

the change of slope occurs. Also, the slopes (c+ h and c− d are the same for any step

t and the only change in the functions over different steps is the point where there is a

change of slope. In figure 3.1, we consider the different cases of the loss function under

different settings of the parameters. Note the negative slope for y < u − x if d > c

which is the case of our interest.

3.2 Optimality of Base-Stock Policy under MDP Setting

Before investigating the performance of online algorithms on the inventory management

problem, we analyse the optimal policy of the same under a finite-horizon Markov

Decision Process setting. Bertsekas (2000) establish the optimality of a base-stock

policy under such settings based on the dynamic programming algorithm.

We will slightly abuse the notation used in ?in order to match with that used pre-

viously. However, the underlying structure of the problem remains the same. The
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Figure 3.1: Different cases of the single step memoryless loss function under different

settings of the underlying parameters
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inventory evolves as,

xk+1 = xk + yk − uk

with xk,yk and uk having the same meaning as before. The decision to be made is the

purchase amount yk at each step. The stochasticity lies in the environment which selects

the demand uk. However, the probability distribution of these demands are known. The

loss function is represented with a slight change of notation as,

fk(yk) = cyk + r(xk + yk − uk)

where,r((x) = max(hx,−dx) which represents the holding or the delay cost. The total

cost is thus,
T
∑

k=1

fk(yk) =
T
∑

k=1

(cyk + r(xk + yk − uk))

The goal is the minimisation of the total expected cost,

E
(

T
∑

k=1

fk(yk)
)

= E
(

T
∑

k=1

(cyk + r(xk + yk − uk))
)

An optimal policy which minimises the total expected cost can be derived from the

application of the dynamic programming algorithm. Application of the dynamic pro-

gramming results in the following definition of the cost-to-go,

JT+1(xT+1) = 0

Jk(xk) = min
yk≥0

[

cyk +H(xk + yk) + E
{

Jk+1(xk + yk − uk

}

]

where, H(x) = E
[

r(x − uk)
]

and the expectations are taken over the probability dis-

tribution of uk. NOte that the minimisers in the DP equation yield the optimal policy.

The function r(x− uk) is convex in x. In function H , the expectation is taken over the

probability distribution of uk and since operation preserves convexity, the function H

is convex as well. Using zk = xk + yk, the DP equation is re-written as,

Jk(xk) = min
zk≥xk

Gk(zk)− cxk (3.4)

where, Gk(z) = cz + H(z) + E[Jk+1(z − uk)], is a convex function. The proof that

Gk is convex is slightly involved and hence we do not present the same here. However,
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using the property of convexity, an interesting optimal policy is derived. Defining,

Sk = argmin
z∈R

Gk(z)

it is noted that if xk < Sk, in view of the constraint zk ≥ xk in the minimisation in

Eq. 3.4, the minimisation occurs at zk = Sk. However, if xk ≥ Sk, the minimisation

in Eq. 3.4, the minimiser is zk = xk due to the convexity of Gk. Since, zk = xk + yk,

the above minimisers are written in terms of yk as, yk = Sk − xk when xk < Sk and

yk = 0 when xk ≥ Sk. Thus the optimal policy µ∗
kis expressed as,

µ∗
k(xk) =











Sk − xk xk < Sk

0 xk ≥ Sk

(3.5)

The existence of Sk is guaranteed by the convexity of Gk and the property

lim
|y|→∞

Gk(y) = ∞

which is trivial to prove. Such a policy where a purchase is made when the inventory

level is below a particular threshold is known as the base-stock policy. The purchases

are made such that the inventory level reaches the threshold. In this case the threshold

at step k is Sk and this threshold is called the base-stock. Even though this policy

was derived under an MDP setting where the goal was to minimise the total expected

cost, we explore this interesting policy in combination with online learning algorithms

where there are guarantees with respect to their worst-case performance. As we have

described earlier, the goals of online learning algorithms need not be to minimise the

total expected costs. In fact, the probability distribution of the demand amounts are

unknown to the learner in an online learning setup which was required by the dynamic

programming algorithm to derive the base-stock policy.
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3.3 Base-Stock Policy under the experts setting

3.3.1 Setup

It would be an interesting consideration of the base-stock policy under the prediction

with experts setting. Essentially, here the different experts represent different levels of

the base-stock. An algorithm under this setting has to make a decision based on the

received expert advice. A learner in the experts setting makes its base-stock decisions

as,

decision space S , set of experts E , inventory space X , demand space U
for t = 1, ..., T do

1: the adversary chooses the inventory level xt ∈ X
2: the expert advice of the base-stock

{

SE,t ∈ S : E ∈ E
}

is chosen and revealed

to the learner

3: the learner chooses the base-stock level St ∈ S;

4: the adversary chooses the demand ut ∈ U and reveals the loss

lt(S) = cmax(S−xt, 0)+max
(

h(max(S,xt)−ut),−d(max(S,xt)−ut)
)

(3.6)

5: the learner suffers a loss of lt(St); and each expert E incurs a loss of lt(SE,t);

end for

Note that although the loss represents the same cost associated with purchasing,

storing and delaying goods, the loss is now with respect to the base-stock level and

not the purchase amount. The purchase made to replenish inventory under a base-stock

S and inventory level xt is max(S − xt, 0). It is trivial to note that the inventory level

after the purchase and demand ut has been met under this base-stock is max(S,xt)−ut.

These have been embedded in the loss function lt. The static regret defined in the A.

This is defined as,

RT (A) =
T
∑

t=1

lt(St)−min
E∈E

T
∑

t=1

lt(SE,t) (3.7)

where, St is the decision made by A at step t. We would require that the regret grow
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slower than T , the time horizon, such that,

lim
T→∞

RT (A)

T
= 0

Such guarantees are obtained when the regret is upper bounded by a sub-linear function

of T . We now consider a well-known algorithm under the experts setting, called the

Hedge or mutliplicative weights algorithm in our base-stock inventory framework. The

Hedge algorithm, as we shall present, has a strong sub-linear regret guarantee under

certain conditions on the loss function.

3.3.2 Hedge Algorithm

Freund and Schapire (1997) present an algorithm called Hedge for the experts setting

which generalises the idea of the classical weighted majority predictor. The Hedge

algorithm can be derived from the Online Mirror Descent algorithm with the entropy

regulariser as shown in Shalev-Shwartz (2012). The algorithm is extremely popular for

the experts setting that several works have studied it’s application for different problems.

The Hedge algorithm has a hyper-parameter β and proceeds as follows,

Algorithm 1: Hedge Algorithm

Input: set β, decision set Y;

Initialise: w1,E = 1 ∀E ∈ E ;

for t = 1, 2, 3, 4...T do

each expert E ∈ E advises yt,E ∈ Y;

set pt,E =
wt,E

∑

i∈E wt,i

for each expert E ∈ E ;

set pt = [pt,E ∀E ∈ E ];
sample expert Kt ∼ Categorical(pt) and choose action yt,Kt

;

adversary chooses loss lt;

each expert E ∈ E suffers loss lt(yt,E) and algorithm suffers loss lt(yt,Kt
);

set wt+1,E = wt,E exp (−βlt(yt,E)) for each expert E ∈ E ;

end

wt,E is the weight for each expert E. The update to the weights at each step are

multiplicative in nature. Since there is stochasticity due to the sampling of the expert

by the algorithm thus, although the regret defined in Eq. 3.7 still holds, there is an
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expectation involved in the first term, i.e.

RT (A) =
T
∑

t=1

EK∼pt

[

lt(yt,K)
]

−min
E∈E

T
∑

t=1

lt(yt,E)

pt is the same probability vector at step t as defined in the algorithm.

Theorem 1 Let lt denote the loss vector lt = [(lt(yt,E))] ∀E ∈ E , l2t denote the

pointwise square losses vector i.e. l2t = [(lt(yt,E))
2] ∀E ∈ E , and β > 0, and assume

all losses lt to be non-negative. The Hedge algorithm satisfies for every expert E∗,

T
∑

t=1

pt.lt −
T
∑

t=1

lt(yt,E∗) ≤ β

T
∑

t=1

pt.l
2
t +

log(|E|)
β

Corollary 1.1 If l2t (y) ≤ G ∀t = 1, 2, ...T, ∀y ∈ Y , then Hedge algorithm with

hyper-parameter β, satisfies for every expert E∗,

T
∑

t=1

pt.lt −
T
∑

t=1

lt(yt,E∗) ≤ βGT +
log(|E|)

β

This corollary is a direct application of the bound in Theorem 1 and using the fact that
∑

E∈E pt,E = 1, since pt is a probability vector.

Corollary 1.2 If l2t (y) ≤ G ∀t = 1, 2, ...T, ∀y ∈ Y , then Hedge algorithm with

hyper-parameter β =

√

log(|E|)
GT

, satisfies the regret bound,

RT ≤ 2
√

G log(|E|)T

This is a simple extension of corollary 1.1 by the fact that E∗ in corollary 1 can be

argminE∈E

∑T
t=1

lt(yt,E). Additionally, EK∼pt

[

lt(yt,K)
]

=
∑T

t=1
pt.lt. Finally, using

the above value of β results in the regret bound. The obtained regret bound is O(
√
T )

and therefore sub-linear in time.
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3.3.3 Base-Stock with Hedge

With the regret guarantees and the conditions for achieving them established previously,

we now attempt to apply the Hedge algorithm to the inventory problem with base-stock

experts as presented in section 3.3.1. We, however, need to establish the conditions on

the loss functions, and define the decision set S, the inventory set X , and the demand set

U . We assume that the demand ut is upper bounded by M , and obviously non-negative.

Thus, the demand set, U , is [0,M ]. With this assumption, we can restrict the decision

base-stock set S to [0,M ] as well, without loss of optimality as we shall show.

Let us consider 2 base-stocks S = M and S ′ > M . and the corresponding loss

functions as defined in Eq. 3.6, lt(S) and lt(S
′) are,

lt(S
′) = cmax(S ′ − xt, 0) + max

(

h(max(S ′,xt)− ut),−d(max(S ′,xt)− ut)
)

= (c+ h)max(S ′,xt)− cxt − hut ∵ S ′ > M,ut ≤ M

The second statement follows from the property of the max function which implies that

the term max(S ′,xt)− ut > 0, and thus, holding cost is incurred rather than the delay

cost. Similarly,

lt(S) = cmax(S − xt, 0) + max
(

h(max(S,xt)− ut),−d(max(S,xt)− ut)
)

= (c+ h)max(S,xt)− cxt − hut ∵ S = M,ut ≤ M

Now we consider,

lt(S
′)− lt(S) = (c+ h)(max(S ′,xt)−max(S,xt))

Now, since S ′ > S, max(S ′,xt) > max(S,xt)

=⇒ lt(S
′) > lt(S)

Thus, a base-stock of M performs better than a base-stock greater than M and hence

we have justified our decision set [0,M ]. We index the experts as i ∈ E where E =

{0, 1, 2, ...M}. There are M + 1 experts. The advises of the experts are static in the

sense that St,i = i ∀t, ∀i ∈ E . Now, we restrict our inventory set set X to [-M,M].

Although it might seem non-trivial to restrict the inventory set, but as we shall show, for
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the inventory process which we considered xt+1 = xt + yt − ut, where the purchase

yt = max(St − xt, 0). Thus, xt+1 = max(St,xt) − ut. Additionally, x1 = 0. With a

proof by contradiction, we can show that xt ≤ M , when ut ≤ M and St ≤ M .

Assume xt+1 > M ,

xt+1 = max(St,xt)− ut

=⇒ max(St,xt)− ut > M

=⇒ max(St,xt) > M ∵ ut ≥ 0

=⇒ xt > M ∵ xt ≤ M

This results to a recursive relation finally leading to x1 > M which is a contradiction

since x1 = 0. Hence, if the adversary generates the inventory levels according to the

inventory process, then xt ≤ M when ut ≤ M and St ≤ M . It is trivial to show

that, xt ≥ −M . However, the adversary isn’t limited to generate the inventory level

according to the process defined previously. In any case, the adversary is restricted to

generate the inventory levels such that −M ≤ xt ≤ M . With these definitions of the

different sets, we can now bound the loss function,

lt(S) = cmax(S − xt, 0)

+ max
(

h(max(S,xt)− ut),−d(max(S,xt)− ut)
)

≥ 0 ∵ both the first and second terms are non-negative

S − xt ≤ 2M

=⇒ cmax(S − xt, 0) ≤ 2cM

−M ≤ max(S,xt)− ut ≤ M

=⇒ max
(

h(max(S,xt)− ut),−d(max(S,xt)− ut)
)

≤ (h+ d)M

∴ 0 ≤ lt(S) ≤ (2c+ h+ d)M

=⇒ l2t (S) ≤ (2c+ h+ d)2M2

Thus, all the conditions on the bounds of the loss function are met. And thus, the Hedge

algorithm with hyper-parameter β achieves the regret bound,

RT ≤ β(2c+ h+ d)2M2T +
log (M + 1)

β
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and with β =
1

(2c+ h+ d)M

√

log (M + 1)

T
,

RT ≤ 2(2c+ h+ d)M
√

log (M + 1)T

Now, we perform some simulations and compute the regret of the hedge algorithm.

Simulations

We now perform simulations of the Hedge algorithm under the memoryless inventory

base-stock problem as defined earlier. It is simple to compute the regret in this case

since the performance of the individual experts are tracked. We run the inventory and

demand generating adversary and the Hedge algorithm with the following setting,

• The upper bound on the demand generated by environment is M = 50.

• The demand ut is generated by a Poisson process with λ = M/2 = 25.

• The Poisson distribution is truncated at M = 50.

• The values of c = 10,d = 15,h = 5, satisfying the assumption d > c.

• There are 51 experts with expert advises 0, 1, 2, ...50.

• The inventory levels at time t are generated as xt = max (St−1,xt−1) − ut−1,

where St−1 is the decision taken by the algorithm in step t− 1.

• However, the underlying process is not revealed to the algorithm.

• The simulation is performed for T steps and the regret is computed.

• The simulation is repeated n = 10 times and both the maximum and the average

of the regrets computed for each iteration is plotted.

• The simulations are repeated for T = 1, 2 . . . 1000

We now plot the regrets obtained from the simulation, both the average and maxi-

mum over repetitions. We also plot the hedge algorithm’s decisions along with the best

expert advise and the demand chosen by the environment for a single instance.

Note that regret per time rather than regret is plotted. Clearly, the empirically com-

puted regret for the base-stock hedge algorithm is sub-linear as seen from the plots in

Fig.3.2 and Fig.3.3. The upper bound of O(1/
√
T ) is also shown for better comparison.

Additionally, the decision plot shows that the best expert gets sampled more often as the

time progresses. The probability of sampling the best expert grows close to 1 as time

steps progress.
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Figure 3.2: Regret/time plot for the base-stock hedge algorithm. Max over 10 repeti-

tions is shown
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Figure 3.3: Regret/time plot for the base-stock hedge algorithm. Average over 10 repe-

titions is shown
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demands and the best expert advise for a single instance of 100 steps.

3.4 Inventory Problem under the OCO setting

It would indeed be an interesting idea to extend the inventory problem with base-stock

decisions to the Online Convex Optimisation setting. However, the convexity of the loss

functions suffered by the learner is a crucial condition as we have seen in section 1.4.

The convexity of the base-stock loss function defined in Eq.3.6 cannot be established. In

fact, for certain values of underlying parameters, the function turns out to be non-convex.

Therefore, even though we could apply OCO algorithms to the base-stock inventory

problem, we will not benefit from the theoretical guarantees which are established for

convex functions. Therefore, we revert back to the inventory problem with direct control

on the purchases. In essence, we explore the problem as defined in section 3.1 directly

without involving base-stocks.

Thus, the problem is now involves the learner’s decision yt chosen from the set Y,

the demand ut chosen by the adversary from the set U and the inventory level xt chosen

from the set X . As we shall explore, the guarantees of the OCO algorithms depend only

on the convexity of the decision set Y and independent of the characteristics of the sets

U and X. We consider the case where X = R and U = [0,M ]. The purchase decision

yt is upper bounded by C which the maximum purchase capacity and lower bounded,

of course, by 0. Thus, the decision set is [0, C] which is indeed convex. The process

defined is exactly the same as defined in section 3.1. Additionally, as established in
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section 3.1.2, the loss function defined in Eq. 3.1

ft(yt) = cyt +max(h(xt + yt − ut),−d(xt + yt − ut))

is a convex function. The convexity conditions of the OCO setting on the decision set

and the loss function have been satisfied. The static regret of an algorithm A is defined

in section 3.1.1 as,

RT (A) =
T
∑

t=1

ft(yt)−min
y∈Y

T
∑

t=1

ft(y)

where yt is the decision of the algorithm at step t.

3.4.1 Online Gradient Descent Algorithm

The online gradient descent (OGD) is an algorithm for the OCO framework which can

be recovered from the more general Online Mirror Descent algorithm with the quadratic

regulariser function. It is well-studied in several works dealing with OCO problems.

The algorithm proceeds as follows,

Algorithm 2: Online Gradient Descent Algorithm

Input: set η, convex decision set Y ;

Initialise: y1 ∈ Y ;

for t = 1, 2, 3, 4...T do

choose yt as the decision;

adversary chooses loss function ft : Y 7→ R;

suffer loss ft(yt);

set wt+1 = yt − ηgt where gt ∈ ∂ft(yt);

project wt onto the set Y and set yt+1 = ΠY(wt+1);

end

The OGD algorithm, as we have seen, is fairly straightforward. Note that gt is the

sub-gradient of ft at yt. If the function is differentiable at yt, the sub-gradient is simply

the gradient. The operation ΠY is the projection operation defined as,

ΠY(w) = argmin
y∈Y

||w − y||

for any defined norm ||.||. We would use the Euclidean norm henceforth. We present an
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important lemma shown by Shalev-Shwartz (2012) which helps prove a theorem which

establishes the regret upper bound for the OGD under certain conditions on the loss

function. We shall also use this important lemma with respect to the OGD algorithm

which we shall use in the case of the inventory problem with memory considerations.

Lemma 1 Let f1, f2 . . . fT be a sequence of convex loss functions such that ft is Lt-

Lipschitz with respect to ||.||2 norm. Let y1,y2 . . . be the predictions of the OGD algo-

rithm with learning rate η. Then,

ft(yt)− ft(yt+1) ≤ Lt||yt − yt+1|| ≤ ηL2
t

The above lemma is used in combination with the following lemma 2 also proved in

Shalev-Shwartz (2012) to result in the theorem which establishes the upper bound for

the regret of the OGD algorithm.

Lemma 2 Let f1, f2 . . . fT be a sequence of convex loss functions. Let y1,y2 . . . be the

predictions of the OGD algorithm with learning rate η. Then, for all y ∈ Y ,

T
∑

t=1

ft(yt)−
T
∑

t=1

ft(y) ≤
1

2η
||y||22 −

1

2η
||y1||22 +

T
∑

t=1

(

ft(yt)− ft(yt+1)
)

Combining lemmas 1 and 2, we obtain the following theorem.

Theorem 2 Let f1, f2 . . . fT be a sequence of convex loss functions such that ft is Lt-

Lipschitz with respect to ||.||2 norm. Let L be such that
1

T

∑T
t=1

L2
t ≤ L2. Then, the

online gradient descent algorithm with hyper-parameter η satisfies for all y ∈ Y ,

T
∑

t=1

ft(yt)−
T
∑

t=1

ft(y) ≤
1

2η
||y||22 + ηTL2

Corollary 2.1 If ||y||2 ≤ B ∀y ∈ Y , then OGD algorithm with hyper-parameter

η =
B

L
√
2T

, satisfies the regret bound,

RT ≤ BL
√
2T

This corollary is arrived at by letting y = argminy′∈Y

∑T
t=1

ft(y
′) in theorem 2 and
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using the bounds on the norm of y ∈ Y . The obtained regret upper bound is O(
√
T in

time and therefore sub-linear. We now need to establish that the inventory loss function

is Lipschitz so that such a regret bound is applicable to the OGD algorithm for the

inventory problem.

3.4.2 Inventory Management with Online Gradient Descent algo-

rithm

One of the assumptions of theorem 2 are that the euclidean norm of any decision yt

is upper bounded. This is trivially satisfied for our decision set Y = [0, C] where

||yt||2 ≤ C. We additionally need to prove that the convex function,

ft(yt) = cyt +max(h(xt + yt − ut),−d(xt + yt − ut))

is also Lipschitz. We present the following lemma from Shalev-Shwartz (2012).

Lemma 3 Let f : Y 7→ R be a convex function. Then, f is L-Lipschitz over Y with

respect to a norm ||.|| iff for all y ∈ Y and g ∈ ∂f(y), we have that ||g||∗ ≤ L where

||.||∗ is the dual norm.

The lemma presented above is a direct result of the convexity of the loss function and

the properties of norms. This lemma essentially implies that if all the sub-gradients

of a convex function are upper bounded, then the function is G-Lipschitz, where G is

the bound on the sub-gradients. We consider the euclidean norm. In our case of the

inventory loss function,

∂ft(yt) =



























c− d yt < ut − xt

c+ h yt > ut − xt

[c− d, c+ h] yt = ut − xt

Thus, the norms of sub-gradients are upper bounded at all points by max (d− c, c+ h) ≤
h+d. Therefore, by lemma 1, ft is (h+d)-Lipschitz. The average Lipschitz coefficient

is thus h+ d.

With all the conditions on the decision set and the loss function being satisfied, the
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OGD algorithm with a learning rate η =
C

(h+ d)
√
2T

applied to the inventory problem

has a regret upper bound of,

RT ≤ C(h+ d)
√
2T

Simulations

We now perform simulations of the OGD algorithm under the memoryless inventory

problem as defined earlier with the optimal learning rate as defined earlier. Unlike the

previous case, the best stationary policy cannot be computed directly. It can, however,

be computed using linear programming. The following lemma which allows for the

representation of max of linear functions is used in the computation.

Lemma 4 The optimisation problem,

minimisef(x) = max
i=1,2...m

(aTi x+ bi)

s.t hT
j x+ dj ≤ 0 j = 1, 2 . . . n

gTk x+ dk = 0 k = 1, 2 . . . l

is equivalent to,

minimisef(x) = t

s.t aTi x+ bi − t ≤ 0 i = 1, 2 . . . m

hT
j x+ dj ≤ 0 j = 1, 2 . . . n

gTk x+ dk = 0 k = 1, 2 . . . l

Additionally, the projection problem at each step of OGD can be represented as a con-

strained quadratic optimisation problem. We use the solvers in cvxopt library of python

to compute the projection and the stationary policy.

• The demand ut is generated by a Poisson process with λ = 25 truncated at M =
50.

• The values of c = 10,d = 15,h = 5, satisfying the assumption d > c.

• The inventory levels at time t are generated as xt = xt−1poisso + yt−1 − ut−1,

where yt−1 is the decision taken by the algorithm in step t− 1.
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• However, the underlying process is not revealed to the algorithm.

• The simulation is performed for T steps and the regret is computed.

• The simulation is repeated n = 10 times and both the maximum and the average

of the regrets computed for each iteration is plotted.

• The capacity is set at C = 25.

• The simulations are repeated for T = 1, 2 . . . 1000.
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Figure 3.5: Regret/time plot for the OGD algorithm. Max over 10 repetitions is shown
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Figure 3.6: Regret/time plot for the OGD algorithm. Average over 10 repetitions is

shown

We now plot the time-divided regrets (regret/T) obtained from the simulation, both

the average and maximum over repetitions. We also plot the OGD algorithm’s decisions
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Figure 3.7: The decisions of the OGD algorithm along with the incoming demands and

the best stationery policy for a single instance of 100 steps.

along with the best stationary policy and the demands chosen by the environment for a

single instance. For ease of comparison, the regret upper bound is plotted in the graph as

well. Thus the empirical results are consistent with the theoretical upper bounds. Note

that, by increasing or decreasing the capacity, the nature of the regret plot would still

remain similar. However, the policy plot might change. Also, note that the empirically

computed regret is not as smooth as the one computed for the Hedge algorithm. This

is due to the fact that the Hedge algorithm is limited by the expert advise, whereas

the OGD algorithm can choose any decision as long as the decision set constraint is

satisfied and thus shows higher volatility in the regret. Additionally, in the policy plot,

the Hedge algorithm tends to converge, more or less, towards the best expert whereas

in the case of OGD, although the decisions after sufficient number of step are close to

the best stationary policy, there is still some variability in them.
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CHAPTER 4

OCO WITH BOUNDED MEMORY AND

INVENTORY MANAGEMENT

4.1 Setup of Memory in the Inventory Problem

In the formulation of the inventory management problem, we defined the single-step

loss as

ft(yt) = cyt +max(h(xt + yt − ut),−d(xt + yt − ut))

for the decision yt ∈ Y and demands ut ∈ U for all t ∈ [T ], with Y = [0, C] and

U = [0,M ]. Previously, in the memoryless analysis, we assumed that the inventory

evolution was unknown to the learner. However, when the inventory evolution process

xt+1 = xt + yt − ut is known to the learner, xt itself is a function of the previous

decisions and demands. Unrolling the recursion, we find that,

xt =
t−1
∑

k=1

yk −
t−1
∑

k=1

uk

This reveals that if the inventory evolution is known to the learner, then the single step

loss at step t is actually a function of the current and all the previously made decisions

yt,yt−1, . . .y1. Hence, we define the single step loss at step t as,

ft(yt,yt−1 . . .y1) = cyt +max
(

h
(

t
∑

k=1

yk −
t

∑

k=1

uk

)

,−d
(

t
∑

k=1

yk −
t

∑

k=1

uk

)

)

Such a problem, where the step loss suffered is a function of the current as well as

previous decisions, is said to have memory of the previous decisions made by the

learners/algorithms. However, in the inventory problem, the memory is unbounded and

grows with time. Under such a problem, it is, in fact, impossible to obtain useful regret

bounds for any algorithm. Thus, we slightly modify the original problem to include a



bound on the memory m. Such an assumption is practical too in that many goods ex-

pire within a limited time and cannot be stored unsold forever. The modified inventory

evolution process is now,

xt =
t

∑

k=t−m

yk −
t

∑

k=t−m

uk

and the single step loss at step t is,

ft(yt,yt−1 . . .yt−m)

= cyt +max
(

h
(

t
∑

k=t−m

yk −
t

∑

k=t−m

uk

)

,−d
(

t
∑

k=t−m

yk −
t

∑

k=t−m

uk

)

) (4.1)

The memory is now bounded by m. The Online Convex Optimisation is slightly modi-

fied to deal with such a case of bounded memory.

4.2 The Framework of Online Convex Optimisation with

Memory

The classical OCO framework is slightly modified to accommodate m bounded memory

as follows,

for t = m+ 1, ..., T do

1: the learner chooses yt ∈ Y
2: the adversary chooses the loss ft : Ym+1 7→ R;

3: the learner suffers a loss of ft(yt,yt−1, . . . ,yt−m);

end for

The notion of regret changes slightly from the case of memoeyless OCO. For the

framework of OCO with memory we consider the static policy regret defined as,

RT =
T
∑

t=m+1

ft(yt, ...,yt−m)−min
y∈Y

T
∑

t=m+1

f̃t(y)

As in the case of memoryless OCO, the decision set Y is bounded and convex. The
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loss functions {ft}Tt=1 are convex in memory. This means that the function

f̃t(y) = ft(y,y, . . .y)

is convex is y. Note that the function f̃t : Y 7→ R has the single-step decision set as the

domain. This definition of f̃t is very important and will be used repeatedly henceforth.

4.2.1 Online Gradient Descent Algorithm for the OCO with Mem-

ory Framework

Anava et al. (2015) show that when the loss function ft in the framework of OCO with

memory satisfies the following assumption,

Assumption 1 The function ft : Ym+1 7→ R is L-Lipschitz i.e.,

|ft(x0, ...xm)− ft(y0, ...ym)|2 ≤ L2

m
∑

i=0

||xi − yi||22 ≤ L2

(

m
∑

i=0

||xi − yi||2
)2

then the following theorem holds,

Theorem 3 If assumption 1 is satisfied in the OCO with memory problem, with memory

bound m, then the following holds for any sequence of decisions {yt}Tt=1 ∈ YT and for

all y ∈ Y ,

T
∑

t=m+1

ft(yt, ...,yt−m)−
T
∑

t=m+1

f̃t(y) ≤ m2L
T
∑

t=m+1

||yt−yt−1||2+
T
∑

t=m+1

f̃t(yt)−
T
∑

t=m+1

f̃t(y)
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Algorithm 3: Online Gradient Descent for Memory OCO (OGDM)

Input: set η, convex decision set Y;

Initialise: y1,y2 . . .ym ∈ Y;

for t = m+ 1, . . . T do

choose yt as the decision;

adversary chooses loss function ft : Ym+∞ 7→ R;

suffer loss ft(yt, . . .yt−m);

define f̃t(yt) = ft(yt, . . .yt);

set wt+1 = yt − ηgt where gt ∈ ∂f̃t(yt);

project wt onto the set Y and set yt+1 = ΠY(wt+1);

end

This result provides a very useful algorithm agnostic upper bound on the static

policy regret. Essentially, this links the static policy regret of an OCO problem with

memory with the loss function ft to the static regret of a related memoryless OCO

problem with single step loss f̃t and an additional switching cost. In some sense, this

upper bound is very useful in being able to convert a problem of OCO with memory

to the memoryless OCO setting. An algorithm which has a specific upper bound the

memoryless OCO problem with loss function f̃t retains the upper bound with with an

additional switching cost for the OCO problem with bounded memory. With some ad-

ditional assumptions, the OGD algorithm applied to the unary loss function f̃t achieves

a sub-linear regret bound.

This algorithm Online Gradient Descent for Memory OCO (OGDM) is described

in Algorithm 3. The additional assumptions made to obtain the regret upper bounds for

OGDM are,

Assumption 2 The sub-gradient norm of the unary loss is at most G, i.e., for all y ∈ V
and t ∈ [T ]

||gt||2 ≤ G ∀gt ∈ ∂ft(y)

Assumption 3 The domain Y is convex, closed, and satisfies ||y − y′||2 ≤ B for any

y,y′ ∈ Y . Additionally, it is also assumed that 0 ∈ Y

With these assumptions, invoking theorem 2 and lemma 3, gives the following

bound for the OGD algorithm with learning rate η run on the sequence of unary loss
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functions f̃t,

T
∑

t=m+1

f̃t(yt)−
T
∑

t=m+1

f̃t(y) ≤
1

2η
||y||22 + ηTG2 ≤ 1

2η
B2 + ηTG2 (4.2)

where the OGD decisions are {yt}Tt=1 ∈ YT . This bound holds for all y ∈ Y . The only

additional bound required is for the switching cost of the OGD algorithm and this is

obtained by invoking lemma 1 and lemma 3 and arriving at the following upper bound

T
∑

t=m+2

||yt − yt−1||2 ≤ ηGT (4.3)

Combining equations 4.2 and 4.3, the following corollary of theorem 3 is obtained,

Corollary 3.1 Let the sequence of convex functions f1, f2 . . . fT of the OCO with mem-

ory bounded by m satisfy Assumption 1. Let f̃t(y) = ft(y, . . .y) for all y ∈ Y be the

unary loss function at step t. Then, with assumptions 2 and 3 satisfied, the OGD algo-

rithm run on the unary loss function (OGDM) algorithm with learning rate η satisfies,

T
∑

t=m+1

ft(yt, ...,yt−m)−
T
∑

t=1

f̃t(y) ≤
1

2η
B2 + (m2LG+G2)ηT

Setting η =

√

B2

2(G2 +m2LG)T
, and y = argminy∈Y

∑T
t=1

f̃t(y), the following static

policy regret bound is obtained for the OGDM algorithm,

RT =
T
∑

t=m+1

ft(yt, ...,yt−m)−min
y∈Y

T
∑

t=1

f̃t(y) ≤ B
√

2(G2 +m2LG)T

The regret bound is O(
√
T ) as in the case of OGD applied to the case of memoryless

OCO.

4.2.2 OGDM for the Inventory Problem with bounded memory

In order for the previously established regret upper bounds to hold when OGDM is

applied to the inventory problem, all we need to do is verifying that assumptions 1,2

and 3 hold.
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The decision set Y = [0, C] trivially satisfies Assumption 3 with B = C. The loss

function ft(ym+1, . . .y1) defined in Eq. 4.1 is convex in (ym+1, . . .y1) since it is a

maximum over linear functions. In order to verify that it satisfies the coordinate-wise

Lipschitzness condition of Assumption 1, we define the set of sub-gradients of ft as,

∂ft(yt,yt−1 . . .yt−m) =







































{[c− d, d . . . d]} ∑t
k=t−m yk <

∑t
k=t−m ut

{[c+ h, h . . . h]}
∑t

k=t−m yk >
∑t

k=t−m ut

{λ[c− d, d . . . d] + (1− λ) [c+ h, h . . . h] ∈ [0, 1]}
∑t

k=t−m yk =
∑t

k=t−m ut

Now, the Euclidean norm of the sub-gradient can be trivially upper bounded by L =

||h+ d, h+ d, . . . h+ d||2 = (h+ d)
√
m+ 1

The unary loss function f̃t is defined as,

f̃t(y) = ft(y, . . .y) = cy +max
(

h
(

(m+ 1)y −
t

∑

k=1

uk

)

,−d
(

(m+ 1)y −
t

∑

k=1

uk

)

)

and the corresponding sub-gradients are,

∂f̃t(yt) =



























{c− d(m+ 1)} yt <
1

m+ 1

∑t
k=t−m ut

{c+ h(m+ 1)} yt >
1

m+ 1

∑t
k=t−m ut

[c− d(m+ 1), c+ h(m+ 1)] yt =
1

m+ 1

∑t
k=t−m ut

The Euclidean norms of the sub-gradients are upper bounded by G = (m + 1)(h + d),

and hence, Assumption 2 is satisfied. Applying the OGDM algorithm to the inventory

problem with bounded memory and setting learning rate as,

η =
C

h+ d

√

1

2((m+ 1)2 +m2(m+ 1)3/2)T

results in the following upper bound for the static policy regret,

RT ≤ C(h+ d)
√

2((m+ 1)2 +m2(m+ 1)3/2)T
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Simulations

In order to empirically verify that the performance of the OGDM algorithm satisfies the

regret upper bound, we simulate the same. As in the case of the OGD in the memoryless

inventory problem, we can formulate the problem of finding the best static policy as a

linear constrained optimisation problem and solve it using linear programming solvers

in the cvxopt library of python. The simulation setup is as follows,

• The demand ut is generated by a Poisson process with λ = 25 truncated at M =
50.

• The values of c = 10,d = 15,h = 5, satisfying the assumption d > c, are used.

• The simulation is done for T steps and the regret is computed.

• The simulation is repeated n = 10 times and both the maximum and the average

of the regrets computed for each iteration is plotted.

• The capacity is set at C = 25.

• The simulations are performed for m = 10, 100

• The simulations are repeated for T = m+ 1,m+ 2, . . . 1000
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Figure 4.1: Regret/time plot for the OGDM algorithm. Max over 10 repetitions is

shown. Plots for both m = 10,m = 100 are shown
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Figure 4.2: Regret/time plot for the OGDM algorithm. Average over 10 repetitions is

shown. Plots for both m = 10,m = 100 are shown

We plot the time divided regrets (regret/T) obtained from the simulation, both the

average and maximum over repetitions. We also plot the OGDM algorithm’s decisions

along with the best stationary policy and the demands chosen by the environment for a

single instance. These regrets are obtained for various memory bounds m. We expect

the regrets increase as we increase m and this is ,in fact. what we observe. The regret

plots are shown in Fig. 4.1 and Fig 4.2. Clearly, as the bound on memory increases from

10 to 100, the corresponding regrets increase too. The policy of the OGDM algorithm

behaves similar to the OGD algorithm although with slightly enhanced variance.
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Figure 4.3: The decisions of the OGDM algorithm along with the incoming demands

and the best stationery policy for a single instance of 100 steps for m = 10.
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4.3 Adaptive Online Learning for OCO with Bounded

Memory

So far, we had considered the static regret both in the case of OCO with and without

memory. However, when the environment is dynamic, the notion of static regret is

no longer relevant. Hence, we study the notion of dynamic regret. Zinkevich (2003)

presents a version of the dynamic regret where the comparators can be any sequence

of decisions within the decision set. for the memoryless setting. We adapt this notion

of dynamic regret to the OCO with memory framework and define the dynamic policy

regret of an algorithm that generates the decisions {yt}Tt=1 as,

RD
T (zT , zT−1 . . . z1) =

T
∑

t=m+1

ft(yt, ...,yt−m)−
T
∑

t=m+1

f̃t(zt)

where the comparator sequence is zt}Tt=1 with zt ∈ Y for all t ∈ [T ]. From this sec-

tion onwards, we consider the dynamic regret for which we establish guarantees for

algorithms we devise. Assuming that the loss function ft satisfies Assumption 1 and is

L-Lipschitz, and applying theorem 3 to the definition of dynamic regret, we obtain,

RD
T (zT , zT−1 . . . zm+1) =

T
∑

t=m+1

ft(yt, ...,yt−m)−
T
∑

t=m+1

f̃t(zt)

≤ m2L
T
∑

t=m+2

||yt − yt−1||2 +
T
∑

t=m=1

f̃t(yt)−
T
∑

t=m+1

f̃t(zt)

(4.4)

The above upper bound represents the switching cost
∑T

t=m+1
||yt−yt−1||2 and the dy-

namic regret with respect to the memoryless loss function f̃t defined as
∑T

t=m=1
f̃t(yt)−

∑T
t=m+1

f̃t(zt). Similar to the case of the static policy regret, we have this upper bounds

maps the OCO with memory problem to the memoryless OCO setting and if we obtain

an algorithm that suffers sub-linear dynamic regret with respect to the unary loss func-

tion, and has a sub-linar switching cost, then the from Eq. 4.4, the dyanmic policy regret

is sub-linear as well. Hence, we consider an algorithm that suffers sub-linear dynamic

regret with respect to the memoryless loss functions f̃t and adapt it to our case so that

it suffers sub-linear switching cost too.
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4.3.1 An Algorithm Satisfying Sub-Linear Dynamic Regret Upper

Bound for the Memoryless OCO Case

Zhang et al. (2018) establish the following theorem which bounds the dynamic regret

suffered by the OGD algorithm for the memoryless OCO framework with memoryless

convex loss functions ht at every step t.

Theorem 4 Let h1, h2 . . . hT be sequences of convex loss functions which have sub-

gradients whose Euclidean norms are upper bounded by G. Let the diameter of the

decision set Y which includes 0 be B. Then, for the sequence of decisions of the OGD

algorithm {yt}Tt=1,

T
∑

t=1

ht(yt)−
T
∑

t=1

ht(zt) ≤
1

4η
(7B2 + 4BPT ) +

ηG2T

2

where zt ∈ Y for all t ∈ [T ], and PT =
∑T

t=2
||zt − zt−1||2

Setting η = η∗ =

√

7B2 + 4BPT

2G2T
, we obtain a O(

√

T (1 + PT )) dynamic regret upper

bound. The work also establishes an algorithm-agnostic lower bound on the dynamic

regret of Ω(
√

T (1 + PT )) whose order is matched by that of the dynamic regret upper

bound of OGD with optimal η∗. However, setting this optimal η∗ requires the knowl-

edge of the path length PT to the learner a priori, which might not be the case. Thus, the

work devises a set of learning rates H and experts E , both uniquely indexed by i ∈ [N ]

where N = |H|. The expert i runs the OGD algorithm on the memoryless OCO setting

with a learning rate ηi ∈ H and makes the decision yt,i ∈ Y at step t as suffers loss

ht(yt,i). Thus, each expert is an OGD algorithm with a specific learning rate. This

OGD algorithm represented by each expert i is called the expert-algorithm. To generate

the final decision from the individual expert decisions, a meta-algorithm which is the

exponential weighting algorithm (Cesa-Bianchi and Lugosi (2006)) with parameter β

is used on the individual experts with the loss function ht at each step t. This proposed

algorithm is named adaptive learning for dynamic environment (Ader). Essentially, this
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splits the memoryless dynamic regret as,

T
∑

t=m=1

ht(yt)−
T
∑

t=m+1

ht(zt) =
(

T
∑

t=m=1

ht(yt)−
T
∑

t=m=1

ht(yt,i)
)

+
(

T
∑

t=m=1

ht(yt,i)−
T
∑

t=m+1

ht(zt)
)

for some i ∈ [N ]

(4.5)

the first term is the related to the regret of the exponential weighting algorithm which,

when the loss function ht satisfies a ≤ ht(y) ≤ a+c, is upper bounded by O(
√

T log (N))

for an appropriate β = O(
√

log(N)/T ) independent of the path length. The con-

struction of the set of learning rates H is such that there exists an expert i∗ such

that ηi∗ ∈ H has an individual expert memoryless dynamic regret upper bounded by

O(
√

T (1 + PT )), the bound achieved in theorem 4. Note that the construction of the

set is independent of the path length PT . Setting i = i∗ in Eq. 4.5 and summing the 2

terms, we find that the dynamic regret of the overall Ader algorithm is upper bounded

by O(
√

T (1 + PT )). In the next section, we adapt the Ader algorithm to the framework

of OCO with memory with some modifications to the expert and meta algorithms.

4.3.2 Adaptation of ADER algorithm to the OCO Problem with

Memory

We now shift our focus back to the case of dynamic regret in the case of OCO with

memory. When assumptions 1,2 and 3 are satisfied, we can combine theorems 3 and 4,

with Eq. 4.3, and we obtain the following theorem,

Theorem 5 Let the sequence of convex loss functions with bounded memory m, f1, . . . fT

satisfy Assumption 1 (L-Lipschitz). Let the unary loss functions defined as f̃t(y) =

ft(y, . . .y) satisfy Assumption 2 (sub-gradients’ norms bounded by G). Let the deci-

sion set Y satisfy Assumption 3 (bounded convex set with diameter B). Then, if {yt}Tt=1
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are generated by running the OGD algorithm on the unary loss functions f̃t for t ∈ [T ],

RD
T (zT , zT−1 . . . zm+1) =

T
∑

t=m+1

ft(yt, ...,yt−m)−
T
∑

t=m+1

f̃t(zt)

≤ m2L
T
∑

t=m+2

||yt − yt−1||2 +
T
∑

t=m=1

f̃t(yt)−
T
∑

t=m+1

f̃t(zt)

≤ 1

4η
(7B2 + 4BPT ) +

η(2m2LG+G2)T

2

where PT =
∑T

t=m+1
||zt − zt−1||2 is the path length of the sequence of comparators

{zt}Tt=m+1.

The above bound is very similar to that of theorem 4. Similar to the previous memo-

ryless case, setting the optimal η = η∗ =

√

7B2 + 4BPT

2(2m2LG+G2)T
requires the knowledge

of PT , which may not be known to the learner a priori. Hence, we try using the Ader al-

gorithm on the unary loss function f̃t for t ∈ [T ]. Using Eq. 4.4, we bound the dynamic

policy regret in an OCO problem with memory as,

RD
T (zT , zT−1 . . . zm+1) =

T
∑

t=m+1

ft(yt, ...,yt−m)−
T
∑

t=m+1

f̃t(zt)

≤ m2L

T
∑

t=m+2

||yt − yt−1||2 +
T
∑

t=m=1

f̃t(yt)−
T
∑

t=m+1

f̃t(zt)

Running the Ader algorithm only guarantees that the second term, i.e. the memoryless

dynamic regret is upper bounded by O(
√

T (1 + PT )). There is no guarantee on the

corresponding switching cost of Ader. Hence we adopt a split different from the previ-

ous memoryless case. We define a set of learning rates H and set of experts E indexed

by i ∈ [N ] for N = |H|. We split the upper bound on the dynamic policy regret as,

m2L
T
∑

t=m+2

||yt − yt−1||2 +
T
∑

t=m=1

f̃t(yt)−
T
∑

t=m+1

f̃t(zt)

=
(

m2L
T
∑

t=m+2

||yt − yt−1||2 +
T
∑

t=m=1

f̃t(yt)

−m2L
T
∑

t=m+2

||yt,i − yt−1,i||2 −
T
∑

t=m=1

f̃t(yt.i)
)

+
(

m2L
T
∑

t=m+2

||yt,i − yt−1,i||2 +
T
∑

t=m=1

f̃t(yt.i)−
T
∑

t=m+1

f̃t(zt)
)

(4.6)
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for some i ∈ [N ]. With this split we define the following adaptation of the Ader al-

gorithm which we name Adaptive learning for Dynamic Environment with Memory

(Aderm) which consists of 2 parts, the expert algorithm and the meta algorithm.

Algorithm 4: Aderm: Meta Algorithm

Input: set of learning rates H = {η1, η2 . . . ηN} as defined in Eq. 4.7 , convex

decision set Y , set parameter β ;

Sort the step sizes in ascending order η1 ≤ η2 · · · ≤ ηN ;

Activate a set of experts {Ei|i ∈ [N ]} by invoking Algorithm 5 for each

ηi ∈ H;

Set w1,i =
W

i(i+ 1)
for W = 1 + 1

N
;

for t = m+ 1, . . . T do

Receive yt,i from each expert Ei ;

Output

yt =
N
∑

i=1

wt,iyt,i

;

Adversary chooses loss function ft : Ym+1 7→ R;

Observe the unary loss function f̃t(.);

Each expert suffers loss lt(i) = m2L||yt,i − yt−1,i||2 + f̃t(yt,i);
Update the weight of each expert as,

wt+1,i =
wt,i exp(−βlt(i))

∑N
j=1

wt,j exp(−βlt(j))

;

Send sub-gradient gt,i ∈ ∂f̃t(yt,i) to each expertEi ;

end

Algorithm 5: Aderm: Expert Algorithm

Input: learning rate η, convex decision set Y;

Initialise: y
η
1 ,y

η
2 . . .y

η
m ∈ Y;

for t = m+ 1 . . . T do

Submit y
η
t to the meta-algorithm ;

Receive sub-gradient g
η
t from meta algorithm;

Set yt+1 = ΠY(y
η
t − ηgη

t );

end
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Before presenting the theorem which establishes the dynamic policy regret upper

bound for the Aderm algorithm, we make the following assumption on the unary loss

function f̃t.

Assumption 4 We assume that the unary function a ≤ f̃t(y) ≤ a + d ∀y ∈ Y and

∀t ∈ [T ], for some a ∈ R and d > 0.

We now present the main theorem of this section which establishes the dynamic policy

regret of the Aderm algorithm.

Theorem 6 Set

H =

{

ηi = 2i−1B

√

7

2(G2 +m2LG)T

∣

∣

∣

∣

∣

i = 1, . . . N

}

(4.7)

where N = ⌈1

2
log2(1 + 4T/7)⌉ + 1 and β =

√

8/(9(m2LB + d)2T ) in Algorithm 4

under Assumptions 1,2,3 and 4 for any comparator sequence zm+1, zm+2 . . . zT ∈ Y
with path length PT =

∑T
t=m+1

||zt − zt−1||2, the proposed Aderm algorithm in the

OCO setting with m-bounded memory satisfies,

RD
T (zT , . . . zm+1) ≤

3
√
2m2LG+G2

4

√

2T (7B2 + 4BPT )

+
3(m2LB + d)

√
2T

4
(1 + 2 log(k + 1))

(4.8)

for k = ⌊1

2
log2(1 +

4PT

7B
)⌋+ 1 .

The order of the upper bound is O(
√

T (1 + PT )), the same as the one obtained

by the Ader algorithm in the memoryless case. The proof of this theorem is present

in Appendix A and it follows a similar outline to the proof of theorem 4 presented in

Zhang et al. (2018).

4.3.3 Application of ADERM Algorithm to the Inventory Problem

In order for the dynamic policy regret bound specified in Theorem 6 to hold when

the Aderm algorithm is applied to the inventory problem with m-bounded memory, we

only need to verify that Assumptions 1,2,3 and 4 are satisfied. We had already verified
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that assumption 1,2 and 3 hold for the inventory problem with m-bounded memory

in section 4.2.2 where the loss functions with memory ft are L-Lipschitz, the norms

of the sub-gradients of the unary loss functions f̃t are upper bounded by G and the

diameter of the decision set Y = [0, C] is upper bounded by B for all t ∈ [T ], with

L = (h + d)
√
m+ 1, G = (m + 1)(h + d) and B = C. We only need to verify that

assumption 4 is satisfied by the unary loss function f̃t.

f̃t(y) = cy +max
(

h
(

my −
t

∑

k=t−m

uk

)

,−d
(

my −
t

∑

k=t−m

uk

)

)

≥ 0 ∵ ut ∈ U = [0,M ]

We also have y ≤ C and,

max
(

h
(

my −
t

∑

k=t−m

uk

)

,−d
(

my −
t

∑

k=t−m

uk

)

)

≤ (h+ d)
∣

∣

∣
my −

t
∑

k=t−m

uk

∣

∣

∣

≤ m(h+ d)max(C,M)

≤ m(h+ d)(C +M)

=⇒ 0 ≤ f̃t(y) ≤ C(c+mh+md) +M(mh+md)

Thus, assumption 4 is satisfied by f̃t. Hence, the dynamic policy regret upper bound

of O(
√

T (1 + PT )) for the Aderm algorithm established by Theorem 6 holds for the

inventory problem with m-bounded memory.

Simulations

We simulate the inventory problem with m-bounded memory with the Aderm algo-

rithm applied to it to empirically verify that it’s performance satisfies the regret upper

bound. In order to make the environment dynamic, we change the demand generat-

ing process at step t = ⌈T
2
⌉ by changing the rate of the Poisson process. Thus, the

comparator sequence is defined as zt = argminz∈Y

∑⌈T/2⌉−1

t=m+1
f̃t(z) for t < ⌈T

2
⌉ and

zt = argminz∈Y

∑T
t=⌈T/2⌉ f̃t(z) for ⌈T

2
⌉ ≤ t ≤ T . Like the previous case of OGDM,

we can find the comparators by solving the minimisation problem using linear program-

ming solvers of cvxopt library in Python. The simulation setup is as follows,

• The demand ut is generated by a Poisson process with λ = 25 truncated at M =
50 for t < ⌈T

2
⌉.
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• The demand ut is generated by a Poisson process with λ = 10 truncated at M =
50 for ⌈T

2
⌉ ≤ t ≤ T .

• The values of c = 10,d = 15,h = 5, satisfying the assumption d > c are used.

• The simulation is done for T steps and the regret is computed.

• The simulation is repeated n = 2 times and both the maximum and the average

of the regrets computed for each iteration is plotted.

• The capacity is set at C = 25.

• The simulations are performed for memory m = 10.

• The simulations are repeated for T = m+ 1,m+ 2, . . . 1000

We plot the maximum and average regrets/time as in the previous algorithms. Ad-

ditionally, we also plot the single-step regret/time evolution for a single instance of the

above simulation for 1000 steps. The decisions of the Aderm algorithm along with the

incoming demands and the dynamic comparator sequence is also plotted. As we can

see, the regret plots in Fig. 4.4 and Fig. 4.5 are sub-linear in nature. By noticing the

jump in regret, close to step 500, we can see the effect of the changing comparator at

step ⌈T/2⌉ in the single-step regret evolution plot in Fig. 4.6. The change in the pattern

of decisions of Aderm once the demand generating process is changed is clearly seen

in Fig. 4.7. Note that the comparator is changed only once in this simulation.
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Plot of regret/time vs time for ADERM Algorithm

Figure 4.4: Regret/time plot for the Aderm algorithm. Max over 10 repetitions is

shown.
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Figure 4.5: Regret/time plot for the Aderm algorithm. Average over 10 repetitions is

shown.
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Figure 4.6: Step-wise regret/time evolution for the Aderm algorithm for a single in-

stance of 1000 steps
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Figure 4.7: The decisions of the Aderm algorithm along with the incoming demands

and the dynamic comparator sequence for a single instance of 200 steps.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work, we had explored several frameworks used in online learning and explored

the feasibility of using these frameworks in the inventory management problem, both

with and without memory and to obtain sub-linear regret guarantees. These frameworks,

especially the memoryless OCO setting, have been well studied in several works and

hence there are several well known algorithms like the Online Gradient Descent and the

Hedge Algorithm for prediction with experts with strong static regret guarantees. We

had explored the application of the Hedge algorithm on the base-stock version of the

inventory problem with experts, and since it satisfied the assumptions of bounded loss,

the static regret of the Hedge algorithm was upper bounded by O(
√

T log(N) with N

base-stock experts. We, then, shifted to the OCO framework, and since the memory-

less inventory problem (without base-stock control) satisfied the convexity constraints

of the setting, it was an ideal candidate for applying algorithms for the OCO setting.

With the norm of the sub-gradients of the memoryless loss function and the diameter of

the decision set being upper bounded, running the OGD algorithm on the memoryless

inventory problem resulted in a sub-linear regret upper bound of O(
√
T ). The presence

of memory in the inventory problem is an indispensable factor since the current pur-

chase decisions can have future cost implications in terms of storage or delay. Hence,

we consider the inventory problem with bounded memory m, where the memory bound

indicates the expiry of goods. We use the bounds derived in Anava et al. (2015) to con-

clude that the OGD algorithm run on the unary loss function (OGDM), which is derived

from the loss function with memory, has static policy regret upper bounds of O(
√
T )

under certain assumptions. We verify that the inventory problem with bounded mem-

ory satisfies these assumptions and hence the OGDM has a static regret upper bound

of O(
√
T . The main contribution of Anava et al. (2015) was to map the OCO problem

with memory to the memoryless OCO problem through the upper bound which they

prove. Recognising that the environment which generates demand can be dynamic, we

consider the framework of dynamic regret where the comparators need not be static and



can change with time. Zhang et al. (2018) proposes the Ader algorithm which has a dy-

namic regret upper bound of O(
√

T (1 + PT ) for the memoryless OCO setting, where

PT is the path length of the comparator sequence. Using, the theorem of Anava et al.

(2015) which maps OCO with memory to memoryless OCO, we adapt the Ader algo-

rithm with minor alterations to obtain the Aderm algorithm which has dynamic policy

regret upper bounds of O(
√

T (1 + PT matching the order of that of the Ader algorithm

in the memoryless OCO setting. We tabulate the regret upper bounds under various

settings.

Comparator

OCO Setting
Memoryless OCO OCO with Bounded

Memory

Static OGD (O(
√
T )) OGDM (O(

√
T ))

Dynamic Ader

(O(
√

T (1 + PT ))

Aderm

(O(
√

T (1 + PT ))

Table 5.1: Regret upper bounds for algorithms considered under different settings of

OCO

The algorithms considered along with their regret guarantees under different settings

are presented in the table. The term within the brackets represents the regret upper

bound of that algorithm. The algorithm in bold is the Aderm algorithm, an adaptation

of the Ader algorithm of Zhang et al. (2018), which we formulate.

This work considers only the case of a single item in the inventory. For the multiple

item case with an overall purchase capacity, it needs to be verified that the derived regret

bounds hold. Since the decision set is still convex, we expect that the regret bounds only

change by a constant. The case of multiple expiry duration resulting in different mem-

ory bounds for different items also needs to be considered. Another interesting case

would be the adversary controlled expiry, where the expiry of the items is controlled by

the adversary.

Zhang et al. (2018) establish a fundamental lower bound of Ω(
√

T (1 + PT )) on the

dynamic regret achieved in the OCO setting. As a follow-up, it would be interesting

to derive such a lower bound for the dynamic policy regret for the case of OCO with

bounded memory. It would be beneficial if we could adapt the improved version of Ader,

proposed by Zhang et al. (2018) with a much less number of sub-gradient queries.
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APPENDIX A

Analysis of Section 4.3.2

We prove our main theorem stated in section 4.3.2,

Theorem 6 Set

H =

{

ηi = 2i−1B

√

7

2(G2 +m2LG)T

∣

∣

∣

∣

∣

i = 1, . . . N

}

(4.7)

where N = ⌈1

2
log2(1 + 4T/7)⌉ + 1 and β =

√

8/(9(m2LB + d)2T ) in Algorithm 4

under Assumptions 1,2,3 and 4 for any comparator sequence zm+1, zm+2 . . . zT ∈ Y
with path length PT =

∑T
t=m+1

||zt − zt−1||2, the proposed Aderm algorithm in the

OCO setting with m-bounded memory satisfies,

RD
T (zT , . . . zm+1) ≤

3
√
2m2LG+G2

4

√

2T (7B2 + 4BPT )

+
3(m2LB + d)

√
2T

4
(1 + 2 log(k + 1))

(4.8)

for k = ⌊1

2
log2(1 +

4PT

7B
)⌋+ 1 .

Proof: From Eq. 4.4 and 4.6,

RD
T (zT , . . . zm+1) ≤ m2L

T
∑

t=m+2

||yt − yt−1||2 +
T
∑

t=m=1

f̃t(yt)−
T
∑

t=m+1

f̃t(zt)

≤
T
∑

t=m=1

RM
t,i +

T
∑

t=m=1

RE
t,i

(A.1)

where,

RM
t,i =

(

m2L||yt − yt−1||2 + f̃t(yt)−m2L||yt,i − yt−1,i||2 − f̃t(yt.i)
)

(A.2)

RE
t,i =

(

m2L||yt,i − yt−1,i||2 + f̃t(yt.i)− f̃t(zt)
)

(A.3)



for some i ∈ [N ]. The term RM
t,i is the single step static regret suffered by the meta-

algorithm with respect to expert Ei, while the term RE
t,i is the single-step dynamic mem-

oryless regret suffered by the expert-algorithm i along with the switching cost. We will

now consider each of these terms separately.

||yt − yt−1||2 =
∣

∣

∣

∣

∣

∣

N
∑

j=1

wt,iyt,j −
N
∑

j=1

wt−1,jyt−1,j

∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∣

(

N
∑

j=1

wt,jyt,j −
N
∑

j=1

wt,jyt−1,j

)

+
(

N
∑

j=1

wt,jyt−1,j −
N
∑

i=1

wt−1,jyt−1,j

)

∣

∣

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

∣

∣

N
∑

j=1

wt,jyt,j −
N
∑

j=1

wt,jyt−1,j

∣

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∣

N
∑

j=1

wt,jyt−1,j −
N
∑

i=1

wt−1,jyt−1,j

∣

∣

∣

∣

∣

∣

2

≤
N
∑

j=1

wt,j||yt,j − yt−1,j||2 + B
N
∑

j=1

|wt,j − wt−1,j|

Putting this is equation A.2, we get,

RM
t,i ≤m2L

N
∑

j=1

wt,j||yt,j − yt−1,j||2 +m2LB
N
∑

j=1

|wt,j − wt−1,j|

+ f̃t(yt)− (m2L||yt,i − yt−1,i||2 + f̃t(yt.i))

=m2LB
N
∑

j=1

|wt,j − wt−1,j|

+m2L

N
∑

j=1

wt,j||yt,j − yt−1,j||2 + f̃t(yt)− (m2L||yt,i − yt−1,i||2 + f̃t(yt.i))

≤m2LB
N
∑

j=1

|wt,j − wt−1,j|+m2L
N
∑

j=1

wt,j||yt,j − yt−1,j||2

+
N
∑

j=1

wt,j f̃t(yt,j)− (m2L||yt,i − yt−1,i||2 + f̃t(yt.i))

=m2LB

N
∑

j=1

|wt,j − wt−1,j|+
N
∑

j=1

wt,jlt(j)− lt(i)

where lt(j) = m2L||yt,j − yt−1,j||2 + f̃t(yt,j)

∴

T
∑

t=m+1

RM
t,i ≤ m2LB

T
∑

t=m+1

N
∑

j=1

|wt,j −wt−1,j|+
T
∑

t=m+1

(

N
∑

j=1

wt,jlt(j)− lt(i)
)

(A.4)

The second term in the above equation is the regret of the exponentially weighted
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average algorithm run with parameter β in the experts setting with loss lt(.). Since,

a ≥ lt(i) ≤ a+m2LB + d. Zhang et al. (2018) present the following lemma,

Lemma 5 If, a ≤ lt(i) ≤ a + r is the individual expert loss under the prediction with

N experts setting, then for the exponentially weighted average forecaster,

T
∑

t=m+1

(

N
∑

j=1

wt,jlt(j)− lt(i)
)

≤ log(1/w1,i)

β
+

βTr2

8

Using lemma 5, we establish the following regret bound,

T
∑

t=m+1

(

N
∑

j=1

wt,jlt(j)− lt(i)
)

≤ log(1/w1,i)

β
+

βT (m2LB + d)2

8
(A.5)

Without loss of generality, we can subtract a from the losses lt(i) for all i ∈ [N ],

and t ∈ [T ] and define 0 ≤ l′t(i) = lt(i)− a ≤ m2LB + c. It is trivial to verify that the

obtained algorithm 4, i.e. the weights of the experts, would not change. Essentially,

wt,i =
exp(−β(

∑t
k=1

lk(i)))
∑N

j=1
exp(−β(

∑t
k=1

lk(j)))
=

exp(−β(
∑t

k=1
l′k(i)))

∑N
j=1

exp(−β(
∑t

k=1
l′k(j)))

With this modified loss function resulting in the same weights for the exponential

weighting algorithm, Shalev-Shwartz (2012) show that we can bound the first term in

the R.H.S. of Eq. A.4 by,

N
∑

j=1

|wt,j − wt−1,j| ≤ β||l′t(j)||∞ = β(m2LB + d) (A.6)

Combining Eq. A.4, A.5 and A.6, we obtain,

T
∑

t=m+1

RM
t,i ≤

log(1/wt,i)

β
+

βT (8m2LB(m2LB + d) + (m2LB + d)2)

8

≤ log(1/wt,i)

β
+

9βT (m2LB + d)2

8
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Choosing β =
1

3(m2LB + d)

√

8

T
, we obtain,

T
∑

t=m+1

RM
t,i ≤

3(m2LB + d)
√
2T

4

(

1 + log
1

wt,i

)

(A.7)

Now, we consider the second term of Eq. A.1,

RE
t,i =

(

m2L||yt,i − yt−1,i||2 + f̃t(yt.i)− f̃t(zt)
)

Since expert Ei performs OGD with learning rate ηi on the unary loss functions f̃t for

all t ∈ [T ], using Theorem 5,

T
∑

t=m+1

RE
t,i ≤

1

4ηi
(7B2 + 4BPT ) +

ηi(2m
2LG+G2)T

2
∀i ∈ [N ] (A.8)

The optimal learning rate of the upper bound of Theorem 5 is,

η∗ =

√

7B2 + 4BPT

2(2m2LG+G2)T
(A.9)

We need to show that there exists an ηi ∈ H corresponding to expert Ei such that the

R.H.S of Eq. A.8 is almost minimal. Since the diameter of the decision set Y is bounded

by B,

0 ≤ Pt =
T
∑

t=m+2

||zt − zt−1||2 ≤ TB

Hence,

B
√

(2m2LG+G2)

√

7

2T
≤ η∗ ≤ B

√

(2m2LG+G2)

√

7

2T
+ 2

It is simple to verify that,

minH =
B

√

(2m2LG+G2)

√

7

2T
and maxH ≥ B

√

(2m2LG+G2)

√

7

2T
+ 2

, Therefore, for any possible value of PT , there exists a step size ηk ∈ H, such that

ηk =
2i−1B

√

(2m2LG+G2)

√

7

2T
≤ η∗ ≤ 2ηk (A.10)

where k = ⌊1

2
log2(1 + 4PT

7B
)⌋ + 1. Setting i = k and plugging ηk into Eq. A.8, and

55



using Eqs. A.9 and A.10

T
∑

t=m+1

RE
t,k ≤

1

4ηk
(7B2 + 4BPT ) +

ηk(2m
2LG+G2)T

2

≤ 1

2η∗
(7B2 + 4BPT ) +

η∗(2m2LG+G2)T

2

=
3
√
2m2LG+G2

4

√

2T (7B2 + 4BPT )

(A.11)

Also, the initial weight of expert Ek, for W = 1 + 1

N
, is

w1,k =
W

k(k + 1)
≥ 1

k(k + 1)
≥ 1

(i+ 1)2

Again setting i = k and plugging the above relation into Eq. A.7, we get,

T
∑

t=m+1

RM
t,k ≤

3(m2LB + d)
√
2T

4
(1 + 2 log(k + 1)) (A.12)

Finally, setting i = k in Eq. A.1 and using Eqs. A.11 and A.12,

RD
T (zT , . . . zm+!) ≤

3
√
2m2LG+G2

4

√

2T (7B2 + 4BPT )

+
3(m2LB + d)

√
2T

4
(1 + 2 log(k + 1))

(A.13)

for k = ⌊1

2
log2(1 +

4PT

7B
)⌋+ 1.

The above bound holds for any sequence of comparators zT , zT−1 . . . zm+1 ∈ Y .

56



REFERENCES

1. Anava, O., E. Hazan, and S. Mannor, Online learning for adversaries with memory:

Price of past mistakes. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-

nett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran

Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/

2015/file/38913e1d6a7b94cb0f55994f679f5956-Paper.pdf.

2. Bertsekas, D. P., Dynamic Programming and Optimal Control. Athena Scientific, 2000,

2nd edition. ISBN 1886529094.

3. Bhattacharjee, R., S. Banerjee, and A. Sinha (2020). Fundamental limits on the

regret of online network-caching. Proc. ACM Meas. Anal. Comput. Syst., 4(2). URL

https://doi.org/10.1145/3392143.

4. Bousquet, O. and M. K. Warmuth (2003). Tracking a small set of experts by mixing

past posteriors. J. Mach. Learn. Res., 3(null), 363–396. ISSN 1532-4435.

5. Boyd, S. and L. Vandenberghe, Convex optimization. Cambridge university press,

2004.

6. Cesa-Bianchi, N. and G. Lugosi, Prediction, learning, and games. Cambridge Univer-

sity Press, 2006. ISBN 978-0-521-84108-5. URL https://doi.org/10.1017/

CBO9780511546921.

7. Freund, Y. and R. E. Schapire (1997). A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sciences,

55(1), 119–139. ISSN 0022-0000. URL https://www.sciencedirect.com/

science/article/pii/S002200009791504X.

8. Geulen, S., B. Vöcking, and M. Winkler, Regret minimization for online buffer-

ing problems using the weighted majority algorithm. In A. T. Kalai and M. Mohri

(eds.), COLT 2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June

27-29, 2010. Omnipress, 2010. URL http://colt2010.haifa.il.ibm.com/

papers/COLT2010proceedings.pdf#page=140.

9. György, A. and G. Neu, Near-optimal rates for limited-delay universal lossy source

coding. In 2011 IEEE International Symposium on Information Theory Proceedings.

2011.

10. Hall, E. C. and R. M. Willett, Dynamical models and tracking regret in online convex

programming. In Proceedings of the 30th International Conference on International

Conference on Machine Learning - Volume 28, ICML’13. JMLR.org, 2013.

11. Jadbabaie, A., A. Rakhlin, S. Shahrampour, and K. Sridharan, Online Optimization

: Competing with Dynamic Comparators. In G. Lebanon and S. V. N. Vishwanathan

(eds.), Proceedings of the Eighteenth International Conference on Artificial Intelligence

and Statistics, volume 38 of Proceedings of Machine Learning Research. PMLR, San

Diego, California, USA, 2015. URL http://proceedings.mlr.press/v38/

jadbabaie15.html.

57



12. Merhav, N., E. Ordentlich, G. Seroussi, and M. Weinberger (2002). On sequential

strategies for loss functions with memory. IEEE Transactions on Information Theory,

48(7), 1947–1958.

13. Mokhtari, A., S. Shahrampour, A. Jadbabaie, and A. Ribeiro, Online optimization

in dynamic environments: Improved regret rates for strongly convex problems. In

2016 IEEE 55th Conference on Decision and Control (CDC). IEEE Press, 2016. URL

https://doi.org/10.1109/CDC.2016.7799379.

14. Rooij, S. and T. Erven, Learning the switching rate by discretising bernoulli sources on-

line. In D. van Dyk and M. Welling (eds.), Proceedings of the Twelth International Con-

ference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine

Learning Research. PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, Florida

USA, 2009. URL http://proceedings.mlr.press/v5/rooij09a.html.

15. Shalev-Shwartz, S. (2012). Online learning and online convex optimization. Found.

Trends Mach. Learn., 4(2), 107–194. ISSN 1935-8237. URL https://doi.org/

10.1561/2200000018.

16. Shi, G., Y. Lin, S.-J. Chung, Y. Yue, and A. Wierman, Online optimiza-

tion with memory and competitive control. In H. Larochelle, M. Ran-

zato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural

Information Processing Systems, volume 33. Curran Associates, Inc., 2020.

URL https://proceedings.neurips.cc/paper/2020/file/

ed46558a56a4a26b96a68738a0d28273-Paper.pdf.

17. Yang, T., L. Zhang, R. Jin, and J. Yi, Tracking slowly moving clairvoyant: Optimal

dynamic regret of online learning with true and noisy gradient. In Proceedings of the

33rd International Conference on International Conference on Machine Learning - Vol-

ume 48, ICML’16. JMLR.org, 2016.

18. Zhang, L., S. Lu, and Z.-H. Zhou, Adaptive online learning in dynamic environments.

In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-

nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran

Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/

2018/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf.

19. Zhang, L., T. Yangt, J. Yi, R. Jin, and Z.-H. Zhou, Improved dynamic regret for

non-degenerate functions. In Proceedings of the 31st International Conference on Neu-

ral Information Processing Systems, NIPS’17. Curran Associates Inc., Red Hook, NY,

USA, 2017. ISBN 9781510860964.

20. Zhao, P., Y.-J. Zhang, L. Zhang, and Z.-H. Zhou, Dynamic regret of convex and

smooth functions. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and

H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33. Curran

Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/

2020/file/939314105ce8701e67489642ef4d49e8-Paper.pdf.

21. Zinkevich, M., Online convex programming and generalized infinitesimal gradient as-

cent. In Proceedings of the Twentieth International Conference on International Con-

ference on Machine Learning, ICML’03. AAAI Press, 2003. ISBN 1577351894.

58


