
LLPackNet: A fast and light-weight approach to

extreme low light image enhancement

A Project Report

submitted by

ATUL BALAJI (EE16B002)

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

Jan 2020 - Jun 2020



THESIS CERTIFICATE

This is to certify that the report titled LLPackNet: A fast and light-weight approach

to extreme low light image enhancement, submitted by Atul Balaji (EE16B002),

to the Indian Institute of Technology, Madras, for the award of the degree of Bache-

lor of Technology, is a bona fide record of the research work done by him under our

supervision.

Prof. Kaushik Mitra
Research Guide
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 12th June 2020



TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

ABSTRACT iv

1 INTRODUCTION 1

2 LITERATURE REVIEW 4

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Extreme low-light image enhancement . . . . . . . . . . . . . . . . 4

2.3 Input image amplification . . . . . . . . . . . . . . . . . . . . . . . 5

3 PROPOSED METHODOLOGY 6

3.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Image amplification . . . . . . . . . . . . . . . . . . . . . 6

3.1.2 Fast and light-weight enhancement . . . . . . . . . . . . . 6

3.2 Pack and UnPack operations . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Improving color correlation with UnPack α× . . . . . . . . 8

3.2.2 Increasing receptive field with Pack α× . . . . . . . . . . . 10

3.3 Numerical example of UnPack operation . . . . . . . . . . . . . . . 11

3.4 Comparison of Pack/UnPack with other down/up-sampling methods 12

3.4.1 Upsampling . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.2 Downsampling . . . . . . . . . . . . . . . . . . . . . . . . 13

4 EXPERIMENTS 14

4.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 SID (See-in-the-Dark) dataset . . . . . . . . . . . . . . . . 14

4.1.2 LOL (LOw Light paired) dataset . . . . . . . . . . . . . . . 14

4.2 Restoration results for extreme low-light images . . . . . . . . . . . 15

4.2.1 Network speed and memory utilization . . . . . . . . . . . 16

4.2.2 Restoration quality . . . . . . . . . . . . . . . . . . . . . . 17

i



4.3 Ablation studies on LLPackNet . . . . . . . . . . . . . . . . . . . . 18

4.3.1 UnPack vs. PixelShuffle . . . . . . . . . . . . . . . . . . . 18

4.3.2 Importance of the amplifier module . . . . . . . . . . . . . 18

4.4 LLPackNet for low-resolution images . . . . . . . . . . . . . . . . 19

5 SCOPE OF FUTURE WORK 21

6 CONCLUSION 22



ACKNOWLEDGEMENTS

I wish to express my deep sense of gratitude to my guide Dr. Kaushik Mitra for his

continued support and guidance throughout this project.

I would also like to thank Mohit Lamba (EE18D009), a PhD scholar at the

Computational Imaging Lab, with whom I had worked on this project jointly. I

acknowledge his important contributions to this project, in formulating, designing and

implementing the key components of our approach, especially the amplifier module

and the network architecture.

Finally, I would like to thank all the professors of this institute who taught me the

subjects on which this project is based.

iii



ABSTRACT

Keywords: Extreme low light image enhancement; Pack and UnPack opera-

tions; Downsampling and Upsampling; Color Correlation; Ampli-

fication

The ability to capture good quality images in extreme low-light has been a

long-standing pursuit of the computer vision community. The seminal work by Chen

et al. [6] has especially caused renewed interest in this area, resulting in methods that

build on top of their work in a bid to improve the reconstruction. However, for

practical utility and deployment of low-light enhancement algorithms on edge devices

such as embedded systems, surveillance cameras and smartphones, the solution must

respect additional constraints such as limited memory and processing power. With this

in mind, we aim to develop a new deep neural network architecture that minimizes the

network latency, memory utilization and no.of model parameters, while at the same

time maintains a competitive image reconstruction quality.

The key idea to minimize processing time is to forbid any computation in the high

resolution (HR) space and instead restrict most of the computations to a much lower

resolution (LR) space. However, using standard techniques for such a large factor

downsampling/upsampling causes a lot of artifacts and color distortions in the restored

image, which arise due to information loss. To mitigate this, the Pack and UnPack

operations are introduced to perform large factor downsampling/upsampling, thus

greatly minimizing time, while at the same time achieving good color restoration.

Additionally, most of the state-of-the-art algorithms on low-light image enhancement

need to pre-amplify the input image before processing it. However, they generally rely

on the ground truth exposure information to estimate the amplification factor, which

restricts their applicability to unknown scenes where such information is not available.

We propose to solve this problem by designing a simple yet effective mechanism for

automatically determining the amplification factor from the input image itself.

iv



We show that we can enhance a full resolution, 2848× 4256, extremely dark image in

the ballpark of 3 seconds on a CPU. We achieve this with 2− 7× fewer model

parameters, 2− 3× lower memory utilization, 5− 20× speed up, while maintaining a

competitive image reconstruction quality compared to state-of-the-art algorithms.
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CHAPTER 1

INTRODUCTION

The ability to swiftly capture high quality images with smartphones has led to the

widespread proliferation of digital images. This quality is however limited to good

lighting conditions and capturing good quality photos in low light is difficult, even

with careful tuning of camera settings such as ISO, flash and exposure. However in

many applications such as video surveillance, night-time photography and autonomous

driving, it is necessary to work with low light images, which underlines the need for

low-light image enhancement algorithms. While much of the work in this direction has

focused on enhancing weakly illuminated images [16, 28, 27, 20, 18, 7, 12],

enhancement of extreme low-light images, captured in near zero illumination

conditions has received comparatively lesser attention.

Recently, however, a landmark paper by Chen et al. [6] has shown that using a fully

convolutional network, it is possible to restore extreme low light high definition

images, with good reconstruction quality. Following this work, several modifications

have been proposed in a bid to improve the reconstruction quality. This includes the

incorporation of attention units [1], recurrent units [5], the adoption of a multi-scale

approach [11, 24] and the usage of deeper networks [23]. With these added

complexities, most of these methods are constrained to run on devices with high

computational capacity, such as desktop GPUs. However, real-world applications

require image enhancement algorithms to run on embedded systems and edge devices,

such as smartphones and microcontrollers which in most cases have only CPUs with

limited RAM. Keeping these factors in mind, we aim to design a deep network that can

restore an extreme low-light high-definition single-image with minimal CPU latency

and low memory footprint, but at the same time has a competitive image restoration

quality.

Given the fact that a neural network’s complexity increases quadratically with spatial

dimensions [36], a common approach to reduce the time complexity of a network is to

downsample the feature maps in order to perform most of the computations in the low
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Figure 1.1: Performance comparison of the proposed method with state-of-the-art
methods Chen et al. [6], Gu et al. [11], Maharjan et al. [23] and traditional
methods LIME [12], and Li et al. [20] for extreme low-light single-image
enhancement. Refer to Table 4.1 for more details.

resolution space. This is generally done in small steps (such as 2× or 4×)

[44, 21, 6, 43, 35] to prevent loss of information. However, in applications where fast

and light-weight processing are crucial, this small downsampling factor is not

sufficient and it is necessary to apply a large downsampling factor such as 8× or 16×.

But, for performing such large factor downsampling operations, popular choices such

as max-pooling and strided convolution [9] cannot be used as they would cause a

significant loss of information. In order to mitigate the problems involved with large

factor downsampling, we propose the Pack α× downsampling operation. (see Fig.

3.1). We show that this Pack operation bestows LLPackNet with an enormous

receptive field which is not trivially possible by directly operating in the HR space.

To perform large factor upsampling, typical methods such as transposed convolution

[9] and interpolation are not suitable as they are very slow when operating in high

resolution. A faster way to perform upsampling is the PixelShuffle [33] operation,

originally introduced in the context of super-resolution. However, it lacks proper

correlation between the color channels and hence results in color cast and artifacts in

the restored image as shown in Fig. 4.3. In light of this, we propose the

complementary UnPack α× operation as an improvement to the PixelShuffle

operation, to perform large factor upsampling, while at the same time maintaining

good color correlation. Essentially, the proposed Pack and UnPack operations allow us

to operate in a much lower resolution space for computational advantages, without

significantly affecting the restoration quality. See Fig. 1.1 for a qualitative comparison

of our method with state-of-the-art algorithms.
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State-of-the-art deep learning solutions on extreme low-light image enhancement need

to pre-amplify dark images before processing them [6, 23, 1, 11]. However, they use

ground-truth (GT) exposure information for estimating the amplification factor. But, in

a real-world setting, when an unknown image is provided, the GT exposure

information will not be available, rendering the amplifier useless and causing

degradation in performance. With this in mind, we propose an amplifier module, which

will estimate the amplification factor directly from the input image histogram, without

relying on the ground-truth information, making it applicable to new data. Putting

these components together, we propose a novel, fast and light-weight deep neural

network-based pipeline for extreme low-light image enhancement, called LLPackNet.

To summarize, the main contributions of this report are as follows:

1) We propose a deep neural network architecture, called LLPackNet, that enhances an

extreme low-light image at high resolution even on a CPU with very low latency and

computational load.

2) We propose Pack and UnPack operations for efficient large factor down/upsampling

and better color restoration.

3) LLPackNet is equipped with an amplifier module that estimates the amplification

factor just from the input image, without using ground truth information.

4) Our experiments show that compared to state-of-the-art solutions, we are able to

restore high definition 2848×4256, extreme low-light RAW images with 2–7× fewer

model parameters, 2–3× lower memory and 5–20× speed up, with a competitive

restoration quality on CPU.
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CHAPTER 2

LITERATURE REVIEW

2.1 Background

Over the years, low-light image enhancement has been an active area of research. Here

we present a brief overview. Conventional approaches of low-light enhancement are

chiefly comprised of histogram equalization (HE) techniques [16, 28, 27], which

involve modifying the histogram of the low-light images and Retinex based methods

[12, 20, 41, 26, 18, 10], which are inspired by the biological mechanism found in the

early stages of the visual system and involve decomposing an image into illumination

and reflectance components. Deep learning based methods

[17, 29, 37, 8, 22, 38, 7, 32, 19, 42] have also come to be used in recent times, with

some works such as MSRNet [32] and RetinexNet [7] trying to combine convolutional

neural networks (CNNs) and retinex theory. One popular Retinex based method is

LIME [12] which proposes a structure-aware smoothing model to estimate the

illumination map. Li et al. [20] propose a robust Retinex model which additionally

considers the noise map while estimating illumination, by using an optimization

function to reveal the structure details in a low-light image. LLNet [22] uses a deep

autoencoder to identify signal features of the low-light image for image enhancement

and denoising. GLADNet [38] uses an encoder-decoder network to estimate global

illumination and then employs a CNN for reconstruction.

2.2 Extreme low-light image enhancement

The methods discussed above are however, mostly limited to weakly illuminated

images where a good representation of the scene is already available and they

generally do not target high-definition, extreme low-light images, which have short

exposure and severely limited illumination. More recently, Chen et al. [6] proposed an

end-to-end pipeline using a Fully Convolutional Network (FCN), such as U-Net [31]



to restore extreme low-light high-definition images. They also introduce a new dataset

called See-in-the-Dark (SID), which consists of pairs of raw image data and

corresponding ground-truth sRGB image. Their network learns the full image

restoration pipeline, from the raw image data to the output restored image, including

demosaicing, color transformations, etc. This landmark paper has subsequently

spurred several other works in a similar direction [23, 1, 11, 24, 5, 15], in an effort to

improve upon the image restoration quality. For example, Gu et al. [11] propose a

multi-scale self-guided network (SGN) that combines contextual information at

different resolutions. Maharjan et al. [23] propose a residual learning based

end-to-end network to replace U-net and achieve better color and texture restoration.

Most of these methods, however, still have significantly high processing time, memory

utilization and model parameters and are not suitable for use on edge devices.

2.3 Input image amplification

As noted in Chap. 1, many of the deep learning based methods for low-light

enhancement require ground truth information for pre-amplification of the input

image, thereby limiting their applicability to unknown images where this information

is not available. For example, in Chen et al. [6], the amplification ratio is set externally

as a function of the ratio of reference image exposure to input image exposure, and is

provided as input to the pipeline, for both training and testing.

By contrast, some conventional methods for weakly illuminated images, perform

image enhancement by other means, without making use of the ground truth

information. These include using the Camera Response Function (CRF) [30, 40], the

image histogram [16, 28] or other assumptions [39, 12] to estimate the illumination,

independent of any prior. In our proposed network, we use the histogram of the input

dark image to automatically predict the amplification factor. To the best of our

knowledge, this has not been attempted before for deep learning based low-light image

enhancement.
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CHAPTER 3

PROPOSED METHODOLOGY

We propose a new deep neural network architecture, called Low-Light Packing

Network (LLPackNet) for enhancing an extreme low-light high-resolution image with

low time–memory complexity. We first describe the overall network architecture,

shown Fig. 3.1 and then analyze the core components of our network – the Pack and

UnPack operations, in Sec. 3.2.

3.1 Network architecture

3.1.1 Image amplification

In general, dark images need to be pre-amplified before enhancing them. We estimate

the amplification factor using the incoming RAW image IHR
i/p by constructing a 64 bin

histogram, with the histogram bins being equidistant in the log domain. This provides

a finer binning resolution for lower intensities and a coarser binning resolution for

higher intensities. The histogram is used by a multilayer perceptron, with one hidden

layer, to estimate the amplification factor.

3.1.2 Fast and light-weight enhancement

As discussed in Chap. 1, we want to perform most of the processing in LR space.

Hence, our first step is to downsample the input image. For this purpose, we propose

the Pack α× operation, which downsamples the image by a factor of α along each

dimension while increasing the number of channels by a factor of α2. This is shown in

Fig. 3.2 for α = 2. Our goal is to perform 16× downsampling, which we do in two

stages. In the first stage, the Pack 2× operation separates out the red, green and blue

color components lying in the 2×2 Bayer pattern [13] of the amplified raw image IHR
i/p .

This reduces the spatial dimension to half and increases the number of channels from 1
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Figure 3.1: Our proposed network: LLPackNet.

to 4 (22). Once the colors are separated into these channels, a subsequent Pack 8×

operation is applied individually on each color channel, further reducing the spatial

dimension by 8× and increasing the number of channels from 1 to 64 (82). Now, using

a 3×3 convolution kernel, the channel dimension of each color component is reduced

such that on concatenation, the resulting feature map has 60 channels with 16× lower

resolution. The channel reduction at this stage is essential to prevent parameter and

memory explosion in the downstream operations. It must also be noted that, if instead

of RAW images, already demosaiced images sRGB images are fed to the network, the

intial Pack 2× operation can be omitted.

This downsampled representation is then processed by a series of convolution

operations, in the Residual Dense Network [44] (RDN) – which consists of 3 residual

dense blocks each with 6 convolutional layers and a growth rate of 32, but does not

perform any down/up sampling operation. The output of the RDN now needs to be

upsampled and for this we use the proposed UnPack 2× operation, which is the inverse

of Pack 2×. This reduces the number of channels from 60 to 15 (60/22). We then

increase the channel-width of the feature map from 15 to 192 (82 × 3) using 3× 3

convolutions to enable subsequent upsampling. Except for this operation, all the

computations are done in the 16× lower resolution. We finally perform UnPack 8×

operation to get the restored image, IHR
o/p .

The loss function consists of 3 components, as described by Ignatov et al. [14]:

1) Color loss: L1 loss between the ground-truth and the restored image after passing

them through a Gaussian filter.

2) Content loss: L1 difference between the VGG-19 features of the ground truth and

the restored image.

3) Total variation norm

7
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Figure 3.2: The Proposed Pack α× and UnPack α× operations, for down/up-sampling
factor α = 2.

3.2 Pack and UnPack operations

The last section discussed LLPackNet from the vantage point of network complexity.

In this section we analyze the network from the standpoint of reconstruction quality

and explain how the proposed Pack and UnPack operations result in better color

restoration.

3.2.1 Improving color correlation with UnPack α×

Making abrupt transitions between LR and HR spaces, especially those with large

difference in spatial resolutions, introduce several color artifacts in the restored image.

In this subsection, we will show the effectiveness of Pack α× and UnPack α×

operations in reducing these artifacts. Before going into the analysis of Pack and

UnPack, it is necessary to understand the PixelShuffle operation [2, 34, 33], based on

which they were formulated. Furthermore, we will also show that the Pack/UnPack

operations lead to better color correlation than the PixelShuffle operation.

PixelShuffle:

Consider the transposed convolution operation, with upsampling factor α = 2 shown

in Fig. 3.3 (a). TLR refers to the penultimate feature map in the network, which is

upsampled with zero padding and then convolved with wHR in the HR space to obtain

the restored image OHR. We now explain the color coding used in the figure. When

wHR convolves with THR, for each shifted position of wHR, only the weights in one

set of colors in wHR contribute to an output pixel in THR. This corresponding output

pixel in OHR has been labelled with the same color.

However, performing convolution operations in the high resolution (HR) space is

computationally expensive. This problem can be solved by performing an equivalent

8
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Figure 3.3: Upsampling using PixelShuffle
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(a) Upsampling, followed by regrouping. (b) Implementing (a) in LR using UnPack.

Figure 3.4: Upsampling using the UnPack operation

(a) Color correlation with PixelShuffle. (b) Color correlation with UnPack

Figure 3.5: Better color correlation with UnPack compared to PixelShuffle, since in
UnPack all kernels of ŵHR are responsible for the colors inOHR (Illustrated
for 2× upsampling).

operation in the LR space itself, as shown in Fig. 3.3 (b). This involves decomposing

wHR into spatially smaller kernels wLR which are then convolved with TLR to produce

OLR. Then, using the PixelShuffle operation, OLR is rearranged to obtain OHR. Thus,

the same upsampling operation has been performed, but in a much shorter time, since

the convolution operation has been restricted to the low resolution (LR) space.

In this scheme, the first one-third of the channels in OLR always contribute to the red

channel in OHR, the next third to green and final third to blue, as shown in Fig. 3.3 (b).

Translating this to Fig. 3.3 (a), we can observe that each kernel in wHR maintains a

monopoly on one of the red, green or blue color channels in the restored image OHR.

This means that there is little correlation among the color channels in restored image,

see Fig. 3.5 (a). This weak correlation among the color channels of OHR, leads to

color artifacts as shown in Fig. 4.3.

UnPack:

The goal of UnPack operation is to improve upon PixelShuffle and enhance the

correlation among the color channels of OHR. Consider Fig. 3.4 (a) in which

9



upsampling is performed using a color-shuffled version of weights ŵHR. This provides

the output ÔHR, which is then re-grouped (unshuffled) in order to get the desired

restored image.

This is a complicated two-stage operation in the HR space. But, the equivalent

operation can be easily performed in the LR space, by just changing the order of the

weights (ŵLR) and then upsampling using the UnPack operation, as shown in Fig. 3.4

(b). Note that this operation has the same time-complexity as the PixelShuffle

operation shown in Fig. 3.3 (b). The UnPack operation forces each consecutive triad

of channels in OLR to be a 2× lower resolution version of the color image OHR (also

see Fig. 3.1). This way, the channels in OLR corresponding to different colors of OHR

are nearby, which better preserves the color correlation because in a CNN nearby

feature maps are heavily correlated [35]. Translating this to the high-resolution space

weights (ŵHR), we see that all the kernels of ŵHR are collectively responsible for all

the colors in OHR, as shown in Fig. 3.5 b). Thus, the UnPack operation leads to better

color correlation than PixelShuffle. The practical effectiveness of the UnPack

operation is demonstrated in Fig. 4.3.

Alternatively, this low color correlation can also be inferred by comparing the weights

in the LR space (wLR) of PixelShuffle (in Fig. 3.3 (b)) with the those (ŵLR) of UnPack

(in Fig. 3.4 (b)). In the case of PixelShuffle, the weight channels corresponding to each

color occur together, i.e. the first four channels are red, the next four are green and the

last four are blue, thus keeping weights for different colors apart. By contrast, in our

UnPack operation, the RGB triads are always kept together in ŵLR. Thus, noting a

well known fact for a CNN, that nearby features bear a high correlation than spaced

out ones, we can intuitively conclude that this is responsible for the better color

restoration of our UnPack operation.

3.2.2 Increasing receptive field with Pack α×

Having a large receptive field is essential for capturing the contextual information in

an image. A low receptive field leads to staircasing and artificial shocks [3, 4] in the

restored image. Large receptive fields are also beneficial for good color restoration

because they gather more contextual information.

10



Downsampling the incoming feature map using the novel Pack α× operation equips

LLPackNet with a large receptive field. To illustrate this fact, let us consider a large

feature map IHR which is downsampled to ILR using Pack 10× operation. Note that

the neighboring pixels in ILR are actually 10 pixels apart in IHR. Also, the pixels

along the channel dimension of ILR are in a 10× 10 neighborhood in IHR. Thus, even

using a 3× 3 convolution kernel on ILR with a stride of 1 leads to a receptive field of

900 pixels in IHR. In contrast, to do a similar operation directly on IHR, requires a

30× 30 kernel with a stride of 10, which is impractical.

3.3 Numerical example of UnPack operation

Pack and UnPack operators perform intermixing of pixels for better color correlation,

as shown in Fig. 3.2. To further motivate how the UnPack 2× shuffling works, we

display a worked-out example below.

Consider an input tensor of shape 2× 2× 12 (spatial resolution 2× 2 with 12

channels) as shown below.

Channel Count Channel 1 Channel 2 Channel 3 · · · Channel 12

Channel 1 2 5 6 9 10 · · · 45 46

Values 3 4 7 8 11 12 · · · 47 48

Then, applying the UnPack 2× operation we get a tensor of shape 4× 4× 3 (spatial

resolution 4× 4 with 3 channels) as shown below.

Red (first) Channel

[ 1, 13, 2, 14]

[25, 37, 26, 38]

[ 3, 15, 4, 16]

[27, 39, 28, 40],

Green (second) Channel

[ 5, 17, 6, 18]

[29, 41, 30, 42]

11



[ 7, 19, 8, 20]

[31, 43, 32, 44],

Blue (third) Channel

[ 9, 21, 10, 22]

[33, 45, 34, 46]

[11, 23, 12, 24]

[35, 47, 36, 48]

3.4 Comparison of Pack/UnPack with other

down/up-sampling methods

3.4.1 Upsampling

We have already shown the effectiveness of UnPack operation over the PixelShuffle

operation in Sec. 4.3. Here, we compare with two other popular approaches –

Transposed convolution as used by Chen et al. and Interpolation suggested by Odena

et al. [25]. The transposed convolution is very slow as compared to the UnPack

operation because it has to iterate the convolution kernel over the entire feature map.

Moreover it increases the parameter count of the network. On the other hand, the

interpolation technique suggested by Odena et al. has no learnable parameters but is

still a slower operation. This can be seen in Table 3.1.

H×W; Channels Execution Time in Seconds Number of Learnable Parameters
TransposeConv2D UnPack Interpolation TransposeConv2D UnPack Interpolation

1024× 1024; 32 -> 2048× 2048; 8 0.18 0.05 0.13 1032 − −
256× 256; 128 -> 512× 512; 32 0.04 0.01 0.04 16416 − −
32× 32; 512 -> 64× 64; 128 0.0025 0.0006 0.0025 262272 − −

Table 3.1: We compare the complexity of three upsampling methods – Transposed Con-
volution (TransposeConv2D), Interpolation [25] and UnPack to perform 2×
upsampling. The execution time and model parameters are provided for in-
put feature maps of different spatial resolutions and channel dimensions, as
listed in the first column. UnPack is 3–4× faster than the other techniques.

12



3.4.2 Downsampling

Max-pooling is the most popular technique for downsampling feature maps. This has

been used in many deep learning methods, including the pipeline proposed by Chen et

al. [6]. But for a large downsampling factor, max-pooling will cause a significant loss

of information. For example, when doing an 8× downsampling, max-pooling will

choose only a single element from an 8× 8 block. In addition, max-pooling also

causes gradient sparsity during backpropagation.

Another popular downsampling technique is strided convolution, usually done with

small kernels such as 3× 3 or 5× 5. But, for a large downsampling factor, say 8, a

stride of 8 is required, and would lead to loss of information with such small kernels.

To alleviate these issues of information loss and gradient sparsity, we used the Pack

operation for downsampling feature maps which ensures a better restoration.

13



CHAPTER 4

EXPERIMENTS

4.1 Experimental settings

For extreme low-light single-image enhancement, we compare with Chen et al. [6],

Gu et al. [11] and Maharjan et al. [23]. In addition, we also tried conventional

techniques such as LIME [12] and Li et al. [20] but they did not work well for extreme

low-light images. Both the training and test codes of these methods are publicly

available and have been used for comparisons.

4.1.1 SID (See-in-the-Dark) dataset

For experiments on extreme low-light high resolution images, we use the

See-in-the-Dark (SID) dataset [6], introduced by Chen et al. , which contains pairs of

extreme low-light images and the corresponding ground truth reference images. The

dataset has 5094 such pairs of images, of size 2848×4256, captured with a high

definition full-frame Sony α7S II sensor. Unlike some methods that collect their

dataset by simulating pairs of low-light and ground truth images [22, 26, 37, 29, 19, 7],

SID provides physically captured images. Also, rather than using sRGB images, they

provide images in the raw format. This is done so as to prevent compression artifacts

and loss of crucial information incurred in the standard image processing pipeline of a

camera, especially when applied in extreme low-light conditions.

4.1.2 LOL (LOw Light paired) dataset

We additionally show comparisons on the LOL dataset [7] to evaluate the performance

of LLPackNet on low resolution images. It contains weakly illuminated VGA

resolution (400×600) PNG compressed images. Additionally, the SID dataset comes

with the ground truth and low-light image exposure information, which can be used for



Model Processing Time Memory Parameters PSNR(dB) / SSIM
(in seconds) ( in GB) (in million) w/o GT exposure using GT exposure

Maharjan et al. [23] 120 10 2.5 20.98 / 0.49 28.41 / 0.81
Gu et al. [11] 77 8 3.5 21.90 / 0.59 28.53 / 0.81
Chen et al. [6] 17 5 7.75 22.93 / 0.70 28.30 / 0.79

Chen et al. [6] + Our Amplifier 17 5 7.76 22.98 / 0.71 28.30 / 0.79
LLPackNet (Ours) 3 3 1.1 23.27 / 0.69 27.83 / 0.75

Table 4.1: Results on the SID dataset [6] for extreme low-light 2848 × 4256 images.
Compared to existing approaches, we have 2–7× fewer model parameters,
2–3× lower memory, 5–20× speed up with competitive restoration quality.

estimating the amplification factor, but LOL has no such information. Therefore the

amplification factor is found using our approach directly from the input image.

We use the train/test split as given in the respective datasets. For LLPackNet, patches

of size 512× 512 are used for training and full resolution for testing. For

benchmarking, we use the PyTorch framework on Intel Xeon E5-1620V4 @ 3.50 GHz

CPU with 64 GB RAM in order to accommodate computationally intensive methods.

Adam optimizer was used for training, with a learning rate of 10−4. Also, kernels of

size 3x3 were used for the convolution operations.

4.2 Restoration results for extreme low-light images

We compare our algorithm with Chen et al. [6], Gu et al. [11] and Maharjan et al. [23]

on the SID dataset, see Table 4.1 and Fig. 4.1. These methods use the ratio of GT

exposure to that of the input dark image, available in the SID dataset, to pre-amplify

the images. The corresponding results are shown under the label "Amplification using

GT exposure" in Table 4.1 and Fig. 4.1. But, since the GT information will not be

readily available in a real-world setting, we additionally show results in the absence of

GT information. This is shown under the heading "w/o GT exposure". We additionally

show results for "Chen et al. + Our Amplifier" in which our proposed amplifier is

added to their algorithm. We have chosen Chen et al. since compared to the other

existing methods, they have the least time and memory complexity. All the methods

are appropriately retrained before evaluation. The metrics used for comparison are

Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM).
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28.01/0.78 28.50/0.82 28.65/0.82 29.00/0.78

22.15/0.89 21.01/0.88 21.09/0.89 22.23/0.90

25.60/0.59 27.88/0.70 25.66/0.60 27.87/0.62

31.50/0.85 31.85/0.81 31.20/0.79 29.77/0.68

Maharjan et al. Gu et al. Chen et al. Chen et al. + Our Amplifier Ours GT
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20.58/0.54 23.86/0.78 18.84/0.56 18.60/0.64 24.69/0.78

14.89/0.31 16.12/0.53 18.74/0.88 14.94/0.71 21.01/0.88

25.39/0.45 22.77/0.26 13.96/0.34 23.22/0.59 27.87/0.58

25.13/0.46 24.11/0.41 18.36/0.71 30.55/0.78 29.37/0.66

Figure 4.1: Performance comparison of the proposed LLPackNet with state-of-the-art
algorithms corresponding to Table 4.1. (A): All the methods work well
with GT exposure. (B): In a realistic scenario, where GT exposure is not
available during inference, our LLPackNet gives the best restoration.

4.2.1 Network speed and memory utilization

As shown in Table 4.1, LLPackNet is 5− 20× faster with 2− 3× lower memory and

2− 7× lesser model parameters. We achieve this because we do the bulk of operations

in 16× lower resolution. Opposed to this, Maharjan et al. [23] do not perform any

downsampling operation and hence, the feature maps propagating through their

network are huge. This results in very high network latency and memory consumption.

Likewise, Gu et al. [11] adopt a multi-scale approach that requires feature map

propagation at 2× and 4× lower resolution. But this marginal downsampling is not

sufficient to contain the network latency and memory consumption. Chen et al. [6]
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have relatively better metrics by performing up to 32× downsampling. But this is done

only in steps of 2 requiring five downsampling and five upsampling operations.

Further, four out of five upsampling operations are done using transposed convolution

[9], which is much slower than the proposed UnPack operation, see Sec. 3.4. Thus,

Chen et al. have a moderately high processing time and memory utilization.

Maharjan et al. Gu et al. Chen et al. Ours GT

18.70/0.53 20.68/0.62 22.96/0.70 23.08/0.74

16.02/0.19 18.64/0.65 19.46/0.62 20.85/0.59

26.53/0.52 27.38/0.55 24.57/0.77 31.96/0.78

14.61/0.29 17.39/0.55 19.53/0.81 21.82/0.83

25.39/0.45 22.77/0.26 13.96/0.34 27.87/0.58

24.55/0.59 25.94/0.57 17.84/0.71 28.21/0.81

13.94/0.28 16.92/0.52 19.02/0.80 20.55/0.80

Figure 4.2: More visual comparisons on the SID dataset, without using the GT exposure
information for amplification.

4.2.2 Restoration quality

All methods perform notably well when the GT exposure is available. But in a

practical setting when GT exposure is not readily available, except for our network, the
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other methods struggle to restore proper colors. The results for this practical setting

are also shown in Fig 1.1. Adding our amplifier module to Chen et al. improves their

performance to some extent, but the restored images still exhibit noisy patches,

artifacts and color cast. This is because amplification is not the only factor in

improving the performance of a network. Rather, having a large receptive field, which

provides more contextual information, and better correlation among the color channels

is more important than the correct amplification factor in terms of restoration quality.

To further assess these claims, refer to the ablation studies in section 4.3, in which

show that LLPackNet continues to give structurally consistent results even when the

amplifier is removed.

4.3 Ablation studies on LLPackNet

We now show ablation studies on LLPackNet to better understand the contribution of

individual components of the network. For each ablation study the network is

appropriately retrained.

4.3.1 UnPack vs. PixelShuffle

As a first ablation study, we replace the UnPack operation in the proposed LLPackNet

with the PixelShuffle operation [33] and the results are shown in Fig. 4.3. We notice

that this leads to color cast and abrupt change in colors, which is not characteristic of

photographic images. On the other hand, UnPack operation enhances the color

correlation in the restored image which mitigates the color artifacts and color cast to a

significant extent. Using the UnPack operation in place of PixelShuffle improves the

PSNR/SSIM from 22.72 dB/0.68 to 23.27dB/0.69.

4.3.2 Importance of the amplifier module

Fig. 4.4 shows the restoration results using LLPackNet with and without the amplifier.

Without the amplifier, the colors are paler, tend to be monochromatic and do not match

the desired color hue. It is worth noting that the absence of the amplifier affects only
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PixelShuffle UnPack GT PixelShuffle UnPack GT

21.13/0.77 24.56/0.80 15.85/0.79 21.01/0.88

23.82/0.80 25.14/0.79 19.07/0.84 21.82/0.83

Figure 4.3: Comparison between the two upsampling methods with LLPackNet – Pix-
elShuffle and UnPack, evaluated on the SID dataset. The UnPack operation
helps to achieve better color restoration by reducing color distortions.

No Amplifier With Amplifier GT No Amplifier With Amplifier GT

27.17/0.57 29.37/0.66 23.78/0.60 27.30/0.64

23.21/0.34 27.87/0.58 17.86/0.85 21.01/0.88

Figure 4.4: Results using the proposed LLPackNet on the SID dataset with and without
amplification estimation. Without amplification, the colors are pale and tend
to be monochromatic.

the color restoration. The distortions and artifacts exhibited by Chen et al. (refer Fig.

4.1 (B)) are still absent. This is due to the large receptive field provided by the Pack

operation. With the amplifier, the performance of the network improves from

22.53dB/0.66 to 23.27dB/0.69.

Finally, we trained and tested LLPackNet by simultaneously applying both

modifications. The combined effect of using the proposed UnPack operation, instead

of PixelShuffle, and estimating proper amplification, boosts the average PSNR/SSIM

from 21.35dB/0.60 to 23.27dB/0.69.

4.4 LLPackNet for low-resolution images

The SID dataset contains high definition images, thereby, giving us the liberty to chose

a large downsampling factor of 16. This leads us to the question: Can LLPackNet also

work for low-resolution images? When low-resolution images are downsampled using

a large factor, the intra-channel correlation in the downsampled image is reduced,
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Model Processing Time PSNR (dB) SSIM
Chen et al. [6] 0.21 sec. 18.82 0.73

LIME [12] 0.19 sec. 16.94 0.60
Li et al. [20] 17.89 sec. 13.85 0.65
Gu et al. [11] 0.41 sec. 19.46 0.75

LLPackNet-8× (Proposed) 0.06 sec. 19.61 0.69
LLPackNet-4× (Proposed) 0.24 sec. 19.60 0.74

Table 4.2: Results on the LOL dataset [7] consisting of weakly illuminated sRGB
images of resolution 400 × 600. LLPackNet with 8× downsampling
(LLPackNet-8×) is very fast, but has a low SSIM due to large factor down-
sampling of an already small image. LLPackNet-4× opts for 4× downsam-
pling to achieve better reconstruction as reflected in the SSIM value.

LIME Chen et al. Gu et al. LLPackNet 8× LLPackNet 4× GT

10.40/0.30 14.42/0.61 17.73/0.69 17.77/0.59 17.79/0.67

13.49/0.39 21.02/0.73 23.51/0.77 24.31/0.72 24.30/0.75

Figure 4.5: Visual results on the LOL dataset corresponding to Table 4.2. LLPackNet-
8× is very fast with good color restoration but exhibits a slight blur due to
large factor downsampling on a low resolution image. LLPackNet-4×, with
a smaller downsampling factor reduces the blur improves the SSIM.

which negatively impacts the restoration. To investigate this, we conducted

experiments on the LOL dataset [7] containing weakly illuminated images at VGA

resolution of 400×600. As the images in the LOL dataset are already in the

compressed PNG (sRGB) format, the 2× downsampling at the beginning of

LLPackNet to separate out the Bayer pattern [13] is not required. Thus, the effective

downsampling is only 8× and we denote this network by LLPackNet-8×. The results

are shown in Table 4.2. Once again, LLPackNet has the lowest processing time since it

operates in the LR space.

We observe that the large receptive field of LLPackNet enhances the denoising and

color restoration capabilities. But, at the same time, a slight blur is introduced, since

we are using a large downsampling factor for images which are already of

low-resolution. To verify that the blur is because of large downsampling, we retrain

LLPackNet on the LOL dataset with 4× downsampling, which we denote as

LLPackNet-4×. With this model, we obtain sharper results with higher SSIM values,

as shown in Fig. 4.5.
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CHAPTER 5

SCOPE OF FUTURE WORK

The presented work opens many opportunities for future research. Through the

amplifier module, we have introduced a way to perform amplification without relying

on ground truth information. However, the PSNR/SSIM using our amplifier module is

significantly lower compared to the case where ground truth (GT) exposure based

amplification is done, as can be seen in Table 4.1. For our amplifier module, we have

made use of the histogram of the input image to estimate the amplification factor,

using a small neural network. Further research into this area can be conducted in order

to improve the metrics of the amplifier and bring it closer to the level of manual

GT-based amplification.

Another possible extension of our work is to apply LLPackNet to raw images captured

with different color filters. As part of the SID dataset, Chen et al. [6] provide two

datasets - the Sony dataset captured using the Bayer color filter array and the Fuji

dataset captured using the X-Trans color filter array. Our experiments have been

performed using only the Sony dataset. However, it can also be extended to the Fuji

dataset, albeit with some modifications in the pipeline, such as replacing Pack 2× with

Pack 3× and then applying a pixel permutation operation, similar to what was applied

by Chen et al. [6].

Furthermore, our Pack and UnPack operations can be applied to applications outside

of low light enhancement. For example, UnPack could be applied in the context of

super resolution as a replacement to PixelShuffle [33]. Since we have shown that our

UnPack operation provides a better color restoration quality than PixelShuffle, it is

expected that this advantage will also be seen while applying it to the problem of

super-resolution, or any other application which demands better color restoration.



CHAPTER 6

CONCLUSION

Attempts to improve the restoration of extreme low-light images have lead to

increasingly complex networks. But, for image enhancement solutions to become

robust to common low-end devices, they must operate in a limited time-memory

budget. Accordingly, we proposed LLPackNet which restricts the bulk of computations

to a low-resolution space by performing large factor down-sampling and up-sampling

using the novel Pack and UnPack operations. The proposed Pack and UnPack

operations provide LLPackNet with more contextual information and better-correlated

color channels resulting in a better restoration, free from unnatural artifacts or color

cast. In addition to faster restoration, we also introduced a novel amplifier module,

which can perform amplification using only the input image, without relying on

ground truth exposure information, making it suitable for unknown scenes. As a result

of these features, LLPackNet is 5–20× faster and 2–3× lighter and yet maintains a

competitive restoration quality compared to the state-of-the-art algorithms.
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