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ABSTRACT

KEYWORDS: Zero-Shot Object Detection (ZSD); Zero-Shot Learning (ZSL);

Generative Learning; Conditional Variational Auto-Encoder

The need for large scale object detection over thousands of object categories are gaining

more importance each day, but collecting error-free or accurate ground truth annotations

for that many classes is not scalable. And, the performance of trained object detec-

tion neural network is only limited to detection of seen categories (encountered while

training) and consequently, the detection performance on unseen objects are generally

degraded. The root of this problem can be traced back to the trained object detector’s

inability to assign higher confidence to the proposed bounding boxes of unseen object

classes. Because, they are relegated as background by the model, in comparison to the

bounding boxes of seen categories. Zero-Shot Object Detection (ZSD) addresses this

problem by localizing and recognizing the unseen object categories during testing by

often utilizing the external semantic information (word2vec, object attributes) of the

seen and unseen classes.

With this in mind, in this project, we analyze and discuss some of the significant

developments in ZSD over the recent years and their limitations. Then we analyze the

results obtained from our implementation of the CVPR 2020 paper [38] from scratch,

which addresses the problem discussed above by utilizing the generated visual features

of unseen classes using a Conditional Variational Auto Encoder (CVAE). To validate

the effectiveness of our implementation, we perform exhaustive ablative analysis.

Finally we conclude by posing some open questions to encourage further research,

(i) applying ZSD to produce accurate annotations for large-scale datasets like Open

Images Dataset [14]. (ii) incorporating background aware Latent Assignment Based

(LAB) method [1] in our model for reducing false positive rates. (iii) extending our

model from detection to Generalized Zero-Shot Recognition (GZSR) as an end-end

learning task using Transformers [31, 2], which can make the model learn better dis-

criminable visual features to achieve state of the art mAP.
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CHAPTER 1

INTRODUCTION

Zero-Shot Learning (ZSL) method aims to solve a task without receiving any example

of that task at training phase. The task of recognizing an object from a given image

where there weren’t any example images of that object during training phase can be

considered as an example of Zero-Shot Learning task. To simply put, it allows us to

recognize objects which the trained model have not seen before. First this methodology

was applied to image classification problem to recognize unseen classes in test time

which wasn’t seen during training. This setting is popularly known as Zero-Shot Clas-

sification or Recognition (ZSR). Over the recent years, many developments has been

done in this field using both traditional and generative methods [21, 32, 8]. This in-

spired the recent development of Zero-Shot Object Detection methods, which is just

an extended setting of ZSL for object detection. We will see the motivation behind

applying ZSL for object detection task in the next section.

1.1 Motivation

There has been remarkable developments in the world of object detection, where fully

trained object detectors strive towards achieving higher average precision (AP), mean

average precision rates (mAP) and higher detection speeds (frames per second) [27,

9, 26, 18, 28]. But it’s performance is limited to only the annotated object categories

available during training, and it’s detection precision reduces significantly over unseen

object categories owing to the lack of large-scale annotations, and low training samples

per class. Datasets like PASCAL VOC [5] and MSCOCO [17] have only bounding

box annotations for 20 and 80 classes respectively, this is much smaller in scale when

compared to classification datasets like ImageNet [4] where ground truth class labels

are available over thousands of classes, with a lot more samples per class.

And the task of annotating a visual scene is also very error-prone, where anything in

the background can be assigned a label, hence even humans tend to miss out annotating



few objects in the background. This makes it difficult for the models to learn as we

are telling the model simultaneously that a certain object is both a positive (marked

annotation correctly) and a negative (missed out annotation in the background of the

same class) example. This can be observed even in standard datasets for object detection

(PASCAL VOC, MSCOCO), where many of the background objects left unannotated.

With these in mind, we need a method which can detect the similar or unseen object

categories (we will address why ’similar’ in later sections) by just utilizing the available

training resources at hand.

Hence to overcome these challenges, the need of Zero-Shot Object Detection

(ZSD) arises, which localizes and detects the unseen object categories when trained

only on bounding box annotations of classes available during training time (seen classes).

There has been development of several approaches over the recent years to solve the

ZSD problem [36, 37, 38, 1]. Most of the approaches are based on the foundational

concept which utilize the external class level semantic attributes or word embeddings

of both seen and unseen classes to exploit the relationship between the visual and the

semantic domain.

ZSD method reuses the existing object detectors of both the categories, single pass

detectors such as YOLO [26], SSD [18] as well as two-stage detectors such as Faster-

RCNN [28], F-RCNN [9], etc. A fully trained vanilla object detector is capable of

producing bounding boxes for unseen categories, but it assigns very low confidence

score or objectness score to it. This problem arises due to the confusing or relating

unseen categories to the background in an image. Because of this, the model filters out

or suppresses these bounding boxes which has low confidence scores as it only classifies

top bounding box predictions into one of the seen classes. In zero-shot setting, there

is no clear understanding of background class. In a standard supervised setting, the

model learns to discriminate between background and the seen classes, whereas in ZSD

setting, the background could also consist of unseen object categories or unannotated

objects (missed annotations of seen objects). So the model learns to give low confidence

scores to the unseen objects bounding box proposals when it tries to discriminate the

background and the target objects (seen classes).
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1.2 Overview

In this project, we mainly elaborate our understanding and discuss our results from our

implementation of the algorithm presented in [38] from scratch. As discussed above,

most of the approaches in ZSD take outputs of existing detectors given by Region pro-

posal network (RPN) in Faster-RCNN [28], Darknet-19 in [27], and extract the pre-

dicted bounding boxes along with it’s confidence scores as inputs into their system.

This implies that their gains arise primarily from improved recognition (ZSR) rather

than in placing bounding boxes of higher-confidence. In ZSD, the error associated with

missed detection of unseen class has two components, one arises out of the low confi-

dence object bounding proposal and the other component comes from the recognition

(classification) of the given bounding box proposal into one of classes. As we men-

tioned above that the most of the recent developments focus on reducing the second er-

ror component. In contrast, [38] tries to improve localization performance by outputting

high-confidence (objectness scores) bounding boxes for unseen objects to address the

inherent precision-recall trade-offs that need rejection of background classes. Thus, it’s

main aim is to reduce the first error component. For this reason, following [38], in our

implementation we mainly evaluate using class agnostic Average Precision (AP), which

reflects overall detection performance on all the classes (discussed in section 3). It uses

CVAE to generate visual features of unseen classes with the semantic vectors with an

additional visual consistency loss (discussed in section 3). It then augments the train-

ing of the confidence predictor Conf(.), and uses sampling scheme (related to focal-loss

[16]) to re-sample the proposed bounding boxes to prevent the background-foreground

imbalance problem. We also vary the seen-unseen classes ratio to necessitate the im-

provement on object bounding boxes on unseen classes. We evaluate our implemented

model in both the ZSD (only unseen classes in test set) and Generalized-ZSD (GZSD)

setting where both seen/unseen objects exist in the test set, following [38].

Note, we train and evaluate our models only on PASCAL VOC dataset owing to

the limited resources available during the course of the project. We denote our im-

plemented model following [38], as DELO and the original model reported in [38] as

DELO[38] for easier comparison of results. Our experiments following the algorithm

in [38] evidently shows improvement in AP in the Test Mix (TM) configuration in the

GZSD settings, i.e 36.6% in vanilla YOLOv2 trained only on seen classes to 41.4% in

3



Figure 1.1: Example of detected unseen class in GZSD setting, after retraining confi-
dence predictor with generated visual features of unseen classes. Our model
DELO (Right) detects not only the unseen class train, but also the truly
unknown or unannotated object classes like headlight, wheel, house/tree.
Whereas YOLOv2 (left) only detects the seen class person. Refer to Table
4.1 for more details.

DELO at 0.6 confidence threshold on 10(seen)/10(unseen) classes split. Similar trends

are also observed on 15/5, 5/15 data splits as well. We couldn’t definitively compare

our results with that of DELO[38], as [38] didn’t mention the used confidence threshold

to evaluate AP. Also since we train YOLOv2 following [27] from scratch, the backbone

detector’s performance (mAP/AP) plays a major role in how much %AP (absolute) is

achieved in the end by DELO[38], as we build upon the pre-trained YOLOv2. But

for the sake of completeness, we report our results along with results reported in [38].

We compare the relative increase in %AP from that of YOLOv2 to DELO to discuss

the effectiveness of our model compared to results reported in [38]. Refer 4.1 for the

complete evaluation results.

1.3 Contributions

To summarize, in this project

1) We analyze and discuss some of the significant developments in ZSD over the recent

years, and it’s limitations.

2) We analyze the results obtained from our implementation of the CVPR 2020 paper

[38] from scratch. We then provide useful insights on the algorithm proposed by the

paper, which addresses the problem discussed above by utilizing the generated visual

features of unseen classes using a CVAE.

3) We then address why the performance gap between YOLOv2 and DELO isn’t as

4



high as expected by analysing the DELO’s detection of truly unknown or unannotated

object classes which are counted as false positives.

4) We perform various experiments to validate the effectiveness of our implementation,

such as experimenting on different sets of seen/unseen splits with varying number of

similar or correlated unseen classes to seen classes, different choices of semantic em-

beddings, and different number of generated visual features of unseen classes.

5) Finally we conclude by posing some open questions to encourage further research,

(i) applying ZSD to produce accurate annotations for large-scale datasets like Open Im-

ages Dataset (ii) incorporating background aware LAB method in DELO for reducing

false positive rates. (iii) extending DELO from just detection to GZSR as an end-end

learning task using Transformers, which can make the model learn better discriminable

visual features to achieve state of the art mAP.

5



CHAPTER 2

LITERATURE REVIEW

Here, we briefly review the literature and discuss the significant contributions done by

both the traditional approach [1] and generative approach to ZSD [36, 21], and finally

we provide the necessary background for ZSD.

2.1 Related Work

2.1.1 Traditional approach to ZSD

Traditional approaches in Zero-Shot Learning (ZSL) has been extended to ZSR and

ZSD setting in recent years. They rely on learning a common embedding space that

aligns object features with class’s semantic embeddings. Most of the traditional meth-

ods focus on mapping the visual features from predicted bounding boxes to the semantic

embedding space [1, 23, 3, 29]. Specifically [1], maps or projects the visual features

given by the Regional proposal networks like RPN in Faster R-CNN or Darknet-19 in

YOLOv2, into semantic space by linear projection with a max-margin loss. Then a

nearest neighbor search is done to predict the class of objects from unseen classes in

test time [1]. Dealing with background is very important in ZSD as we discussed in

chapter 1, that it creates confusion between the unseen classes and background classes.

To address this problem, [1] proposed two background aware detectors, where they fix

all of the unknown background classes into a single background category, second by

doing iterative latent class (from a large vocabulary set) assignments to the background

bounding boxes, in the aim of covering much wider visual concept. Since the number

of seen classes is generally low in standard detection datasets like PASCAL VOC and

MSCOCO, so projecting visual features to semantic domain during training become

sparse in the semantic space, thus causing poor alignment between the visual and se-

mantic modalities. To address this, [1] proposed a solution by densely sampling training

classes using additional data.



2.1.2 Generative approach to ZSD

Mapping such high-dimensional visual feature to low-dimensional semantic space tends

to cause the hubness problem due to the heterogeneity gap between these two spaces.

Hence, the recent developments try to directly classify the objects using visual features

itself, but utilising the semantic information of the seen classes to transfer the knowl-

edge to unseen ones. This paves a way for generating visual features of unseen classes

using GANs, CVAEs, and adversarial methods [36, 21, 38]

Specifically [36], proposed a GTNet, which consists of an Object Detection Mod-

ule and a Knowledge Transfer Module, to tackle the ZSD problem. GTNet embeds a

feature synthesizer in the Knowledge Transfer Module. The feature synthesizer learns

to generate unseen class features, which will be further used to train an unseen cate-

gory classifier for a pre-trained detector. It tries to address the very common problem

of intra-class variance, and IOU variance existing in object detection. In order to syn-

thesize features for each unseen class with both the intra-class variance and the IOU

variance, [36] designs an IOU-Aware Generative Adversarial Network (IOUGAN) as

the feature synthesizer which uses three GANs to generate class feature conditioned on

class semantic embeddings, and a foreground feature, and finally a background feature

conditioned on the corresponding class feature. Here each of the unit/GANs addresses

intra-class variance, IOU variance, and background-awareness problems. Finally they

add all three features and use it to classify only in the ZSD setting where they test im-

ages only with unseen object categories, which is much simpler compared to the more

complex GZSD setting because, when we retrain the model on generated unseen visual

features, it might develop a bias towards the unseen classes, and hence give better re-

sults in ZSD setting. But in GZSD setting, the test images contain both seen as well as

unseen objects, thus model expected to perform poorly in this setting compared to other

settings, as the model should simultaneously detect both the seen and unseen objects

present. For this reason we have picked [38] to analyze and implement their proposed

generative approach to ZSD.

7



2.1.3 Key Challenges

One of the major constraint in solving ZSD problem effectively is that the new unseen

classes should be semantically related to the training classes. Which is a very important

aspect in the model’s capability of detecting unseen classes. Secondly, dealing with the

background classes is pretty important in ZSD (to eliminate bounding box proposals

which clearly do not contain any object of interest) because it affects the recall abil-

ity of the model to distinguish correctly between unseen classes and the background

classes. Finally, since most of the standard detection datasets has only hundreds of

classes, sparse sampling of classes during training leads to poorly learnt visual seman-

tic representation, thus degrading the detection accuracy of unseen classes during test

time and which led to the recent developments in generative ZSD.

2.2 Background

2.2.1 Zero-Shot Object Detection (ZSD)

The ZSR setting has been extended to the object detection problem, hence termed as

ZSD. Over the past five years, a lot of research has been done on this topic, and the

foundational concept is that they utilize the external class level semantic attributes or

word embeddings of the classes to exploit the relationship between the visual and the

semantic domain [30, 22, 11, 20, 19]. By mapping the visual features to semantic do-

main, it enables a way to recognize unseen classes. From naively doing a nearest neigh-

bor search in the semantic domain consisting semantic attributes of both seen and un-

seen classes [1], to more complex methods using generative models such as conditional

GANs and VAEs to synthesize features of unseen classes based on the corresponding

class semantic attributes [21, 36, 38].

But unfortunately, there is no standard protocol, evaluation settings, datasets, or data

splits (seen/unseen) have been followed by all the above methods [1, 23, 25, 15, 24, 37],

and thus making it difficult for comparison of our model to existing methods. Specifi-

cally [1] uses recall@100 as the evaluation metric to report performance in the GZSD

setting, owing to the very low mAP obtained. Recall@100 is a very loose metric

to measure performance in GZSD setting because, in standard detection datasets like

8



PASCAL VOC, MSCOCO, there are only 5-10 foreground objects per image on aver-

age.So the unseen object bounding box proposals will easily come under the top 100

predictions resulting in unusually high gains. As we discussed in chapter 1 some ZSD

methods [25, 13, 15] just focus on improving recognition of the extracted bounding

box from the backbone detectors rather than improving the low confidence scores of

the object bounding proposals of unseen classes by the pre-trained object detectors on

seen classes. Few methods like [24] uses a transductive approach, where it exploits the

unseen images during training, to evaluate the model in GZSD setting. Finally, datasets

and the splits chosen by the existing methods are also not standard. For example, some

uses ImageNet which has only one object per image, and some uses datasets which

have clear to no background like F-MNIST [3]. Following these, result in unusually

high gains as the dataset is simpler compared to complex datasets like PASCAL VOC,

and MSCOCO which has multiple objects and a very complex background per image.

Even some methods, use very high seen to unseen split [3, 24, 25] which again may re-

sult in higher gains, because the seen class features can easily be similar to or resemble

unseen features due to the high split ratio (as the datasets generally consists of a cluster

of classes belonging to a higher level category, for example, vehicle, indoor, etc.).

These various reasons made us pick [38] to analyze and implement and discuss our

results. But, the software code for [38] is not publicly available, so we couldn’t com-

prehensively validate our implemented model (DELO) to the original implementation

(DELO[38]). Because, firstly there was no mention of the used confidence threshold to

evaluate AP on different data splits, and secondly, since we train YOLOv2 from scratch,

the backbone detector’s performance (mAP/AP) plays a major role in how much %AP

(absolute) is achieved in the end by DELO, as we build everything upon the pre-trained

YOLOv2. But for the sake of completeness, we report our results along with results

achieved by [38], and we compare the relative increase in %AP from that of YOLOv2

to DELO to discuss the effectiveness of our model compared to [38].

2.2.2 Object Detection

Object detection, is one of the important research topic in the world of computer vi-

sion. It’s aim is to localize and recognize the objects of interest while suppressing the

background objects. It generally comprises of two components, one which proposes

9



object bounding boxes (regional proposals) and other is a classifier to classify each of

those bounding boxes into an object category. Over the years, the main focus in this line

of research has been towards achieving higher average precision, and higher detection

speed (frames per second). Earlier approaches typically use the deep Convolutional

Neural Network (CNN) [9, 28, 10, 34] for predicting bounding boxes per image, and a

separate image classification CNN model to classify them. As the field started to de-

velop significantly, the idea of doing detection in a single pass through deep CNN rather

than two stage detectors was proposed [18, 26] this made end-to-end training feasible

and have improved detection speed significantly compared to previous two-stage de-

tectors. It also made real-time detection possible for the first time. In this project we

use YOLOv2 as our backbone single-shot object detector following [38]. We chose

YOLOv2 compared to other multi-stage detectors such as Faster-RCNN, R-FCNN, be-

cause they have much slower detection speed.

YOLOv2: Backbone Architecture

YOLOv2 is a single shot detection network which only uses CNNs from start to end to

predict bounding boxes coordinates along with it’s objectness score (confidence score),

and softmax probabilities over target classes. It has more than 50 FPS detection speed,

and is among the state of the art methods for object detection. It directly extracts visual

features from image cells using Darknet-19 as the feature extractor, which is again a

deep CNN which takes 416 x 416 image. It outputs a F (Im) feature map of size 13 x

13 x 1024 and uses a object predictor which contains 1 x 1 convolution layer to simul-

taneously produce a fixed set of bounding box proposals together with their associated

confidence scores and softmax probabilities as mentioned above. YOLOv2 has five an-

chors to enable multiple object bounding box proposals with different aspect ratio per

cell (prediction diversity) in the extracted feature map F (Im). So, the object predictor

component has five bounding box predictors where each one of them outputs object

locations (x, y), width and height of the bounding box of the assigned anchor, five con-

fidence predictors, where each one is denoted as Conf(.) which gives objectness score

P̂conf ∈ [0, 1] associated with the predicted bounding box. It signifies if a bounding

box is foreground (1) or background (0). Generally YOLOv2 has a classifier assigned

to each anchor, but following [38] we train YOLOv2 only for the detection purpose
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and not for detection + classification. Because training it for classification for just seen

classes, will enable the model to learn to extract features from the image which are very

discriminatory in nature, and close towards the seen classes. This may affect our model

DELO’s detection capability, and not likely to generalize well to unseen classes, but the

effect could be minimal. Hence, the classification module (the classifiers) are detached

from YOLOv2.

For GZSD these vanilla object detectors are ineffective in detecting unseen classes

which it’s not supervised during training, because it learns to suppress the image regions

which are part of background. As we said earlier, in GZSD setting, the background

consists of unseen objects as well. Thus making it difficult for the model to perform well

in test images which contain both seen and unseen objects. Hence, to evaluate results

of our implemented model, we will use YOLOv2 pre-trained only on images which

has seen classes, as one of the baselines. We will validate our model by analyzing the

relative increase in % AP achieved by YOLOv2 and by our DELO in the GZSD setting.

This is the only comprehensive way of testing our effectiveness of our implementation

following [38] for the reasons we mentioned in section 2.2.1.

Average Precision (AP) - Class Agnostic

We measure the overall detection performance, by computing AP over all classes in the

dataset rather than a class specific AP as it’s not possible to obtain class information,

as we are just training it for detection and not classification as well. Therefore we do

not compute mAP (mean average precision) or class specific AP to evaluate our models

following [38]. We evaluate our model using PASCAL VOC 0.5 IOU - 11 point method

to calculate AP. Where True Positive (TP) is defined as when a bounding box prediction

has IOU > 0.5 with one of the ground truth objects. Where nGT is the no of ground

truth objects, and Pred is the total no of predictions made by the model at a certain

confidence threshold. Hence, we define precision (prec) and recall (rec) as follows:

Prec =
TP

Pred
(2.1)

Rec =
TP

nGT
(2.2)
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AP is then computed as the mean precision at eleven uniformly spaced recalls

[0, 0.1, 0.2, ...]

AP =
1

11

∑
r∈[0,0.1,0.2..]

Prec(Rec = r) (2.3)

2.2.3 Word embeddings

Word embeddings are basically a form of distributed word representation that bridges

the semantic relationship between words in a continuous vector form. Word embed-

dings are distributed representations of text in an n-dimensional space. In relation to

the object detection, there have been developments in creating object level attributes

present in an image, in order to improve the performance of the detection exploiting the

semantic attributes along with the visual features. It enables us to describe unknown

object categories (unseen classes), and report instance level atypical attributes of seen

classes, and help the model to detect unseen object categories from pure textual descrip-

tion. Specifically [6] describes each object instance by 64 binary features/attributes. To

illustrate, a sheep can either be represented via a word2vec which is learned by pre-

dicting co-occurring words, or the object attributes proposed in [6]. By following [6] a

sheep is described as (has horn, has leg, has head, has wool) in a 64 dimension binary

feature vector. We will analyse the effectiveness of following each of these methods in

the ablative analysis section.

2.2.4 Conditional Variational Auto-Encoder (CVAE)

CVAE is a conditional generative model. It has encoder (E) and decoder (G) similar

to VAE, which is based on Bayesian Inference. It’s aim is to model the underlying

probability distribution of data, enabling us to sample new data from that distribution.

CVAE is different from VAE by having an additional input to condition upon to generate

examples from specific class or anything which it is conditioned upon. In this project,

following [38] we train CVAE to generate visual features of unseen classes, where we

use semantic embeddings of each object category as conditional feature to condition

upon. Thus, we could generate visual features of a specific unseen class with semantic

embedding, which can’t be done with the vanilla VAE. We will discuss CVAE in detail
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Figure 2.1: This is the overview of the DELO network. (a) denotes the aPY object at-
tributes proposed in [6], we use it as semantic embeddings for seen/unseen
classes description following [38] (b) A vanilla detector trained only on seen
objects which suppresses the confidence score of unseen objects confusing
it with background, we use YOLOv2 as the object detector. It has 5 confi-
dence predictors and bounding box proposal predictors assigned to each of
it’s five anchors. (c) We train the generator (CVAE in our case) with the re-
sampled (balanced ratio) extracted foreground and background features and
their semantics. Further, we generate unseen class visual features and re-
train the confidence predictor module with all the seen/background/unseen
features, and integrate it back to the object detector to detect unseen objects
in GZSD setting. NOTE: Network template is inspired by [38]

in the next section.
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CHAPTER 3

METHODOLOGY

As our goal is to implement the algorithm proposed in [38] effectively. In this section,

we will elaborate the method to be followed to implement DELO with more nuanced

and practical details which we thought were missed in [38]. And in addition to that, we

also discuss few modifications we made in our implementation.

3.1 Problem Definition

We work on the standard object detection datasets, and we specifically cater or alter it

to ZSD setting, where each of the image has multiple bounding box annotations with a

class label for each of the objects present in it. So we define a training dataset with M

images, with it’s annotations and class labels as Dtr = {Im, {Obj(i)m }
Nm

i=1}
M

m=1
. Where

{Obj(i)m }
Nm

i=1 is the collection of annotation and class label for an image Im, andNm is the

number of objects present in the mth image. Each object is associated with a bounding

box annotation containing four values (x, y, w, h) where x, y is coordinates of the

location and w, h is the size of the bounding box, and a class label from c ∈ Cseen.

Whereas the test images contains objects belonging to unseen classes i.e c ∈ Cunseen.

We split our train and test partition such that Cseen ∩ Cunseen = φ. Our end goal is

to detect all the foreground objects from both seen and unseen classes present in the

image. We use semantic embedding Sc to train CVAE to generate the visual features

of unseen classes. Thus we get semantic embeddings for all the classes including seen,

unseen, and background (cbg = −1). We take S−1 = 0 for background classes.

3.2 Key Idea

As we discussed in section 1.2, our main objective is to reduce the error component by

virtue of detection only, and not recognition. As we discussed in 1.1 that the vanilla



detectors trained only on seen classes suppress the background objects, thus by un-

seen objects indirectly, which results in low confidence scores. This further lead to

poor precision-recall rates for unseen objects in GZSD setting. So our main objective

is to improve this bad precision-recall rates for unseen objects. And since anything

in a visual scene can be labelled to some unknown object, the background bounding

boxes are way larger in number compared to proposed foreground objects, hence re-

duces the precision of the detector. So, our second objective is to prevent this class

imbalance problem by following re-sampling strategy proposed in [38] where we make

the background/foreground samples ratio to 1. Lastly we conduct all our experiments

and evaluation in GZSD setting which has both seen and unseen objects in the images

for the reasons discussed in section 1, 2.

To meet all these objectives, [38] proposed that re-training the confidence predictor

with the generated visual features of unseen classes using CVAE along with the re-

sampled seen and background features. Which would suppress the background objects

and detect both the seen and unseen objects at a much higher confidence than before,

as the re-trained model has learnt the visual features of seen, unseen and background

separately, and thus distinguishes them easily.

As discussed above, our implementation following [38] has four stages, pre-training

YOLOv2, re-sampling extracted seen and background features, visual feature genera-

tion, and confidence predictor retraining. Firstly, we train YOLOv2 just for detection

after detaching the classifier module as we discussed in section 2.2.2. (for training

details refer section 4.1.4

3.3 Foreground/Background Re-Sampling

After pre-training YOLOv2, we now extract visual features from the Darknet-19 (more

details in section 4.1.4). Our goal is to extract a collection of visual features representing

the proposed foreground and background bounding boxes, and then re-sample it before

re-training. Here we assume that cell feature of size 1024 in the 13× 13× 1024 (hence,

169 cells per image) feature map F (Im), associated with the respective foreground or

background bounding box is a reasonable visual representation of it as assumed in [38].

As we know that there are five confidence predictors associated with five anchor boxes
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per cell, and consequently the confidence predictors is associating to five bounding

boxes proposed per cell. Those bounding boxes are probably at different locations,

so their confidence predictions are different, although they are predicted on the same

feature. Which means, the same feature, can be foreground to one anchor box and

background for another, and potentially none (discard) having the same cell feature.

Hence, we might encounter the same cell feature more than once in this extraction

process, as the same cell feature could be viewed differently by each of 5 anchors. We

represent our re-sampled dataset as Dres.

3.3.1 Foreground

For an image Im, there are totally 169×5 = 845 bounding boxes in YOLOv2, and each

cell has 5 bounding boxes associated with it, each one for the 5 anchors. We define a

cell feature of an image Im to be foreground w.r.t an anchor, if it’s associated bounding

box has maximum IOU > 0.5 with the ground truth objects for that image Im and it’s

confidence score P̂conf > 0.6. We store (f, aidx, P̂conf , c) as a data point to our Dres

dataset, where aidx is the index of the anchor that bounding box with the maximum IOU

is associated with and c is the class of the ground truth object which the bounding box

has maximum IOU with. In our implementation, we store the anchor index explicitly

as opposed to [38], for the reasons we will discuss in the section 3.5

3.3.2 Background

Similarly, a background feature to an anchor is defined when, it’s associated bounding

box has maximum IOU < 0.2 over the ground truth objects in the image Im, and it’s

confidence score P̂conf < 0.2. We store (f, aidx, P̂conf , cbg) as a data point to our Dres

dataset, where cbg is the background class which is always set to −1. According to the

re-sampling strategy , We only take km top smallest IOU background features, where

Km is the number of extracted foreground features.
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3.4 Visual Feature Generation

After re-sampling of foreground and background features, we train the CVAE with the

Dres dataset conditioned upon their class-specific embedding Sc, with the additional

visual consistency loss functions proposed in [38] to provide more supervision and

generate similar performing features as Dres. We add few extra details as compared to

[38] which we think is not implicitly understood, to train the model easily. As we know

that each feature is associated with an anchor index corresponding to it’s bounding box,

we train the CVAE separately on the feature groups. Each feature group is formed by

combining all the extracted features which are associated to a particular anchor index,

like this we do for all the anchor indices present in the Dres dataset. Hence, we train

the CVAE each time separately on those feature groups corresponding to each of the

anchor indexes present in the Dres dataset.

3.4.1 Conditional Variational Auto Encoder (CVAE)

As discussed in section 2.2.4, CVAE has an encoder E and a decoder G, and con-

ditioned upon Sc. E with the parameter θE , takes a concatenated feature containing

both the Dres feature f and the associated Sc, and outputs the distribution of the latent

variable z : PE(z/f, Sc). The decoder G with the parameter θG generates the feature f̂

given (z, Sc). We find the optimal parameters θE, and θG simultaneously by optimizing

CVAE loss which has two components, KL divergence between the encoder posterior

and prior of latent variable z and reconstruction loss. lCV AE is as given below:

lCV AE(θG, θE) = KL(PE(z/f, Sc)||p(z))− EDres [logPG(f/z, Sc)] (3.1)

where the KL divergence term’s objective is to force the conditional posterior dis-

tribution approximates the true prior (unknown). To simplify the optimization, we use

the re-parameterization trick followed in [12]
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3.4.2 Visual Consistency Checker

This additional loss component has been proposed in [38], but doesn’t have any the-

oretical validation. In our implementation we add this additional loss following [38],

to make a fair comparison of our results with theirs. Main objective of this is to make

the feature f̂ be consistent with the extracted feature f in multiple aspects, such as

P̂conf , class c, and the associated Sc.

Confidence Consistency

So the objective here is to reconstruct features which outputs similar confidence score

when given to pre-trained YOLOv2. So here we minimize the MSE Loss as given

below:

lconf (θG) = EDres |P̂conf − Confaidx(f̂)|2 (3.2)

where the Confaidx is the confidence predictor associated with the corresponding anchor

index of the feature f . We freeze the weights of the pre-trained confidence predictor

while training the CVAE.

Classification Consistency

Similarly our objective is to make the reconstructed features more discriminatory and

represents the same class cwhen given to a classifier Clf. Hence, we penalize the CVAE

with lclf is as follows:

lclf (θG) = EDres [CE(Clfaidx(f̂), c)] (3.3)

where c ∈ Cseen∪{−1}, and the Clfaidx is the classifier pre-trained only on the features

corresponding to aidx, and it’s weights are frozen. It’s trained with the weighted cross

entropy loss to predict the class label associated with the feature f .
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Attribute Consistency

The objective here is to reconstruct features which are coherent with semantic embed-

dings Sc of the feature f . So here we minimize the MSELoss as given below:

lattr(θG) = EDres |Sc − Attraidx(f̂)|2 (3.4)

where the predictor Attraidx is pre-trained on features corresponding to aidx to predict

the Sc associated with the feature f . We freeze the weights of it while training CVAE

and use class weights to prevent the class imbalance problem.

Thus, we train the CVAE end-end by weighted addition of all these losses as follows:

θ∗G, θ
∗
E = argminθG,θE lCV AE + λconf .lconf + λclf .lclf + λattr.lattr (3.5)

where λ[.] are the weights assigned to each of the visual consistency losses. (refer

training details in section 4.1.4. Thus, after training, we generate Dsyn dataset which

has Nseen samples for each of the seen classes and Nunseen samples for each of the

unseen classes. Thus a data point in Dsyn looks like (f̂ , 1, c) where c ∈ Cseen ∪Cunseen
and 1 is the confidence score assigned to the synthesised feature, as we consider the

generated feature to be coming from a ground truth seen/unseen object.

3.5 Confidence Predictor Re-Training

Now, that we have Dres and Dsyn, we re-train the confidence predictors. As we know

that there are five confidence predictor associated with five anchor boxes, and conse-

quently the confidence predictors is associated to five bounding boxes. Those bounding

boxes are probably at different locations, so their confidence predictions are different,

although they are predicted on the same feature. Which means, the same feature, can

be foreground to one anchor box and background for another, and potentially none (dis-

card). That is why we have to work on each anchor box separately.

We have trained all five confidence predictors in parallel, in contrast to [38], where
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they train each confidence predictor separately on their corresponding feature groups

associated with that anchor. By training in parallel, we make the training more elegant

and efficient. And since, theoretically there is nothing against following the parallel

training method to the best of our knowledge. We use the anchor index of each feature

to get the P̂conf from the confidence predictor associated with that anchor to compute

the MSE loss l as follows

l =
1

|Dres|
∑

f∈Dres

∑
aidx∈f

|Confaidx(f)− P̂confaidx |
2

+
1

|Dsyn|
∑

f∈Dsyn

∑
aidx∈f

|Confaidx(f̂)− 1|2

where aidx refers to the anchor index associated with the feature f , and P̂confaidx ,

and Confaidx are the confidence score of the feature associated with that anchor, and

confidence predictor associated with the anchor index respectively.

3.6 Implementation Details

We followed the same architecture mentioned in [38], for Clf, Attr, CVAE. The encoder

E takes in a concatenated feature of dimension 1024 + 20, where 1024 is the feature

size and 20 is the dimension of the semantic embedding Sc used. The latent dimension

is set to 50 and decoder G has input size of 50 + 20 which is the sum of the dimensions

of latent vector z and semantic embedding. And both E and G have hidden layer of

size 128. Hence, they are basically a two fully connected layer network.

Clf(.) and Attr(.) are similarly chosen to be 2-FC networks with hidden dimension

of size 256. We use λconf = 1, λclf = 2, λattr = 2, and generate Nseen = 50 and

Nunseen = 2000 for every seen and unseen classes respectively. Refer section 4.1.4 for

more training details.
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CHAPTER 4

EVALUATION

4.1 Experimental Setup

We follow the evaluation protocol mentioned in [38], that to evaluate our implemented

model DELO only in ZSD and GZSD settings. Where the test images contains only

unseen objects in the former setting, and in the latter setting, test images has both seen

and unseen objects, which is much more realistic and complex. We thus give less

importance to pure unseen object detection results of [1, 25, 15] and also avoid the

transductive setting followed in [24] as we discussed in the section 2.2.1.

4.1.1 Dataset

We only use PASCAL VOC dataset for the reasons discussed in section 2.2.1. It has

20 classes with 4 high level categories such as, person, vehicle, animal, and indoor,

with indoor and vehicle combined having 13 classes, person and animal having 1 and 6

classes respectively. We also train and test our model DELO, on multiple seen-unseen

split ratios, such as 15/5, 10/10, 5/15 splits. In addition to what is done in [38], among

each ratio, we have created different sets of unseen classes with varying no of similar

classes to that of classes in the seen bucket. This is an important factor as we discussed

in the background section 2.1.3, that unseen classes are assumed to be semantically or

visually similar to the seen classes for ZSD to work. So we study the performance of

our model DELO, on these different splits with varying low no of similar classes in the

unseen bucket to a very high no of similar classes, and see the effect of high seen/unseen

ratio to low seen/unseen ratio. We also observe that the person category is all alone, and

don’t have any similar classes, for this reason in most of our splits, we put person under

seen split.



4.1.2 Test Data Configuration

Following [38], We test our model DELO on three test configurations, Test-Seen (TS),

Test-Unseen (TU), and Test-Mix (TM). Test-Seen contains images from VOC2007 set

which contains only seen objects. Test-Unseen contains images from train/val/test of

VOC2007 and VOC2012 which has only unseen objects. Similar to Test-Unseen, Test-

Mix contains images only which has both the seen and unseen objects. As discussed

above, Test-Mix configuration is the GZSD setting, which is the most complex setting

compared to the other two test configurations. We follow 0.5 IOU 11 point method to

compute AP following [38] to evaluate our model DELO.

4.1.3 Semantic Information

Following [38], we use class-level semantic features as opposed to the object level

attribute annotations from aPY [6] for the classes in PASCAL VOC. Because, firstly it’s

impossible to get object level attributes for unseen classes during test time to generate

unseen visual features. Secondly by averaging them, we reduce the noise in the instance

level attributes, thus resulting in better performance. Finally, the apY has given only

object level attributes for a VOC 2008 dataset, and hence lot of objects in our train

and test dataset don’t have object level attributes. So, we take average of all the object

level attributes for each of the 20 classes and we reduce the dimensionality from 64

(discussed in section 2.2.3) to 20 using PCA to reduce the noise. We then normalize the

semantic features between 0 and 1. We also use word2vec [20] as an alternative to study

the importance of object attributes. Word2vec is of 300 dimensions, and is noisy. We

compare the performance using each of these as the semantic embedding in our ablative

analysis section.

4.1.4 Training Details

Pre-training YOLOv2

We have used PyTorch framework to code our implementation from scratch. We trained

and tested our model DELO on a single NVIDIA GTX 1080Ti GPU on PASCAL VOC

dataset. We followed [27] for training YOLOv2 just for detection on seen classes,
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where we trained it for 120 epochs for 15/5 and 10/10 splits, and 150 epochs for 5/15

split, with a starting learning rate of 0.00025 and later adjust it in steps of 0.1, 10, 0.1

after 10, 40, 80 epochs respectively with SGD optimizer with 0.0005 decay and 0.9

momentum, and with a batch size of 32.

Extraction of feature-map

After the pre-training of YOLOv2, we extract the 13 x 13 x 1024 feature map F (Im)

from the 29th layer in YOLOv2. We take the output just after the linear activation before

the batch-normalization and not after the leaky-relu activation, to avoid the manual

scaling of the features when retraining the five confidence predictors. This enables us

to directly feed the generated features from CVAE decoder directly, which uses linear

activation as the output activation.

Training Attr, Clf and CVAE

For training Attr, and Clf, we scale the extracted features between 0 and 1, and train

each of them for 100 epochs using ADAM optimizer with a learning rate of 1e− 3, and

a learning rate decay of 0.5 every 15 epochs, with a batch size of 64.

For training CVAE, we train it for 100 epochs using ADAM optimizer with a learn-

ing rate of 1e−3, learning rate decay of 0.75 every 15 epochs for 15/5 and 10/10 splits,

and 200 epochs with a learning rate decay of 0.75 every 60 epochs for 5/15 split, with a

batch size of 256. We also used class-weights computed using sklearn for all the loss

functions used in training the above three models to prevent the class-imbalance prob-

lem caused by huge number of background samples compared to foreground samples

per class.

Training CVAE can be tricky, we have used cyclic linear KL annealing rate for

preventing KLD loss immediately going to zero, and make it converge to a non-zero

number, so that CVAE doesn’t generate random numbers losing all the latent informa-

tion.
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Method Split TU TS TM

YOLOv2[38] 36.6 85.6 30.0
DELO[38] 5/15 39.4 (2.8) 88.2 (2.6) 34.7 (4.7)
YOLOv2 25.5 81.2 17.6

DELO 27.4 (1.9) 82.5 (1.3) 22.0 (4.4)

YOLOv2[38] 56.4 71.6 54.3
DELO[38] 10/10 61.3 (4.9) 73.5 (1.9) 59.6 (5.3)
YOLOv2 43.9 68 36.6

DELO 47.3 (3.4) 69.6 (1.6) 41.4 (4.8)

YOLOv2[38] 55.3 75.3 53.6
DELO[38] 15/5 58.1 (2.8) 76.3 (1.0) 58.2 (4.6)
YOLOv2 45.6 70.4 44.3

DELO 47.8 (2.2) 71.1 (0.7) 48.2 (3.9)

Table 4.1: Zero-shot detection evaluation results on the PASCAL VOC dataset for dif-
ferent seen/unseen splits. TU = Test-Unseen, TS = Test-Seen, TM = Test-
Mix represents different data configurations. Overall average precision (AP)
in % is reported. The highest AP (only among the APs of our imple-
mented models i.e YOLOv2, DELO) for every setting is in bold. Note:
YOLOv2[38], and DELO[38] are the results obtained in [38], and (.) de-
notes the relative increase in AP from YOLOv2 to DELO

Retraining Confidence Predictor

As discussed in section 3.4, we train all five confidence predictors in parallel. We use

weighted MSE Loss to prevent class imbalance problem caused by background features.

We compute the sample weights by first computing class weights using sklearn, where

we just take features from Dres to be an imaginary class 0 and Dsyn to be an imaginary

class 1, and then we assign these weights to all the features accordingly to get the sample

weights.

We have used a batch-size of 256, and retrained it for 5 epochs with 2.5e−6 learning

rate.

4.2 Zero Shot Detection Evaluation

We tabulate the AP obtained by our implemented model DELO, and by it’s correspond-

ing pre-trained YOLOv2 on various seen/unseen splits in PASCAL VOC dataset in Ta-

ble 4.1. Our main goal is to compare the relative increase of AP from that of YOLOv2
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DELO YOLOv2 YOLOv2 (low) DELO YOLOv2 YOLOv2 (low)

Figure 4.1: Visual examples of detections made by our DELO. Each triple shows: (from
left to right) DELO detection results, pre-trained YOLOv2 detection results
at the same confidence threshold as DELO, pre-trained YOLOv2 detection
results at a much lower confidence threshold. The seen, unseen and un-
known (error) classes are color-coded as red, green and blue. We observe
that the implemented DELO detects unseen classes with a much higher
confidence which are missed by YOLOv2 or in some cases constantly pre-
dicted with much lower confidence scores. And hence, pre-trained vanilla
YOLOv2 suffers from significant detection errors when tried to detect un-
seen objects by lowering the confidence threshold. DELO also detects many
truly unknown objects which are counted as false positives, refer section
4.2.1 for more details.

to DELO for each data split across Test configurations (TU, TS, TM). As we discussed

in section 2.2.1, we can’t fairly compare our performance with that reported in [38].
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And we will give a detailed explanation as to why in the next section. But for the sake

of completeness, we also report our results along with the results reported in [38], and

are denoted as YOLOv2[38], and DELO[38].

4.2.1 Discussion on the outputs of DELO

Performance on Test Seen

From Table 4.1, we observe that both our pre-trained YOLOv2 and YOLOv2[38] per-

form very well on par to our DELO and DELO[38] in TS configuration compared to TU

and TM. This is due to the fact that it’s already been well optimized to detect only the

seen objects in an image during the training, and as reported in [27] YOLOv2 is one of

the state of the art methods in object detection which achieves 73.4% mAP on PASCAL

VOC 2012 dataset. Hence, it achieves 81.2%, 68%, and 70.4% on 5/15, 10/10, 15/5

splits respectively in the Test Seen (TS) configuration. We also observe that the perfor-

mance by YOLOv2[38] is slightly better than our pre-trained YOLOv2 by 4.4%, 3.6%,

and 4.9% on 5/15, 10/10, 15/5 splits respectively in TS. This is because we have

trained YOLOv2 from scratch, and due to different hyper parameter choices our per-

formance is not as high as YOLOv2[38], this is one of the main reasons that make the

comparison between our DELO and DELO[38] little unfair, as we aren’t starting of with

the similar performing baseline detector. We can also observe that the difference in AP

achieved by our DELO and DELO[38], is significant in TU and TM configurations on

all splits, but only slight difference in TS configuration. That’s because, detecting in

only seen objects in test seen images are relatively easier compared to other settings, as

the model is already pre-trained on the seen-partition of the dataset which has only seen

objects. Consequently, YOLOv2 is a strong baseline to compare against particularly

in TS category, and also in cases where seen/unseen ratio is increasing, most of it’s

performance in TM can be coming from the seen classes detection. Because in cases

like 15/5 split, it’s more likely that unseen visual features resemble samples from seen

classes, and consequently don’t require confidence predictor retraining for better de-

tections. Therefore, in these Test Mix configurations, YOLOv2 is expected to perform

better for this reason. To sum it up, pre-trained YOLOv2 object detectors that are op-

timized only over seen objects during training and not unseen objects are still capable
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of localizing unseen objects but with a much lower confidence score (objectness score)

compared to our DELO, this can be observed in the 3rd and 6th column in the Figure

4.1

Effectiveness of retraining with generated features

We observe that both DELO, and DELO[38] consistently performs better than the pre-

trained YOLOv2, and YOLOv2[38] in all the data splits, and test configurations. This

validates the effectiveness of the retraining the confidence predictor with the gener-

ated features using CVAE. Thus, DELO leverages visual features from unseen, and a

balanced seen and background bounding boxes after re-sampling to prevent class imbal-

ance problem, it learns to better discriminate the seen/unseen from that of background

features. Hence, we observe an average increase in AP of ( 2.5%, 1.2%, and a significant

4.37% ) by our DELO, compared to ( 3.5%, 1.83%, 4.87% ) by DELO[38] across all

the splits in TU, TS, and TM configurations respectively. This trend followed in the

relative increase in AP in TU, TS, and TM configuration is expected because, we typ-

ically expect a lower AP for Test-Mix compared to other two configurations. And we

intuitively expect to observe highest AP in Test-Seen as the model DELO is pre-trained

to detect only seen objects as we discussed in the above section, and the second high-

est in Test-Unseen, as the model may develop a bias towards the unseen classes after

retraining the confidence predictors, and thus may perform a bit poorly on Test-Mix

where it has to detect both seen and unseen classes, hence resulting in lowest AP in the

Test-Mix. Thus, we observed the similar trend being followed in the average relative

increase in AP achieved both by DELO and DELO[38] across all the splits in the TU,

TS, and TM configurations respectively.

For the reasons we mentioned in the above section, we might not be able to get

the absolute AP achieved by DELO[38] as we observe in Table 4.1, owing to the fact

the we started off with a not so similar performing baseline detector. But, we observe

that the average relative increase in AP from YOLOv2 to DELO mentioned above is of

the similar range as the average relative increase achieved by DELO[38]. Hence, our

implementation is effective.
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Effect of the False Positives on the Performance Gap between DELO and YOLOv2

We observe that the average performance gain from YOLOv2 to DELO in TU and

TM configurations is only ( 2.5%, 4.37% ) and is not much as we expected it to be

after observing the accurate detections of unseen classes made by DELO which were

missed by YOLOv2 in Figure 4.1. This is not surprising because, DELO also detects

truly unknown or unannotated objects along with artificially separated unseen classes,

w.r.t PASCAL VOC. This can be noticed in the Figure 4.1, were DELO detects truly

unknown objects such as trees, toy-horses, teddy bears, headlights, utensils, buildings,

pillows, and bags along with the unseen classes such as motorbike, car, cow, boat, sheep,

aeroplane, sofa, cat, and train. We observe that these detected unknown objects have

similar attributes/traits to the seen/unseen classes. For example, (tree, potted plant),

(teddy bear/pillow, sofa), (toy-horse, horse), (utensil, bottle), (headlight, motorbike/car)

are some of the similar pairs we noticed in the Figure 4.1. We believe that re-training

with generated visual features of unseen/seen classes using their semantic attributes,

confuses the model into detecting unknown objects with similar attributes. Which also

shows that DELO isn’t extracting much information from the background objects to

precisely distinguish unseen from other unknown classes. (we have discussed this issue

in future works section 4.4.2)

Unfortunately, these cases cannot be quantitatively measured. Because of the lack

of ground truth annotations for many unknown objects in PASCAL VOC. Therefore,

the detections made by DELO are counted as false positives, hence lowering the overall

precision. Thus, DELO’s performance gain can be expected to be larger than YOLOv2

in a much large-scale dataset such as Open Images Dataset [14]

NOTE: There were no false positives reported in the detections made by DELO[38]

in [38], which is very surprising, and we think that they have filtered out the false

positives.

Robustness of DELO to different seen/unseen splits

We observe that performance by both DELO and DELO[38] varies significantly for

different splits of TM configuration since the dataset is of a smaller scale (only 20

classes overall and objects per class is limited). And the number of unseen classes is
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Method ZSD GZSD

YOLOv2 4.3 9.4

DELO 5.1 12.2

Table 4.2: ZSD and GZSD performance evaluated with mAP on the PASCAL VOC
dataset 10/10 split to compare the performance of our implemented models,
YOLOv2 and DELO.

also changing. AP achieved in 5/15 split is the least observed because, the model has

very few seen classes and data samples to learn from to generalize better to generate

features for 15 unseen classes. So the lower absolute performance can be due to this

reason. But we observe that the DELO’s performance is still superior compared to the

pre-trained YOLOv2.

Generalized ZSR (GZSR)

As we discussed in section 1.2, our main goal is to improve error component arising

by virtue of detection and not the recognition following [38]. We have focused mainly

on detection aspect of GZSD. But for the completeness, we have trained a 2 fully-

connected (FC) neural network as a classifier to classify the predicted bounding boxes

(features associated with the bounding boxes) into one of the 20 classes in PASCAL

VOC. According to the literature, GZSR is a very hard problem in its nature for PAS-

CAL VOC dataset with poor accuracy [33]. And many of the recent developments in

GZSR report recall@100 as the evaluation metric owing to the purportedly low mAP

[1], which gives unusual high gains as we discussed in section 2.2.1. Hence, for this rea-

son we chose to report only mAP. We can observe in Table 4.2 that, the mAP improves

from YOLOv2 to DELO in both ZSD and GZSD settings. Here we don’t have any ref-

erence model to compare against as [38] reported mAP only on MSCOCO dataset and

not on PASCAL VOC. This low mAP can be attributed to the fact that we didn’t fine-

tune the classifier or choose relevant number of features to train it on. Also generally

YOLOv2 updates the entire network while training to for both detection and classifi-

cation task to achieve a good mAP i.e it follows an end-end learning method. But in

our case, the feature extractor is fixed which has been optimized to produce features to

just perform detection, thus the features learnt are not that discriminatory as in the case

of a typical detection + classification YOLOv2 model. But the effect of this may be
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Figure 4.2: tSNE visualization comparison between extracted visual features from pre-
trained YOLOv2 (left) with that from DELO (right) on 10/10 split Test-Mix
dataset. We observe that the foreground (seen and unseen) and background
are more separable after retraining the confidence predictor with the gener-
ated features of unseen classes (DELO)

minimal. And also most of our bounding boxes for both seen and unseen classes are

indeed correct with a very high confidence score compared to YOLOv2 as we can ob-

serve from the Figure 4.1. Hence, in future, we intend to combine our DELO detector

with a good ZSR model or use an end-end GZSR framework using Transformers[31]

(discussed in section 4.4.3 as part of the future work) than a naive 2 FC classifier to

achieve reasonable mAP.

4.3 Ablative Analysis

4.3.1 Effect of Retraining with Generated Visual features

To further evaluate the effect of the confidence predictor retraining with the generated

visual features of unseen classes along with the re-sampled seen, and background class

features. And its impact on the model’s capability of accurately assigning a visual fea-

tures as seen/unseen/background class for improved detection. We have used the tSNE

dimensionality reduction technique to visualize the manifold of the extracted visual fea-

tures from pre-trained YOLOv2 and DELO on the 10/10 split’s Test Mix dataset. We

observe in Figure 4.2 that the seen, unseen classes are much more separable from back-

ground class when using DELO compared to YOLOv2, where background and unseen

classes are mixed which affects the model recall and precision rate. Thus, our imple-
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Split AP(%)

15/15-1 47.8
15/15-2 45.6

10/10-1 47.3
10/10-2 44.1
10/10-3 33.7

5/15-1 27.4
5/15-2 23.5

Table 4.3: Seen/Unseen correlation comparison on the PASCAL VOC dataset. Where
the number of correlated seen and unseen classes in the set, decreases with
increase in the suffix attached to all the split names (15/5, 10/10, 5/15). We
observe that AP on Test Unseen decreases with the decrease in the number
of similar or correlated seen and unseen classes in each of the splits.

mented model DELO, is effective and separates the unseen classes from the background

better than the YOLOv2, hence, leading to the observed relative increase in AP from

YOLOv2 to DELO. This ablation study hasn’t been done in [38], hence not comparable

with our results.

4.3.2 Effect of Seen/Unseen Classes Correlations

As we discussed in section 2.1.3, one of the key challenges for effectively generat-

ing visual features given it’s semantic embedding for unseen classes are constrained

by unseen classes correlation with that of seen classes. It is expected for a model to

not perform well when all the chosen unseen classes are not similar to any one of the

seen classes. Which makes it difficult for the CVAE to generalize the learnt represen-

tation/distribution using seen classes, to sample visual features of unseen classes. So,

with the goal to study the effect of the correlation between the seen and unseen classes

semantically, on the detection performance of DELO on the unseen classes. We have

trained and evaluated our DELO on different sets of unseen classes consisting of de-

creasing number of similar unseen classes to that of the seen classes present in that set.

We have done this for all the three splits and have tabulated the AP on Test Unseen con-

figuration in the Table 4.3. We have constructed 2 different sets for 15/5 split namely

15/5 − 1, 15/5 − 2 with the number of similar unseen classes decreasing with the in-

creasing suffix attached to the split name. Similarly we have constructed three sets for

10/10, and two for 5/15. These sets follow the basic principle that, number of visually
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Prototypes AP (%) - Test Unseen (TU)

Object Attributes (20 dim) 47.3
Object Attributes (64 dim) 44.8

Word2Vec (20 dim) 45.2
Word2Vec (300 dim) 41.9

Table 4.4: Semantic prototype comparison on PASCAL VOC 10/10 split data. Highest
AP is in bold

or semantically similar classes appear in both the seen and unseen category separately,

for a set to have higher correlation between seen and unseen classes. Similarly to have a

lower correlation, the similar classes are assigned only to either seen or unseen category.

To illustrate this with an example, in 10/10 − 1 split, which has the highest correlated

classes in seen and unseen, the classes present in vehicle category of PASCAL VOC

i.e motorbike, car, bus, train are separated and equally put in seen and classes cate-

gory. So DELO generalizes better on 10/10− 1 split, and achieves 47.3% AP, while in

10/10− 3 split it achieves only 33.7% AP, where all of vehicle category classes are put

in seen category, hence having the least correlated seen and unseen classes.

4.3.3 Effect of various Semantic Prototypes and it’s Dimensionality

To study the effect of the choice of the semantic embeddings used to generate the visual

features, along with the effect of the role played by dimensionality of the embeddings.

We have trained and evaluated our DELO on both the aPY object attributes [6] with 64

dimensions, and after it has been reduced from 64 to 20 as we discussed in section 2.2.3.

Similarly with the word2vec which is of 300 dimensions, proposed in [20] and on the

reduced word2vec which is of 20 dimension following the same method discussed in

2.2.1. We observe in Table 4.4 that, DELO trained with object attributes with 20 dimen-

sions perform better than all the other prototypes with a 47.3% AP. We also observe that

the dimensionality reduction in both the object attributes and word2vec is effective and

improves the AP by 2.5%, and 3.3% respectively. We also note that word2vec with 300

dimensions has the least AP. Because, it is highly noisy and has too much information

unnecessary to the visual features domain, which makes the CVAE poorly converge and

not generalize better.
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Figure 4.3: Performance when different Nseen (left) and Nunseen (right) has been used
on 10/10 split of PASCAL VOC. TU = Test-Unseen, TS = Test-Seen, TM =
Test-Mix. We observe that the optimal values areNseen = 50 &Nunseen =
2000

4.3.4 Effect of number of Generated Samples

To understand how many generated samples of unseen and seen classes are required

to effectively retrain the confidence predictor. We have retrained and evaluated our

DELO with different samples of size Nseen and Nunseen. We study the effect of Nseen

by changing it from [20, 50, 100, 300, 500] with Nunseen fixed at 2000. Similarly we

change Nunseen from [0, 200, 500, 1000, 2000, 3000] with Nseen fixed at 50. The

corresponding AP obtained in TU, TS, and TM configurations are plotted in the Figure

4.3. We observe that, there is a significant drop in AP in TU and TM configuration,

at Nunseen = 0, which is expected as the model is not learning anything about unseen

classes, and now it’s just performing similar to pre-trained YOLOv2. We also observe

that the effect of Nseen on the performance is very minimal as it closely resembles

Dres distribution. But a slight increase in AP can be observed in TS at Nseen = 50,

which might be due to a number of seen samples the model requires to stabilize or

to preserve it’s learned weights for detecting seen classes, as we are simultaneously

retraining it with unseen visual features. Finally, we see that AP in TU, and TM increase

till Nunseen = 2000 after which it saturates. Note: We see that the most of the gain or

increase in AP in TU and TM is observed just after retraining it with Nunseen = 200,

thus very small number of generated unseen visual features are enough to improve the

model’s detection performance significantly. This is due to the ability of pre-trained

YOLOv2 to already localize the unseen objects with just training on the seen partition.

Hence, by retraining it with a small enough unseen visual features is enough to make it
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detect the unseen objects at a much more higher confidence score.

4.4 Possible Future Work

4.4.1 Annotation of large-scale datasets

As we discussed in section 4.2.1, that the DELO also detects truly unknown or unanno-

tated objects along with artificially separated unseen classes, w.r.t PASCAL VOC. Uti-

lizing this behaviour, we might be able to use DELO for predicting/generating missed

annotations in the large scale dataset with noisy attributes like the Open Images Dataset

[14]. Which has a lot of objects missed in the ground truth annotations, as the labelling

is done by DNN + human, unlike trademark object detection datasets which have hu-

man level annotations like PASCAL VOC or MSCOCO. We leave the detailed analysis

for future work.

4.4.2 Background Aware Latent Assignment Based ZSD for DELO

To extract more information from background region and cover wider visual concepts,

than squishing all background classes to 0 in the embedding space as done in [38]. We

can follow the Latent Assignment Based (LAB) method proposed in [1] to spread the

background bounding boxes in embedding space, and then train the CVAE, iteratively,

and finally generate the unseen visual features. We believe that, this will give lesser

room for the model to confuse between an actual unseen class and an unknown class

having similar attributes (which is now learnt to be a background object by the model

after iterative training following LAB method). Hence, it reduces the overall false pos-

itive rate, and enhances the Average Precision (AP).

4.4.3 Transformer based End-End Zero-Shot Object Recognition

As we observed in section 4.2.1 that, the DELO + basic classifier performs very poorly

in recognizing the seen/unseen classes in the GZSD setting. Hence, we believe that ex-

tending DELO from just training for detection to GZSR as an end-end learning frame-
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work, can make the model learn better discriminable visual features to achieve state of

the art mAP.

Recently, Transformer based End-End Object Detection has been proposed in [2],

where it removes the need of Non-Maximum Suppression and Anchors which are used

in traditional object detectors. Transformers are inherently an encoder-decoder frame-

work which was introduced in [31]. There also have been usage of Transformers for

Zero-Shot Learning in recent years. Specifically [39], use it for multi-attention based

localization of objects. It mainly specializes in multi-modal learning [35, 7], and we

know that ZSD is also a multi-modal learning problem between visual and semantic

domain. Hence with all these recent developments in mind, we believe that Trans-

formers can be used to solve the Generalized Zero-Shot Object Recognition (GZSR)

problem in a more elegant and in an end-end learning manner. However, we leave the

detailed analysis for future work.
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CHAPTER 5

CONCLUSION

Vanilla object detectors trained only on seen classes are capable of localizing unseen

objects, but with a very low confidence score. To overcome this, and improve the local-

ization and detection performance on novel unseen object categories in GZSD settings,

we have followed the algorithm proposed in [38], and implemented it. We validated

our implementation by comparing the relative increase or gain in AP from YOLOv2 to

DELO, with that of the gain reported in [38]. We have also reasoned out why the per-

formance gap between YOLOv2 and DELO isn’t as high as expected, by analysing the

DELO’s detection of truly unknown or unannotated object classes which are counted as

false positives. We have also conducted many experiments with different seen/unseen

splits, different choices of semantic embeddings, and with different number of gener-

ated visual features. Our experiments, showed that the seen/unseen classes correlation

is a very important factor in determining the performance gain from YOLOv2 to DELO

in TU and TM configurations. Which is also a very major challenge going forward in

the field of ZSD to localize and recognize a truly unknown object which are not re-

lated to the classes seen during training. Our experiments also showed that very small

number of unseen generated samples are enough to re-train the baseline detector to get

a significant performance gain. There are several areas for improvements such as in-

corporating background aware LAB method in DELO for reducing false positive rates,

and extending DELO from just training for detection to GZSR as an end-end learning

task using Transformers, which can make the model learn better discriminable visual

features to achieve state of the art mAP. We leave the detailed analysis for future work.
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