
Analysis of Gradient Based Learning in Deep Networks:

A Case Study

A Project Report

submitted by

RAJAT VADIRAJ DWARAKNATH

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2020

THESIS CERTIFICATE

This is to certify that the thesis titled Analysis of Gradient Based Learning in Deep

Networks: A Case Study, submitted by Rajat Vadiraj Dwaraknath (EE16B033), to

the Indian Institute of Technology, Madras, for the award of the degree of Bachelor of

Technology, is a bona fide record of the research work done by him under our supervi-

sion. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Prof. Harish Guruprasad
Research Guide
Assistant Professor
Dept. of Computer Science
IIT-Madras, 600 036

Prof. Abhishek Sinha
Department Co-Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

ACKNOWLEDGEMENTS

I would like to deeply express my gratitude towards Prof. Harish Guruprasad, my men-

tor and guide without whom this project would not have been possible. The regular

meetings combined with his invaluable advice and guidance not only helped me in this

endeavour but also molded my outlook towards research as a whole. I would addition-

ally like to thank the other graduate and undergraduate students that are part of Prof.

Harish’s research group for the numerous thoughtful and enlightening discussions we

have had. I would also like to thank Prof. Abhishek Sinha for agreeing to be my de-

partment co-guide for this project. Last but not least, I would like to thank my friends

and family for their unending encouragement and continued support as I worked on this

project.

i

ABSTRACT

KEYWORDS: deep learning theory, neural network, optimization, generalization

We analyze the dynamics of gradient descent for training the simplest three-layer neural

network architecture for which no formal theoretical explanation has been formulated

yet. We motivate this architecture by building on existing two-layer network theory

and combining it with ideas based on deep linear networks. We formulate numerous

testable hypotheses and present empirical results for them. The setting of the case study

affords the ability to create metrics to measure intermediate layer performance that

act as probes to better understand the learning dynamics of the network. We present

additional testable hypotheses based on this idea that would normally not be testable in

common deep learning settings, and the results of these experiments reveal promising

directions to pursue for future theoretical work.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES vii

ABBREVIATIONS viii

1 Introduction 1

2 Background 2

2.1 The Neural Tangent Kernel . 2

2.1.1 Setup . 2

2.1.2 General Criterion . 3

2.1.3 Gradient Flow . 5

2.1.4 Two-Layer Network Results 6

2.2 Results outside the NTK regime 6

2.2.1 Global Convergence using Optimal Transport 7

2.2.2 Polyak-Lojasiewicz condition for Non-Convex Optimization 10

2.3 Deep Linear Networks . 12

3 Setting of the Case Study 14

3.1 Dataset . 14

3.2 Model Architecture . 15

4 Empirical Analysis 18

4.1 1-D Learning Baselines . 18

4.2 Comparison with 1-D Learning . 20

4.2.1 Cosine Similarity . 21

4.3 Phases of Learning . 24

4.4 Experiments with Parameter Control 27

iii

4.4.1 Fixing w to w∗ . 27

4.4.2 Initializating w to w∗ . 28

4.4.3 Fixing g to g* . 29

4.4.4 Initializating g to g* . 31

4.5 Overparameterization . 32

4.6 PL condition . 33

4.7 Intriguing Optimization Phenomenon 34

5 Conclusion and Future Work 36

LIST OF FIGURES

2.1 Wasserstein distance between two discrete probability measures. The
lines indicate the optimal permutation σ. Notice that perturbing µ or ν
slightly will not change the optimal permutation – this means that the
Wasserstein distance is locally equal to a decoupled sum of Euclidean
distances. Image credits [7]. 9

3.1 An example of the end-to-end target function f ∗ with d = 2, and
g∗(x) = sin(πx). The projection is performed along w∗ = 1√

2
[1, 1]T .

Notice that this class of target functions forms a very simple subset of
possible functions from Rd to R. 15

3.2 A scatter plot of sample train datasets for three frequencies of sin,
with d = 2. The input data distribution is a standard 2-D Gaussian,
x ∼ N (0, I). The bottom plots show the data projected onto the w∗
direction, along with their corresponding y values. 16

3.3 The architecture of the model used in the case study. It is obtained by
lifting the basic two layer neural network architecture for 1-D learning
to higher dimensions by adding a linear input layer of width 1, instead
of directly increasing the input dimension of the first layer. This rep-
resents the simplest three-layer architecture, and has significant advan-
tages in terms of what can be probed to better understand the learning
process. 16

4.1 1-D learning using the two-layer neural network architecture analyzed
in section 2.2.1. Each point corresponds to a single run, and the lines
join the averaged loss values. All runs used the same hyperparame-
ters, with a hidden width of 1000 units. Although all frequencies are
"successfully" learned by the 1-D learner, higher frequencies do have
measurably worse performance in terms of squared loss. Additionally,
we observe that increasing train dataset size does not seem to noticeably
affect performance. 19

4.2 Visualizing learned functions with different mean squared errors. . . 19

4.3 The results of training the three-layer network on data generated as de-
scribed in section 3.1. The lines correspond to the averaged loss value
of 20 runs for size of the training dataset. Each individual run is also
plotted by markers. A number of runs for 1 and 1.5 Hz heavily overlap
around a loss of 10−1, which make the average curves higher. 20

4.4 Cosine Similarity as a metric to probe learning 22

v

4.5 Training with the fixed initial CosSim initialization scheme. Higher
frequencies like 1 Hz are learnt successfully if the initialization is a fa-
vorable one with high initial CosSim. However, frequencies like 1.5 Hz
still do not show as successful learning as in the 1-D case, so hypothesis
1 is still incorrect. 23

4.6 Observe the different phases of training. Initially, the cosine similarity
grows towards 1, while the loss barely changes (until epoch ∼ 500).
In this phase, the NTK also changes significantly from initialization.
Once the cosine similarity has saturated, we observe a sharp drop in
loss. After this phase, the NTK change has also saturated, and the loss
decays exponentially as expected in the NTK regime. 24

4.7 A series of frames for a single run of training. We visualize the func-
tions in the domain of the 1-D learner component. The x-component of
each training datapoint (plotted as red dots) is the value of its projection
onto the current value of the weight w, and the y-component is the true
y value. The blue curve is a plot of the current function gθ. The green
curve is a Gaussian-smoothed version of the red points, as a baseline
simple 1-D approximator. 26

4.8 A series of frames as training progress for a run in which learning fails.
The optimization gets stuck in a local minimum and w∗ is not recovered. 27

4.9 Another instance to show the different phases in learning. In this run,
the first phase lasts for much longer (∼ 1750 epochs), during which the
train and validation losses barely change. However, the CosSim is seen
to monotonically increase towards 1, when the phase ends. 28

4.10 Results of training the whole network after initializing w to w∗. This is
identical to fixing the initial CosSim to 1. 29

4.11 Training only w with gθ fixed to the true function g∗. Compare these
results with Fig. 4.5, the normal case where both components are ini-
tialized randomly and learnt together. 30

4.12 Visualizing the 2-D toy problem objective. Restricting the function to
the line y = 0 which contains the global minimum introduces a local
minimum at x ≈ −1 which was originally a saddle point in the 2-D
optimization problem. Notice that SGD initialized from (−0.5, 0) can
escape the saddle in the 2-D case, but gets stuck in the local minimum
in the 1-D case. 31

4.13 Initializing the parameters of gθ with weights obtained using 1-D learn-
ing so that gθ ≈ g∗. All parameters are then trained. 32

4.14 The effect of overparameterization. These experiments were run with a
training dataset size of 105. Other dataset sizes were also tried, but the
trend remained roughly the same so we exclude them to avoid clutter. 33

4.15 The minimum eigenvalue of the NTK does not provide much informa-
tion in this particular problem, and the PL condition theory presented
in [20] does not seem to explain the different phases of learning that we
observe. 34

vi

4.16 Unexpected non-monotonic behavior of train loss as the training dataset
size is increased. These runs use an input dimension of d = 100. . . 35

vii

ABBREVIATIONS

NTK Neural Tangent Kernel

PL condition Polyak-Lojasiewicz condition

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

CNN Convolutional Neural Network

viii

CHAPTER 1

Introduction

Deep learning has seen remarkable advancements in its practical utility in a wide va-

riety of fields encompassing image processing, natural language processing, medical

diagnostics, etc. Although, much of this progress could be described as alchemical

and the theoretical foundations for empirical observations lag behind greatly. However,

recent research has cast some light on the inner workings of very specific and simple

classes of neural network architectures. Specifically, significant theory has been formu-

lated for the analysis of two-layer neural networks. While some form of extensions can

be made to deeper architectures, they are less convincing. Deep linear networks have

also been a focus of study and have shown fruitful theoretical developments. In this

project, we aim to tackle the next most simple type of architecture by combining these

ideas. We study the specific case of a three-layer network in which the first layer has

a linear activation and a bottleneck width of 1. This represents the simplest possible

three-layer architecture with non-trivial learning dynamics under gradient descent that

does not have a formal theoretical analysis yet. We test numerous hypotheses in hopes

of shedding light on possible directions to pursue to develop a theory for this class of

models. An additional advantage of this case study is the ability to probe intermediate

stages of the network and create metrics to measure performance in ways that would

normally not be possible in other common deep learning settings like training a CNN

on MNIST. This allows us to test additional hypotheses related to parameter control and

enables a finer study of phases in training process.

Chapter 2 presents a brief summary of important previous work upon which some of

the hypotheses build on in later sections. Chapter 3 describes in detail the setting of the

specific case study. Finally, Chapter 4 presents various hypotheses in the context of the

case study, from comparing to basic 1-D learning baselines to analyzing the effect of

controlling different parts of the network. Methods to test these hypotheses and their

results are also presented and analyzed.

CHAPTER 2

Background

Deep learning has made remarkable progress from a practical standpoint in the recent

past. However, the theoretical side of this field has been lagging behind the empirical

advancements significantly. [26] pointed out that the primary aspect in existing theories

which make them fail when used in deep learning settings is their inability to explain

the remarkable generalization performance of deep networks even when overparameter-

ized. Overparameterization is seen to be a blessing rather than a curse as most practical

neural networks used in image processing [24], natural language processing [25], etc

operate in the overparameterized regime. This unexpected behavior has eluded the-

oretical explanations, although recent work has made inroads into understanding this

phenomenon.

2.1 The Neural Tangent Kernel

A flurry of recent papers [14, 13, 2, 19, 1, 27, 17] study the behavior of neural networks

in the over-parameterized, infinite width limit, and prove convergence guarantees for

gradient descent in this limit. A common flavour of mathematical tools is used to ar-

rive at these results – neural networks approach their linear approximation around their

initializations in this limit and behave as kernel machines (this regime is termed lazy

training). The paper [10] captures a more basic criterion for this approximation to hold

true, which generalizes to arbitrary non-linear models and is not restricted to neural

networks of specific architectures as in the other papers. We present a brief summary

of this analysis in this section.

2.1.1 Setup

• Model: Consider a simple twice-differentiable non-linear model (could be any
twice-differentiable neural network) f : Rp×Rd → R, with p parameters and an
output dimension of 1.

• Data: Denote the dataset of size n by {x̃i, ỹi}ni=1. Arrange the labels ỹi into a sin-
gle vector ỹ ∈ Rn. For a fixed set of parameters w ∈ Rp, let the vector of model
outputs y(w) ∈ Rn be given by yi(w) = f(xi,w). We can also deal with the
case where y(w) is an element in an infinite dimensional function space (Hilbert
space), but this complicates the analysis. Results on the finite dimensional case
carry over to the general case without many issues.

• Loss: We restrict our study to full-batch gradient descent on the square loss, so
our loss is simply:

L(w) =
1

2
‖y(w)− ỹ‖22

Experimental results indicate that the weights of very wide neural networks barely

change during training. This motivates us to look at the linearization of the model

with respect to the parameters w around the initialization w0:

f(x,w) ≈ f(x,w0) +∇wf(x,w0)T (w −w0)

In the vector notation introduced above:

y(w) ≈ y(w0) +∇wy(w0)T (w −w0)

Note that the Jacobian ∇wy(w) has size p × n. The important point to notice is that

this model is linear in the parameters w, so minimizing the least squares loss reduces to

linear regression. This linearized model is a kernel machine where the corresponding

feature map φ(x) is obtained by taking the gradient of the model outputs at initializa-

tion with respect to its weights.

φ(x) = ∇wf(x,w0)

2.1.2 General Criterion

A general criterion for when the linear approximation is accurate derived in [10]. Here

we present a rough intuitive derivation. As we train the model (with small enough

learning rate), we can safely assume that the model outputs y(w) always get closer to

the target outputs ỹ. So we can obtain the following bound (all norms are `2 or operator

norms):

net change in y(w) . ‖y(w0)− ỹ‖

3

Now we can quantify the distance we move in parameter space with a first order ap-

proximation,

distance d moved in w space ≈ net change in y(w)

rate of change of y w.r.t w
=
‖y(w0)− ỹ‖
‖∇y(w0)‖

Translating to change in the Jacobian, we get:

change in model Jacobian ≈ distance d×rate of change of the Jacobian = d·‖∇2y(w0)‖

Where ∇2y(w0) is a rank-3 Hessian tensor. The model is linear when the relative

change in its Jacobian is very small.

relative change in Jacobian ≈ d · rate of change of Jacobian
norm of Jacobian

=
d · ‖∇2y(w0)‖
‖∇y(w0)‖

= ‖(y(w0)− ỹ)‖‖∇
2y(w0)‖

‖∇y(w0)‖2
� 1

The quantity in blue is called the inverse relative scale κ(w0) of the model. Observe that

this quantity can be driven arbitrarily close to 0 by simply scaling the model outputs

by a factor α, assuming that the model outputs are zero at initialization. (y(w0) =

0). This can always be achieved by simply defining a new model which subtracts a

fixed value equal to the initial outputs from the original model.) The rescaled model is

y′(w0) = αy(w0).

κα(w0) =
‖∇2αy(w0)‖
‖∇αy(w0)‖2

=
1

α

‖∇2y(w0)‖
‖∇y(w0)‖2

→ 0 as α→∞

Note that such rescaling can also be obtained by scaling the initialization in the case

of homogeneous models. For the specific case of 1-hidden layer neural networks of

with hidden width m initialized with Gaussian weightsN (0, 1
m

) (LeCun initialization),

we can show that κm(w0) ∼ O(1
m

), which means that the neural network approaches

the linearized regime as the width goes to infinity. The proof of this involves messing

around with Hessians of the neural network and we refer the reader to [15] for the

detailed derivation.

4

2.1.3 Gradient Flow

We can approximate gradient descent by taking the learning rate to be infinitesimally

small and replacing it with a differential equation. This is called the gradient flow of

the parameters (dot denotes time derivative,∇ denotes gradient w.r.t weights w):

ẇ(t) = −∇L(w(t))

We will drop the time variable as it can be inferred from context. Substituting for the

loss, we get:

ẇ = −∇y(w)(y(w)− ỹ)

The dynamics of the model outputs y(w) induced by this gradient flow can be derived

using the chain rule:

ẏ(w) = ∇y(w)T ẇ = −∇y(w)T∇y(w)(y(w)− ỹ)

The quantity H(w) := ∇y(w)T∇y(w) is called the neural tangent kernel (NTK). In

the lazy regime (κ(w0) � 1), the Jacobian of the model outputs does not change as

training progresses. In other words,

∇y(w(t)) ≈ ∇y(w0) =⇒ H(w(t)) ≈ H(w0)

The training dynamics now reduces to a very simple linear ordinary differential equa-

tion:

ẏ(w) = −H(w0)(y(w)− ỹ)

The analysis of this linear ODE is straightforward by performing a spectral decomposi-

tion of the positive (semi) definite NTK. There are two cases:

• Under-parameterized: p < n which means that H(w0) is not full rank and has
some 0 eigenvalues. This means that the above dynamics converges to a local
minimum.

• Over-parameterized: p > n which, assuming non-degeneracy of the dataset,
means that H(w0) is full rank and positive definite. All eigenvalues are positive.
Clearly, this implies that y(w(∞)) = ỹ, and the model always converges to 0
training loss.

We have shown that the linearized model achieves 0 training loss in the overparame-

5

terized case. By bounding the deviation of the non-linear trajectories from that of the

linearized model, we can show that the non-linear model also converges to 0 training

loss. Results with quantitative bounds for a finite trajectory duration in terms of the

model scale α can be found in [10]. The take home point is that these deviations go to

0 as α → ∞, allowing one to carry the convergence results from the linearized case to

the non-linear case. Thus, we have shown that over-parameterized models converge to

0 training loss in the lazy regime.

2.1.4 Two-Layer Network Results

We have already mentioned that one can derive quantitatively the relationship between

the width of a two-layer network (or one-hidden layer) and its inverse relative scale

(see [15]). In addition to this, more detailed research has been conducted in analyzing

two-layer networks from the perspective of NTK theory. In particular, [6] develops

a tighter characterization of the speed of training and provides an explanation for the

observations related to slower training with random labels presented in [26]. While the

NTK theory described so far has been purely optimization related, [6] also develops

data-dependent generalization bounds based on the alignment between the labels and

the top eigenvectors of the inverse NTK. This generalization bound differs from other

common bounds in that it has no dependence on the width of the network. They also

prove that a certain class of smooth functions are learnable by two-layer networks.

These results present a strong baseline on which to explore further developments.

2.2 Results outside the NTK regime

While the NTK theory affords simple and accurate theoretical results for optimization, it

fails to appear in practical experiments. Most neural network architectures which broke

state of the art barriers consistently operate outside the NTK regime, and their tangent

kernels significantly change during the course of gradient descent. Additionally, these

practical networks greatly outperform the kernel machines which use the corresponding

NTK [5]. These empirical results indicate that something more than the NTK theory

is needed to fully explain the properties of practical neural networks. Although no

convincing theory for practically used large scale networks has arisen, some progress

6

has been made in this regard for very specific architectures.

2.2.1 Global Convergence using Optimal Transport

In [9], the authors study a specific two-layer neural network architecture and obtain

global convergence guarantees for gradient descent with some regularity assumptions.

However, their result holds only in the infinite width limit, and it is not quantitative –

both in terms of width and convergence rate. However, the training dynamics in this

regime is shown to not be in the NTK regime. We present a brief summary of these

ideas in this section, based on the accompanying blog post by the authors [7].

Setup

Consider the simple two layer neural network with ReLU activation (denoted by σ):

h(x) =
1

m

m∑
i=1

aiσ(bTi x)

Here, the weights are ai ∈ R and bi ∈ Rd, and the output is normalized by 1
m

where

m is the hidden width, so that future analysis is simplified. Clubbing the weights into a

parameter vector wi for each hidden unit, we can rewrite this as:

h(x) =
1

m

m∑
i=1

Φ(wi)(x)

where Φ : Rd+1 → F is a mapping that takes the weights associated with a single

hidden unit and returns the corresponding scaled ReLU function. Moving to function

spaces, we can clearly see the separability property of this two layer network:

h =
1

m

m∑
i=1

Φ(wi)

Note that h here plays the same role as the discretized "function" y we saw in sec-

tion 2.1.1. We can now assume a convex loss functional R : F → R+ and the empirical

risk minimizer minimizes G(W) := R(h(W)) = R
(

1
m

∑m
i=1 Φ(wi)

)
, where W is a

7

vector of all the independent weights wi. As the number of hidden units goes to in-

finity, we can replace the empirical average with an expectation over a measure on the

weights:

F (µ) := R

(∫
Φ(w)dµ(w)

)

We can get backG fromF by using a discrete sum of dirac measures µ = 1
m

∑m
i=1 δ(wi).

Gradient Flows

Gradient descent on the objective G leads to the update equation:

Wk+1 = Wk −mγ∇G(Wk)

In the limit of small step size, this discrete map approximates a continuous time gradient

flow (the factor of m so that the infinite particle limit is consistent):

Ẇ = −m∇G(W)

We can also write the gradient descent update in the proximal operator formulation:

Wk+1 = argmin
W

G(W) +
1

2mγ
‖W −Wk‖22 (2.1)

This gradient update can be generalized to an arbitrary metric space by replacing the

term ‖W −Wk‖22 with the metric distance d(W,Wk)
2. We will make use of this picture

by looking at gradient flows in a metric that is natural for probability measures – the

Wasserstein distance.

Wasserstein Distance

For simplicity, we will look at discrete measures with the same number of particles

µ = 1
m

∑m
i=1 δ(wi) and ν = 1

m

∑m
i=1 δ(vi). The Wasserstein distance is the minimum

8

Figure 2.1: Wasserstein distance between two discrete probability measures. The lines
indicate the optimal permutation σ. Notice that perturbing µ or ν slightly
will not change the optimal permutation – this means that the Wasserstein
distance is locally equal to a decoupled sum of Euclidean distances. Image
credits [7].

sum of Euclidean distances required to move the particles in µ to ν:

dW (µ, ν) = min
σ

1

m

m∑
i=1

∥∥wi − vσ(i)∥∥22
Where the minimum is taken over all permutations σ : {1, . . . ,m} → {1, . . . ,m}.

The key idea is to notice that if µ or ν is perturbed slightly, the optimal permutation σ

does not change. This means that, locally, the Wasserstein metric behaves like a sum of

Euclidean distances. We can rewrite Eq. 2.1 by separating out each particle’s weight as

follows:

Wk+1 = argmin
W

G(W) +
1

2mγ

m∑
i=1

∥∥∥wi − w(k)
i

∥∥∥2
2

Now, as the step size γ → 0, we can use the intuitive approximation derived above and

replace the sum of Euclidean distances with a Wasserstein distance between measures:

µk+1 = argmin
µ

F (µ) +
1

2mγ
dW (µ, µk)

Where the minimization is done over discrete measures with a fixed number of particles

m. Therefore, in the limit of small step sizes γ → 0, and infinite particles m→∞, the

Euclidean gradient flow of G approaches the Wasserstein gradient flow of F . This is an

intuitive derivation, and rigorous details can be found in [9].

9

Global Convergence

Now, the main result of [9] is that the Wasserstein gradient flow of F converges to a

global minimum (if it converges) under some regularity assumptions:

• Homogeneity: Each independent functional Φ should be homogenous in the
weight w.

• Initialization: The initial locations of the particles should be such that there is
sufficient positive mass in all directions. This is satisfied by the usual Gaussian
initialization. Comparing this with standard initializations that lead to NTK dy-
namics, we notice that the additional 1

m
factor in the definition of the network

output h can be brought into the initialization of the weights, and we get that the
initialization is much smaller with standard deviation going as 1

m
compared to

1√
m

in Lecun initialization.

The details of the proof of this result are quite involved, and can be found in the paper

[9].

2.2.2 Polyak-Lojasiewicz condition for Non-Convex Optimization

The central idea behind the NTK theory is to show that, in the infinite width limit,

the non-convex training dynamics of a neural network approach a linear approxima-

tion. Using this, we can obtain linear convergence guarantees for gradient descent be-

cause the resulting optimization problem is convex. However, [20] shows that we can

obtain these linear convergence guarantees for overparameterized models in a regime

where the NTK still changes and the optimization landscape is provably non-convex.

This is done by first showing that a slightly less strict requirement called the Polyak-

Lojasiewicz condition (PL-condition) is satisfied by neural networks of finite width

before entering the NTK regime. This condition then implies a linear convergence rate

for gradient descent.

PL Condition

A loss function L(w) is µ-PL on a domain S if it satisfies:

1

2
‖∇L(w)‖2 ≥ µ(L(w)− L(w∗)) ∀w ∈ S (2.2)

10

Where w∗ is a global minimizer. We additionally assume that the loss L(w) has an

L-Lipschitz gradient:

L(y) ≤ L(x) +∇L(x)T (y − x) +
L

2
‖y − x‖2

With these two assumptions, we can obtain linear convergence of gradient descent.

Assuming we use a step size of 1
L

:

wk+1 = wk −
1

L
∇L(wk)

We get using eq. 2.2,

L(wk+1) ≤ L(wk)−
1

L
∇L(wk)

T∇L(wk) +
L

2

∥∥∥∥ 1

L
∇L(wk)

∥∥∥∥2

=⇒ L(wk)− L(wk+1) ≥
1

2L
‖∇L(wk)‖2 ≥

µ

L
(L(wk)− L(w∗))

Now we have a lower bound on the reduction in loss in each step that is proportional to

the current excess loss. This is exactly the criterion for linear convergence, and we have

obtained the desired result.

Uniform Conditioning

To show that certain neural network architectures satisfy the PL condition, we use the

concept of uniform conditioning. For a given network function F (w) where w is the

parameter vector, the corresponding NTK is K(w) = ∇F (w)∇F (w)T . We say F is

µ-uniformly conditioned on a domain S if

λmin(K(w)) ≥ µ ∀w ∈ S (2.3)

Now, the main utility of this concept is that the uniform conditioning of F (w) implies

the PL condition for the square loss L(w) = 1
2
‖F (w)− y‖2, if the global minimum is

11

0 (i.e., L(w∗) = 0). The proof is straightforward:

1

2
‖∇L(w)‖2 =

1

2
‖(F (w)− y)∇F (w)‖

=
1

2
(F (w)− y)K(w)(F (w)− y)T

≥ 1

2
λmin(K(w)) ‖F (w)− y‖2

= λmin(K(w))L(w) ≥ µL(w) using Eq. 2.3

Intuitively, uniform conditioning implies that the NTK is locally positive definite with a

certain minimum eigenvalue. This means that the optimization of squared loss using the

linearized function at any point in the domain S is µ-strongly convex. This is sufficient

for gradient descent to have a linear convergence rate. Note that this need not imply

strong convexity of the true (not approximated) objective. In fact, the authors of [20]

show that overparameterized systems are essentially non-convex – which means that the

objective is not convex in any neighborhood of global minima. This can also be stated

as – the manifold of global minimizers is non-linear and has non trivial curvature.

Building on this story, [20] shows that common overparameterized neural network ar-

chitectures satisfy the uniform conditioning property around their initializations as the

network width is increased. Of key importance in this result is that the required width

is much lesser than the quantitative results required to enter the NTK regime. They em-

pirically confirm that networks operating in the PL regime have significantly changing

NTKs and do not follow a linearized optimization trajectory.

2.3 Deep Linear Networks

Another avenue of research where interesting theoretical results have been arising is

that of deep linear neural networks. These neural network architectures are almost

the same as standard fully connected architectures with one major difference – there

are no non-linear activations. The network output can be written simply as (where d is

depth):

f(x) = Wd . . .W3W2W1x

At first blush, this seems rather uninteresting because a composition of many linear

12

layers can be reduced to a single linear layer. While the end-to-end function is indeed

linear, training this architecture using gradient descent is by no means trivial. Even for

the simple case of d = 2, the square loss objective is non-convex in the weights Wi

and training dynamics of gradient descent is highly non-linear. The exact form of the

differential equations of gradient flow on this architecture with the square loss can be

found in [22]. Exact solutions for a depth of 2 are also presented in the paper.

More recent works [3] have obtained quantitative convergence rates for arbitrary depth

as well. Another interesting line of work is in analyzing the implicit bias of gradient

descent on deep linear architectures. Specifically, multiple works [4, 16] have identi-

fied that gradient descent prefers solutions where the end-to-end linear mapping is of

low rank. This bias is seen to strengthen with more depth. Theoretical analysis has

shown that this implicit regularization and cannot by captured by other mathematical

formulations like the nuclear norm or Schatten quasi-norms [16].

From a high level view, studying deep linear networks seems uninteresting because

the end-to-end function is still linear, but the non-trivial learning dynamics of these

architectures has revealed hard and interesting questions and serves as motivation to

pursue other architectures with deep linear compositions.

13

CHAPTER 3

Setting of the Case Study

The aim of this case study is analyze the next level of complexity from the basic one

hidden-layer neural network (sometimes called a two-layer network) for which sig-

nificant theoretical progress has been made in terms of optimization and convergence

beyond the NTK regime (see background section 2.2.1).

3.1 Dataset

The dataset which we will use for all experimental studies is a minimal extension on

the basic 1-D learning dataset. In the case of 1-D learning, the target function g∗ :

R → R is usually assumed to possess some smoothness properties (for example take

g∗(x) = sin(πx), and the data (xi, yi) is generated by drawing x from an assumed

input distribution (commonly Gaussian), and y is obtained by applying the true target

function with some noise: yi = g∗(xi) + εi. However, in this case study, we restrict

ourselves to the noiseless case, so yi = g∗(xi).

To lift this dataset to higher dimensions, we can simply project the high dimensional

input onto a fixed 1-D line and apply the same target function g∗. The dataset (xi, yi)

where xi ∈ Rd is now obtained using the following generation process:

yi = g∗(w∗
Txi) (3.1)

Where w∗ ∈ Rd defines the direction of the line onto which the input is projected. We

additionally assumed without loss of generality that ‖w∗‖ = 1 (any scaling in w∗ can

be transferred to g∗, and its Lipschitz constant will correspondingly change). The end-

to-end target function f ∗ : Rd → R is visualized in Fig. 3.1 for a simple 2-D example.

In the 1-D learning case, we used a standard Gaussian x ∼ N (0, 1) as the input data

distribution. In the higher dimensional setting, we use x ∼ N (0, I) as the input dis-

Figure 3.1: An example of the end-to-end target function f ∗ with d = 2, and g∗(x) =
sin(πx). The projection is performed along w∗ = 1√

2
[1, 1]T . Notice that this

class of target functions forms a very simple subset of possible functions
from Rd to R.

tribution. Since we have chosen ‖w∗‖ = 1, the input to the 1-D learner still follows a

standard Gaussian distribution, w∗Tx ∼ N (0, 1).

3.2 Model Architecture

As stated earlier, we motivate this case study by taking existing 1-D learner architectures

and increasing the complexity of the problem by lifting to higher input dimensions in

the simplest way possible. Consider the two layer neural network 1-D learner of width

m studied in background section 2.2.1: gθ(x) = vTσ(u · x + b), where u ∈ Rm is the

hidden layer weight vector with bias b ∈ Rm, and v ∈ Rm is the output layer weight.

The non-linear activation σ is ReLU. We can easily lift this model to higher dimensions

in the same way we did for the dataset, by adding an additional direction w ∈ Rd onto

which the input is first projected:

f(x) = gθ(w
Tx) (3.2)

= vTσ(uwTx + b) (3.3)

Note that this lifting could be done with any black box 1-D learner model gθ, but we

choose to stick to the specific case of the two layer network. The parameters of f are

w, the projection direction, and θ, the parameters of the 1-D learner. From Eq. 3.3, we

15

Figure 3.2: A scatter plot of sample train datasets for three frequencies of sin, with
d = 2. The input data distribution is a standard 2-D Gaussian, x ∼ N (0, I).
The bottom plots show the data projected onto the w∗ direction, along with
their corresponding y values.

Figure 3.3: The architecture of the model used in the case study. It is obtained by lifting
the basic two layer neural network architecture for 1-D learning to higher
dimensions by adding a linear input layer of width 1, instead of directly
increasing the input dimension of the first layer. This represents the simplest
three-layer architecture, and has significant advantages in terms of what can
be probed to better understand the learning process.

16

can purport to directly parameterize f as a two layer network without first projecting

onto w by combining u and w into one linear layer. However, as we saw in 2.3, deep

linear architectures cannot be trivially reduced to a single linear layer as their training

dynamics under gradient descent are more complex. Additionally, this formulation

of the model aligns with the data generation process. This provides us with a useful

advantage – we know beforehand the ideal values of each component of the model, i.e.,

we know that the best value for w is w∗, and the best function for the 1-D learner is g∗.

This extra knowledge allows us to create new metrics (details in section 4.2.1) that can

probe into the intermediate layers of the deep network and offer new information about

the learning dynamics that is not normally available in other deep learning settings. For

instance, we have no information about which weight values are better for the first or

second layer while training a convolutional network on the MNIST dataset.

Finally, we note (see Fig. 3.3) that this architecture is effectively the simplest three-layer

deep architecture, with the first layer having a linear activation and a bottleneck width

of 1. This simplicity is what affords the extra flexibility in measuring the behavior of the

network as it learns by gradient descent. We will get into more details in later sections.

17

CHAPTER 4

Empirical Analysis

In this chapter, we explore a number of hypotheses that deal with the learning dy-

namics of the setting described in chapter 3. As with the setting in 1-D learning,

we train the complete network using stochastic gradient descent on the square loss

L = 1
2

∑
i ‖yi − f(xi)‖2. For all the experiments in this chapter, we fix some com-

mon hyperparameters unless explicitly stated otherwise:

• Input dimension d = 10.

• Batch size = 32.

• Optimizer: SGD (no momentum), with learning rate 5 · 10−4.

4.1 1-D Learning Baselines

Before we analyze the experiments on the three-layer architecture, we first establish

some results and baselines for the 1-D learner architecture which we use in the case

study. As stated earlier in section 3.2, we use a two-layer neural network for the 1-

D learner gθ. The theory described in background section 2.2.1 provides asymptotic

guarantees on the convergence of this architecture to the global minimum as the hidden

width goes to infinity. Empirically, however, we observe that a finite width is sufficient

to achieve successful generalization, where success is measured by using validation

loss. For simplicity, we shall stick to using g∗(x) = sin(νπx) as our target function,

with the frequency of the sin varying from 0.5 to 1.5. The input data distribution is a

standard Gaussian, x ∼ N (0, 1), and no noise is added in the data generation process.

Fig. 4.1 presents the results of multiple runs of 1-D learning with different random

initializations for different target functions and train dataset sizes. To get a sense for

how the learned function looks for different values of the MSE loss, see Fig. 4.2. It is

clear that 1-D learning succeeds for all the frequencies, however a measurably worse

performance is seen with increasing frequency of the target function.

Figure 4.1: 1-D learning using the two-layer neural network architecture analyzed in
section 2.2.1. Each point corresponds to a single run, and the lines join
the averaged loss values. All runs used the same hyperparameters, with a
hidden width of 1000 units. Although all frequencies are "successfully"
learned by the 1-D learner, higher frequencies do have measurably worse
performance in terms of squared loss. Additionally, we observe that in-
creasing train dataset size does not seem to noticeably affect performance.

Figure 4.2: Visualizing learned functions with different mean squared errors.

19

Figure 4.3: The results of training the three-layer network on data generated as de-
scribed in section 3.1. The lines correspond to the averaged loss value of 20
runs for size of the training dataset. Each individual run is also plotted by
markers. A number of runs for 1 and 1.5 Hz heavily overlap around a loss
of 10−1, which make the average curves higher.

4.2 Comparison with 1-D Learning

Given that we have a 1-D learner gθ that is capable of successfully learning the target

function g∗, a natural question to ask is if this capability extends to our setting where

we need to learn an additional linear mapping before the 1-D function. We formalize

this question as hypothesis 1.

Hypothesis 1. If the 1-D learner gθ can learn g∗ with high probability, then the model

(Eq. 3.3) f(x) = gθ(w
Tx) can learn the composed target function f ∗ with high proba-

bility as well.

Intuitively, one can argue for both possible results. Learning a linear mapping by gradi-

ent descent is known to be "easy" in isolation, so composing it with 1-D learning, a task

that is also solvable using the learner we have chosen, should also have a high success

rate. However, as we saw in section 2.3, composing linear layers can lead to highly

non-convex and non-trivial dynamics, and the 1-D learning theory need not hold by any

means in this setting.

This hypothesis is easily tested, by simply running stochastic gradient descent on the

three-layer architecture using sampled data. The results are presented in Fig. 4.3.

20

The results of Fig. 4.3 show that hypothesis 1 does not seem to hold water. While

lower frequencies like 0.5 Hz are successfully learnt, higher frequencies do not learn

with a very high probability. Having a 1-D learner capable of learning g∗ is clearly not

sufficient to learn the end-to-end function f ∗ in higher dimensions. We also observe an

interesting phenomenon from the individual run markers – the loss values separate into

two modes, corresponding to "success" and "failure" of learning. To better understand

this, we can use an additional metric that is made possible due to the setting of our case

study – cosine similarity.

4.2.1 Cosine Similarity

Since the model which we use to learn has the same structure as the target function until

the 1-D learner, we can attempt to directly compare the learned projection direction

w with the true direction w∗. The architecture is such that an arbitrary scaling can

be transferred between w and the learnt 1-D function g, so we only care about the

difference in directions between w and w∗. This is perfectly measured using the cosine

similarity metric:

CosSim(w,w∗) =
w∗

Tw

‖w‖2 · ‖w∗‖2
(4.1)

Along with the scaling, a factor of−1 can also be transferred between w and g (learning

−w∗ is also sufficient for success, as the 1-D learner can then learn −g). So, we can

further refine the metric and only look at the absolute value of the cosine similarity.

From Fig. 4.4a, we clearly observe that the "successful" runs with loss values in the

range of 10−3 to 10−4 have perfectly learnt the direction of w∗ with a CosSim of 1.

The failed runs have a CosSim less than 1. Another interesting use of this metric is the

ability to predict learning from properties of the initialization. Fig. 4.4b shows that ini-

tializations with a CosSim closer to 1 are more likely to succeed. The initialization used

for w is the standard LeCun initialization, so the CosSim is not uniformly distributed

from 0 to 1, and instead concentrates around 0. The skew increases with an increase

in input dimension. Intuitively, two random Gaussian vectors in high dimensional Eu-

clidean space are more likely to be orthogonal as the dimension increases.

21

(a) A scatter plot of 100 runs on the same tar-
get function (sin(0.7πx)), with all hyper-
parameters identical. The only difference
is in the random initializations. The sep-
aration of loss into two modes can be ex-
plained by the absolute cosine similarity
of the learned w with w∗.

(b) The same 100 runs are used as in the left
plot. The initial CosSim is a strong pre-
dictor of success – a higher initial CosSim
is more likely to result in a final CosSim
of 1.

Figure 4.4: Cosine Similarity as a metric to probe learning

We can modify the initialization scheme slightly to better understand the impact of the

CosSim. Instead of using a standard Gaussian initialization, we restrict the initial weight

w to lie in a cone at a specific angle to the true weight w∗. This essentially fixes the

initial CosSim to a value of our choice. This scheme is implemented by taking a linear

combination of w∗ and a random orthogonal vector. The weights in the linear combi-

nation can be controlled to yield the desired CosSim. The random orthogonal vector

is generated by subtracting the component along w∗ from a standard random normal

vector. The results of running the training algorithm with this modified initialization

scheme is shown in Fig. 4.5.

By monitoring CosSim during the training of the network, we can probe into the char-

acteristics of how learning occurs. We observe interesting phenomenon using this tech-

nique, as we shall see in the next section. A final point to note is that most other deep

learning settings do not have this ability to directly measure a metric using weight vec-

tors in the network. Usually, the weights themselves have little information to offer in

terms of learning performance. The advantage of the setting in this case study is that

when the learning process is successful, it consistently recovers the true weight used to

generate the data, upto scaling factors. This ability allows to test interesting hypotheses

and conduct experiments that are normally not possible in a deep learning setting.

22

Figure 4.5: Training with the fixed initial CosSim initialization scheme. Higher fre-
quencies like 1 Hz are learnt successfully if the initialization is a favorable
one with high initial CosSim. However, frequencies like 1.5 Hz still do
not show as successful learning as in the 1-D case, so hypothesis 1 is still
incorrect.

23

Figure 4.6: Observe the different phases of training. Initially, the cosine similarity
grows towards 1, while the loss barely changes (until epoch ∼ 500). In
this phase, the NTK also changes significantly from initialization. Once the
cosine similarity has saturated, we observe a sharp drop in loss. After this
phase, the NTK change has also saturated, and the loss decays exponentially
as expected in the NTK regime.

4.3 Phases of Learning

In search of a theoretical explanation for the success in training, we first present the

following hypothesis:

Hypothesis 2. Successful learning can be explained by the NTK theory as described in

section 2.1.

Fig. 4.6 shows the different metrics for a successful run of training using a target func-

tion of g∗(x) = sin(0.5πx). In addition to the metrics discussed so far, another quantity

is also plotted – the relative change in the norm of the NTK from initialization. Pre-

cisely, if we let t denote the epoch index, then we plot the quantity

Relative change in NTK =
‖NTK(t)− NTK(0)‖F

‖NTK(0)‖F

The plot clearly shows that the NTK significantly changes in the early stages of learn-

ing. The NTK does not stay constant throughout training, and this immediately refutes

hypothesis 2. However, we do observe that the NTK remains roughly constant in the

24

later stages of learning. This suggests that learning occurs in multiple phases, and the

NTK theory can explain the later part of learning.

Previous works on analyzing gradient descent in deep learning have also observed this

phenomenon where learning occurs in multiple, distinguishable phases. For instance,

[23] explores deep networks from an information theoretic point of view, and identifies

two phases of stochastic gradient descent – drift and diffusion. They provide empiri-

cal results that seem to agree with this claim. More recently, [21] identifies a common

structure of multi-phase learning among different problems in which each phase learns

functions of increasing complexity. They develop interesting empirical metrics to fur-

ther substantiate their observations. Even more recently, [18] identifies two phases of

learning when using large learning rates and terms this behavior the catapult mecha-

nism. For a particular range of large, stable learning rates, the loss initially increases

exponentially. However, after this initial period of "catapulting", the loss begins to de-

crease as per the NTK dynamics discussed in background section 2.1. The advantage

of this setting is that the resulting minima are usually flatter. The authors prove this

separation of learning into two phases for an extremely simplified linear model, and

also empirically observe similar results in more complex architectures.

In the context of our case study, we also observe the separation of learning into two

phases based on the variability of the NTK. Here we see another benefit of having a

metric like the CosSim that allows us to probe into the inner workings of the network

during learning. The CosSim metric reveals an additional interesting observation – the

saturation of the NTK coincides with the CosSim reaching 1. Following this line of

inquiry, we present the following hypothesis:

Hypothesis 3. Learning occurs in two distinct phases, where w is learnt in the first

phase (along with g) with a changing NTK, and the second phase involves only im-

provements in g with a constant NTK.

The results presented in Fig. 4.6 support hypothesis 3 as well. We observe that the NTK

significantly deviates from initialization in tandem with the CosSim monotonically in-

creasing to 1. Once the CosSim has reached 1, i.e., w has successfully been learnt, the

NTK saturates, and the loss decreases exponentially as expected in the NTK regime.

The continued decrease in loss can be attributed to fine improvements in g as w is al-

ready learnt by the end of phase 1. To further support this hypothesis, the series of plots

25

Figure 4.7: A series of frames for a single run of training. We visualize the functions
in the domain of the 1-D learner component. The x-component of each
training datapoint (plotted as red dots) is the value of its projection onto the
current value of the weight w, and the y-component is the true y value. The
blue curve is a plot of the current function gθ. The green curve is a Gaussian-
smoothed version of the red points, as a baseline simple 1-D approximator.

in Fig. 4.7 visualize the different components of the network as learning progresses.

The frames presented in Fig. 4.7 further provide evidence supporting hypothesis 3.

Once w is learnt by step ∼ 13200, we observe that the red points stop moving. This

indicates that w has been learnt successfully and is no longer changing. However, the

loss still decreases as improvments in the 1-D learner gθ is still occuring, as can be

seen by minor variations in the blue curve. An additional observation by comparing

the blue curve with the green Gaussian-smoothed curve is that the 1-D learner fits the

low frequency components of the red datapoints much faster than w itself changes.

This is a vague and intuitive observation that suggests a possible direction for a precise

theoretical explanation.

The duration of the first phase is quite variable as well. Fig. 4.9 shows another run of

the same architecture in which the initial phase lasts 3 times longer than the previous

example in Fig. 4.6. This is similar to the behavior of SGD escaping saddle points [11].

Additionally, the train and validation loss metrics show essentially no change during the

first phase, even though it is much longer in this case. This behavior has been observed

in practical scenarios of deep learning as well, and is usually identified as a saddle

point in the optimization objective [12]. They are also usually attributed as the cause

26

Figure 4.8: A series of frames as training progress for a run in which learning fails. The
optimization gets stuck in a local minimum and w∗ is not recovered.

for the presence of multiple phases of learning. In our case, we additionally observe

that the CosSim still shows a monotonic increase with what seems like an exponential

trend. These observations could serve as useful guides for future work in developing a

theoretical explanation of the observed learning dynamics.

4.4 Experiments with Parameter Control

Since we know the true parameters required to achieve a low validation loss on the

dataset, at least for w, we can experiment with training with some control over different

parameters. This is unlike most deep learning settings where the exact values of the true

parameters or weights is not known. We can either fix or initialize parts of the network

to their true values and train the remaining or whole network in an attempt to decompose

the learning dynamics. Here we present 4 variations following this approach.

4.4.1 Fixing w to w∗

If we force w to be equal to w∗ and then train only the 1-D learner, our problem trivially

reduces to exactly the 1-D learning problem. So this case has already been studied.

27

Figure 4.9: Another instance to show the different phases in learning. In this run, the
first phase lasts for much longer (∼ 1750 epochs), during which the train
and validation losses barely change. However, the CosSim is seen to mono-
tonically increase towards 1, when the phase ends.

4.4.2 Initializating w to w∗

However, if we instead just initialize w to w∗ and then train the whole network, it is

not immediately obvious that we would observe the same results as in the 1-D learning

case, because the parameter w can still change. We formalize this as hypothesis 4:

Hypothesis 4. Learning the three-layer network with w initialized to w∗ and train-

ing all parameters behaves exactly like 1-D learning, and w does not move from its

initialization.

The results presented in Fig. 4.10 strongly support hypothesis 4. The loss values of

all runs are "success" values and Fig. 4.10a is extremely similar to the 1-D learning

results in Fig. 4.1. Fig. 4.10b shows the metrics of one single run in this setting. The

CosSim stays at 1 throughout, so only gθ is being learnt, and this amounts to 1-D learn-

ing. The NTK still changes significantly throughout training, and the NTK theory is

insufficient to explain the dynamics of learning. Instead, the optimal transport theory in

section 2.2.1 captures the richer dynamics of this setting, as it does in the 1-D learning

case. A plausible explanation for the results that we observe is using the observation

28

(a) The success rate of initializing w to w∗ is
more or less identical to that of 1-D learn-
ing.

(b) A single run of this parameter control
scheme. Notice that no distinguishable
phases are identifiable, but the NTK still
changes, so NTK theory is insufficient to ex-
plain the dynamics.

Figure 4.10: Results of training the whole network after initializing w to w∗. This is
identical to fixing the initial CosSim to 1.

pointed out in section 4.3 – the rate at which gθ learns is much faster than the rate at

which w learns. With this assumption, the 1-D learner fits the ideal function much

faster than w could move away from its initialization at w∗. Again, these are qualitative

and speculative statements that can guide future work on developing precise theoretical

explanations.

4.4.3 Fixing g to g*

In the previous sections, we controlled w and did not interfere with the initialization

or training of the 1-D learner. Now, we look at the scenario where we still initialize

w randomly (or with a fixed initial CosSim), and control gθ. We first analyze the case

where we know the true function g∗, and only need to learn the direction of projection.

One strategy is to use the same architecture we have been using till now, and replace

the 1-D learner with a fixed function g∗. We have effectively fixed the 1-D learner to

its ideal value. This setting can be thought of as learning a simple one-layer network

with a non-linear activation function g∗. Intuitively, one would expect this setting to be

easier than the general setting of learning both w and gθ.

Hypothesis 5. The success rate of learning w should improve if we replace the 1-D

learner with a fixed function equal to g∗.

Surprisingly, from Fig. 4.11, we observe that this is not the case. Hypothesis 5 does not

hold. In fact, by fixing g to g∗, the problem has become noticeably harder as even a

29

Figure 4.11: Training only w with gθ fixed to the true function g∗. Compare these re-
sults with Fig. 4.5, the normal case where both components are initialized
randomly and learnt together.

frequency of 1 Hz does not succeed with a high probability while it used to succeed in

the case of learning both gθ and w. To understand why such a counter intuitive result is

plausible, we present the following 2-D minimization toy problem as an example.

2-D Example

Consider the minimization of the following objective over 2 variables:

f(x, y) = (x2 + y2 − 1)2 − 0.5x (4.2)

A contour plot of the objective is shown in the left of Fig. 4.12.

We can see intuitively that the objective 4.2 has two parts: (x2+y2−1)2 which quantifies

a distance away from the circumference of the unit circle, and−0.5xwhich adds a linear

tilt to the objective. By symmetry in y, the global minimum must lie on the x-axis, with

y∗ = 0. Due to the linear tilt, we can also roughly guess that the x-coordinate of the

global minimum will be positive and very close to the unit circle, so x∗ ≈ 1. The linear

tilt also makes this the only global minimum. Additionally, there are no local minima

30

Figure 4.12: Visualizing the 2-D toy problem objective. Restricting the function to the
line y = 0 which contains the global minimum introduces a local mini-
mum at x ≈ −1 which was originally a saddle point in the 2-D optimiza-
tion problem. Notice that SGD initialized from (−0.5, 0) can escape the
saddle in the 2-D case, but gets stuck in the local minimum in the 1-D case.

as well. It is easy to see therefore that gradient descent will find this global minimum

from any initialization (except for the local maximum at (0, 0)).

Now, if we follow the approach of parameter control and attempt to fix y to y∗, and only

optimize over a single variable x we unexpectedly run into a problem. By restricting

the function to the line y = 0, we have introduced a 1-D local minimum at x ≈ −1 as

seen in the right plot in Fig. 4.12. This means that gradient descent will not find the

global minimum from all initializations, and will get stuck at the local minimum for a

large range of possible initializations. This simple 2-D example shows that fixing parts

of the network to their true parameter values and training the rest can actually hamper

the optimization process.

4.4.4 Initializating g to g*

As we did with w, we can attempt to just initialize the parameters of gθ such that

gθ = g∗ and train all parameters. However, the value of the true parameters for gθ

is not immediately clear like in the case of w. We can approximate this scenario by

initializing θ to those parameters obtained after training gθ in a 1-D learning setting.

Since we observed in section 4.1 that we can obtain validation losses very close to

machine precision for 1-D learning, this approximation is justified. We can then present

a hypothesis similar to hypothesis 4:

Hypothesis 6. Learning the three-layer network with the parameters of gθ initialized

31

Figure 4.13: Initializing the parameters of gθ with weights obtained using 1-D learning
so that gθ ≈ g∗. All parameters are then trained.

such that gθ ≈ g∗ and training all parameters should have a higher success rate than

random initialization.

The results of Fig. 4.13 suggest that hypothesis 6 is not clear. While initializing gθ to g∗

certainly does not hurt like it did when fixing gθ to g∗ in Fig. 4.11, it also does not seem

to offer much benefit compared to the standard random initialization case in Fig. 4.5.

One plausible explanation is again based on the observation made in section 4.3. If

the 1-D learning component gθ learns much faster than w, then the initialization of gθ

would be quickly forgotten as it fits the low frequency component of the projected data

using the random initial w. However this is speculation, and the empirical results can

neither confirm nor refute this claim.

4.5 Overparameterization

A primary focus of recent work in deep learning theory has been overparameteriza-

tion [2]. Numerous results including the NTK and optimal transport based theories for

convergence of gradient descent rely on overparameterization. The broad idea is that

32

Figure 4.14: The effect of overparameterization. These experiments were run with a
training dataset size of 105. Other dataset sizes were also tried, but the
trend remained roughly the same so we exclude them to avoid clutter.

overparameterization may not have a negative impact in the deep learning setting as

one would expect based on classical machine learning theory. This is based on the ob-

servation known as double descent [8], wherein generalization performance begins to

improve again after the initial worsening as predicted by classical statistical learning

theory. Following this direction, we study the effect of overparameterization in the set-

ting of our case study, by increasing the 1-D bottleneck which is the output of the first

linear layer. As a consequence of this, we lose out on a probing metric like the CosSim

because gθ is no longer a 1-D learner.

Hypothesis 7. If the three layer network can learn with a bottleneck width of 1, in-

creasing the bottleneck will improve the success rate.

The results of Fig. 4.14 seem to refute hypothesis 7. Not only does overparameterization

not help, it significantly worsens the performance for the case of 0.5 Hz. For the case of

1 Hz, it does seem to help to an extent. However, for 1.5 Hz, overparameterization has

no significant impact on the success rate of learning. Note that this trend is seen even

in the train loss, so it is not clear if overparameterization has a negative impact only on

generalization or even on the optimization properties of the setting itself.

4.6 PL condition

A possible approach to developing a theoretical explanation for the observed learn-

ing dynamics in our case study is to follow the direction outlined in background sec-

33

Figure 4.15: The minimum eigenvalue of the NTK does not provide much information
in this particular problem, and the PL condition theory presented in [20]
does not seem to explain the different phases of learning that we observe.

tion 2.2.2. A straightforward hypothesis to consider is:

Hypothesis 8. Learning is explained by the PL condition theory described in back-

ground section 2.2.2. This means that the NTK is well conditioned as training pro-

gresses.

Fig. 4.15 shows the metrics of a single run of the problem with all parameters trainable

and randomly initialized, with an additional metric plotted – the minimum eigenvalue of

the NTK evaluated on a minibatch of the training data. If the NTK is well-conditioned

in a region around the global minimum of the optimization landscape, we expect the

PL-condition to hold and gradient descent has linear convergence guarantees. How-

ever, the minimum eigenvalue of the NTK is very close to machine precision, and the

NTK is certainly not well-conditioned. No significant change is observed even at the

phase transition, so this direction cannot explain the different phases of learning that we

observe. These empirical results seem to refute hypothesis 8.

4.7 Intriguing Optimization Phenomenon

An intriguing phenomenon that we stumbled upon in the process of running the numer-

ous experiments presented above is related to the unexpected non-monotonic behavior

of training performance with the size of the train dataset. In a general learning setting,

34

Figure 4.16: Unexpected non-monotonic behavior of train loss as the training dataset
size is increased. These runs use an input dimension of d = 100.

basic intuition leads us to believe that fitting a larger training dataset with the same

model is a harder problem. This arises simply from the fact that satisfying a larger

number of equations with the same number of parameters has fewer solutions and is

usually harder. However, in the context of our case study we do not observe this trend.

Fig. 4.16 shows the training losses and validation losses of multiple runs with the same

hyperparameters except for train dataset size. All instances are run for the same number

of gradient steps (not epochs as that would vary with the train dataset size) so that their

results can be compared. We observe that the train loss hits machine precision for

very small dataset sizes and correspondingly, the validation loss is very high indicating

overfitting. The validation loss continues to monotonically decrease with increasing

dataset size as is expected of learning problems. The training loss also initially rises

with increasing dataset size as a larger dataset is harder to overfit with a fixed model.

However, as the training dataset crosses a size of ∼ 104 we observe a drop in the train

loss. This is completely unexpected. The drop in the train loss is also accompanied

by a sharp decrease in the validation loss. There is no immediate explanation for this

intriguing phenomenon. Though we have presented validation loss results to provide

the complete picture, note that this phenomenon is purely optimization related, as the

unexpected trend is only in the train loss.

35

CHAPTER 5

Conclusion and Future Work

In this case study, we analyzed and empirically tested numerous hypothesis dealing

with the learning dynamics of a particular three-layer deep network architecture. We

motivated this architecture by combining existing architectures that have convincing

theoretical explanations for their learning dynamics. Specifically, we extended the sim-

ple 1-D learner two-layer neural network to higher dimensions by projecting the input

onto a 1-D line. This effectively amounts to a cascade of two linear layers followed by a

non-linearity. Although a composition of linear layers is equivalent to a linear function,

the learning dynamics are highly non-convex and non-trivial. There is significant theory

analyzing the inductive bias of gradient descent on deep linear networks. As such, the

architecture we studied is the simplest three-layer architecture with non-trivial learning

dynamics that does not have a convincing theoretical explanation yet. A further advan-

tage of studying this architecture is the ability to probe intermediate layer outputs and

derive useful metrics like the CosSim to glean further insight into the learning process.

This allowed us to formulate and test numerous hypothesis which would not be easily

testable in standard deep learning settings.

Through the numerous experiments conducted, we discovered intriguing and counter-

intuitive qualitative phenomenon that serve as clues towards developing a formal theory

for learning. Specifically, the identification of phases in the learning process, combined

with the negative impact of fixing gθ to g∗ in the optimization process strongly suggest

that saddle point dynamics are coming into play. This presents a promising direction for

future theoretical work in this setting. Additionally, the ability to separately experiment

with the 1-D learner and w components during learning indicate that theoretical expla-

nations could also use this feature in their analysis. The inability of existing theories to

sufficiently explain the observations suggest that something richer and more complex is

needed.

REFERENCES

[1] Allen-Zhu, Z., Y. Li, and Y. Liang (2018). Learning and generalization in
overparameterized neural networks, going beyond two layers. arXiv preprint
arXiv:1811.04918.

[2] Allen-Zhu, Z., Y. Li, and Z. Song (2018). A convergence theory for deep learning
via over-parameterization. arXiv preprint arXiv:1811.03962.

[3] Arora, S., N. Cohen, N. Golowich, and W. Hu (2018). A convergence
analysis of gradient descent for deep linear neural networks. arXiv preprint
arXiv:1810.02281.

[4] Arora, S., N. Cohen, W. Hu, and Y. Luo, Implicit regularization in deep matrix
factorization. In Advances in Neural Information Processing Systems. 2019.

[5] Arora, S., S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang, On exact
computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems. 2019.

[6] Arora, S., S. S. Du, W. Hu, Z. Li, and R. Wang (2019). Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks.
arXiv preprint arXiv:1901.08584.

[7] Bach, F. (2020). Gradient descent for wide two-layer neural networks: Global
convergence. link. Machine Learning Research Blog, Francis Bach.

[8] Belkin, M., D. Hsu, S. Ma, and S. Mandal (2019). Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the
National Academy of Sciences, 116(32), 15849–15854.

[9] Chizat, L. and F. Bach, On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in neural information
processing systems. 2018.

[10] Chizat, L., E. Oyallon, and F. Bach, On lazy training in differentiable program-
ming. In Advances in Neural Information Processing Systems. 2019.

[11] Daneshmand, H., J. Kohler, A. Lucchi, and T. Hofmann (2018). Escaping
saddles with stochastic gradients. arXiv preprint arXiv:1803.05999.

[12] Dauphin, Y. N., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Ben-
gio, Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Advances in neural information processing systems. 2014.

[13] Du, S. S., J. D. Lee, H. Li, L. Wang, and X. Zhai (2018). Gradient descent finds
global minima of deep neural networks. arXiv preprint arXiv:1811.03804.

[14] Du, S. S., X. Zhai, B. Poczos, and A. Singh (2018). Gradient descent provably
optimizes over-parameterized neural networks. arXiv preprint arXiv:1810.02054.

37

https://francisbach.com/gradient-descent-neural-networks-global-convergence/

[15] Dwaraknath, R. V. (2019). Understanding the neural tangent kernel. link.

[16] Gunasekar, S., J. D. Lee, D. Soudry, and N. Srebro, Implicit bias of gradient
descent on linear convolutional networks. In Advances in Neural Information
Processing Systems. 2018.

[17] Jacot, A., F. Gabriel, and C. Hongler, Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing
systems. 2018.

[18] Lewkowycz, A., Y. Bahri, E. Dyer, J. Sohl-Dickstein, and G. Gur-Ari (2020).
The large learning rate phase of deep learning: the catapult mechanism. arXiv
preprint arXiv:2003.02218.

[19] Li, Y. and Y. Liang, Learning overparameterized neural networks via stochastic
gradient descent on structured data. In Advances in Neural Information Processing
Systems. 2018.

[20] Liu, C., L. Zhu, and M. Belkin (2020). Toward a theory of optimization for
over-parameterized systems of non-linear equations: the lessons of deep learning.
arXiv preprint arXiv:2003.00307.

[21] Nakkiran, P., G. Kaplun, D. Kalimeris, T. Yang, B. L. Edelman, F. Zhang, and
B. Barak (2019). Sgd on neural networks learns functions of increasing complex-
ity. arXiv preprint arXiv:1905.11604.

[22] Saxe, A. M., J. L. McClelland, and S. Ganguli (2013). Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. arXiv preprint
arXiv:1312.6120.

[23] Shwartz-Ziv, R. and N. Tishby (2017). Opening the black box of deep neural
networks via information. arXiv preprint arXiv:1703.00810.

[24] Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2015.

[25] Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, Attention is all you need. In Advances in neural
information processing systems. 2017.

[26] Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals (2016). Un-
derstanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530.

[27] Zou, D., Y. Cao, D. Zhou, and Q. Gu (2018). Stochastic gradient descent opti-
mizes over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888.

38

https://rajatvd.github.io/NTK/

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Background
	The Neural Tangent Kernel
	Setup
	General Criterion
	Gradient Flow
	Two-Layer Network Results

	Results outside the NTK regime
	Global Convergence using Optimal Transport
	Polyak-Lojasiewicz condition for Non-Convex Optimization

	Deep Linear Networks

	Setting of the Case Study
	Dataset
	Model Architecture

	Empirical Analysis
	1-D Learning Baselines
	Comparison with 1-D Learning
	Cosine Similarity

	Phases of Learning
	Experiments with Parameter Control
	Fixing w to w*
	Initializating w to w*
	Fixing g to g*
	Initializating g to g*

	Overparameterization
	PL condition
	Intriguing Optimization Phenomenon

	Conclusion and Future Work

