
DESIGN AND IMPLEMENTATION OF

DIRECT MEMORY ACCESS CONTROLLER

A Project Report

submitted by

N SASIDHAR

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2017

THESIS CERTIFICATE

This is to certify that the thesis titled DESIGN AND IMPLEMENTATION

OF DIRECT MEMORY ACCESS CONTROLLER, submitted by

N Sasidhar, to the Indian Institute of Technology, Madras, for the award of

the degree of Master of Technology, is a bona fide record of the research work

done by him under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any

degree or diploma.

Dr V. Kamakoti
Research Guide
Professor
Department of Computer Science
and Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 8th May 2017

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude towards several people who enabled

me to reach this far with their timely guidance, support and motivation.

First and foremost, I offer my earnest gratitude to my guide, Dr. V. Kamakoti

whose knowledge and dedication has inspired me to work efficiently on the project

and I thank him for motivating me, allowing me freedom and flexibility while

working on the project.

I would like to thank my co-guide Dr.Nitin Chandrachoodan and faculty advisor

Dr.Shreepad Karmalkar, who have guided me through out the program.

My special thanks and deepest gratitude to Rahul Bodduna who has been very

supportive. He has enriched the project experience with his active participation

and invaluable suggestions.

My thanks goes to my fellow labmates Zaid,Debpratim,Vishvesh and Arjun for

their help and support.

i

ABSTRACT

KEYWORDS: Direct Memory Access (DMA), Advanced Microcontroller Bus

Architecture (AMBA), Advanced eXtensible Interface(AXI),

Advanced Peripheral Bus (APB).

As the two essential modes of data transfer, Programmed I/O and Interrupt I/O

involves Central Processing Unit (CPU), the time taken for the data transfer is

large. So, there is a need for mode of transfer which does not involve the CPU.

Direct Memory Access (DMA) allows the input and output devices to read/write

data from the main memory without the interference of CPU. The DMA controller,

controlled by the CPU, handles the data transfer in this mode of transfer. With

DMA, the CPU first initiates the data transfer, then does other operations while

the transfer is in progress. When the transfer is complete, the DMA controller

sends an interrupt to signal the end of transfer. This optimizes the data transfer

allowing high speed transfer of large blocks of data.

This thesis describes the design and implementation of Direct Memory Access

(DMA) controller and integrating it in a System on Chip. The design is based on

ARM Corelink DMA Controller DMA-330. DMAC is an AMBA compliant periph-

eral.It is compliant with AXI and APB protocols. The code for the entire project

is written in a HDL namely Bluespec System Verilog (BSV).Most of the param-

eters in the design are configurable which makes it flexible.DMAC provides AXI

master interface to perform the DMA transfers and APB slave interface through

which a processor can control the operation of DMA Controller by accessing the

control registers. It includes a small instruction set with variable lengths.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES viii

ABBREVIATIONS ix

1 Introduction 1

1.1 About the DMAC . 1

1.2 Features . 2

1.3 Configurable Options . 3

2 Functional overview 4

2.1 Overview . 4

2.2 Operating states . 5

2.2.1 Stopped . 6

2.2.2 Executing . 6

2.2.3 Cache miss . 8

2.2.4 Waiting for event . 8

2.2.5 At barrier . 8

2.2.6 Waiting for peripheral 8

2.2.7 Faulting completing . 8

2.2.8 Faulting . 9

2.2.9 Killing (or) Completing 9

2.3 Initializing DMAC . 9

2.3.1 Setting the location of the first instruction for the DMAC
to execute . 9

2.3.2 Setting security state . 10

iii

2.4 DMAC Interfaces . 11

2.4.1 Reset initialization interface 11

2.4.2 APB slave interface . 12

2.4.3 Peripheral request interface 14

2.4.4 Interrupt interface . 15

2.4.5 AXI master interface . 17

3 DMA Controller Registers 19

3.1 Register summary . 19

3.2 Register Description . 20

3.2.1 DMA Manager Status Register 20

3.2.2 DMA Program Counter Register 21

3.2.3 Interrupt Enable Register 22

3.2.4 Channel Status Registers 23

3.2.5 Channel Program Counter Registers 25

3.2.6 Source Address Registers 26

3.2.7 Destination Address Registers 26

3.2.8 Channel Control Registers 26

3.2.9 Debug Status Register 28

3.2.10 Debug Command Register 29

3.2.11 Debug Instruction-0 Register 29

3.2.12 Configuration Registers 30

4 Instruction Set 31

4.1 Instruction set summary . 31

4.2 Instructions . 33

4.2.1 DMAGO . 33

4.2.2 DMAEND . 34

4.2.3 DMAKILL . 35

4.2.4 DMAWFP . 35

4.2.5 DMAMOV . 36

4.2.6 DMAWFE . 37

4.2.7 DMARMB . 38

iv

4.2.8 DMAWMB . 39

4.2.9 DMASEV . 39

4.2.10 DMALD[S|B] . 40

4.2.11 DMALDP<S|B> . 41

4.2.12 DMAST[S|B] . 42

4.2.13 DMASTP<S|B> . 43

5 Design and Synthesis Results 44

5.1 Design . 44

5.2 Synthesis . 45

LIST OF TABLES

3.1 DSR Register bit assignments 20

3.2 INTEN Register bit assignments 22

3.3 CSRn Register bit assignments 23

3.4 CCRn Register bit assignments 27

4.1 Instruction syntax summary . 32

vi

LIST OF FIGURES

1.1 Example system . 1

2.1 Block diagram of DMA Controller 4

2.2 Operating states of DMAC . 5

2.3 Reset initialization interface . 11

2.4 APB slave interfaces . 12

2.5 Peripheral request interface . 14

2.6 Interrupt interface . 15

2.7 BSV AXI Write Bus Implementation Using TLM Transactors . 18

3.1 DMA Status Register bit assignments 20

3.2 DPC Register bit assignments 21

3.3 INTEN Register bit assignments 22

3.4 CSRn Register bit assignments 23

3.5 CPCn Register bit assignments 25

3.6 CCRn Register bit assignments 26

3.7 DBGSTATUS Register bit assignments 29

3.8 DBGCMD Register bit assignments 29

3.9 DBGINST0 Register bit assignments 29

4.1 DMAGO encoding . 33

4.2 DMAEND encoding . 34

4.3 DMAKILL encoding . 35

4.4 DMAWFP encoding . 36

4.5 DMAMOV encoding . 37

4.6 DMAWFE encoding . 38

4.7 DMARMB encoding . 38

4.8 DMAWMB encoding . 39

4.9 DMASEV encoding . 39

4.10 DMALD encoding . 40

vii

4.11 DMALDP encoding . 42

4.12 DMAST encoding . 42

4.13 DMASTP encoding . 43

5.1 CLB Utilization after synthesis 45

5.2 CLB Utilization after Implementation 45

5.3 Timing Report . 46

viii

ABBREVIATIONS

DMAC Direct Memory Access Controller

AMBA Advanced Microcontroller Bus Architecture

AXI Advanced eXtensible Interface

APB Advanced Peripheral Bus

TLM Transaction Level Modeling

HDL Hardware description language

BSV Bluespec System Verilog

CLB Configurable Logic Block

ix

CHAPTER 1

Introduction

1.1 About the DMAC

The Direct Memory Access Controller (DMAC) is a hardware feature that enables

movement of blocks of data from peripheral-to-memory, memory-to-peripheral or

memory-to-memory. This movement of data by a separate entity significantly

reduces the load on the processor.

DMA Controller is an AMBA(Advanced Microcontroller Bus Architecture)

compliant peripheral.It is compliant with AXI3(Advanced eXtensible Interface)

and APB3(Advanced Peripheral Bus) protocols.

DMAC provides one AXI master interface to perform the DMA transfers and

two APB slave interfaces through which a processor can control the operation of

DMA Controller. It includes a small instruction set with variable lengths.

A example system with DMAC and its interfacing with peripherals,memory and

processor is shown below:

Figure 1.1: Example system

The example system contains:

• AXI bus masters:

– A DMA Controller

– Two Shakti processors.

• An AXI interconnect and two AMBA protocol bridge components.

• AMBA slaves:

– A Dynamic Memory Controller (DMC).

– A Static Memory Controller (SMC).

– A Timer.

– A General Purpose Input-Output (GPIO).

– A Universal Asynchronous Receiver-Transmitter (UART).

The AXI interconnect enables each bus master to access the slaves.Shakti pro-

cessors can access the APB interfaces by using appropriate AXI-APB bridge.

1.2 Features

The DMAC provides the following features:

• ARM CoreLink DMA-330 based instruction set.

• Parametrized Peripheral request interface.

• DMA Manager thread to initialize dma transfer(channel thread).

• Parametrized DMA instruction cache.

• Supports multiple transfer types:

– Memory-to-memory

– Memory-to-peripheral

– Peripheral-to-memory

2

1.3 Configurable Options

We can configure the following parameters:

1. AXI bus width.

2. Number of active AXI read transactions.

3. Number of active AXI write transactions.

4. Number of DMA channels.

5. Depth of the internal data buffer.

6. Number of lines in the instruction cache and how many words a line contains.

7. Number of peripheral request interfaces.

8. Request acceptance capability of a peripheral request interface.

9. Number of interrupt output signals.

3

CHAPTER 2

Functional overview

2.1 Overview

Block diagram of the DMA Controller design is shown below:

Figure 2.1: Block diagram of DMA Controller

DMA Controller contains a configurable Multi First-In-First-Out(MFIFO) data

buffer to store the read and write data for dma data transfer.It includes a read

instruction and write instruction queues to store the load and store instructions.A

configurable internal instruction cache and an instruction processing block are

available to process the variable-length instructions that consists of one to six

bytes.

A DMAC contains a single manager thread to initialize channel threads.Peripheral

operations like data transfer happens through a channel.Number of channels are

configurable and each channel is capable of supporting a single concurrent thread

of DMA operation.Each channel has a separate program counter which directs to

system memory. The DMAC executes upto one instruction for each AXI clock

cycle. To ensure that it regularly executes each active thread, it alternates by

processing the DMA manager thread and then a DMA channel thread.The pro-

gram code for manager thread and channel thread are stored in system memory

which can be accessed by DMAC by using AXI interface.

The DMAC provides multiple interrupt outputs to enable efficient communi-

cation of events to external microprocessors. The peripheral request interfaces

support the connection of DMA-capable peripherals to enable data transfer to

occur, without intervention from a microprocessor.

Dual APB interfaces enable the operation of the DMAC to be partitioned into

the Secure state and Non-secure state. You can use the APB interfaces to access

status registers and also directly execute instructions in the DMAC.Interfaces will

be explained in detail in further sections.

2.2 Operating states

Figure 2.2: Operating states of DMAC

5

Figure 2.2 shows the operating states of manager thread and channel threads.Each

thread has a separate state machine.

In figure 2.2,the DMAC permits that:

• Only DMA channel threads can use states in bold italics.

• Arcs with no letter designator indicate state transitions for the DMA man-
ager and DMA channel threads, otherwise use is restricted as follows:

– C DMA channel thread only

– M DMA manager thread only

• states within the dotted line can transition to the Faulting completing, Fault-
ing, or Killing states.

After the DMAC exits from reset,it sets all channel threads to stopped state

and manager state is controlled by boot from pc signal.If it is HIGH,manager

moves to Executing state and if it is LOW,manager stays in STOPPED state.

The following sections describe the states:

2.2.1 Stopped

The thread has an invalid PC and it is not fetching instructions. Depending on

the thread type,you can cause the thread to move to the Executing state by:

DMA manager thread: With boot from pc HIGH and aresetn LOW,the DMA

manager thread moves to the Executing state after aresetn goes HIGH.

DMA Channel thread: Programming the DMA manager thread to execute

DMAGO for a DMA channel thread in the Stopped state.

2.2.2 Executing

The thread has a valid PC and therefore the DMAC includes the thread when it

arbitrates. The thread can then change to one of the following states under the

following conditions:

stopped

When the DMA manager thread executes DMAEND

6

Cache miss

When the instruction cache does not contain the next instruction for either the

DMA manager thread or the DMA channel thread.

Waiting for event

When a thread executes DMAWFE.

At barrier

When a DMA channel thread executes DMAWMB,DMARMB or DMAFLUSHP.

Waiting for peripheral

When a DMA channel thread executes DMAWFP.

Killing

When a DMA channel thread executes DMAKILL.

Faulting completing

For a DMA channel thread either:

• The thread executes an undefined or invalid instruction.

• An AXI bus error occurs during an instruction fetch or data transfer.

Faulting

For a DMA channel thread either:

• The thread executes an undefined or invalid instruction.

• An AXI bus error occurs during an instruction fetch.

For a DMA manager when an abort occurs.

7

Completing

When a DMA channel thread executes DMAEND.

2.2.3 Cache miss

The thread is stalled and the DMAC is performing a cache line fill. After it

completes the cache fill, the thread returns to the Executing state.

2.2.4 Waiting for event

The thread is stalled and is waiting for the DMAC to execute DMASEV using the

corresponding event number. After the corresponding event occurs, the thread

returns to the Executing state.

2.2.5 At barrier

A DMA channel thread is stalled and the DMAC is waiting for transactions on the

AXI bus to complete. After the AXI transactions complete, the thread returns to

the Executing state.

2.2.6 Waiting for peripheral

A DMA channel thread is stalled and the DMAC is waiting for the peripheral to

provide the requested data. After the peripheral provides the data, the thread

returns to the Executing state.

2.2.7 Faulting completing

A DMA channel thread is waiting for the AXI master interface to signal that

the outstanding load or store transactions are complete. After the transactions

complete, the thread moves to the Faulting state.

8

2.2.8 Faulting

The thread is stalled indefinitely. The thread moves to the Stopped state when

you use the DBGCMD Register to instruct the DMAC to execute DMAKILL for

that thread.

2.2.9 Killing (or) Completing

A DMA channel thread is waiting for the AXI master interface to signal that

the outstanding load or store transactions are complete. After the transactions

complete, the thread moves to the Stopped state.

The design is based on ARM Corelink DMA-330 DMAC in which there is a

separate state for updating PC.As PC update can be done in executing state,this

state is not used in our design.

2.3 Initializing DMAC

2.3.1 Setting the location of the first instruction for the

DMAC to execute

Initially when DMAC exit from reset,boot from pc signal controls the state of the

DMA manager.

If boot from pc is HIGH,DMA manager moves to executing state and up-

dates the dma pc register with the value in boot addr[31:0].Once PC gets up-

dated,DMAC fetches and executes the instruction in DMA PC register.You must

ensure that the state of the boot addr[31:0] bus points to a region in system mem-

ory that contains the start address for the DMAC boot program.Usually the first

instruction in manager thread(boot program) will be DMAGO which moves the

particular channel defined in the instruction to executing state.

If boot from pc is LOW,DMA manager thread stays in stopped state.In this

case,we have to provide the first instruction by using one of the APB slave in-

terfaces.Most of the time it will be DMAGO while initializing the DMA.Channel

9

thread contains instructions related to peripherals like wait for peripheral,load and

store.For a data transfer to occur,a channel should be in executing state.

2.3.2 Setting security state

A DMAC can be operated in secure and non-secure states.In our design we

implemented DMA in a non-secure state in which any processor can interact

with the DMAC by both secure and non-secure APB slave interfaces.The secu-

rity state of DMAC are set by boot manager ns(manager),boot irq ns(interrupts),

boot periph ns(peripheral) signals.For non-secure operation,all these signals are

set to HIGH.

10

2.4 DMAC Interfaces

The DMA Controller contains following interfaces:

• Reset initialization interface

• APB slave interface

• Peripheral request interface

• Interrupt interface

• AXI master interface

2.4.1 Reset initialization interface

Figure 2.3: Reset initialization interface

This interface is used to initialize the DMAC when it exits from reset.

boot from pc controls the initial state of DMA manger.

boot addr[31:0] gives the starting address of the boot program.DMA PC regis-

ter should be updated with this address.

boot manager ns,boot irq ns[x:0],boot peripheral ns[n:0] are the security

states of manager,interrupts and peripheral respectively.HIGH represents non-

secure state.

x represents number of interrupts,n represents number of peripheral interfaces.

11

2.4.2 APB slave interface

The DMAC provides secure and non-secure APB interfaces.

Figure 2.4 shows the signal connections for both interfaces.

Figure 2.4: APB slave interfaces

The DMAC allocates 4KB of memory for each APB interface.The same clock

as the AXI domain clock, aclk, clock the APB interfaces. However, the DMAC

provides a clock enable signal, pclken, that enables both APB interfaces to operate

at a slower clock rate. The clock enable signal must be an integer divisor of aclk.

APB interface connects the DMAC to the APB and enables a microprocessor

to access the registers through which a microprocessor can:

• Access the status of the DMA manager thread.

• Access the status of the DMA channel threads.

• Enable or clear interrupts.

• Enable events.

• Issue an instruction for the DMAC to execute by programming the following
debug registers:

– DBGCMD Register.

– DBGINST0 Register

– DBGINST1 Register

12

Before you can issue instructions using the debug instruction registers or the

DBGCMD Register, you must read the DBGSTATUS Register to ensure that

debug is idle, otherwise the DMAC ignores the instructions.

When the DMAC is operating in real-time, you can only issue the following

limited subset of instructions:

• DMAGO : Starts a DMA transaction using a DMA channel that you spec-
ify.

• DMASEV : Signals the occurrence of an event or interrupt, using an event
number that you specify.

• DMAKILL : Terminates a thread.

Below example shows the necessary steps to start a DMA channel thread using

the debug instruction registers.

1. Create a program for the DMA channel.

2. Store the program in a region of system memory.
Use one of the APB interfaces on the DMAC to program a DMAGO instruc-
tion as follows:

3. Poll the DBGSTATUS Register to ensure that debug is idle, that is, the
dbgstatus bit is 0.

4. Write to the DBGINST0 Register and enter the:

• Instruction byte 0 encoding for DMAGO.

• Instruction byte 1 encoding for DMAGO .

• Debug thread bit to 0. This selects the DMA manager thread.

5. Write to the DBGINST1 Register with the DMAGO instruction byte [5:2]
data.You must set these four bytes to the address of the first instruction in
the program, that was written to system memory in step 2.

6. Writing zero to the DBGCMD Register. The DMAC starts the DMA chan-
nel thread and sets the dbgstatus bit to 1.
After the DMAC completes execution of the instruction, it clears the dbgsta-
tus bit to 0.

13

2.4.3 Peripheral request interface

Figure 2.5 shows the signals that a single peripheral request interface provides.

Figure 2.5: Peripheral request interface

We can configure number of peripheral request interfaces.It supports the con-

nection of peripherals to DMA. Description of the signals provided by the interface

is shown below:

Peripheral uses drtype[1:0] to either:

• Request a single transfer.

• Request a burst transfer.

• Acknowledge a flush request.

drlast is used by peripheral to notify DMA that the request on drtype[31:0]

is the last one.Both this signals should be transferred at the same time.

drvalid and drready signals are used to notify that a valid request is there by

peripheral and DMAC is ready to take the request respectively.

davalid and daready signals are used to notify that DMAC sent a valid acknowl-

edgement and peripheral is ready to take the acknowledgement respectively.

valid and readyare the handshake signals that AXI protocol describes:

The DMAC uses datype[1:0] to either:

• Signal when it completes the requested single transfer.

• Signal when it completes the requested burst transfer.

• Issue a flush request

14

Mapping to a DMA channel

A peripheral request interface can be connected to any DMA channel.When a chan-

nel thread executes DMAWFP instruction,the value mentioned in peripheral[4:0]

field of instruction defines the peripheral associated with that channel.

2.4.4 Interrupt interface

Interrupt interface used to notify the processor that data transfer is completed by

sending an interrupt.It is basically used for efficient communications of events to

an external microprocessor.Number of interrupts are configurable.

Figure 2.6: Interrupt interface

Figure 2.6 shows signals provide by this interface.irq[n:0] and irqabort signals

generate and abort interrupts respectively.

Using events and interrupts

The number of events and interrupts that the DMAC can support is config-

urable.After that program the INTEN Register to control if each event-interrupt

resource is either an event or an interrupt.

When the DMAC executes a DMASEV instruction,it modifies the event-interrupt

resource that we specify.If the INTEN Register sets the event-interrupt resource

to be an:

Event

The DMAC generates an event for the specified event-interrupt re-
source.When the DMAC executes a DMAWFE instruction for the same
event-interrupt resource, it clears the event.

15

Interrupt

The DMAC sets irq<event num> HIGH, where event num is the number
of the specified event-resource. To clear the interrupt you must write
to the INTCLR Register.

Using an event to restart DMA channels:

When we program the INTEN Register to generate an event, you can use the

DMASEV and DMAWFE instructions to restart one or more DMA channels.

• DMAC executes DMAWFE before DMASEV:

To restart a single DMA channel:

1. The first DMA channel executes DMAWFE and then stalls while
it waits for the event to occur.

2. The other DMA channel executes DMASEV using the same event
number. This generates an event, and the first DMA channel
restarts. The DMAC clears the event, one aclk cycle after it exe-
cutes DMASEV .

We can program multiple channels to wait for the same event. For
example, if five DMA channels have all executed DMAWFE for event
18, then when another DMA channel executes DMASEV for event 18,
the five DMA channels all restart at the same time. The DMAC clears
the event, one clock cycle after it executes DMASEV.

• DMAC executes DMASEV before DMAWFE:

If the DMAC executes DMASEV before another channel executes DMAWFE
then the event remains pending until the DMAC executes DMAWFE.When
the DMAC executes DMAWFE it halts execution for one aclk cycle,clears
the event and then continues execution of the channel thread.

Interrupting a microprocessor:

The DMAC provides the irq[x] signals for use as active-high level-sensitive inter-

rupts to external microprocessors.When we program the INTEN Register to gen-

erate an interrupt,irq[x] will be set HIGH after the DMAC executes DMASEV.

An external microprocessor can clear the interrupt by writing to the Interrupt

Clear register. If we use DMASEV instruction to notify microprocessor when the

DMAC completes DMALD or DMAST,it is recommended to insert a memory bar-

rier instruction before DMASEV.Otherwise the DMAC might signal an interrupt

before the AXI transfers complete.

16

2.4.5 AXI master interface

The DMAC contains a single AXI interface to transfer data from source AXI slave

to destination AXI slave.

The AMBA AXI protocol is targeted at high-performance, high-frequency system

designs and includes a number of features that make it suitable for a high-speed

sub micron interconnect.The key features of the AXI protocol are:

• separate address/control and data phases

• support for unaligned data transfers using byte strobes

• burst-based transactions with only start address issued

• separate read and write data channels to enable low-cost Direct Memory
Access

The AXI protocol is burst-based. Every transaction has address and control

information on the address channel that describes the nature of the data to be

transferred. The data is transferred between master and slave using a write data

channel to the slave or a read data channel to the master. In write transactions,

in which all the data flows from the master to the slave, the AXI protocol has an

additional write response channel to allow the slave to signal to the master the

completion of the write transaction.

Importing AXI package in Bluespec System Verilog provides interface, transactor,

module and function definitions to implement the Advanced eXtensible Interface

(AXI).The BSV AXI library groups the AXI data and protocols into reusable,

parametrized interfaces, which interact with TLM interfaces. An AXI bus is im-

plemented using AXI transactors to connect TLM interfaces on one side with AXI

interfaces on the other side. The TLM interfaces used by the Axi package are

defined in the TLM package.

17

Figure 2.7: BSV AXI Write Bus Implementation Using TLM Transactors

The corresponding BSV AXI implementation is shown in Figure 2.7. TLM

Write requests are received via the TLMRecvIFC interfaces of the master transac-

tors. The request is then transmitted via the AxiWrMaster interface out onto the

AXI bus and on to the appropriate slave transactor. The slave transactor receives

the request via the AxiWrSlave interface, translates the request back into a stream

of TLM objects, and then transmits those objects via the TLMSendIFC interface.

The TLM response from the write operation follows the same path in reverse.

18

CHAPTER 3

DMA Controller Registers

3.1 Register summary

DMA Controller contains 32 bit registers and the register map consists of the

following sections:

• Control registers

These registers are used to control the DMAC. This include:

– DMA Status Register

– DMA Program Counter Register

– Interrupt Enable,Status and Clear Registers

– Fault Status and Fault Type Registers

• DMA Channel thread status registers

These include DMA channel status registers and DMA channel Pro-
gram Counter registers.Each channel will have a separate status and
PC registers.

• AXI and loop counter status registers

These registers provide the AXI bus transfer status and the loop counter
status for each DMA channel thread. This includes the following reg-
isters:

– Source Address Registers

– Destination Address Registers

– Channel Control Registers

– Loop Counter Registers

Each channel will have separate AXI and loop counter registers.

• DMAC debug registers

These registers are used to program the DMA controller by processor
and enables us to send instructions to a thread when debugging the
program code.This includes the following registers:

– Debug Status Register

– Debug Command Register

– Debug Instruction-0 and Instruction-1 registers

• DMAC configuration registers

These registers enable system firmware to discover the configuration of
the DMA Controller.This includes:

– Five Configuration Register(CR0,CR1,CR2,CR3 and CR4)

– DMA Configuration Register

3.2 Register Description

Description of some registers which are often used in the design are explained in

next few sections.

3.2.1 DMA Manager Status Register

It returns information about the status of the DMA manager thread.

Figure 3.1: DMA Status Register bit assignments

Table 3.1: DSR Register bit assignments

Bits Name Description

[31:10] - Read UNDEFINED

[9] DNS Provides the security status of the DMA

manager thread:

0 = DMA manager operates in the Se-
cure state

1 = DMA manager operates in the
Non-secure state.

20

Table 3.1 Continued:

Bits Name Description

[8:4] Wakeup event When the DMA manager thread executes a

DMAWFE instruction, it waits for the fol-

lowing event to occur:

0b00000 = event[0]

0b00001 = event[1]

0b00010 = event[2]

.

.

.

0b11111 = event[32]

[3:0] DMA status The operating state of the DMA manager:

0b0000 = Stopped

0b0001 = Executing

0b0010 = Cache miss

0b0011 = Reserved

0b0100 = Waiting for event

0b0101 - 0b1110 = reserved

0b1111 = Faulting.

3.2.2 DMA Program Counter Register

The DPC Register provides the value of the program counter for the DMA manager

thread. Figure 3.2 shows the DPC Register bit assignments.

Figure 3.2: DPC Register bit assignments

21

3.2.3 Interrupt Enable Register

Figure 2.6 shows the INTEN Register bit assignments.

Figure 3.3: INTEN Register bit assignments

Table 3.2 shows the INTEN Register bit assignments.

Table 3.2: INTEN Register bit assignments

Bits Name Description

[31:0] event irq select Program the appropriate bit to control how

the DMAC responds when it executes DMA-

SEV :

Bit [N] = 0

If the DMAC executes DMASEV
for the event-interrupt resource N
then the DMAC signals event N
to all of the threads. Set bit [N]
to 0 if the system design does not
use irq[N] to signal an interrupt
request.

Bit [N] = 1

If the DMAC executes DMASEV
for the event-interrupt resource N
then the DMAC sets irq[N] HIGH.
Set bit [N] to 1 if the system de-
sign requires irq[N] to signal an in-
terrupt request.

22

When the DMAC executes a DMASEV instruction, each bit of the INTEN

Register controls if the DMAC signals:

• The specified event to all of the threads.

• An interrupt using the corresponding irq.

Event-Interrupt Raw Status Register returns the status of the event-

interrupt resources(status of DMASEV)with value 0–inactive and 1–active).

Interrupt Status Register and Interrupt Clear Register also works in

the same way.

3.2.4 Channel Status Registers

The CSRn Register provides the status of the DMA program on a DMA channel

n.

Figure 3.4 shows the CSRn Register bit assignments.

Figure 3.4: CSRn Register bit assignments

Table 3.3 shows the CSRn Register bit assignments.

Table 3.3: CSRn Register bit assignments

Bits Name Description

[31:22] - READ UNDEFINED.

[21] CNS The channel non-secure bit provides the se-

curity of the DMA channel with value 0 as

secure and 1 as non-secure states.

[20:16] - READ UNDEFINED.

23

Table 3.3 Continued:

Bits Name Description

[15] dmawfp periph When the DMA channel thread executes

DMAWFP , this bit indicates whether the

periph operand was set:

0 = DMAWFP executed with the pe-
riph operand not set

1 = DMAWFP executed with the pe-
riph operand set.

[14] dmawfp b ns When the DMA channel thread executes

DMAWFP , this bit indicates whether the

burst or single operand were set:

0 = DMAWFP executed with the sin-
gle operand set

1 = DMAWFP executed with the burst
operand set.

[31:9] - READ UNDEFINED.

[8:4] Wakeup number If the DMA channel is in the Waiting for

event state, or the Waiting for peripheral

state, then these bits indicate the event or

peripheral number that the channel is wait-

ing for:

0b00000 = DMA channel is waiting for
event, or peripheral, 0

0b00001 = DMA channel is waiting for
event, or peripheral, 1

.

.

0b11111 = DMA channel is waiting for
event, or peripheral, 31.

24

Table 3.3 Continued:

Bits Name Description

[3:0] Channel status The channel status encoding is:

0b0000 = Stopped

0b0001 = Executing

0b0010 = Cache miss

0b0011 = reserved

0b0100 = Waiting for event

0b0101 = At barrier

0b0110 = reserved

0b0111 = Waiting for peripheral

0b1000 = Killing

0b1001 = Completing

0b1010 - 0b1101 = reserved

0b1110 = Faulting completing

0b1111 = Faulting.

3.2.5 Channel Program Counter Registers

The CPCn Register provides the value of the program counter for the DMA chan-

nel thread.

Figure 3.5 shows the CPCn Register bit assignments.

Figure 3.5: CPCn Register bit assignments

25

3.2.6 Source Address Registers

The SARn Register provides the address of the source data for a DMA channel.

The DMAC writes the initial source address value to the SA Register when the

DMA channel thread executes a DMAMOV SAR instruction. If a DMAMOV

CCR instruction programs the source address to increment, each time the DMA

channel executes DMALD, it updates the value to indicate the address that the

next DMALD must use.

3.2.7 Destination Address Registers

The DARn Register provides the address for the destination data for a DMA

channel.The DMAC writes the initial destination address value to the DA Reg-

ister when the DMA channel thread executes a DMAMOV DAR instruction.If a

subsequent DMAMOV CCR instruction programs the destination address to in-

crement, then each time the DMA channel executes DMAST, it updates the value

to indicate the address that the next DMAST must use.

3.2.8 Channel Control Registers

The CCRn Register controls the AXI transactions that the DMAC uses for a

DMA channel.The DMAC writes to the corresponding CC Register when a DMA

channel thread executes a DMAMOV CCR instruction.

Figure 3.6 shows the CCRn Register bit assignments.

Figure 3.6: CCRn Register bit assignments

Table 3.4 shows the CCRn Register bit assignments.

26

Table 3.4: CCRn Register bit assignments

Bits Name Description

[31] - READ UNDEFINED

[27:25] dst cache ctrl Programs the state of AWCACHE when the

DMAC writes the destination data.

[24:22] dst prot ctrl Programs the state of AWPROT when the

DMAC writes the destination data.

[21:18] dst burst len For each burst,these bits program the num-

ber of data transfers that the DMAC per-

forms when it writes the destination data:

0b0000 = 1 data transfer

0b0001 = 2 data transfers

0b0010 = 3 data transfers

.

.

.

0b1111 = 16 data transfers.

The total number of bytes that the
DMAC writes out of the MFIFO
when it executes a DMAST instruc-
tion is the product of dst burst len and
dst burst size.

These bits control the state of
AWLEN[3:0].

27

Table 3.4 Continued:

Bits Name Description

[17:15] dst burst size For each beat within a burst, it programs

the number of bytes that the DMAC writes

to the destination:

0b000 = writes 1 byte per beat

0b001 = writes 2 bytes per beat

0b010 = writes 4 bytes per beat

0b011 = writes 8 bytes per beat

0b100 = writes 16 bytes per beat

0b101 - 0b111 = reserved.

These bits control the state of
AWSIZE[2:0].

[14] dst inc Programs the burst type that the DMAC

performs when it writes the destination data:

0 = Fixed-address burst.The DMAC
signals AWBURST[0] LOW.

1 = Incrementing-address burst.The
DMAC signals AWBURST[0] HIGH.

CCR[13:0] is for source control and is same as destination as described in table.

3.2.9 Debug Status Register

The DBGSTATUS Register provides the debug status of the DMAC.

Figure 3.7 shows the DBGSTATUS Register bit assignments.

28

Figure 3.7: DBGSTATUS Register bit assignments

The debug status encoding is:

0 = Idle

1 = Busy

3.2.10 Debug Command Register

The DBGCMD Register Controls the execution of debug commands in the DMAC.Figure

shows the DBGCMD Register bit assignments.

Figure 3.8: DBGCMD Register bit assignments

The dbgcmd[1:0] encoding is as follows:

0b00 = execute the instruction that the DBGINST [1:0] Registers contain

0b01-0b11 = reserved

3.2.11 Debug Instruction-0 Register

The DBGINST0 Register controls the debug instruction, channel,and thread infor-

mation for the DMAC. Figure 3.9 shows the DBGINST0 Register bit assignments.

Figure 3.9: DBGINST0 Register bit assignments

29

Debug thread shows execution of manager(1’b0) or channel(1’b1).If it is chan-

nel,the Channel number field selects the DMA channel to debug.As instruction

size varies from one to six bytes,Debug Instruction-1 Register is used for re-

maining bytes of debug instruction.

3.2.12 Configuration Registers

Configuration register-0(CR0) provides the status of the tie-off control signals.It

contains the following information about the configuration of the DMAC:

• The number of DMA channels that it contains.

• The number of peripheral request interfaces it provides.

• The number of irq signals it provides.

Configuration register-1(CR1) Provides the instruction cache configuration.

Configuration register-2(CR2) Provides the value of the boot address that

boot addr[31:0] configures.

Configuration register-3(CR3) Provides the security state of the event-interrupt

resources that are initialized when the DMAC exits from reset.

Configuration register-4(CR4) Provides the security state of the peripheral request

interfaces that is initialized when the DMAC exits from reset.

The DMA Configuration Register Provides the configuration of the data buffer,

data width, and read and write issuing capability of the DMAC.

30

CHAPTER 4

Instruction Set

Instruction syntax conventions

The following conventions are used in assembler syntax prototype lines and their

subfields:

< > Any item bracketed by < and > is mandatory.

[] Any item bracketed by [and] is optional.

spaces Single spaces are used for clarity,to separate items.When a

space is obligatory in the assembler syntax, two or more con-

secutive spaces are used.

4.1 Instruction set summary

The DMAC instructions:

• Use a DMA prefix, to provide a unique name-space

• Have 8-bit opcodes that might use a variable data payload of 0, 8, 16, or 32
bits

• Use suffixes that are consistent.

Table shows a summary of the instruction syntax.

Table 4.1: Instruction syntax summary

Mnemonic Instruction Thread usage:

• M = DMA man-
ager

• C = DMA channel

DMAADDH Add Halfword C

DMAADNH Add Negative Halfword C

DMAEND End M,C

DMAFLUSHP Flush and Notify Peripheral C

DMAGO Go M

DMAKILL Kill M,C

DMALD Load C

DMALDP Load and Notify Peripheral C

DMALP Loop C

DMALPEND Loop End C

DMALPFE Loop Forever C

DMAMOV Move C

DMANOP No operation M,C

DMARMB Read Memory Barrier C

DMASEV Send Event M,C

DMAST Store C

DMASTP Store and Notify Peripheral C

DMASTZ Store Zero C

DMAWFE Wait For Event M,C

DMAWFP Wait For Peripheral C

DMAWMB Write Memory Barrier C

32

4.2 Instructions

4.2.1 DMAGO

When the DMA manager executes Go for a DMA channel that is in the Stopped

state, it performs the following steps on the DMA channel:

• Moves a 32-bit immediate into the program counter.

• Sets its security state.

• Updates it to the Executing state.

If a DMA channel is not in the Stopped state when the DMA manager exe-

cutes DMAGO then the DMAC does not execute DMAGO but instead it executes

DMANOP. Figure 4.1 shows the instruction encoding.

Figure 4.1: DMAGO encoding

Assembler syntax

DMAGO <channel number>, <32-bit immediate> [,ns]

where:

33

<channel number> Selects a DMA channel.

<32-bit immediate> The immediate value that is written to the CPCn

Register for the selected <channel number>

[ns]

• If ns is present, the DMA channel operates
in the Non-secure state.

• Otherwise, the execution of the instruction
depends on the security state of the DMA
manager:

DMA manager is in the Secure state:

DMA channel operates in the Secure
state.

DMA manager is in the Non-secure
state:

The DMAC aborts.

4.2.2 DMAEND

End signals to the DMAC that the DMA sequence is complete. After all DMA

transfers are complete for the DMA channel, the DMAC moves the channel to

the Stopped state. It also flushes data from the MFIFO and invalidates all cache

entries for the thread.

Figure 4.2 shows the instruction encoding.

Figure 4.2: DMAEND encoding

Assembler syntax

DMAEND

34

4.2.3 DMAKILL

Kill instructs the DMAC to immediately terminate execution of a thread. De-

pending on the thread type, the DMAC performs the following steps:

DMA manager thread

1. Invalidates all cache entries for the DMA manager.

2. Moves the DMA manager to the Stopped state.

DMA channel thread

1. Moves the DMA channel to the Killing state.

2. Waits for AXI transactions, with an ID equal to the DMA channel
number,to complete.

3. Invalidates all cache entries for the DMA channel.

4. Remove all entries in the MFIFO for the DMA channel.

5. Remove all entries in the read buffer queue and write buffer queue for
the DMA channel.

6. Moves the DMA channel to the Stopped state.

Figure shows the instruction encoding.

Figure 4.3: DMAKILL encoding

Assembler syntax

DMAKILL

4.2.4 DMAWFP

Wait For Peripheral instructs the DMAC to halt execution of the thread until the

specified peripheral signals a DMA request for that DMA channel.

Figure 4.4 shows the instruction encoding.

35

Figure 4.4: DMAWFP encoding

Assembler syntax

DMAWFP <peripheral>, <single|burst|periph>

where:

<peripheral> 5-bit immediate, value 0-31.The DMAC aborts the

thread if you select a peripheral number that is not avail-

able for the configuration of the DMAC.

<single> Sets bs to 0 and p to 0. This instructs the DMAC to

continue executing the DMA channel thread after it re-

ceives a single or burst DMA request. The DMAC sets

the request type to Single, for that DMA channel.

<burst> Sets bs to 1 and p to 0. This instructs the DMAC to

continue executing the DMA channel thread after it re-

ceives a burst DMA request. The DMAC sets the re-

quest type to Burst.In this case,the DMAC ignores sin-

gle burst DMA requests.

<periph> Sets bs to 0 and p to 1. This instructs the DMAC to

continue executing the DMA channel thread after it re-

ceives a single or burst DMA request. The DMAC sets

the request type to:

Single When it receives a single DMA request.

Burst When it receives a burst DMA request.

4.2.5 DMAMOV

Move instructs the DMAC to move a 32-bit immediate into the following registers:

36

• Source Address Registers

• Destination Address Registers

• Channel Control Registers

Figure 4.5 shows the instruction encoding.

Figure 4.5: DMAMOV encoding

Assembler syntax

DMAMOV <destination register>, <32 bit immediate>

where:

<destination register>

SAR Selects the Source Address Registers and sets rd to 0b000 .

CCR Selects the Channel Control Registers and sets rd to 0b001 .

DAR Selects the Destination Address Registers and sets rd to 0b010 .

<32 bit immediate>

A 32-bit value that is written to the specified destination register.

4.2.6 DMAWFE

Wait For Event instructs the DMAC to halt execution of the thread until the

event, that event num specifies, occurs. When the event occurs, the thread moves

to the Executing state and the DMAC clears the event.

Figure 4.6 shows the instruction encoding.

37

Figure 4.6: DMAWFE encoding

Assembler syntax

DMAWFE <event num>[, invalid]

where:

<event num> 5-bit immediate, value 0-31.

[invalid] Sets i to 1. If invalid is present, the DMAC invalidates the

instruction cache for the current DMA thread. If invalid is

not present, then the assembler sets i to 0 and the DMAC

does not invalidate the instruction cache for the current

DMA thread.

4.2.7 DMARMB

Read Memory Barrier forces the DMA channel to wait until all of the executed

DMALD instructions for that channel have been issued on the AXI master in-

terface and have completed.This enables write-after-read sequences to the same

address location with no hazards.

Figure 4.7 shows the instruction encoding.

Figure 4.7: DMARMB encoding

Assembler syntax

DMARMB

38

4.2.8 DMAWMB

Write Memory Barrier forces the DMA channel to wait until all of the executed

DMAST instructions for that channel have been issued on the AXI master interface

and have completed.This permits read-after-write sequences to the same address

location with no hazards.

Figure 4.8 shows the instruction encoding.

Figure 4.8: DMAWMB encoding

Assembler syntax

DMAWMB

4.2.9 DMASEV

Send Event instructs the DMAC to modify an event-interrupt resource. Depending

on how you program the Interrupt Enable Register, this either:

• Generates event <event num>.

• Signals an interrupt using irq<event num>.

Figure 4.9 shows the instruction encoding.

Figure 4.9: DMASEV encoding

Assembler syntax

DMASEV <event num>

where: <event num> is a 5-bit immediate value(0-31).

39

4.2.10 DMALD[S|B]

Load instructs the DMAC to perform a DMA load, using AXI transactions that

the Source Address Registers and Channel Control Registers specify. It places the

read data into the MFIFO and tags it with the corresponding channel number.

DMALD is an unconditional instruction but DMALDS and DMALDB are con-

ditional on the state of the request type flag. If the src inc bit in the Channel

Control Registers is set to incrementing, the DMAC updates the Source Address

Registers after it executes DMALD[S|B] .

The DMAC sets the value of request type when it executes a DMAWFP instruc-

tion. Figure 4.10 shows the instruction encoding.

Figure 4.10: DMALD encoding

Assembler syntax

DMALD[S|B]

where:

40

[S] If S is present, the assembler sets bs to 0 and x to 1. The

instruction is conditional on the state of the request type

flag:

request type = Single

The DMAC performs a DMALD instruction
and it sets arlen[3:0]= 0x0 so that the AXI
read transaction length is one. The DMAC
ignores the value of the src burst len field in
the Channel Control Registers.

request type = Burst

The DMAC performs a DMANOP instruc-
tion. The DMAC increments the channel PC
to the next instruction. No state change oc-
curs.

[B] If B is present, the assembler sets bs to 1 and x to 1. The

instruction is conditional on the state of the request type

flag:

request type = Single

The DMAC performs a DMANOP instruc-
tion. The DMAC increments the channel PC
to the next instruction. No state change oc-
curs.

request type = Burst

The DMAC performs a DMALD instruction.

If you do not specify the S or B operand, the assembler sets bs to 0 and x to

0, and the DMAC always executes a DMA load.

4.2.11 DMALDP<S|B>

Load and notify Peripheral instructs the DMAC to perform a DMA load, using

AXI transactions that Source Address Registers and Channel Control Registers

specify. It places the read data into a FIFO that is tagged with the corresponding

41

channel number and after it receives the last data item, it updates datype[1:0]

to indicate to the peripheral that the data transfer is complete. If the src inc

bit in the Channel Control Registers is set to incrementing, the DMAC updates

Source Address Registers after it executes DMALDP<S|B>. Figure 4-7 shows the

instruction encoding.

Figure 4.11: DMALDP encoding

Assembler syntax

DMALDP<S|B> <peripheral>

It is same as DMALD with bs = 0 for single and bs = 1 for burst and <peripheral>

as a 5-bit immediate value 0-31.

4.2.12 DMAST[S|B]

Store instructs the DMAC to transfer data from the FIFO to the location that

the Destination Address Registers specifies, using AXI transactions that the DA

Register and Channel Control Register specify. If the dst inc bit in the Channel

Control Registers is set to incrementing, the DMAC updates the Destination Ad-

dress Registers after it executes DMAST[S|B] .

Figure 4.12 shows the instruction encoding.

Figure 4.12: DMAST encoding

42

Assembler syntax

DMAST[S|B]

It is same as DMALD for single and burst transfers with store operation instead

of load operation.

4.2.13 DMASTP<S|B>

Store and notify Peripheral instructs the DMAC to transfer data from the FIFO

to the location that the Destination Address Registers specifies, using AXI trans-

actions that the DA Register and Channel Control Registers specify. It uses the

DMA channel number to access the appropriate location in the FIFO. After the

DMA store is complete, and the DMAC has received a buffered write response, it

updates datype[1:0] to notify the peripheral that the data transfer is complete. If

the dst inc bit in the Channel Control Registers is set to incrementing, the DMAC

updates the Destination Address Registers after it executes DMASTP<S|B> .

Figure 4.13 shows the instruction encoding.

Figure 4.13: DMASTP encoding

Assembler syntax

DMASTP<S|B> <peripheral>

DMASTP is same as DMAST with with bs = 0 for single and bs = 1 for burst

and <peripheral> defining the peripheral number.

43

CHAPTER 5

Design and Synthesis Results

5.1 Design

Design of DMAC is done in bluespec system verilog.Design is based on the FSM

with states as mentioned in earlier chapters.Updating PC state in ARM core-

link DMAC is not included and instead it is done in executing state itself for

both DMA manager and channels.Cache miss state has to be added in the de-

sign.A top DMA interface contains all five DMA interfaces.Rules have been writ-

ten to receive instruction either from APB interface or through DMA manager by

using boot from pc signal.A set associate cache with configurable options is de-

signed.Whenever a cache miss happens,data has to be fetched from main memory

during which other channels can be made active. Instruction decoding is as per

the instruction set in DMA-330 controller. This cache module is instantiated in

dma module as it is part of the design.Instruction decoding is as per the instruc-

tions explained in previous chapter.Instruction fetch and decode are based on the

operating states of manager and channel.

A core module is designed with dma module instantiated in it and a TLM send

interface is used to connect to main memory.In the same way a TLM memory

is used for TLM receive interface.An AXI module is used to connect this TLM

send and receive interfaces.This AXI module acts as a top module.Data transfer

happens through this AXI interface.

5.2 Synthesis

Synthesis of the design is done in Vivado xcvu095-ffva2104,a virtex ultrascale

FPGA evaluation board.

Utilization report after synthesis and implementation are as follows:

Figure 5.1: CLB Utilization after synthesis

* The Final LUT count, after physical optimizations and full implementation,

is typically lower.

Figure 5.2: CLB Utilization after Implementation

45

Timing report of the design is shown below:

Figure 5.3: Timing Report

There are multiple register to register paths and the maximum delay path is

between channel status register and interrupt status register as in figure 5.3.

Above timing report is obtained with a clock of 4.80ns(208.3MHz),which provides

a slack of 0.068ns.

The data path delay is 4.628ns which concludes that the design can operate at a

maximum frequency of 216MHz.

46

References

1. CoreLink DMA-330 DMA Controller (Revision:r1p2) Technical Reference
Manual

2. AMBA APB Protocol Specification Manual

3. AMBA AXI Protocol Specification Manual

47

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	About the DMAC
	Features
	Configurable Options

	Functional overview
	Overview
	Operating states
	Stopped
	Executing
	Cache miss
	Waiting for event
	At barrier
	Waiting for peripheral
	Faulting completing
	Faulting
	Killing (or) Completing

	Initializing DMAC
	Setting the location of the first instruction for the DMAC to execute
	Setting security state

	DMAC Interfaces
	Reset initialization interface
	APB slave interface
	Peripheral request interface
	Interrupt interface
	AXI master interface

	DMA Controller Registers
	Register summary
	Register Description
	DMA Manager Status Register
	DMA Program Counter Register
	Interrupt Enable Register
	Channel Status Registers
	Channel Program Counter Registers
	Source Address Registers
	Destination Address Registers
	Channel Control Registers
	Debug Status Register
	Debug Command Register
	Debug Instruction-0 Register
	Configuration Registers

	Instruction Set
	Instruction set summary
	Instructions
	DMAGO
	DMAEND
	DMAKILL
	DMAWFP
	DMAMOV
	DMAWFE
	DMARMB
	DMAWMB
	DMASEV
	DMALD[S|B]
	DMALDP<S|B>
	DMAST[S|B]
	DMASTP<S|B>

	Design and Synthesis Results
	Design
	Synthesis

