
Development of 1
10th scale Autonomous vehicle:

Motor controls and PCB design
Indian Institute of Technology, Madras.

Anudeep EE16B010

13 June 2020

Acknowledgements

I wish to express my sincere gratitude to Dr. Ramkrishna Pasumarthy, Associate Pro-
fessor, Electrical Engineering for providing me an oppurtunity to do my project work in
”Development of 1

10 th scale Autonomous vehicle: Motor controls and PCB design”

I sincerely thank Mr. Subhadeep Kumar, Ph.D scholar for his guidance and encour-
agement in carrying out this project work.

1

Contents

1 Introduction 5
1.1 Overview . 7

2 Dynamixel XL-320 with Arduino Due 8
2.1 Introduction . 8
2.2 Dynamixel XL-320 . 8

2.2.1 UART . 10
2.2.2 I2C . 10
2.2.3 Duplex Communication . 11

2.3 Hardware setup . 12
2.3.1 No Extra Circuitry . 12
2.3.2 Passive Transistor Circuit . 12
2.3.3 Tri-State Buffer . 13

2.4 Software setup . 14
2.5 Observations/Results . 16

3 Driving Motor with Arduino Due 17
3.1 Introduction . 17
3.2 Hardware Setup . 17

3.2.1 Components . 17
3.2.2 Circuit . 19

3.3 Software Setup . 21
3.4 Observations/Results . 23

4 PCB Design 24
4.1 Introduction . 24
4.2 Design . 25
4.3 DC-DC converters . 26
4.4 Arduino Due . 26
4.5 Dynamixel XL-320 Servo motor . 28
4.6 Maxon ECX 22M Motor and Controller 28
4.7 Ultrasonic sensor . 29
4.8 Hall and IR Sensors . 30
4.9 RTC . 30
4.10 Level shifter . 30

References 32

2

List of Figures

2.1 Dynamixel XL-320 . 9
2.2 UART Interface . 10
2.3 I2C Interface. 11
2.4 Three terminal switch . 11
2.5 Passive Transistor [2] . 12
2.6 Internal Circuit of Half Duplex [1] . 13
2.7 Tri state buffer, 74LS241[Sán16] . 13

3.1 Maxon ECX 22M . 18
3.2 DEC Module 50/5 . 19
3.3 Pin diagram of Maxon ECX 22M brushless DC motor 20
3.4 DEC Module 50/5 Pin Diagram . 20
3.5 Input waveform . 22

4.1 DC-DC converter for Jetson nano . 26
4.2 DC-DC converter for Arduino Due and Servo 26
4.3 Arduino Due . 27
4.4 Connector for Servo . 28
4.5 Battery Input . 28
4.6 DEC Module 50/5connector . 29
4.7 Level shifter simulation . 30
4.8 Level shifter schematic . 31
4.9 Simulated Waveform . 31

3

List of Tables

2.1 Communication protocol . 10
2.2 Electronic Components list . 14
2.3 Read Protocol . 16
2.4 Write Protocol . 16

3.1 Maxon ECX 22M brushless DC motor Specifications 18
3.2 DEC Module 50/5 Specifications . 19
3.3 Maxon ECX 22M Pin description . 20
3.4 DEC Module Pin description . 21
3.5 Open loop and Closed loop . 21

4.1 Design rules . 25

4

Chapter 1

Introduction

Self-driving cars have attracted enormous attention from the automotive community in
the last decade. The electrical and electronics sector has seen a boom in development
of high capacity micro-scale brushed and brushless DC motors, servo motors, stepper
motors, lithium-ion batteries with large mAh and smaller sizes, enhanced embedded mi-
crocontrollers, different kind of sensing devices for vehicles, faster and robust wireless
communication channels and numerous other technologies to equip electric vehicles and
make them capable of autonomous motion. While there is a lot of research and develop-
ment going on around the world to make the dream of self-driving cars true, one of the
significant challenges in between is to test control algorithms for the autonomous motion
of these vehicles on the road. An alternative option is to develop a scaled-down testing fa-
cility to perform experiments and check the feasibility of the control algorithms. However,
the final objective of developing such an experimental setup begins with the development
of small scale electric vehicles. Numerous ready-to-use small scale electric vehicles, such
as electric RC cars, are available in shops and markets. But, the hardware present in those
vehicles is not suitable enough to implement autonomous control algorithms.

Further modifications are necessary or such vehicles need to be developed indige-
nously. Many researchers have followed these methodologies in the past. Georgia Tech’s
AutoRally[3], f1tenth[4] and JetsonHacks autonomous car[5], MIT’s autonomous RC
car[6] are few examples of small-scaled electric vehicles developed for autonomous mo-
tion. The common thing amongst all these vehicles is the developers modified the chassis
to fit necessary hardware and added requisite controllers, sensors and communication de-
vices but kept the chassis base, suspensions, steering mechanism and most importantly
the driving and steering motor intact. Although these vehicles perform sufficiently well,
they are solely developed for autonomous motion with utmost non-cooperative behaviour.
More specifically, these vehicles are designed to fulfil some particular objective, such as
free motion in a given track or autonomous racing, etc. So, precise control of either of the
driving or steering motor is not necessary for these applications.

Usually, in electric RC cars, an RC receiver receives the command signal from a
remote and passes on to the Electronic Stability Control (ESC) unit for the driving motor
and directly to the steering motor as PPM signals. The ESC unit supplies the necessary
signal to the driving motor, which is a brushed or brushless DC motor. The voltage
conversion logic or circuitry of the ESC unit is explicitly essential for precise control of
the driving motor as is the parameters of the DC motor. Neither of that information is
usually available from the RC car manufacturers because those components are designed

5

and manufactured for a much simpler purpose. Standard usage of these RC cars is as a
toy or for hobby RC racing.

On the other hand, the steering motor is a servo motor and hence turns the steering
wheels as per the duty cycle of the PPM signal. These servos are designed for high
torque supply and fast responses. Precision and accuracy are humbly ignored since the
control is upon a human user who modifies the input based on visual feedback. On the
contrary, in the case of autonomous motion control precision and accuracy of the motor
outputs is crucial, and the motors that come with the RC cars are not suitable for the
purpose. Moreover, neither of these motors have the provision to add sensors for getting
feedback. Without measurements of the outputs, it is not possible to design any controller
for controlling the motion of the vehicles. Hence, both the driving and steering motors
need to be replaced with precision motors exhibiting good performances.

For generating the driving torque in the small-scale electric vehicle to be developed, a
micro-scale brushless DC motor of high load capacity was chosen for meeting the desired
specifications and performances, namely Maxon ECX 22M motor. The motor consists of
Hall sensors and a temperature sensor which requires a separate controller, Maxon DEC
Module 50/5, to extract the feedback information. The controller sends back the angular
velocity of the motor shaft to the connected microcontroller or embedded computer. The
controller also receives PPM signals from the embedded computer or microcontroller and
transmits it to the motor input terminals. For steering control, a Dynamixel XL-320 servo
motor was chosen. It has an inbuilt PID controller for position control over a range of
300 degrees and has the provision for tuning the gain values. The motor is capable of
holding the motor shaft at the desired position due to its high torque capacity and also
has a fast response time. The motor provides feedback of position, input voltage, load at
the motor, the temperature within the motor, and many other variables. The inputs for the
motors are computed by an Nvidia Jetson Nano small board computer (SBC) and sent to
an Arduino Due microcontroller. The Arduino Due microcontroller is tasked with send-
ing the command signals from the SBC to the motors and receiving the sensor feedback
from the motors and forward it to the SBC. In case of the driving motor, it is necessary to
test the control, adaptability, communication of the ECX 22M motor and the DEC Mod-
ule with the Arduino Due and develop circuitry for this purpose. However, in the case
of the steering motor, the scenario is more complicated. The Dynamixel XL-320 motor
communicates using a half-duplex asynchronous serial communication protocol which is
not supported by an Arduino Due microcontroller. Therefore, before testing the compat-
ibility of Dynamixel XL-320 motor with Arduino Due microcontroller, it is necessary to
develop a solution for converting the information transmitted via I2C or UART or CAN
protocol in Arduino Due to the half-duplex asynchronous serial communication protocol
in Dynamixel XL-320 and vice versa.

On the other hand, the electric vehicle will be equipped with numerous sensors such
as IMU, Ultrasonic sensors, Hall sensors, etc. as well as other electronic devices. All
these devices have different power requirements while there is a single primary power
source, i.e. the LiPo battery. For example, the ultrasonic sensors, hall sensors require 5V
power supply while the Arduino Due microcontroller requires 7.4V power supply. This
differences in power requirement is fulfilled by a dedicated power circuit. Also, all the
sensors, microcontrollers, and SBC have a dedicated circuit for establishing communica-
tion amongst themselves. All together, these circuits brings in a large number of wires
which is not suitable for several reasons such as power loss, difficulty in fault detection,

6

providing ruggedness in the vehicle, etc. To overcome these problems, all the nuclear
circuits and electrical paths are to be designed on a PCB board which will serve as the
motherboard of the electric vehicle.

The objective of this project is (i) to study the features of Maxon ECX 22M motor
and DEC 50/5 controller, (ii) to test the compatibility and of ECX 22M motor and DEC
50/5 controller with Arduino Due microcontroller, (iii) to develop a circuit for control-
ling a ECX 22M motor using an Arduino Due microcontroller via a DEC 50/5 controller
module, (iv) to study the features of a Dynamixel XL-320 servo motor, (v) to develop
a circuit for establishing communication between an Arduino Due microcontroller and a
Dynamixel XL-320 motor, and (vi) to design a PCB board for all power and communica-
tion circuits.

1.1 Overview
• The protocols that are required for communicating with XL-320 servo motor are

understood and incorporated in the Arduino Due embedded code. A test circuit is
made on breadboard with Arduino Due microcontroller, Dynamixel XL-320 servo
motor, SN74LS241 IC, connecting wires, and a resistor to test the hardware and
software.

• A software is developed in the Arduino IDE for controlling Maxon ECX 22M
brushless DC motor with Maxon DEC 50/5 motor controller. A stripboard circuit
is made in which the motor and the controller are mounted for testing the hardware
and software. This knowledge was helpful in designing a printed circuit board in
the later part of my project.

• A level shifter circuit is designed and simulated on the LTspicer software. DC-DC
converter circuits are simulated in WEBENCHr designer. The lower PCB houses
the circuitry for the servo motor, Inertial measurement unit (IMU) and the upper
one houses the motor controller, Arduino Due microcontroller, DC-DC converters,
Ultrasonic sensors, Hall sensors, IR sensors, and other power and communication
circuits. Schematic and layout is designed in Autodesk EAGLE software.

7

Chapter 2

Dynamixel XL-320 with Arduino Due

2.1 Introduction
A servo motor is a self-contained electrical device, that rotate parts of a machine with
high efficiency and with great precision. It comprises of a control circuit, motor, shaft,
amplifier, encoder and often a gear assembly. The output shaft of the motor can be moved
to a particular angle, position and velocity which is not possible just with a regular motor.
A servo motor uses a regular motor and couples it with a sensor for position feedback, and
the motor is controlled by a controller which determines the input voltage considering the
reference and the feedback signal. The purpose of the controller is to control the rotational
or linear velocity and position of the motor shaft precisely.

Servo motors or servos are used for steering small scaled electric RC cars. For au-
tonomous steering, the controller in the servo needs to rotate the motor shaft to a certain
angular displacement and hold the shaft at that angle. Due to road disturbances and other
disturbances from the vehicle and the tyres it becomes a challenging task. The controller
needs to adjust the input to the motor continuously with time or at certain time intervals.
Servo motors available on the RC cars are not reliable as their performance is subpar.
They are designed for hobby racing which demands only fast response time.

Usually, these servos have a PID controller inside and a sensor for measurement of
angular displacement. To improve the performance of the motor the gains of the PID con-
troller needs to be tuned. The new values of gains can be determined using some algorithm
which will require at least the position of the motor shaft. For better performances and
increased precision, knowledge of load torque at the motor and absolute input voltage to
the motors are also necessary. Neither the gains of the PID controller can be tuned nor
the feedback values can be read from the servos which comes with RC cars. So, these
motors cannot be used for achieving autonomous steering control in electric RC cars. A
servo motor which allows to tune the parameters of the controller inside the servo over
time and provides feedback of at least the shaft position is necessary for the purpose. The
Dynamixel XL-320 servo motor was chosen to meet the requirements.

2.2 Dynamixel XL-320
The Dynamixel XL-320 is a robot smart actuator with a fully integrated DC Motor, Re-
duction Gearhead, Controller, Driver, Network in one small DC servo module. It is de-

8

signed to operate in ‘Wheel Mode’ and ‘Joint Mode’. In the wheel mode, it operates as
a normal motor rotating a wheel with endless turns. On the contrary, in the joint mode
it operates for position control of the motor shaft. It includes a small microprocessor in-
side which analyses the received signals and processes them into high frequency voltage
pulses to the servo motor. It has the ability of defining the maximum torque that can
be applied. This parameter can be used to avoid breaking mechanical parts. XL-320 is
equipped with sensors for measuring the position of the motor shaft, angular velocity, in-
put voltage, load on the shaft, internal temperature, etc. The sensor feedback can be read
using a microcontroller or a computer. It consists of a PID controller and the controller
gains can be tuned externally using a microcontroller. Moreover, the dimensions of the
motor makes it fit suitably in a 1

10 th RC Car. An additional mechanical structure may be
required to mount the motor properly in the chassis. However, the motor horn is designed
for other robotic applications which is not capable of fitting the steering linkage with the
spur gear at the end of the motor shaft. Hence, a horn has to be designed for connecting
the XL-320 with the steering arm.

Figure 2.1: Dynamixel XL-320

The XL-320 model specifications are summarized below:

• Weight : 16.7g
• Dimension : 24mm x 36mm x 27mm
• Resolution : 0.29◦

• Motor : Cored Motor
• Gear Reduction Ratio : 238 : 1
• Stall Torque : 0.39 N·m (at 7.4V)
• No load speed : 114 rpm (at 7.4V)
• Running Degree : 0◦ - 300◦

• Running Temperature : -5◦C - +70◦C
• Voltage : 6 - 8.4V (Recommended Voltage 7.4V)
• Command Signal : Digital Packet
• Protocol Type : Half duplex Asynchronous Serial Communication
• Link (Physical) : TTL Level Multi Drop (daisy chain type Connector)
• ID : 253 ID (0-252)
• Communication Speed : 7343bps - 1 Mbps
• Feedback: Position, Temperature, Load, Input Voltage, etc.
• Material : Engineering Plastic

9

0xFF 0xFF 0xFD 0x00 ID LEN L LEN H INST Param1 ... ParamN
Header Reserved ID Packek length Instruction Parameter

Table 2.1: Communication protocol

The communication protocol used by the servo is as follows:
An Arduino Due microcontroller was selected for interfacing with most of the sensors

present in the vehicle as well as for the driving and steering motor. So, the XL-320
motor is to be controlled using an Arduino Due microcontroller. The implementation of
the protocol shown above in the Arduino Due microcontroller requires a library in order
to establish communication with the servo. The functions to be written in the library
should convert the input arguments into a format which the servo can process. Similarly,
the feedback returned by servo has to be decoded back into readable data by the library.
Arduino Due supports I2C, SPI, CAN communication protocols and UART Interface. On
the other hand, XL-320 uses Half Duplex Asynchronous Serial Communication which
can be interfaced via UART. Some of the aforementioned protocols and interfaces are
described briefly in the following subsections.

2.2.1 UART
UART stands for ‘Universal Asynchronous Receiver/Transmitter’. It is not a communi-
cation protocol like I2C, but a physical circuit in a microcontroller, or a stand-alone IC.
The main purpose of a UART is to transmit and receive serial data. UARTs transmit data
asynchronously, which means there is no clock signal to synchronize the output of bits
from the transmitting UART to the sampling of bits by the receiving UART. Instead of a
clock signal, the transmitting UART adds start and stop bits to the data packet being trans-
ferred. These bits define the beginning and end of the data packet so the receiving UART
knows when to start reading the bits. Parity bit helps in one bit error detection. Data is
transmitted byte by byte. It supports lower data rate. 2.2 depicts two ICs communicating
with UART Interface. Data flows from the Tx pin of the transmitting UART to the Rx pin
of the receiving UART.

Figure 2.2: UART Interface

2.2.2 I2C
I2C stands for ‘Inter-IC bus’. It is a serial communication protocol, so data is transferred
bit by bit along a single wire (the SDA line). It is used to run signals between ICs mounted
on the same PCB (Printed Circuit Board). It uses only two lines between multiple masters
and multiple slaves viz. SDA (Serial Data) and SCL (Serial Clock). It is synchronous
unlike UART, so the output of bits is synchronized to the sampling of bits by a clock
signal shared between the master and the slave. The clock signal is always controlled by

10

the master I2C supports various data rates ranging from 100 Kbps, 400 Kbps, 1 Mbps to
3.4 Mbps. Pull up resistors are necessary as shown in 2.3 when multiple devices load the
bus.

Figure 2.3: I2C Interface.

2.2.3 Duplex Communication
A duplex communication system is a point-to-point system composed of two or more con-
nected devices that can communicate with one another in both directions. Duplex commu-
nication systems are classified as (i) full-duplex communication system, and (ii) half-du-
plex communication system. The communication between sender and receiver occurs in
both directions in Half duplex transmission, but only one at a time. The sender and re-
ceiver can both send and receive the information, but only one is allowed to send at any
given time. For example, in walkie-talkies, the speakers at both ends can speak, but they
have to speak one by one. They cannot speak simultaneously. A three terminal switch is
required for communication between a Full duplex and a Half duplex device.

In Full duplex transmission mode, the communication between sender and receiver can
occur simultaneously. The sender and receiver can both transmit and receive at the same
time. For example, in a telephone conversation, two people communicate, and both are
free to speak and listen at the same time. UART can be full duplex or half duplex. I2C
has a single data wire so it can perform only duplex communication. I2C and UART can
use simplex communication, in which one device transmits and the others can only listen.

Arduino Due supports Full duplex interface but XL-320 supports only half duplex
interface so it is necessary to use additional circuitry to make communication possible
between the Arduino Due and XL-320. We require an extra circuitry that behaves like a
three terminal switch as shown in 2.4 connecting the XL-320 with the Arduino Due and
thereby control the XL-320 motor using the Arduino Due microcontroller.

Figure 2.4: Three terminal switch

11

2.3 Hardware setup
Instead of a standard Serial connection, XL-320 uses a single wire, half-duplex serial.
This makes communicating with the servo very difficult. We can use the OpenCM9.04
Microcontroller which is manufactured by the same company,Robotis, and is specially
designed to interface with all Dynamixel Servos. However, both the microcontroller and
the reference library provided in the OpenCM IDE are not fully functional. There were
numerous problems with the microcontroller, including intermittent communication fail-
ures that seemed to be due to poor grounding on the controller, and poorly made electrical
connections. I was unable to receive messages back from the XL-320. Walker Gosrich
discussed a few approaches on using Arduino Due microcontrollers to communicate with
the XL-320 servo motor, in his blog [2]. A few of them are discussed in the subsequent
subsections.

2.3.1 No Extra Circuitry
This approach comes from Hackerspace Adelaide on Github. It implements a software-
only attempt for sending to and receiving from the XL320, by simply wiring the TX and
RX pins on the Arduino Due both to the XL320’s data pin. Sending some commands
to the XL320 was done successfully (LED blink). However, it doesn’t work for imple-
menting all commands in the XL320, and receiving feedback from the XL320 is not
yet implemented. Overall, it serves as good skeleton code for sending commands to the
XL320, and should work with a few fixes. However, receiving messages from the servo
without any extra circuitry haven’t been successfully implemented.

2.3.2 Passive Transistor Circuit
This approach comes from Nerd Ralph, and uses a passive and minimal single-transistor
circuit to control communication with a half-duplex serial device. It works by cutting off
the Arduino Due TX port when the half-duplex device (the XL320) is transmitting, and
cutting off the Arduino Due RX port when the TX is transmitting a ‘0’, and ‘idling’ the
circuit when the TX is transmitting a ‘1’. It works for transmitting to the XL320, whether
the XL-320’s transmissions will make it through the transistor if the TX voltage is not
actively controlled high is not discussed.

Figure 2.5: Passive Transistor [2]

12

https://github.com/hackerspace-adelaide/XL320
http://nerdralph.blogspot.com/2014/01/avr-half-duplex-software-uart.html

2.3.3 Tri-State Buffer
Communication with the XL-320 was successfully made with the following method. The
Half Duplex communication is realised with a tri-state buffer, 74LS241. The Data control
pin is tied to one of the digital pins on the Arduino Due. When the data control pin is set
to high value, the transmission channel turns on and commands can be sent to the motor.
Setting the data control pin to low value turns on the receiver channel, thereby allowing
feedback. This methodology will allow us to have full communication with the XL-320.
The default value of the delay in the response of XL-320 motor is 0.5ms. Keeping this
value to its default is suitable for proper communication between the Arduino Due and
the XL-320. However, if the delay time is reduced to a low value then the Arduino Due
might not be able to receive the feedback from XL-320.

Figure 2.6: Internal Circuit of Half Duplex [1]

Figure 2.7: Tri state buffer, 74LS241[Sán16]

Arduino Due has four serial ports blue and three of them is required for this applica-

13

tion. One port is for the XL-320, one for the real time clock (RTC) and the other is for
serial monitor on the computer. The DC power supply present in the vehicle supplies a
voltage of 7.4V. The 74LS241 IC requires 5V whereas the XL-320 motor requires 7.4V to
function. Therefore, the 74LS241 IC and the XL-320 motor are powered separately. Ar-
duino Due has an on-board voltage regulator which can be accessed with the Vin pin. 7.4V
is stepped down to 5V by powering the Vin pin to 7.4V. So, the 74LS241 IC is connected
to the 5V supply in the Arduino Due and the XL-320 motor is powered by a Battery.

Components:

Components Units Description Image

Dynamixel XL-320 1 Servo motor

Copper wire 3 wires connecting Arduino Due and XL-320

SN74LS241 1 Buffer for HD-ASC

Arduino Due 1 Microcontroller

Resistor 1 10 Kilo Ohm Resistor

Table 2.2: Electronic Components list

A test circuit was made on a breadboard with a 74LS241 IC, a 10k resistor, connecting
wires, an Arduino Due microcontroller and a XL-320 servo motor. The 74LS241 IC in 2.7
connects the Arduino Due microcontroller to the XL-320 servo motor. The intermediate
circuit acts as a switch connecting the Arduino Due to the XL-320. Data Control is
connected to a digital I/O pins on the Arduino Due . The Direction port which connects Tx
of Arduino Due to Data wire of XL-320 should be turned ON before sending commands
from Arduino Due to the XL-320. When the direction port is high, output of the inverter
is low, which turns off the Rx buffer. A pull up resistor is added to avoid the data wire of
XL-320 from floating. When the direction port is low, Rx buffer is switched ON, allowing
data transfer from XL-320 to the Arduino Due.

2.4 Software setup
The microcontroller inside XL-320 consists of EEPROM and RAM for data storage. In-
structions are given to the servo motor are stored in the RAM area. For example, the
servo can be instructed to move to a position having 150deg by changing the data at ad-
dress ‘30’ to ‘512’. address ‘30’ corresponds to the parameter ‘Goal Position’. EEPROM

14

data can only be changed when motor torque is disabled. XL-320 can handle a maxi-

mum data transfer speed of 1Mbps. A few parameters are to be set before initiating the
communication with XL-320.

• Step 1:The protocol version should be set to 2.0.

• Step 2:The baud rate should be set to 9600.

• Step 3:The control mode should be kept in Joint mode of operation.

• Step 4: Torque mode should be turned ON.

Dynamixel2Arduino library is installed in the Arduino Due IDE. It has dxl class.

• setPortProtocolVersion function sets the protocol to 2.0.

• writeControlTableItem and readControlTableItem are functions in the dxl class.

• writeControlTableItem function writes data to the specified address.

15

• readControlTableItem function reads data from the specified address.

• dxl.writeControlTableItem(GOAL POSITION,DXL ID, 200) moves the motor shaft’s
GOAL POSITION to 200.

• dxl.readControlTableItem(PRESENT POSITION, DXL ID) returns feedback data
of the motor’s PRESENT POSITION.

• The arguments of readControlTableItem are changed to PRESENT VOLTAGE,
PRESENT TEMPERATURE to get feedback data of the Voltage and Temperature
respectively.

writeControlTableItem and readControlTableItem follow a protocol to write or read
data from the RAM area. The Header field indicates the start of the Packet. The Packet
field indicates the ID of the Device that should receive the Instruction Packet and process
it. LEN1 and LEN2 indicate the length after the Packet Length field (Instruction, Parame-
ter, CRC fields). Packet Length = number of Parameters + 3. INST indicates whether the
instruction is READ or WRITE etc. starting PARAM is the address at which the operation
has to be executed and the final PARAM indicates the data to be written during the write
instruction or the data read from the RAM area during the read instruction. CRC field
checks if the Packet has been damaged during communication. 2.3 is the read protocol
for reading Present Position. 2.4 is the write protocol for writing 512 to Goal Position.

H1 H2 H3 RSRV ID LEN1 LEN2 INST P1 P2 P3 P4 CRC1 CRC2
0xFF 0xFF 0xFD 0x00 0x01 0x07 0x00 0x02 0x84 0x00 0x04 0x00 0x1D 0x15

Table 2.3: Read Protocol

H1 H2 H3 RSRV ID LEN1 LEN2 INST P1 P2 P3 P4 CRC1 CRC2
0xFF 0xFF 0xFD 0x00 0x01 0x09 0x00 0x03 0x74 0x00 0x00 0x02 0xCA 0x89

Table 2.4: Write Protocol

The functions available in the dxl class take inputs for read and write, convert them
into the aforementioned protocols to be processed by the XL-320. I adjusted the input
parameters to change Goal Position, moving speed, disabling and enabling the Torque. I
received feedback for Present Position, Temperature, Voltage, Speed. Read function takes
two arguments, address of the parameter and the device ID. Write function takes three
arguments, address of the parameter, device ID, data to be written. Decimal equivalent
Addresses are predefined in the dxl parent class. Direction port is pulled high or low
during Write or Read respectively. Library takes care of this by mentioning what pin on
Arduino Due is assigned to Direction port.

2.5 Observations/Results
1. Dynamixel XL-320 servo motor is not fully functional with the OpenCM 9.04 Mi-

crocontroller from ROBOTIS.

2. Dynamixel XL-320 servo motor works with Arduino Due when connected via a
SN74LS241 IC.

3. Dynamixel2Arduino Library sent commands and received feedback successfully.

16

Chapter 3

Driving Motor with Arduino Due

3.1 Introduction
The driving motor on the RC car is a brushed or brushless DC motor which provides
torque to the wheels. It drives the vehicle forward and reverse. The motor is operated
remotely through a remote which transmits the commands to the receiver on the car. An
electronic speed control(ESC) is an electronic circuit plugged into the receiver’s throttle
control channel which converts the received PPM signals into corresponding PPM voltage
and transmits it to the brushless DC motor. Its purpose is to vary the motor’s speed and
direction. It also allows smoother and more precise variation of the motor speed.

Due to lack of information regarding the operational characteristics of the motor and ESC,
it is not possible to determine the necessary input to the motor in case of autonomous
control. Also the motor has very low torque and high rpm values. It takes large current
when running at low rpm with high torque. The ESC doesn’t provide feedback and no
sensor can be mounted externally. Moreover, the ESC does not have under-voltage and
over-voltage protection. Also, there is no protection against reverse polarity.

An electronically commutated(EC) maxon motor is chosen, which has the desired
torque characteristics and wide speed range. It is controlled by a 1-quadrant digital con-
troller, DEC Module 50/5. The controller is connected to Arduino Due which receives
commands from Jetson Nano, an embedded computer.

3.2 Hardware Setup

3.2.1 Components
Driving Motor

Maxon ECX 22M is chosen to meet the desired requirements. It is a high power brushless
electronically commutated DC motor rated at a torque of 20.3mNm and a angular velocity
of 60,000rpm. It has Hall sensors for measuring angular velocity and a thermistor for
temperature sensing. It is a 1 pole pair machine and has a total of 10 connections 3.3, of
which three are for motor windings, five are for hall sensors and two are for thermistor.

17

Figure 3.1: Maxon ECX 22M

Motor Specifications :

Parameter Value Units
Nominal Voltage 18 V

No load speed 50900 rpm
No load current 324 mA
Nominal speed 48200 rpm
Nominal torque 20.3 mNm
Nominal current 6.28 A

Stall torque 454 mNm
Stall current 135 A

Max. efficiency 90.6 %
Terminal resistance 0.133 Ω

Terminal inductance 0.00978 mH
Torque constant 3.37 mNm/A
Speed constant 2830 rpm/V

Speed/torque gradient 112 rpm/mNm
Mechanical time constant 2.53 ms

Rotor inertia 2.15 gcm2

Number of pole pairs 1 NA
Number of phases 3 NA
Weight of motor 98 g

Table 3.1: Maxon ECX 22M brushless DC motor Specifications

Motor Controller

A Motor Controller is a device that acts as intermediary between a microcontroller and
motors. A motor controller is necessary because a microcontroller can only provide 1A
of current whereas the motor require several ampere of current. The current a motor
consumes is related to the torque it can provide therefore a controller is chosen only after
the motor is chosen.

DEC module 50/5 was chosen to meet the desired requirements. It is a small 1-quadrant
digital controller for the control of brushless DC motors (Electronic Commutated) rated
up to 250W. Digital hall sensors of EC motors can be connected. It operates as closed
loop or open loop speed controller. It has protective functions for current limit, thermal

18

overload protection, under-voltage, over-voltage, voltage transients and short-circuits in
the motor cable.

Figure 3.2: DEC Module 50/5

Controller Specifications :

Parameter Value Units
Operating voltage(Min) 6 V
Operating voltage(Max) 50 V

Output current(Max) 10 A
PWM clock frequency of power stage 46.8 kHz

Sampling rate PI speed controller 0.25 kHz
Max. efficiency 94 %

Max. speed Control 80000 rpm
Built-in motor choke per phase 0 µH

Weight 9 g

Table 3.2: DEC Module 50/5 Specifications

3.2.2 Circuit
On the vehicle, Jetson Nano is the small board computer where all the computations and
decision making happens. It sends commands and takes feedback from the Arduino Due
microcontroller which controls the DEC Module 50/5 connected to the driving motor.
All the electronic components are powered by a 25.2V Li-Po battery. The Arduino Due
microcontroller and the DEC Module 50/5 are mounted on a PCB. The brushless motor
is mounted on the chassis of the vehicle. The Jetson Nano is placed on the top of the
Vehicle.

In the test setup, a strip board circuit is made on which the motor and the DEC module are
mounted. The DEC Module is connected to an Arduino Due via Jumper wires and the Ar-
duino Due is connected to a Laptop. An External power supply powers the DEC Module
and the Laptop powers the Arduino Due. The motor is tested at zero load condition.

19

Figure 3.3: Pin diagram of Maxon ECX 22M brushless DC motor

Wire Description
Red Winding 1

Black Winding 2
White Winding 3
Orange V hall

Blue Ground
Yellow hall sensor 1
Brown hall sensor 2
Grey hall sensor 3

Purple wires(2) Thermistor

Table 3.3: Maxon ECX 22M Pin description

Motor windings and the hall sensors are connected to the respective pins on the DEC
Module 50/5. Thermistor acts like a variable resistor whose resistance is a function of
temperature. It is connected to a digital I/O Pin on the Arduino Due where the effect of
change in resistance is measured as a change in voltage.

Figure 3.4: DEC Module 50/5 Pin Diagram

20

Pin Functionality
1,2 Motor winding 1
3,4 Motor winding 2
5,6 Motor winding 3
7,8 Supply voltage 6...50 VDC
9,10 Ground
13 Hall sensor 1
15 Hall sensor 2
17 Hall sensor 3
14,16 Ground
18 Feed back pin, at what speed the motor is actually rotating
19 Status, whether the motor is ready or any error has occurred
20,21 To control the motor in open loop or closed loop
22 To enable or disable the motor
23 Control the rotational direction of motor
25 Set maximum current the motor can take
26 PWM input, instructing the motor

Table 3.4: DEC Module Pin description

Pins 18,26 are connected to analog I/O pins on the Arduino Due. Pins 19,20,21,22,23
are connected to digital I/O pins on the Arduino Due. Pin 25 is pulled to ground via a
56k resistor so that the continuous output current is limited to 7A.

The digital I/O pins 20 and 21 on the DEC module are connected as follows to change
the operating mode of the motor:

Digital Pin 20 Digital Pin 21 Mode
0 0 Open loop
1 0 500−5000 rpm
0 1 500−20000 rpm
1 1 500−80000 rpm

Table 3.5: Open loop and Closed loop

3.3 Software Setup
During the test, the signal given to the controller is 3.5. Max voltage is 5V and the duty
cycle is set to 25%, so the mean voltage is 1.25. Velocity can be calculated as follows:

n =

[(
Vset −0.1

4.9

)
(Nmax −Nmin)

]
+Nmin (3.1)

where Nmin, Nmax are the minimum and maximum values for a particular mode as shown
in 3.5. For the test, the digital Pins 20 and 21 are set to ‘HIGH’ and Vset = 1.25V . The
angular speed of the motor was found to be 19158.163rpm.

Digital Pin 18 gives information on the actual angular speed(n) 3.2 of the motor shaft.

21

The actual angular speed is available as a digital frequency signal(fMonitor). zpol refers to
the number of pole pairs of the motor. zpol = 1 for Maxon ECX 22M.

n =
fMonitor ∗20

zpol
(3.2)

Figure 3.5: Input waveform

int digi_1= 8 ; //used for closed loop control
int digi_2= 9 ;
int enable = 10 ;
int speed_data=A9; //give PWM signal
int direction_pin= 11 ; //use this pin to change motor rotation

direction
int feedback=A8; //frequency of this signal gives motor shaft

velocity

void setup () {
Serial . begin (9600);
digitalWrite(digi_1, HIGH);
digitalWrite(digi_2, HIGH);
digitalWrite(direction_pin, LOW);
digitalWrite(enable, HIGH);
}

void loop (){
analogWrite(speed_data, 50);//set duty cycle
int data= pulseIn(feedback,HIGH);
Serial.println(data);
}

Variables digi 1 and digi 2 are for setting the operating mode of the motor. enable for
turning ON the motor. speed data is PWM input variable. direction pin for changing
the rotational direction of the motor. feedback for taking feedback from the controller.
analogWrite(speed data,50) generates a steady rectangular wave of the specified duty

22

cycle. pulseIn(feedback,HIGH) waits for the voltage at specified pin to go from LOW to
HIGH, starts timing, then waits for the voltage to go LOW and stops timing, returns the
length of the pulse in microseconds.

3.4 Observations/Results
1. Maxon ECX 22M motor is successfully connected with the Maxon DEC Module

50/5 controller.

2. The Software developed for the test circuit sent commands and received feedback
successfully.

23

Chapter 4

PCB Design

4.1 Introduction
A printed circuit board (PCB) mechanically supports and electrically connects electrical
or electronic components using conductive tracks and pads. A PCB has one or more sheet
layers of copper laminated on and in between the sheet layers, they are insulated by a
non-conductive substrates like FR4. Components are generally soldered onto the PCB to
both electrically connect and mechanically fasten them to it.
On a printed circuit board, the interconnection between large number of components is
made through copper tracks instead of using a number of current carrying wires. It makes
the interconnections less bulky. The components are very small in size. It is impossible
to connect these components together with wires without the aid of printed circuit boards.
The components on a printed circuit board held fixed to the board. This is done by solder
flux which does not allow them to move irrespective of the movement of the car itself.
A PCB gives less electronics noise when properly laid. This is crucial as the sensors in
the car are sensitive to electrical noise. The large ground planes on the PCB dissipate the
generated heat thereby increasing the performance of the electronics. The placement of a
component on the board is based on its Utility. As an example, Ultrasonic sensor is placed
on the front so that an undesired object doesn’t hinder the field of view. The dimensions
of the chassis decide the dimensions of the board.
The electric vehicle will be equipped with numerous sensors such as IMU, Ultrasonic
sensors, Hall sensors, etc. as well as other electronic devices. All these devices have
different power requirements while there is a single primary power source, i.e. the 25.2V
LiPo battery. For example, the ultrasonic sensors, hall sensors require 5V power supply
while the Arduino Due microcontroller requires 7.4V power supply. This differences in
power requirement is fulfilled by a dedicated power circuit. Also, all the sensors, micro-
controllers, and SBC have a dedicated circuit for establishing communication amongst
themselves. All together, these circuits brings in a large number of wires which is not
suitable for several reasons such as power loss, difficulty in fault detection, providing
ruggedness in the vehicle, etc. To overcome these problems, all the nuclear circuits and
electrical paths are to be designed on a PCB board which will serve as the motherboard
of the electric vehicle.

24

4.2 Design
The electronic components in the car are Jetson nano embedded computer, Maxon ECX
22M motor, Maxon DEC Module 50/5 controller, Arduino Due microcontroller, DC-DC
converters, Dynamixel XL-320 servo motor, SN74LS241 IC, Ultrasonic sensors, Hall and
IR sensors, Analog IMU, Xsens IMU, RTC, Li-Po battery, MOSFETs, Diodes, Resistors,
Capacitors and Switches.
Dynamixel XL-320 servo motor sits on the chassis of the car so a Lower PCB is de-
signed on which the components related to the servo motor are mounted. The Lower PCB
consists of a connector for the Dynamixel XL-320 servo motor, SN74LS241 IC, Analog
IMU, Xsens IMU and a connector for power and data transfer from the Main PCB. The
Lower PCB’s dimensions are such that it fits on the front portion of the chassis of the car
i.e, Xdimension = 99.334mm, Y dimension = 42.354mm.
The Main PCB consists of Arduino Due, Ultrasonic sensors, Hall and IR sensors, RTC,
MOSFETs, Diodes, Resistors, Capacitors, Switches placed to one side and the power
electronics components like DC-DC converters, Maxon ECX 22M motor, Maxon DEC
Module 50/5 controller, Li-Po battery connector placed to the other side to avoid interfer-
ence and heating issues. Ground planes are made on the top and bottom side of the PCB
for better heat dissipation. The Main PCB’s dimensions are such that it fits on top of the
chassis of the car i.e, Xdimension = 177mm, Y dimension = 88mm.
Design Net class parameters are:

• Width=12mil

• drill=20mil

• clearance=10mil

Design rules are:

• Copper thickness=0.035mm

• Sheet layer isolation=1.5mm

• Thermal isolation for vias=10mil

Different Signals
X Wire Pad Via

Wire 10mil - -
Pad 10mil 6mil -
Via 10mil 10mil 10mil

Same Signals
X Smd Pad Via

Smd 6mil 6mil 6mil

Table 4.1: Design rules

25

4.3 DC-DC converters
A DC-to-DC converter is an electronic circuit or electromechanical device that converts a
source of direct current (DC) from one voltage level to another. There is only one source
to power all the electronics that operate at different voltages so two DC-DC converters are
designed for powering Jetson nano, Servo and Arduino Due. Input power is supplied from
a Battery rated at 25.2V . The designs are taken from Texas Instruments WEBENCHr

circuit designer. Resettable fuses are used to filter current transients and for protection.
Chose the appropriate resettable fuses based on power requirements. Add a safety switch
for the converter to enable/disable it.

Figure 4.1: DC-DC converter for Jetson nano

Figure 4.2: DC-DC converter for Arduino Due and Servo

4.4 Arduino Due
Arduino Due controls the Dynamixel XL-320 servo motor, Maxon DEC Module 50/5
controller, sensors and relays the feedback data to the Jetson nano. It is powered by
supplying 7.4V at the Vin pin. Take the mirror image of the Arduino Due while placing
the connector that holds it.
Digital pins 2-7, Analog pins 6, 7 are used for the DEC module.

26

Following is the naming convention I used for the connections between Arduino Due and
Maxon ECX 22M :

• MOT DATA D7 refers to the feedback pin.

• READY D6 refers to the status pin.

• IN 1 D5 is the digital input 1.

• IN 2 D4 is the digital input 2.

• EN D3 is the enable pin.

• DIR MOTOR D2 is the direction pin.

• SET A7 gives commands to the maxon motor.

• TEMP A6 is for measuring temperature from the thermistor.

Figure 4.3: Arduino Due

27

4.5 Dynamixel XL-320 Servo motor
Digital pin 8 and a serial port(TX3,RX3) is used for the Dynamixel XL-320 servo motor.
The Servo motor is placed on the lower board.

• DATA CONTROL D8 controls the serial to TTL protocol.

• TX3 and RX3 are the serial port pins for the XL320 motor.

Figure 4.4: Connector for Servo

4.6 Maxon ECX 22M Motor and Controller
Transient voltage suppressing zener diode rated for 25.2V . Fuse rated for a current of 7A
and a decoupling capacitor of 220uF are used. Positive temperature coefficient resettable
fuses are used.

Figure 4.5: Battery Input

• The controller feedback is available at pin 18 which has to be connected to Arduino
Due via a level shifter.

• Current limiter pin is tied to gnd with a 56k resistor which limits the current at 7A.

28

Figure 4.6: DEC Module 50/5connector

Layout guidelines for Maxon ECX 22M motor :

• The width and copper plating thickness of the power supply voltage and motor
winding traces depend on the maximum current expected in the
application.A minimum of 75 mil width at 70µm thickness is recommended.

• Make Top and Bottom planes as ground with polygons. This ensures proper heat
dissipation.

• Place ground vias connecting top and bottom planes.

• The main PCB powers the Jetson nano so an output port has been placed for pow-
ering the Jetson.

• High power circuits viz; Motor and DC-DC converters are placed to a side on the
board so as to avoid the inference with the low power circuits.

4.7 Ultrasonic sensor
Digital pin 22-29 on the Arduino Due are used for the ultrasonic sensor.

29

4.8 Hall and IR Sensors
Digital pins 30-37 on the Arduino Due are used for Hall and IR sensor.

4.9 RTC
RTC uses the I2C protocol. It uses SDA1 and SCL1. For transferring the data from RTC
to Jetson, a data port is placed.

4.10 Level shifter
Feedback pins on the DEC module and the data pins on the sensors operate at 5V but the
pins on the Arduino Due are 3.3V tolerant so we need a Level shifter to stepdown the
PWM data. I have used an N-MOSFET and a resistor for the Level shifter design. The
data pin is connected to the gate of the NMOS, drain is connected to 3.3V voltage source
and the source is pulled to ground via a 5 Kilo ohm resistor. Arrival of data switches ON
the NMOS, allowing the current to follow from drain to source pulling the source to 3.3V.

Below is the schematic I used to test the circuit. The Input and Output waveforms are
plotted below.

Figure 4.7: Level shifter simulation

30

Figure 4.8: Level shifter schematic

Figure 4.9: Simulated Waveform

31

References

[Sán16] Sergio Sánchez Gallego. “Mechanical and control design of an active coupling
for a teleoperated surgical instrument”. MA thesis. Universitat Politècnica de
Catalunya, 2016.

[1] 1. Dynamixel. URL: http://emanual.robotis.com/docs/en/dxl/
x/xl320/.

[2] 2. Walker’s Blog. URL: http : / / walker . gosrich . com / posts /
xl320.html.

[3] 3. AutoRally. URL: https://autorally.github.io/.

[4] 4. F1TENTH. URL: https://f1tenth.org/.

[5] 5. Jetson Based Autonomous Race Car. URL: https://www.jetsonhacks.
com/2016/06/13/jetson- based- autonomous- race- car-
university-pennsylvania/.

[6] 6. MIT’s Autonomous RC Car. URL: https://mit-racecar.github.
io/.

32

http://emanual.robotis.com/docs/en/dxl/x/xl320/
http://emanual.robotis.com/docs/en/dxl/x/xl320/
http://walker.gosrich.com/posts/xl320.html
http://walker.gosrich.com/posts/xl320.html
https://autorally.github.io/
https://f1tenth.org/
https://www.jetsonhacks.com/2016/06/13/jetson-based-autonomous-race-car-university-pennsylvania/
https://www.jetsonhacks.com/2016/06/13/jetson-based-autonomous-race-car-university-pennsylvania/
https://www.jetsonhacks.com/2016/06/13/jetson-based-autonomous-race-car-university-pennsylvania/
https://mit-racecar.github.io/
https://mit-racecar.github.io/

	Introduction
	Overview

	Dynamixel XL-320 with Arduino Due
	Introduction
	Dynamixel XL-320
	UART
	I2C
	Duplex Communication

	Hardware setup
	No Extra Circuitry
	Passive Transistor Circuit
	Tri-State Buffer

	Software setup
	Observations/Results

	Driving Motor with Arduino Due
	Introduction
	Hardware Setup
	Components
	Circuit

	Software Setup
	Observations/Results

	PCB Design
	Introduction
	Design
	DC-DC converters
	Arduino Due
	Dynamixel XL-320 Servo motor
	Maxon ECX 22M Motor and Controller
	Ultrasonic sensor
	Hall and IR Sensors
	RTC
	Level shifter

	References

