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ABSTRACT

Human Brain is an extremely efficient machine in solving problems such as image

recognition because of their parallel, power efficient, fault tolerant and distributed net-

work architecture. Artificial Neural Networks (ANNs), inspired by brain have found

wide range of applications in the field of image recognition. Software based ANNs

are inefficient because of the huge amount of computational power required and power

consumption. Recent trend is to look for models which are more biologically plau-

sible. Spiking Neural Networks (SNNs) are the third generation of neural networks

which closely mimic biological neural networks by incorporating some of the biologi-

cal mechanisms.

SNNs are event-based and asynchronous in nature. Because of this, state variables

or parameters of neurons and synapses which are basic building of the network need not

be evaluated at every time step but only when they are addressed by an event, thereby

saves lot of power.

In this work, we will implement an FPGA based hardware of Spiking Neural Net-

work for MNIST handwritten digit Recognition.
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CHAPTER 1

INTRODUCTION

Becuase of their event based nature, SNNs are best suited for event-based daata. If we

consider conventional vision sensors (6), they capture series of frames which contain

enormous amounts of redundant data, wasting memory and computational resources to

process them. Whereas data captured by the dynamic vision sensors contain incremen-

tal changes in frames in the form of streams of events, enabling SNNs to process this

data with less computational power, data storage, and power consumption than ANNs.

1.1 Problems with Implementation

Eventhough SNNs have found to be as computationally powerful as conventional ANNs,

practical SNNs implementations have not reached same accuracy levels as their coun-

terparts on many machine learning tasks such as MNIST digit recognition. The main

reason for this is non-differential nature of spike signals in SNNs but differential acti-

vation functions are vital to the learning using back propegation used in conventional

ANNs.

Recently a technique called rate-based learning has been proposed by (1) in which

different data representations were used between training and testing by training a

convolutional ANN and developing conversion algorithms which convert the trained

weights into equivalent SNN weights. However, in these methods, details of statis-

tics in spike trains which are required for processing event-based senor data can not be

precisely represented by the data representation used for training.

There is an other kind of technique called spike-based learning in which learning

directly works on spike trains by devising biologically plausible learning rules such

as STDP (2). However using this method, training is possible to a single layer using

unsupervised learning techniques.



Another problem in implementing SNNs is the lack of available frame-free, event-

based data sets. Full potential of the SNN cannot be assessed unless we have a data set

which is tuned to work on ANN i.e., event-based data.
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CHAPTER 2

NEURON AND SYNAPSE MODELS

2.1 Basic definitions

A biological neuron is surrounded by a cell membrane which always maintains a poten-

tial difference between its interior and its surroundings called the membrane potential

of the neuron vm. When stimulus to neuron is taken off, at steady state neuron’s mem-

brane potential reaches a value called the resting potential vrest of the neuron, which

is around −65 mV . When a positive stimulating current is injected into the neuron,

its membrane potential will increase and if it increases beyond a certain value called

threshold potential vth ≈ −52 mV , neuron generates a spike and resets to a voltage

called reset potential vreset ≈ −70 mV . Once neuron generates a spike, the neuron

can not generate another spike with any amount of stimulus, until a certain duration of

time is elapsed called the refractoty period trefr ≈ 1ms. The average number of spikes

over long time that a neuron generates is called the firing rate f of the neuron, which is

around 10 Hz.

2.2 An Isolated Neuron

Because of the charge building dielectric nature of the membrane, it acts like a capacitor

C. Also the membrane is not a perfect dielectric, buts its charge leaks over time. There-

fore the membrane acts also like a resistor of resistance R which keeps on dissipating

its charge. So, the neuron can be described by the following differential equation:

τm
dvm
dt

= vrest − vm (2.1)

where τm, vm, vrest are the time constant, membrane potential, and resting potential of

the membrane respectively. Also, τm = R.C, is approximately 20 ms for biological
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Figure 2.1: Electrical equivalent circuit of an isolated neuron
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Figure 2.2: Response of an isolated neuron

neurons. From equation 2.1 an equivalent electrical circuit can also be obtained as

shown in figure 2.1.

So, an isolated neuron reaches steady state when its membrane potential is equal

to its resting potential. Figure 2.2 shows the response of an isolated neuron with two

different starting values for the membrane potential. It is clear from the plot that the

neuron reaches steady state when vm is equal to vrest.
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Pre-synaptic
Neuron

Post-synaptic
Neuron

Synapse

Figure 2.3: Synapse connecting two neurons

2.3 Model of a Synapse

The neuron which drives a synapse is called the pre-synaptic neuron and the synapse

which is driven by the synapse is called the post-synaptic neuron.The electrical equiva-

lent of a synapse has a battery of value equal to the equilibrium potential of the synapse,

E, in series with the variable resistor of conductance g as shown in the figure 2.4. Where

+

-

vm

g

E

i(t)

Figure 2.4: Electrical equivalent circuit of a synapse

vm is the membrane potential of the post-synaptic neuron and i(t) is the stimulating cur-

rent injected into the post-synaptic neuron.

When a pre-synaptic neuron generates a spike, the conductance of the synapse in-

creases instantaneously by a value equal to the weight w of the synapse. Otherwise, the

conductance keeps on decaying exponentially with time described the equation 2.2.

τ
dg

dt
= −g (2.2)

The stimulating current i(t) injected into the post-synaptic neuron by the synapse is

given by the equation 2.3.

i(t) = g.(E − vm) (2.3)

There are two kinds of synapses namely excitatory and inhibitory synapses depending

on the polarity of i(t).
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2.3.1 Excitatory Synapse

For an excitatory synapse, the value of equilibrium potential Eexc and the time constant

τe are approximately 0 V and 1 ms in biological neural networks. So, equations which

govern the variation of excitatory synapse conductance are give below.

ge = ge + w; when pre-synaptic neuron fires

τe
dge
dt

= −ge; Otherwise

The current supplied by the excitatory synapse is given by

i(t) = ge.(Eexc − vm)

= ge.(0− vm)

= −ge.vm

As will be discussed later, membrane potential vm always varies between its thereshold

voltage vth and reset voltage vreset. The typical values of vth and vreset are−52mV and

−65 mV respectively. So, the effect of a non-zero conductance ge is that the current is

always injected into the post-synaptic neuron, thereby increases its potential.

2.3.2 Inhibitory Synapse

For an inhibitory synapse, the value of equilibrium potential Einh and the time constant

τi are approximately −100 mV and 2 ms in biological neural networks. So, equations

which govern the variation of inhibitory synapse conductance are give below.

gi = gi + w; when pre-synaptic neuron fires

τi
dgi
dt

= −gi; Otherwise

6



The current supplied by the excitatory synapse is given by

i(t) = gi.(Einh − vm)

= gi.(−0.1− vm)

So, the effect of a non-zero conductance gi is that the current is always drawn out of the

post-synaptic neuron, thereby decreases its potential.

2.4 Neuron connected to both types of synapses

Let us analyse the response of a neuron connected to both types of synapses as shown

in figure 2.5. The electrical equivalent circuit of this network is given in the figure 2.6.

Excitatory
synapse

Inhibitory
synapse

Neuron

Figure 2.5: Neuron connected to both types of synapses

The current i(t) injected into the neuron by both types of synapses is given by

i(t) = gi.(Einh − vm) + ge.(Eexc − vm)

= gi.(−0.1− vm)− ge.vm

7
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+

-
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Figure 2.6: Electrical equivalent circuit of a Neuron connected to both types of synapses

So, the membrane potential vm of the neuron is described the following differential

equation

τm
dv

dt
= vrest − v + i(t)

= vrest − v + gi.(−0.1− vm)− ge.vm

In biological neurons when the membrane potential reaches a certain potential known as

the threshold potential vth of the membrane, neuron generates a spike instantaneously

and resets to a reset voltage vreset and cannot generate a spike for a certain duration of

time called the refractory period trefr of the neuron. Typical approximate values of vth,

vreset and trefr are −52 mV , −70 mV and 1 ms respectively.

Since isolated spikes of a given neuron look alike, the form of the membrane po-

tential does not carry any information. Rather, it is the number and the timing of spikes

which matter.

The response of the circuit shown in figure 2.6 is shown in figure 2.7. The chosen

parameter values are vrest = −65 mV , vreset = −70 mV , vth = −52 mV , trefr =

5 ms, τm = 100 ms, τe = 10 ms, τi = 5 ms, we = 1 ℧, wi = 5 ℧.
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Figure 2.7: Nueron Response
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Figure 2.8: Nueron in a large network

2.4.1 Neuron Embedded in a large Network

If a neuron embedded in a large neural network has incoming excitatory synapses with

conductances ge1, ge2, ......., gek and inhibitory synapses with conductances gi1, gi2, .......,

9



gim, then the total stimulating current i(t) is given by

i(t) = −vm.(ge1 + ge2 + .....+ gen) + (gi1 + gi2 + ......+ gin).(Einh − vm)

= −vm.
∑

k=1

gek + (Einh − vm).
∑

n=1

gin

= −vm.geacc + (Einh − vm).giacc

where geacc =
∑

k=1 gek and giacc =
∑

n=1 gin. The solution of the above differential

equation is given by the following equation:

vm =











(1− exp(−1+geacc+giacc
τm

t).vrest+giacc.Einh

1+giacc+geacc
, if vm < vth;

vreset, if vm > vth and trefr elapsed;
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CHAPTER 3

MNIST DIGIT RECOGNITION PROBLEM

3.1 MNIST Database

MNIST is a database of handwritten digits, available from (5), which has a training set

of 60000 examples, and a testing set of 10000 examples, with images centered in 28x28

pixel grid and pixel values ranging from 0 to 255. This database has been widely used

as a benchmark in research concerning Image recognition.

3.2 MNIST Digit Recognition using Convolutional Net-

works

In Deep Neural Networks, the first layer learns primitive features, such as an edge in

an image. Second layer learns more complex features, like a corner in an image. The

process is repeated in successive layers until the system can reliably recognize images.

Convolutional Neural Network (CNN), the most successful deep neural network arhi-

Image

Convolution
Layer

Pooling
Layer Output

Layer

Figure 3.1: CNN architecture

tecture for image recognition, has basically three set of layers namely, convolutional,



pooling and an output layer and is shown in figure 3.1. There is an input layer of 28x28

neurons which encode the pixel intensities of the MNIST image, which is followed by

a convolutional layer with m feauture maps and nxn kernel associated with each fea-

ture map. So, if we choose a stride distance of 1, then convolutional layer consists of

mx(28− n+ 1)x(28− n+ 1) neurons. Each receptive field in a feature map has same

set of weights and biases. The convolutional layer is followed by a pooling layer, and

finally, there is an output layer of 10 neurons with fully connected connections from the

pooling layer to classify the image. Backpropegation is the most widely used algorithm

to train these networks.
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CHAPTER 4

METHODOLOGY

Input to SNN should be in the form of spikes. So, the first step is to convert image

into spike data. We used Poisson process to convert frame-based data to spike-based

data. We used a python based simulator called Brian (3) to train our proposed network.

Then we analyzed the accuracy of the network while applying different optimizations

on the trained weights. Then we finally implemented the proposed network for MNIST

handwritten digit recognition in hardware.



CHAPTER 5

IMAGE PRE-PROCESSING

The process of converting real world information such as intensity of pixel in an image

to spike trains is called neural encoding. Each pixel in an image corresponds to a

randomly distributed spike train with an average firing rate proportional to the intensity

of that pixel. Here, firing rate is the number of spikes per unit time. We, use poisson

distribution to generate the spike train as described in (4).

Let f be the required average firing rate of the poisson distributed spike train, then

the average time period of the spike train is

T =
1

f

In otherwords, T is the time duration between two spikes. That means, on an aver-

age, in time duration T , we can have at most one spike. If we choose simulation time

step△t such that

△t << T

then △t
T

= f△t gives the probability of spike occurrence in time △t. If fmax is the

maximum possible firing rate, then we need to choose△t such that

△t <<
1

fmax

fmax△t << 1

So, at each time step we will compare△t.f with a random number between 0 and 1. If

the random number is less than f.△t, then there is spike occurrence in that time step,

otherwise there is no spike in that time step.

If 1/fmax or Tmin approaches △t, the generated spike train is not any more ran-

dom in nature but uniformly distributed spike train. So, higher average firing rate will

generate uniformly distributed spike train, which will in effect reduce the accuracy of

recognition because spike trains generated by biological neurons are random in nature.



If we reduce △t to compensate for increase in f , we will have to simulate the

network over many time steps or bins. Also f should not be too small because network

will not be able to recognize the image. So, there is a clear trade-off between △t and

f . The raster plot for an average firing rate 06 63.75 Hz is shown in figure 5.1.

0 50 100 150 200 250 300 350
Time (ms)

2

4

6

8

10

T
ri
a
l 
N
o
.

Figure 5.1: Raster plot for an average firing rate of 63.75 Hz

In the hardware implementation, we used 32-bit linear feedback shift register (LFSR)

to generate random numbers. A 3-bit LFSR is shown in figure 5.2. Also, in our hard-

ware implementations, we used a time step of 0.5 ms.

15



D0 D1 D2Q0 Q1 Q2

CLK

Figure 5.2: Linear Feedback Shift Register
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CHAPTER 6

SNN ARCHITECTURE

The arhitecture and learing method are adopted from (2). There are 784 input neurons

which carry no model but generate spike trians with an average frequency proportional

to the pixel value of that input.

There is one layer of excitatory neurons. Input and excitatory layer of neurons are

connected by excitatory synapses in all-to-all fashion.

There is one layer of inhibitory neurons and the number of inhibitory neurons is equal

to the excitatory neurons. Here the inhibitory neuron also does not carry any model

but generates a spike whenever its corresponding pre-synaptic excitatory neuron fires.

There are excitatory synapses from excitatory neurons to inhibitory neurons in one-to-

one fashion. Also there are inhibitory connections from the inhibitory neurons to the

Input
Neurons

Excitatory
Neurons

Inhibitory
Neurons

Figure 6.1: Network Architecture

the excitatory neurons connected in i ! = j fashion, i.e, each excitatory neuron receives

connections from all inhibitory neurons except from the one which it drives. Like in-

put neuron, inhibitory neuron also carry no model but generates a spike whenever its

corresponding driving excitatory neuron fires. So, whenever an excitatory neuron fires,

membrane potential of all other neurons drops through the inhibitory connections from

the inhibitory neuron corresponding to the fired excitatory neuron. This mechanism



creates a competition among all excitatory neurons. Figure 6.1 shows a sample archi-

tecture with 5, 3 and 3 input, excitatory and inhibitory neurons respectively. Green and

red colours in the figure represent forward and backward connections respectively.

6.1 Learning

During learning synapses act in two ways. They act like variable resistors and thus

transmit spikes with a variable conductance. Additionally, they adapt weights depend-

ing on the activity of the neurons to which they are connected and thus can learn. All

synapses from input neurons to excitatory neurons are learned using STDP as explained

in (2). Each synapse keeps track of three values namely its weight w, pre-synaptic trace

apre, which models the recent pre-synaptic spike history. Every time a pre-synaptic neu-

ron fires, apre increases by 1, otherwise decays exponentially with time constant τpre as

described by the equation 6.1.

τpre
dapre
dt

= −apre (6.1)

When a post-synaptic neuron fires, the change in the weight of the synapse△w is given

by equation 6.2

△w = η(apre − atar)(wmax − w)µ (6.2)

where η is the learning rate, wmax is the maximum weight, and µ determines the depen-

dence of the update on previous weight, atar is the target value of the pre-synaptic trace

at the moment of a post-synaptic spike. So, when a synapse does not receive sufficient

number of pre-synaptic spikes, the value of apre − atar will be negative, and △w is

negative. this mechanism ensures that pre-synaptic neurons that rarely lead to firing of

the post-synaptic neuron will become more and more disconnected.

We used a python-based simulator called Brian (3) to train our network and obtain

trained weights.

Brian(3) is a free, open source simulator for spiking neural networks. It is written

in the Python programming language and is available on almost all platforms

18



6.2 Assigning Class to Excitatory Neurons

After the training is over, we keep the obtained weights constant and will present the

entire training set to the network and assign each neuron a class, based on its highest

average number of spikes to the ten classes of digits.

6.3 Testing

The activity of the class-assigned network is then used to measure the classification

accuracy of the network. Each test image is presented to the network, and the predicted

image is the class which has the highest average number of spikes over all its neurons.

This type of learning, where network learns by itself is called unsupervised learning.

We variation of performance accuracy while varying the number of excitatory neu-

rons is shown in table 6.1.

No. of Neurons Performance Accuracy (%)

50 74.68

75 80.60

100 81.09

400 91.63

Table 6.1: Accuracy vs No. of Excitatory Neurons
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CHAPTER 7

ALGORITHMS AND HARDWARE

IMPLEMENTATION

7.1 Basic Version

Algorithm 1 Network

1: procedure NETWORK(image, nSpikes, scalingFactor)

2: isInhFired[i] = 0 for all i in nExcNeurons

3: ge[i][j] = 0 for all i in nExcNeurons and j in nInputs

4: gi[i][j] = 0 for all i in nExcNeurons and j in nInhNeurons

5: for i = 0→ nBins do

6: for(i = 0→ nExcNeurons) accGe[i] = 0

7: for j = 1→ nInpNeurons do

8: if(ISINPFIRED(image[j], scalingFactor)) for (k = 1 → nExcNeurons) ge[k][j] ← ge[k][j] +

weightMat[k][j]

9: else for (k = 1→ nExcNeurons) ge[k][j]← ge[k][j]− (ge[k][j]/τe).△t

10: for (i = 1→ nExcNeurons) accGe[i]← accGe[i] + ge[k][j]

11: if(i⇔ 0) newImageF lag ← true

12: else newImageF lag ← false

13: ExcNeuron(accGe, accGi, isInhFire, nSpikes, newImageF lag)

14: accGi[i] = 0 for all i in nExcNeurons

15: end for

16: for j = 1→ nInhNeurons do

17: if(isInhFired[j]) for(k = 0→ nExcNeurons) gi[k][j] = gi[k][j] + 17

18: else gi[k][j] = gi[k][j]− (gi[k][j]/τi).△t

19: gi[j][j]← 0;

20: for (i = 1→ nInhNeurons) accGi[i]← accGi[i] + gi[k][j]

21: end for

22: end for

23: end procedure



Algorithm 2 Excitatory Neuron

1: procedure EXCITATORYNEURON(accGe, accGi, isInhFired, nSpikes, newImageF lag)

2: if newImageF lag then

3: for i = 1→ nExcNeurons do

4: vm[i]← vrest

5: timer[i]← 0

6: end for

7: end if

8: for i = 1→ nExcNeurons do

9: if (vm[i] > threshold[i]) ∧ (timer[i] > refrPeriod) then

10: vm[i]← vreset

11: isInhFired[i]← true

12: timer[i]← 0

13: nSpikes[i]← nSpikes[i] + 1

14: else

15: isInhFired[i]← false

16: timer[i]← timer[i] +△t

17: drive[i]← (accGi[i].(vexc − vm[i])− accGe[i].vm[i]).R

18: △vm[i]← (((vrest − vm[i]) + drive[i])/τm).△t

19: vm[i]← vm[i] +△vm[i]

20: end if

21: end for

22: end procedure

Algorithm 3 Is Input Neuron Fired

1: procedure ISINPFIRED(pixel, scalingFactor)

2: randNum← rand()

3: prob← pixel.scalingFactor.△t

4: if prob > randNum then

5: return true

6: else

7: return false

8: end if

9: end procedure

7.2 Implementation

A network of 50 neurons is implemented. We followed Vivado Design Flow to imple-

ment hardware design. First an accelerator IP is created in vivado HLS with different
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optimizations . Then this IP is integrated with Zynq PS and other peripherals in Vivado

IP integrator. Finally the design is mapped to ZedBoard and evaluated timing using

SDK. The block diagram of the architecture is shown in Figure. 7.1. Important com-

ponents of the design are the accelerator peripheral, Zynq PS, two block RAMS and an

AXI timer. The descriptions of each of the following blocks are given below.

ZynQ

PS

AXI
Timer

Accelerator

BRAM1

BRAM2

A
X

I B
U

S
A

X
I B

U
S

AXI BUS

AXI BUS

AXI BUS

Figure 7.1: Block Diagram of the design

7.2.1 Accelerator

Accelerator is connected directly to two block RAMs and to Zynq PS through AXI

Lite interface. The accelerator reads in pixel data of each image from BRAM1 and the

calculated number of spikes generated by each neuron are writtern to BRAM2.

7.2.2 BRAMs

BRAM1 gets pixel array from Zynq PS and sends this data to the accelerator. Similarly,

accelerator writes the number of spike generated by each neuron to BRAM2 and Zynq

PS will read this data.
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7.2.3 AXI Timer

This peripheral is used to get the time difference between the hardware and software

execution.

7.2.4 Zynq Programmable System

Zynq PS which hosts ARM processor is conncted to the two block RAMS via BRAM

interface.

7.2.5 Speed Optimized Hardware

The utilization reports of the area-optimized network are tabulated in 7.1. The design

is running at 9.875 ns and with an average latency of 14586737 clock cycles.

Type of Resource Numbers (%)

LUTs 53200

RAMB36 96

RAMB18 50

DSPs 174

Table 7.1: Utilization of speed-optimized Network

7.2.6 Accuracy in Hardware and Time taken

The accuracy of this 50 neuron network implemented in hardware for 2000 test images

is 74%. And the time taken for processing all 2000 images in 19.44 seconds.

7.3 Extended Version

The basic version of the algorithm can implement only fewer number of neurons. So, we

introduced a time-multiplexed algorithm which can implement any number of neurons.

And we successfully implemented a 400 neuron network using this algorithm.
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Algorithm 4 State Update

1: procedure STATEUPDATE(neurNum,weightArr, geArr, giArr, pixelArr, scalingFactor, ∗nSpikes)

2: accGe← 0

3: accGi← 0

4: for i = 1→ nInputs do

5: prob← pixelArr[i]. scalingFactor

8
.△t

6: if isInputF ired(prob) then

7: geArr[i]← geArr[i] + weightArr[i]

8: else

9: geArr[i]← geArr[i]− geArr[i] ∗ △t

τe

10: end if

11: accGe← accGe+ geArr[i]

12: end for

13: for i = 1→ nExcNeurons do

14: if i 6= neurNum then

15: if isInhFired[i] then

16: giArr[i]← geArr[i] + inhWeight

17: else

18: giArr[i]← giArr[i]− giArr[i] ∗ △t

τi

19: end if

20: accGi = accGi+ giArr[i]

21: end if

22: end for

23: if (vm[neurNum] > threshold[neurNum]) ∧ (timer[neurNum] > trefr) then

24: vm[neurNum]← vreset

25: isInhiF ired[neurNum]← 1

26: timer[neurNum]← 0

27: ∗nSpikes← ∗nSpikes+ 1

28: else

29: vm[neurNum]← vm[neurNum] + ((vrest − vm[neurNum])− accGe.vm[neurNum] + accGi.(Einh −

vm[neurNum])).△t

τm

30: timer[neurNum]← 0

31: timer[neurNum]← timer[neurNum] +△t

32: end if

33: end procedure

Algorithm 5 Process Single Image

1: procedure PROCESSSINGLEIMAGE(pixelArr, scalingFactor, nSpikes, weightArr, geArr, giArr)

2: for i = 1→ nBins do

3: for j = 1→ nExcNeurons do

4: StateUpdate(j, weightArr[j], geArr[j], giArr[j],&nSpikes[j], pixelArr, scalingFactor)

5: end for

6: end for

7: end procedure
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CHAPTER 8

ANALYSIS OF WEIGHTS

8.1 Distribution of Trained Weights

Figure 8.1 shows the histogram of weights terminating on three neurons belonging to

different classes. If we consider a particular neuron, it has only few synapses with
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Figure 8.1: Histogram of weights to three neurons belonging to different classes (℧)

considerable weight. By considering this fact into consideration, we can save lot of

memory needed to store weights. But different neurons have a different set of consid-

erable weight synapses, posing a challenge to build the network. This challenge can be

taken up in future work.

Also figure 8.2 shows the histogram of all weights in a 400 neuron network. It is

seen that most of the synapses have negligible weight associated with them.



0.0 0.2 0.4 0.6 0.8 1.0
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Figure 8.2: Histogram of all weights in the network (℧)

8.2 Imposing threshold on weights

Because of the huge number of negligible weights, we can put a threshold on weights

such that all weights below the selected threshold are negligible. We have evaluated

the performance accuracy of the network for a network of 100 neurons with 2000 test

images while varying the threshold imposed on weights, and the results are tabulated in

table 8.1.

Also the variation of performance accuracy over threshold imposed on weights is

plotted in figure 8.3. As is obvious from the plot, we can increase the threshold upto

0.25 ℧ without compromising on accuracy, thereby neglecting approximately 80% of

the weights.
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Threshold on weight(℧) % No. of weights removed Accuracy (in %)

0.00 NA 78.95

0.05 66.30 78.45

0.10 71.97 79.40

0.15 76.24 80.05

0.20 82.41 79.45

0.25 79.57 79.00

0.30 85.39 77.40

0.35 88.45 72.95

0.40 91.75 67.00

0.45 94.37 54.40

0.50 96.24 48.55

Table 8.1: Effect of threshold on weights
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Figure 8.3: Accuracy vs Threshold imposed on weights
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8.3 Quantization and Threshold on weights

For a network of 100 neurons, we tabulated the performance accuracy of the network

while varying the bit width of weights in table 8.2, and the number of test images used

are 2000.

Bit Width Accuracy (in %)

2 64.6

3 38.4

4 32.75

6 59.95

8 74.7

9 78.3

12 78.7

Table 8.2: Effect of quantization

Now, we applied a threshold of 0.25 ℧ on weights along with quantization and the

results are tabulated in table 8.3

Bit Width Accuracy (in %)

2 64.6

4 70.75

6 76.3

8 78.15

9 78.45

12 78.75

Table 8.3: Effect of quantization and threshold on weights

The results are plotted in figure 8.4.
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APPENDIX A

eFPGA ARCHITECTURE EVALUATION FOR SOC

DESIGNS

Quite often specifications are not well defined when a design project starts. Several cus-

tomers/markets require multiple variants of an Application Specific Integrated Circuit

(ASIC). Also some of the standards such as network standards keep on changing. Same

ASIC may evolve over time for a specific portion of the logic such as FSM ogic, filters

etc. So, portions of ASIC which need programmablity can be replaced by embedded

FPGAs.

eFPGA CPU Timers

Memory
Ethernet
Interface

Memory 

control

System Bus

Figure A.1: eFPGA in SOC

A simple eFPGA fabric embedded in an SoC design is shown in figure A.1 This

hardware programmability comes at the cost of increase in chip area. If the area over-

head is reasonable, then we can use embedded FPGAs (eFPGAs).

A.1 eFPGA Design Flow

Select blocks hich can benifit from programmable fabric. The embedded programmable

core should have enough headroom to accomodate variations in the design.The through-



put requirements are as in hard-wired ASIC design. So, if the timing is slower in FPGA,

then the additional area overhead should be considered in order to accomodate addi-

tional datapath to make programmable fabric as fast as ASIC.

A.2 EFLX embedded FPGA cores

EFLX, an eFPGA fabric from Flexlogix technologies (7), provides an array with any

size, thousands of I/O′s, optional DSP acceleration. optional RAM of any size/kind,

multiple clocks abd software that maps our RTL into EFLX array.

A.3 Purpose and Scope of this work

The purpose and scope of this study is to map both control intensive and DSP intensive

designs to EFLX (from Flexlogic) arrays and Xilinx architectures, and to evaluate the

performance of these implemented designs compared to ASIC in term of speed and

area.

A.4 Methodology

RTL designs are mapped to ASIC using Cadence RC synthesis tool with UMC-28 HPC

node libraries. For FPGA designs, the netlist in .edif format is generated using Synplify

Pro. This netlist is implemented into both EFLX arrays and Xilinx’s Virtex architec-

tures.

estimated ASIC area =
Cellarea

0.6
m2

estimated EFLX area =
3

4
.targetfrequency.

No.LUTs

2700
m2

The analysis is done for 2 DSP intensive designs and 2 control intensive designs as

shown in table below.
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A.5 Conclusion

The area overhead for control intensive designs is approximately 200 times as that of

ASIC. And in DSP intensive designs, the area overhead is approximately 100 times as

that of ASIC.

Table A.1

Design speed(MHz) Device Clock Feasible(MHz) RBB LUT FF DSP BRAM EFLX area in sq.m ASIC area in sq.m Overhead

DSP-1 200 Eflex-V4 clk-1 63.9 3718/4560 12936 7963 107/120 0 11.2467 0.102338 110

clk-2 245.7

Xilinx-V4 clk-1 77.68 NA 12523 7963 107 0 NA

clk-2 229.15

20 Eflex-V4 clk-1 68.66 3846/4560 13337 7582 108/120 0 10.7915 105.5

clk-2 144.07

Xilinx-V4 clk-1 82.36, 44.44 NA 12921 7582 108 0 NA

clk-2 255.16, 269.54

DSP-2 104 Eflex-V4 clk-1 59.3 1759/2360 6268 4489 6(40) 0 3.0535 0.036556 83.53

clk-2 1075.26

Xilinx-V4 clk-1 71.85 NA 6223 4489 6 0 NA

clk-2 1038.42

10.4 Eflex-V4 clk-1 53.63 1760/2360 6147 4479 6(40) 0 3.3112 90.57

clk-2 1075.26

Xilinx-V4 clk-1 46.84 NA 6072 4479 6 0 NA

clk-2 77.166

104 Eflex-V7 clk-1 57.3 1881/2360 9930 4624 6(40) 0 5.006 136.95

clk-2 1075.26

Xilinx-V7 clk-1 105.38 NA 4818 4479 6 0 NA

clk-2 1787.67

10.4 Eflex-V7 clk-1 58.034 1987/2360 9941 4479 6(40) 0 4.95 135.4

clk-2 867.3

Xilinx-V7 clk-1 107.06 NA 3872 4535 6 0 NA

clk-2 1751.8

CONT-1 204 Eflex-V4 clk 56.15 1305/2520 4805 2292 0 0 4.868 0.019392 251

Xilinx-V4 clk 58.04 NA 4780 2292 0 0 NA

20.4 Eflex-V4 clk 50.29 1171/2520 4492 2239 0 0 5.081 262.04

Xilinx-V4 clk 61.79 NA 4405 2239 0 0 NA

204 Eflex-V7 clk 51.82 1397/2520 8669 2357 0 0 9.63 506.8

Xilinx-V7 clk 160.544 NA 3901 2350 0 0 NA

CONT-2 204 Eflex-V4 clk 48.9 7332/15750 27549 15342 0 0 30.61 0.110363 278.27

Xilinx-V4 clk 53.93 NA 27527 15342 0 0 NA

20.4 Eflex-V4 clk 43.1 7157/15750 26869 15309 0 0 34.71 315.54

Xilinx-V4 clk 39.52 NA 26692 15309 0 0 NA

204 eFlex-V7 clk 39.6 9290/15750 54239 16838 0 0 77.91 708.27

Xilinx-V7 clk 114.8, 132.01 NA 19808 15357 0 0 NA
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