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ABSTRACT

KEYWORDS: Infrastructure Based Wireless Network; Independent disc model;

Percolation

We consider an infrastructure-based wireless network comprising two types of nodes,

namely relays and sinks; the sink nodes are connected to a wireline infrastructure, while

the relay nodes are used to extend the network coverage by providing multi-hop paths to

the sink nodes. We are interested in understanding the coverage and percolation prop-

erties of such infrastructure-based wireless networks; In this thesis, we present results

from an extensive simulation study that provide valuable insights towards understand-

ing these properties.

Coverage Properties: We first consider the SNR (Signal to Noise Ratio) model

that yields circular coverage disks around each node. Thus, we say that a location is

covered if it simply lies within the range of some node that has a multi-hop path to a

sink node; otherwise the location is said to be uncovered or vacant. We compute the

fraction of vacant region (average vacancy) created in the SNR model as a function

of the sink and relay node densities. We also evaluate the average vacancy created

in a traditional coverage processes model, referred to as the independent-disk model;

we observe that the average vacancy created in the independent-disk model serves as

a lower bound for that created in our model. Our other results for the SNR model

includes a study on the hop-count constrained vacancy, and a network optimization

problem (where we minimize the average deployment cost of the network subject to a

constraint on the average vacancy). We next extend our results to a more general SINR

(Signal to Interference plus Noise Ratio) model which takes the interference (caused by

other nodes in the network) into account while evaluating the nodes’ coverage regions.

Percolation Properties: For an all-infrastructure (or all-sink) network it is known

(from continuum percolation) that there exists a finite-valued threshold on sink density

such that above this threshold the network contains a giant connected component, while

such a component does not exist for sink densities below the threshold. This non-
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trivial threshold on sink density where the network undergoes a sudden transition from a

disconnected to an almost-connected network is referred to as the percolation threshold.

Following the procedure devised in Martens and Moore, we first compute the value

of the percolation threshold for an all-infrastructure network. Next, we extend their

procedure to a 1-hop constrained, infrastructure-based network; here, since both sink

and relay nodes are involved, we obtain a percolation boundary (instead of a single

percolation threshold) such that giant-components are formed for values of sink and

relay density pairs beyond the boundary. Finally, we have also computed the percolation

boundary for a restrictive version of our model (referred to as the Poisson AB model)

where two sink nodes are connected only via. a relay node. We compare the above

percolation threshold with the upper bound proposed by Iyer and Yogeshwaran; we

find that the latter bound is weak for smaller values of sink densities, while being a

good approximation at higher values.
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NOTATION
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CHAPTER 1

Introduction

Coverage is generally defined as the fraction of network area where the signal strength

is greater than some threshold. Vacancy is uncovered part of the network area i.e., where

the signal strength is less than the threshold. Vacancy is complement of coverage. Cov-

erage is one of the most important metrics of a wireless network. Increase in the number

of users and expansion of the urban areas demands the high coverage of the network.

With the modern advancement of robotics and Internet of things, there is a need for

good coverage for the reliable communication between the robots. So, coverage has

become an important issue for the network engineers to make the communication more

reliable. Let us know first the different types of wireless networks.

Wireless networks are generally classified into two categories (generally called topolo-

gies), all-Infrastructure and Infrastructure-based. In all-infrastructure wireless network,

all the devices or users are connected to one of the access points among a set of access

points (nodes) that are connected directly to the wireline infrastructure. Here, a device

is said to be connected if it lies in the coverage region of one of the access points. This

is a centralized network where there is no need of connectivity between the nodes or

access points. Most of the networks used are all-infrastructure networks as these are

easy to deploy.

On the other hand, Infrastructure-based wireless networks comprises of two types

of nodes, namely sink and relay nodes. Sink nodes are similar to the nodes in all-

infrastructure case and relay nodes are used to extend the network coverage by provid-

ing multi-hop paths to the sink nodes that are directly connected to the wireline infras-

tructure. A device is said to be covered if it is connected directly to a sink node or to a

relay node that is connected to a sink node through multihops. Here, there is a need of

connectivity between sink-relay and relay-relay nodes unlike in all-infrastructure case.

So, it is not easy to deploy these networks without proper planning. With the demand

of more and more coverage, the deployment of infrastructure-based wireless networks

is drawing attention.



Study of coverage properties of one-dimensional infrastructure-based wireless net-

works is already presented in previous literature [K. P. Naveen and Kumar Anurag

(2016)]. They can be used in real world applications like sensor nodes deployed along

the border for intrusion detection, vehicular network along a highway with vehicles

as relay nodes and base stations installed along the highway as sink nodes, etc. This

study is applicable only for the one-dimensional applications. As most of the required

practical applications are in two-dimensions, we are extending this to study the cover-

age properties of Two-dimensional infrastructure-based wireless networks. Our study

is applicable to a femto-cellular setting where a large number of femto cell base stations

(relays) to extend the coverage of existing cellular base stations (sinks), for example 5G

and next generations. It can be applied to a vehicular network in a city or town where

vehicles themselves act as relays to extend the coverage of the base stations installed. It

can also be applicable to the reliable communication between the robots where robots

act as relays and routers acts as sinks. Robots themselves are used to extend the cover-

age of the routers.

As we are using more and more number of nodes to increase the coverage, one of

the important factor we need to consider seriously is network deployment cost. It is one

of the important issues for the networking or telecom companies as they have to raise

the call and internet charges increasing burden on the users. We have studied how the

optimal cost varies with vacancy constraint for different relay and sink node costs.

In the next part we will see another property of network called Percolation. Percola-

tion depends on the connectivity between the nodes. A network is said to be percolated

if there exists a connection from one side to another side of the network i.e., there exists

a cluster of nodes that spans both sides of the network. The minimum density of the

nodes required for the system to percolate is called percolation threshold. If there is

high coverage, there is a greater chance of getting percolation of the network. Perco-

lation theory has been used to find connectivity properties of many disordered physical

systems, for example lattice percolation. In [Mertens Stephan and Moore Cristopher

(2012)], authors used union-find algorithm to compute the percolation thresholds for

two dimensional percolation of arbitrary shaped objects like discs, randomly rotated

sticks, aligned and rotated squares. We used this algorithm to find the percolation

threshold of two-dimensional infrastructure-based wireless network i.e., at what den-

sities of sink and relay nodes the percolation happens. This study gives us the idea of
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how dense the relays and sink nodes should be there in order to the message to travel

from one end to the other.

1.1 Thesis Outline

The rest of the thesis has been organized as follows. In Chapter 2, we broadly review

the existing literature related to the coverage and percolation properties of wireless

networks. Chapter 3 describes the system model for vacancy, hop-constrained vacancy

and cost optimization.

In Chapter 4, we simulate average vacancy and lower bound in SNR case. We study

the hop-constrained vacancy in SNR case. We minimize the network deployment cost

subject to a vacancy constraint. In chapter 5, we simulate average vacancy and lower

bound for vacancy in SINR case. In Chapter 6, we study the percolation properties of

the network. Percolation thresholds of ’any’, ’horizontal’ and ’both’ percolations are

found for the following cases: (i) β = 1 (ii) β ∈ [0, 1] and one-hop connectivity (iii)

β ∈ [0, 1] and strictly one-hop connectivity.

3



CHAPTER 2

Literature Survey

2.1 Coverage survey

Traditional coverage processes, where all nodes are of same type (sinks), have been ex-

tensively studied in the book [P. J. Diggle (1990)]. Application of coverage processes to

wireless communication have been discussed in [Jeffrey G. Andrews, Francois Baccelli

and R. K. Ganti (2010), H. S. Dhillon, R. K. Ganti and J. G. Andrews (2011), Baccelli

Francois and Blaszczyszyn Bartlomiej (2000)]. In [Jeffrey G. Andrews, Francois Bac-

celli and R. K. Ganti (2010)], authors considered SINR model where the region covered

by a node depends on both the signal power and the interference power received from

all other nodes. In [H. S. Dhillon, R. K. Ganti and J. G. Andrews (2011)], nodes are

heterogeneous in terms of their transmit power and their SINR threshold.

Desai and Manjunath in [M. Desai and D. Manjunath (2002)] considered a network

with a finite number of nodes deployed on a line of finite length and obtained the exact

formula for the probability that the entire network is connected. Miorandi and Alt-

man in [Miorandi Daniele and Altman Eitan (2006)] considered a queuing theoretic ap-

proach to compute the coverage probability for one-dimensional networks. One of the

early work considering an infrastructure-based architecture is that of Dousse [Olivier

Dousse, Patrick Thiran and Martin Hasler (2002)] in which the relay nodes are Poisson

distributed and the sink nodes are placed equi-distance from each other. In [S. I. Sou

(2010)], Suo obtained the probability that all vehicles (relay nodes) within a road seg-

ment of finite length are connected to both road side units (sink nodes) located at either

ends of the road segment. In [S. C. Ng, G. Mao and B. D. O. Anderson (2012)], more

than two sink nodes are deployed at arbitrary locations within a segment of finite length

and the relay nodes are Poisson distributed; the coverage probability is obtained.

In [K. P. Naveen and Kumar Anurag (2016)], authors considered a one-dimensional

infrastructure based wireless network with sink and relay nodes, poisson distributed



along the positive real line. The authors drawn an analogy between the connected com-

ponents of the network and the busy periods of an M/D/∞ queue, and using renewal

theoretic arguments, they obtain an explicit expression for the average vacancy in SNR

case. They also computed an upper bound for vacancy by introducing the notion of left-

coverage. They proved a lower bound by coupling the model with an independent-disk

model, where the sinks’ coverage regions are i.i.d. They studied the problem of mini-

mizing network deployment cost subject to a constraint on the average vacancy. They

also conduct simulations to understand the properties of hop-constrained coverage in

SNR case.

2.2 Percolation survey

In [Mertens Stephan and Moore Cristopher (2012)], authors found precise values of

the percolation transition for disks, squares, rotated squares, and rotated sticks in two

dimensions, and confirmed that these transitions behave as conformal field theory pre-

dicts. They also measured the finite-size exponent, giving strong evidence that these

continuum models are in the same universality class as lattice percolation. They found

that the probability of a wrapping cluster at criticality is precisely that predicted by

conformal field theory.

Two models, the Boolean model and the random connection model, are treated in

detail in [R. Meester and R. Roy (1996)], and related continuum models are discussed.

Important techniques are applied to obtain results on the existence of phase transitions,

equality and continuity of critical densities, compressions, rarefaction, and other aspects

of continuum models. In [Iyer, K. Srikanth and D. Yogeshwaran (2012)], authors stud-

ied the percolation properties of AB Poisson Boolean model which is a generalization

of the AB percolation model on discrete lattices. They showed the existence of percola-

tion for all dimensions greater than 2 and derive bounds for a critical intensity. For AB

random geometric graph, they derived a weak law result for the largest nearest-neighbor

distance and almost-sure asymptotic bounds for the connectivity threshold. In [Penrose

and D. Mathew (2014)], continuum percolation of bipartite random geometric graph is

discussed. Authors give a strong law of large numbers for the connectivity threshold of

this graph.
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CHAPTER 3

System Model

3.1 Vacancy

We consider a square area of size L. We place a large number of sink and relay nodes

according to poisson distribution with mean parameter λ. Each node is independently

a sink node with probability β ∈ (0,1]. Each node has a circular coverage region of

radius r (r > 0). The area is shown in the figure below. Nodes which are transmitting are

sinks and rest of them are relays. The blue (sink) and green (relay) regions constitutes

the covered region. The remaining white and red (relay node connected to any sink)

portions is the uncovered or vacant region (vacancy is complement of coverage). As

the author in the one-dimensional Infrastructure Based Wireless Network considered

vacancy instead of coverage, we are also considering vacancy. The vacancy is denoted

by vλ,β .

Figure 3.1: 2-D Infrastructure based wireless network: coverage



3.2 Hop-constrained vacancy

As the number of hops increases, the time for communication also increases. In order to

reduce time for communication, we are introducing hop-constrained vacancy consider-

ing maximum number of hops required for the connection. Suppose maximum number

of hops allowed is ’h’, then a point is said to be covered if it is directly connected to

a sink node or is connected to a relay node which is then connected to a sink node in

less than or equal to h hops. Hop-constrained vacancy is denoted by vλ,β,h. It can be

seen in the figure below. Here also, only the blue and green regions constitutes the

hop-constrained covered region.

Figure 3.2: Coverage with one hop constraint

3.3 Cost-optimization

Let CS be the cost of a sink node and CR be the cost of a relay node. Deployment cost

per unit area is given by cλ,β := λβCS +λ(1− β)CR. Our objective is to minimize this

cost subject to the average vacancy constraint.

Minimize(λ,β) cλ,β

subject to vλ,β ≤ v

7



CHAPTER 4

SNR case

We will first consider Signal-to-Noise ratio (SNR) to define the coverage of a node. The

definition of SNR is as follows:

SNR at a point due to a node is defined as

SNR =
P ∗ d−η

N0

(4.1)

where

P = Transmitting power,

d = Distance between node and the point,

η = Path Loss exponent,

N0 = Noise Power.

The point is said to be connected to the node if this SNR is greater than some threshold

SNR (SNRth) i.e., SNR > SNRth. then the formula (4.1) will give

d < (
P

SNRth ∗N0

)
1
η (4.2)

We will take right hand side of equation (4.2) as ’r’ where r is same as we get from

r = argmaxd(SNR > SNRth) (4.3)

So, a point is said to be connected to a node if it is at a distance less than ’r’ from

the node. The coverage of the node is the circle of radius ’r’ around it. Two nodes

are connected if the distance between them is less than ’r’. Finally, to complete the

definition of coverage, a point is said to be covered if it is directly connected to a sink

node or to a relay node that is connected to any sink node through multi-hops.



4.1 Algorithm to find average vacancy of network

Let λ nodes/unitarea be the node density and β is the fraction of sink nodes among all

nodes. The average vacancy for a fixed λ and β is denoted by vλ,β . The algorithm to

find the average vacancy for a square area of side L units for different values of λ and

β is as follows

1. Consider an area of side L units.

2. Fix one value of λ and β.

3. Generate N number of nodes according to a poisson random variable with mean

parameter λL2.

N ∼ poi(λL2) (4.4)

4. Select each as sink node independently according to a bernoulli random variable

with probability of success β (0 < β ≤ 1). It means probability of being a relay node is

1-β.

( It means, sink and relay node densities are λβ and λ(1− β) respectively. This is

similar to generating NS number of sink nodes according to poisson random variable

with mean parameter λβL2 and NR number of relay nodes according to poisson

random variable with mean parameter λ(1− β)L2 )

5. Place the nodes in the square region of area L2 with x and y coordinates of nodes

distributed uniformly i.e., x ∼ unif(0,L) and y ∼ unif(0,L). It means nodes are

distributed uniformly in the region. The region with L=10 will look like as shown in

the figure 4.1.

6. We will find whether the mid-point of the region is vacant or not in order to find the

average vacancy of the region. First, find the initial set of nodes that are connected to

the mid-point.

7. If the set is empty then the midpoint is not connected. Therefore, we will take

vλ,β = 1.

9
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Figure 4.1: Square Region of side L=10 with λ=1 and β=0.4

8. if the set has one or more sink nodes, then the midpoint is connected. Therefore, we

will take vλ,β = 0.

9. If the initial set doesn’t satisfies above 2 conditions, then find the new set of nodes

that are connected to the initial set of nodes and check the above 2 conditions and take

the value of vλ,β accordingly.

10. Repeat this finding of new set of nodes until the new set is empty or has atleast one

sink node and take the value of vλ,β accordingly.

11. Repeat the steps from 3 to 10 for large number of iterations and find the average

vλ,β for that number of iterations. This gives the probability that the mid-point is

vacant (average vacancy) for a particular value of λ and β.

12. Find the vλ,β for different values of λ and β.

4.2 Algorithm to find lower bound of vacancy

Lower bound of vacancy (denoted by wλ,β ) is obtained by placing independent cov-

erage discs (regions) around sink nodes. It is obtained by keeping each sink node at a

time, place poisson randomly generated relay nodes around it and finding the coverage

region for each sink node. The coverage region is the union of the coverage regions of

10



all the sink nodes. This region is larger than the region obtained by placing all poisson

randomly generated (as in average vacancy case) sinks and relays at the same time. The

vacancy calculated in this model is a lower bound to the average vacancy found in pre-

vious section (This is proved in one-dimensional case [K. P. Naveen and Kumar Anurag

(2016)] based on a coupling argument).

Figure 4.2: Independent discs around sink nodes for finding lower bound

In the average vacancy case, the coverage regions of sink nodes are dependant as

the relays nodes are generated by a single poisson process. Hence, this model is called

Dependant-Disc model. Whereas in finding the lower bound, the coverage regions of

sink nodes are independent and identically distributed. Hence this model for finding

lower bound is called Independant-Disc model.

The algorithm for finding the average vacancy for each iteration is ended by the step

10. The algorithm for finding the lower bound is to add the steps given below before

step 11. The following is the algorithm to find lower bound of vacancy for each iteration

for a fixed λ and β.

1. Keep one sink node at the same place as in the previous realization and remove all

other sink and relay nodes.

2. Generate NR number of relay nodes according to a poisson random variable with

mean parameter λ(1− β)L2 and place these relay nodes in the square region of side L

uniformly as before. This will look like the figure 4.3.

11
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Figure 4.3: One sink node with relay nodes

3. Find whether the mid-point of the region is connected to that sink node.

4. Repeat this by placing the other sink nodes one by one with different independent

realizations of relay nodes and find the connectivity of mid-point to each sink node.

5. If the mid-point is connected to atleast one of the sink nodes, then it is said to be

connected and take wλ,β = 0 else wλ,β = 1.

4.2.1 Simulation Results

Figure 4.4 shows average vacancy vs node density λ for different values of β for L=10.

The parameters considered are P = 2W, η = 4, N0 = 5W, SINRth = 0.4. It gives r =

1unit. (These parameters are same for all simulations in SNR case)

Analysis:

* For a particular value of β, average vacancy decreases with increase in λ. It is

because, as node density λ increases, number of sink and relay nodes increases which

increases the coverage. So, vacancy decreases.

* The average vacancy goes to 0 after λ = 2 even for small β values. It means we

need λ > 2 and λ > 3 for the coverage of atleast 80% and 95% respectively.
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Figure 4.4: Average vacancy vs λ for different β values

* For a particular value of λ, as β value increases, the average vacancy decreases.

This is because, increase in β increases the fraction of sink nodes thereby increasing

coverage.

* For a high value of β, low value of λ is enough to get more coverage and for a low

value of β we need high value of λ.

Figure 4.5 shows the average vacancy vλ,β and lower bound wλ,β for different values of

λ and β for L=10.
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Figure 4.5: vλ,β and wλ,β

Analysis:
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* For a fixed value of λ, the difference between vλ,β and wλ,β increases as β in-

creases except for β=1. Hence the lower bound is a good approximation to the average

vacancy for smaller values of β. This is because, as β is small, the distance between

sink nodes is more so that overlapping between adjacent coverage discs is less. So,

it essentially appears as independent disc model where i.i.d coverage discs are placed

around each sink node.

* For a fixed β, the difference between vλ,β and wλ,β increases as λ increases. This

is because, as λ increases, number of nodes increases which increases area of the cov-

erage discs. So, probability of overlapping of adjacent coverage discs increases thus

increasing dependency in the model.

4.3 Hop-constrained vacancy

If the number of hops between the user and the sink node is high, the time required for

communication is more. This delay in communication is not a good criteria as it causes

breaks in the communication if the users are moving. So, we introduce hop-constrained

vacancy where an user is said to be connected if it is directly connected to a sink node

or is connected to a relay node which is further connected to any sink node that is less

than fixed number of hops away. It is denoted by vλ,β,h, where h denotes maximum

number of hops allowed for connectivity.

4.3.1 Simulation results

Figure 4.6 shows the average vacancy vλ,β and hop-constrained vacancy vλ,β,h (from 0

to 9 hops) for β = 0.01 and β = 0.1 for L=10.

Analysis:

* As expected, as the h value increases, the coverage increases as we are allowing

more number of hops.

* As the h value increases to∞, vλ,β,h converges to vλ,β .

14



0 1 2 3 4 5

Node density( λ)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
o

p
 c

o
n

s
tr

a
in

e
d

 v
a

c
a

n
c

y

v
λ , β

 for β=0.01

v
λ , β,h

 for β=0.01

v
λ , β

 for β=0.1

v
λ , β,h

 for β=0.1

h=0 to 9

h=0 to 9

Figure 4.6: vλ,β and vλ,β,h for β=0.01 and β=0.1

* The value of h for the vλ,β,h to be best approximation to vλ,β is high for β=0.01

compared to β=0.1 (9 for β=0.01 and 5 for β=0.1) because as β increases, less number

of hops are required to get the same coverage as unconstrained coverage. When β is

0.01, the sink nodes are sparse, so large number of hops are required to get the same

coverage as unconstrained coverage.

4.4 Cost Optimization

As number of nodes in the network are more, one of the important factor we have to

keep in mind is network deployment cost. As we have two types of nodes, sink and

relay, the costs of sink and relay are different. Generally the cost of sink node is higher

than relay node because sink node is connected to the wireline infrastructure and it has

more hardware complexity, whereas relay node is just to transmit whatever is received.

Let CS be the cost of a sink node and CR be the cost of a relay node. Deployment

cost per unit area is given by cλ,β := λβCS + λ(1− β)CR where λβ is the sink density

and λ(1 − β) is the relay density. Our objective is to minimize this cost subject to the

average vacancy constraint.

Minimize(λ,β) cλ,β

subject to vλ,β ≤ v
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It gives the optimal deployment cost for the average vacancy less than or equal to v. It

is equal to the optimal cost for the coverage more than or equal to 1− v.

We will also find optimal node density λ∗ and sink probability β∗ for an average

vacancy constraint.

4.4.1 Simulation results

Figure 4.7 gives the relation between optimal cost cλ,β and vacancy constraint v for

different relay node costs. Here, we considered relay node cost as 1 unit (CR = 1)

without loss of generality. We took 6 sink node costs CS as multiples of CR and L=10.
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Figure 4.7: Optimal cost vs vacancy constraint (v) for different relay node costs

Analysis:

* For a fixed value of CS , optimal cost reduces with increase in average vacancy

constraint. This is because, as constraint on vacancy increases, we are giving relaxation

to vacancy which requires less number of nodes i.e., low node density.

* If the sink node cost is more, then further reduction in sink node cost do not

significantly reduce network cost. If the sink node cost is less, then further reduction in

sink node cost will have much impact on the optimal cost. From the figure, for v = 0.2,

network cost reduced by 2.8% (from 1.75 to 1.7) if sink node cost changes from 10CR

16



to 8CR and reduced by 39% (from 1.4 to 0.85) if sink node cost changes from 4CR to

2CR.

Figures 4.8 and 4.9 gives optimal node density λ∗ and optimal sink node probability β∗

for CS = 4CR and CS = 10CR respectively.
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Analysis:
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* In both figures, as the vacancy constraint increases, the optimal node density

λ∗ decreases because increase in vacancy constraint means relaxation on the vacancy

which requires less number of nodes are required i.e, low node density.

* In both figures, β∗ increases as vacancy constraint increases. It means, as vacancy

constraint increases (i.e., for less coverage), we need higher fraction of sink nodes com-

pared to that of relay nodes for achieving optimal cost. But for lower vacancy constraint

(for high coverage), we need lower fraction of sink nodes and higher fraction of relay

nodes for achieving optimal cost. (For CS = 4CR and vacancy ≤ 0.1 (i.e., coverage ≥

0.9), β∗ = 0.1).

* β∗ increases faster for CS = 4CR compared to CS = 10CR because, as the sink

cost is already high forCS = 10CR, we don’t need higher fraction of sinks for achieving

optimal cost for a particular vacancy constraint.

* β∗ increases upto v = 0.7 for CS = 4CR and upto v = 0.8 for CS = 10CR and

decreases after that. This is a special criteria which we are considering it for future

analysis.
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CHAPTER 5

SINR case

In the previous chapter we considered Signal to Noise Ratio (SNR) for defining the

coverage. But in practical applications, there will be interference from the other nodes.

This interference will cause great impact on the coverage. We generally use frequency

reuse to reduce the interference. This interference will reduce the coverage of a node.

So, here in this chapter, we introduce Signal to Interference plus Noise Ratio (SINR) to

define coverage.

In general, there will be interference only from some adjacent nodes. But, we are

considering interference from all the other nodes. It means, we are considering worst-

case interference. Though we are considering interference from all nodes, interference

from farer nodes will be very low since the distance is very large. So, major fraction of

interference comes from the nearer nodes.

SINR at a point ’a’ due to a node ’i’ is given as

SINR =
P ∗ dai−η

N0 + γ ∗
∑

k 6=i P ∗ dak
−η (5.1)

where

P = Transmitting power of a node,

d = Distance between point and node,

η = Path Loss Exponent,

N0 = Noise power,

k = Interfering nodes,

γ = gamma depends on modulation used .(0 ≤ γ ≤ 1)

The point is connected to node if SINR > SINRth (threshold SINR). Two nodes i



and j are connected if and only if these two conditions are satisfied:

SINRij > SINRth (5.2)

SINRji > SINRth (5.3)

where

SINRij =
P ∗ dij−η

N0 + γ ∗
∑

k 6=i P ∗ dkj
−η (5.4)

i.e., SINR at node j due to node i, and k be the nodes other than i and j.

To conclude the definition of coverage, a point is said to be covered if it is connected

to a sink node directly or to a relay node which is further connected to a sink node

through multiple hops.

5.1 Average vacancy

The average vacancy of the square region of side L units with node density λ and sink

probability β is denoted by viλ,β,γ , where i refers to interference. The algorithm for

finding average vacancy is same as in SNR case but here we use SINR in order to check

the connectivity between nodes.

5.1.1 Simulation results

We considered L = 10, P = 2W, η = 4, N0 = 5W, SINRth = 0.4. (All are same as in

SNR case, SINRth = SNRth without loss of generality)

Figure 5.1, 5.2 and 5.3 shows average vacancy viλ,β,γ vs node density λ for β = 1, β =

0.5 and β = 0.1 respectively.

Analysis:
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Figure 5.1: Average vacancy vs node density for β = 1 for different values of γ
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Figure 5.2: Average vacancy vs node density for β = 0.5 for different values of γ

* In all the three figures, blue curve refers to γ = 0. It is same as the average vacancy

curve for SNR case.

* For a particular value of β, as γ increases, average vacancy increases due to the

increase of interference from the other nodes.

* For a particular value of λ and γ, average vacancy decreases as β increases, be-

cause as β increases, the fraction of sink nodes increases maintaining constant number

of total number of nodes. So, coverage increases and vacancy decreases.

* The average vacancy for γ 6= 0 is not going to 0 as λ increases, because as λ

increases, increase in coverage is compensated by increase in interference. So, the

average vacancy converges to a constant after λ = 3 instead of converging to 0.
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Figure 5.3: Average vacancy vs node density for β = 0.1 for different values of γ

5.2 Lower bound

Lower bound of vacancy in SINR case wiλ,β,γ is obtained by the same Independent-Disc

model used in SNR case. The algorithm followed is same as that of in SNR case except

we have to consider SINR for connectivity. It is obtained by keeping each sink node at a

time, place poisson randomly generated relay nodes around it and finding the coverage

region for each sink node. The coverage region is the union of the coverage regions of

all the sink nodes. This region is larger than the region obtained by placing all poisson

randomly generated (as in average vacancy case) sinks and relays at the same time.

The vacancy calculated in this model is a lower bound to the average vacancy found in

previous section.

5.2.1 Simulation results

We simulated average vacancy and lower bound for three values of β. We considered

L=10 and γ = 1.

Analysis:

* For a particular value of λ, the difference between viλ,β,γ and wiλ,β,γ increases as β

increases. So, the lower bound is a good approximation to average vacancy for lower

values of β. This is because, if β is low, the distance between sink nodes is more.
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Figure 5.4: Average vacancy and lower bound in SINR case, γ = 1

So, the coverage discs around sink nodes are less likely to overlap. It appears as i.i.d

coverage discs are placed around each node.

* Lower bounds also will converge to a constant.

* In SNR case, average vacancy and lower bound are same for β = 1 but in SNR

case they are not equal. Because for β = 1 in SINR case, the coverage discs of indi-

vidual sink nodes are circles of radius ’r’ in independent disc model and the coverage

of each sink node is less than the circle of radius ’r’ in dependant disc model due to the

interference from the other sink nodes. So, vacancy in Independent disc model is less

than that in dependant disc model in SINR case.
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CHAPTER 6

Percolation Properties of Network

Over a past five decades, percolation theory has been used to model disordered physical

systems. Many methods have been used to find the percolation thresholds. A physical

system is said to be percolated if there exists a direct link from end to other end of the

system. The percolation threshold is the minimum density of elements in the system so

that the system will percolate. In [Mertens Stephan and Moore Cristopher (2012)], the

authors found the two-dimensional percolation thresholds of a disks, squares that are

aligned or randomly rotated, and randomly rotated sticks. They used the most efficient

union-find algorithm to find these thresholds.

We found the percolation probability and percolation thresholds of two dimensional

infrastructure based wireless networks using the same union-find algorithm. Here, we

can define, a network is said to be percolated if there exists a direct connection from

one side to opposite side of the network. It can also be defined as if there exists a cluster

of nodes whose coverage region spans the two opposite sides of the network, then the

network is said to be percolated. It means, if we send a message from one side, then it

will reach the opposite side of the network.

As this is two dimensional network, there will be horizontal and vertical percola-

tions. We define three types of percolations namely ’any’ percolation, ’horizontal’ per-

colation and ’both’ percolation. Any percolation means the first percolation occurred

(either horizontal or vertical). Both percolation means both horizontal and vertical oc-

curred.

Union-find algorithm is used to find these wrapping cluster of nodes. Our aim is to

find the percolation (all three percolations) probability CDF RL(λS, λR) ∈ [0,1] of the

network for λS and λR. It can also be defined as the probability that the the network

is percolated for λS < a and λR < b where a and b are constants. It is the CDF of

the percolation probability for a particular value of λS and λR. From this CDF, we can

obtain the percolation threshold.



Next three sections deal with the percolation probability CDF for (i) β = 1, (ii)

β ∈ [0, 1] and one-hop connectivity (iii) β ∈ [0.1] and strictly one-hop connectivity.

6.1 Percolation probability CDF RL(λS) for β = 1

First we will see the percolation probability CDF for β = 1 i.e., λR = 0 and λS = λ.

Here only sinks nodes exist. The percolation probability CDF is defined as the proba-

bility of percolation of the network for λS less than a given value. ’Any’ percolation

probability CDF is defined as

Rac
L (λS) =

∞∑
i=0

(
λiS
i!
e−λS)

Nac(i)

N
(6.1)

Nac(i) =
i∑

j=0

nac(j) (6.2)

where nac is an one dimensional array with nac(i) = 1 if any percolation happens at ’i’

number of sink nodes else nac(i) = 0, N = number of iterations. The same formula will

be applicable to horizontal and both percolations.

Percolation threshold denoted by λc is the minimum value of λS (sink density) re-

quired for the percolation to occur if there are only sink nodes in the network i.e, β = 1.

We will find the percolation thresholds λacc , λhcc and λbcc for any, horizontal and both

percolations from Rac
L (λS), R

hc
L (λS) and Rbc

L (λS) respectively.

6.1.1 Algorithm to find RL(λS)

1. Consider a square region of side L units and coverage range of each node r = 1
unit. Take β = 1.

2. Fix one value of λS .

3. Place a sink node randomly in the region with uniform distribution of x and y
coordinates.

4. Find all the clusters of sink nodes present in the region by union-find algorithm.

5. Find if any cluster is vertically or horizontally percolated. And check one of the
below.
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a. If there are no either percolations, add one sink node and check for percola-
tions.

b. If there is horizontal percolation and no vertical percolation then increment
nac(ns, 1) and nhc(ns, 1) by 1, where ns is the number of sink nodes at that
time. And add more sink nodes to check vertical percolation and if it happens,
increment nbc(ns, 1) by 1.

c. If there is vertical percolation and no horizontal percolation then increment
nac(ns, 1) by 1, where ns is the number of sink nodes at that time. And add more
nodes to check horizontal percolation and if it happens increment nhc(ns, 1) and
nbc(ns, 1) by 1.

6. Repeat steps 3, 4 and 5 for large number of iterations (N) and obtain matrices
nac,nhc and nbc.

7. Now find Rac
L (λS) by the formula

Rac
L (λS) =

∞∑
i=0

(
λiS
i!
e−λS)

Nac(i)

N
(6.3)

where

Nac(i) =
i∑

j=0

nac(j) (6.4)

(In simulation, we take 1 to number of rows in matrix nac instead of 0 to∞ and
nac(j) = nac(j, 1))

8. Similarly we can find Rhc
L (λS) and Rbc

L (λS).

9. Plot Rac
L (λS), R

hc
L (λS) and Rbc

L (λS) vs λS .

6.1.2 Union-find algorithm to find clusters

1. First node in the region is said to be the one cluster having only one node

2. Second node added is to be checked if it connected to the first cluster. if it con-
nects, the second node is taken into first cluster else it is considered as a second
cluster.

3. The next added nodes are to be checked if it is connected any of the existing
clusters. Do one of the three things below.

a. If it is connected to any single cluster, the new node is taken into that cluster.

b. If it is connected to two or more clusters, those clusters are combined into a
single cluster and this new node is taken into that cluster.

c. If it is not connected to any of the clusters, then the new node is taken as a new
cluster.
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6.1.3 Simulation results

Figures 6.1 shows ’any’, ’horizontal’ and ’both’ percolation probability CDF’s for β =

1.

Analysis:

* For all ’any’,’horizontal’, and ’both’ percolations, the percolation probability CDF

becomes steeper as L increases i.e., the CDF will go from 0 to 1 faster as L increases.

* So, at L =∞, there will be abrupt change of CDF from 0 to 1 at a threshold value

of λS i.e., before this threshold value of λS , the value of CDF is 0 and after that it is 1.

* The threshold sink densities denoted by λc are marked in the figures as λacc =

1.454 for any percolation, λhcc = 1.457 for horizontal percolation and λbcc = 1.46 for

both percolation; there is no much difference in thresholds for different percolations.

* λacc < λhcc < λbcc . It means any percolation happens at lower values of λS and both

percolations happens at higher values of λS . As we increase the number of nodes, any

percolation occurs first then occurs horizontal percolation and finally both percolations

occur.

* It shows that if λS ≥ 1.5, all types of percolations occur.
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Figure 6.1: Percolation probability CDF vs λS for β=1 (a): Any percolation Rac
L (λS)

(b): Horizontal percolation Rhc
L (λS) (c): Both percolation Rbc

L (λS)
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6.2 Percolation probability CDF for one-hop connectiv-

ity and β ∈ [0, 1]

Now we will see Percolation probability CDF for β ∈ [0, 1], it means we also consider

λR = 0 and λS = 0. We consider maximum number of hops allowed to be is 1 (Hops

≤ 1). It means horizontal (vertical) percolation happens when there exists a part of

SRSRSS..., RSSRSSS... etc. from left to right (top to bottom). SRRSRRR... is not

allowed. The percolation probability CDF RL(λS, λR) is defined as

Rac
L (λS, λR) =

∞∑
i=0

∞∑
j=0

(
λiS
i!
e−λS

λjR
j!
e−λR)

Nac(i, j)

N
(6.5)

where

Nac(ns, nr) =
ns∑
i=0

nr∑
j=0

nac(i, j) (6.6)

where nac is an two dimensional array with nac(ns, nr) = 1 if any percolation happens

at ’ns’ number of sink nodes and ’nr’ number of relay nodes else nac(ns.nr) = 0, N =

number of iterations.

The Percolation boundary (λS and λR pair) is a boundary after which we obtain a

giant connected component for the percolation to happen. We will obtain this perco-

lation boundary for any, horizontal and both percolations from the plots Rac
L (λS, λR),

Rhc
L (λS, λR) and Rbc

L (λS, λR) respectively (We consider boundary at CDF=0.9 for all

types of percolations).

6.2.1 Algorithm to find RL(λS, λR)

1. Consider a square region of side L units and coverage range of each node r = 1
unit. Consider maximum number of hops to allow to be 1.

2. Fix one value of λS and λR. Calculate β.

β =
λS

λS + λR
(6.7)

3. Place a node randomly in the region with uniform distribution of x and y coordi-
nates and consider it as sink node with probability β.
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4. Find all the clusters of nodes present in the region by union-find algorithm given
in the last section.

5. Find if any cluster is vertically or horizontally percolated. And check one of the
below.

a. If there are no either percolations add one node and check for percolations.

b. If there is horizontal percolation and no vertical percolation then increment
nac(ns, nr) and nhc(ns, nr) by 1, where ns and nr are the number of sink and
relay nodes at that time. And add more nodes to check vertical percolation and if
it happens increment nbc(ns, nr) by 1.

c. If there is vertical percolation and no horizontal percolation then increment
nac(ns, nr) by 1, where ns and nr are the number of sink and relay nodes at
that time. And add more nodes to check horizontal percolation and if it happens
increment nhc(ns, nr) and nbc(ns, nr) by 1.

6. Repeat steps 3, 4 and 5 for large number of iterations (N) and obtain matrices
nac,nhc and nbc.

7. Now find Rac
L (λS, λR) by the formula

Rac
L (λS, λR) =

∞∑
i=0

∞∑
j=0

(
λiS
i!
e−λS

λjR
j!
e−λR)

Nac(i, j)

N
(6.8)

where

Nac(ns, nr) =
ns∑
i=0

nr∑
j=0

nac(i, j) (6.9)

(In simulation, we take 1 to number of rows in matrix nac instead of 0 to∞.)

8. Similarly we can find Rhc
L (λS, λR) and Rbc

L (λS, λR).

6.2.2 Simulation results

Figure 6.2 and 6.3 shows percolation probability CDF for any, horizontal and both

percolations vs λS and λR for L=8 and L=16 respectively. These figures RL(λS, λR) vs

λS and λR are 3-D plots shown as 2-D plots. The value of RL(λS, λR) is given by the

colour bar. Blue colour represents 0 and red colour represents 1.

Analysis:

* For a particular percolation, as L increases (see 6.2(a) and 6.3(a)), the RL(λS, λR)

rises faster (steeper) from 0 to 1. If L = ∞, there will be direct transition from 0 to

1 giving a transition boundary. This boundary is what is called percolation threshold.
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As we can not simulate for L =∞, we took percolation threshold from L = 16. These

thresholds are shown in fig 6.3.

* The threshold increases (moves from left to right) from any, horizontal to both

percolations.

* For λr = 0, all types of percolations occur (with probability > 0.9) for around

λS > 1.5. This is same as when β = 1 in previous section, the percolation occurs after

λS = 1.5. Even if there are no relay nodes, sink nodes with density 1.5 is enough for

the network to percolate.

* For lower values of λS (<1), there is a very low probability (≤ 0.6) that the

system can percolate even if relay density increases. It means, it requires minimum

number of sink nodes for the system to percolate irrespective of number of relay nodes.

Because, we are considering one-hop connectivity which requires less distance between

sink nodes.
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Figure 6.2: Percolation probability CDF vs λS and λR for L=8 (a): Any percolation
Rac
L (λS, λR) (b): Horizontal percolation Rhc

L (λS, λR) (c): Both percolation
Rbc
L (λS, λR)
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Figure 6.3: Percolation probability CDF vs λS and λR for L=16 (a): Any percolation
Rac
L (λS, λR) (b): Horizontal percolation Rhc

L (λS, λR) (c): Both percolation
Rbc
L (λS, λR)
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6.3 Percolation probability CDF for strictly one-hop con-

nectivity and β ∈ [0, 1]

Here, we are considering number of hops to be strictly 1 (Hops=1). It is a restrictive

version of previous case. So, a network is said to be horizontally (vertically) percolated

if there exist a sequence of SRSRSR... or RSRSRS... nodes from left to right (top to

bottom) of the network. It means two sink nodes are connected if there exists a relay

node (connected to both sink nodes) between them. If percolation occurs with hops =1

for a particular λS and λR, then it will surely occur for hops ≤ 1 for that λS and λR.

The algorithm for finding RL(λS, λR) is same as before except finding the clusters

with this definition of connectivity.

6.3.1 Simulation results

Figure 6.4 and 6.5 shows percolation probability CDF (strictly one hop) for L=8 and

L=16 respectively. The value of RL(λS, λR) is given by the colour bar. Blue colour

represents 0 and red colour represents 1.

Analysis:

* Similar to previous plots, for a particular percolation, as L increases, theRL(λS, λR)

rises faster (steeper) from 0 to 1. If L =∞, there will be direct transition from 0 to 1 giv-

ing percolation threshold density. These boundaries are shown in fig 6.5. The threshold

increases (moves from left to right) from any, horizontal to both percolations.

* All types of percolations occur (with probability > 0.9) only after around λS > 1.5

and λR > 1.5.

* For lower values of λS (<1) and/or λR(<1), there is a very low probability (≤

0.6) that the system can percolate. It means, it requires minimum number of sink and

relay nodes for the system to percolate. Because, we are considering strictly one-hop

connectivity which requires sufficient number of sink and relay nodes.

* Even large number of sink nodes are not enough for the system to percolate except

if there are sufficient number of relay nodes (unlike as in previous section).
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Figure 6.4: Percolation probability CDF (strictly one hop) vs λS and λR for L=8 (a):
Any percolation Rac

L (λS, λR) (b): Horizontal percolation Rhc
L (λS, λR) (c):

Both percolation Rbc
L (λS, λR)
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Figure 6.5: Percolation probability CDF (strictly one hop) vs λS and λR for L=16 (a):
Any percolation Rac

L (λS, λR) (b): Horizontal percolation Rhc
L (λS, λR) (c):

Both percolation Rbc
L (λS, λR)
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6.3.2 Iyer and Yogeshwaran upper bound

Iyer and Yogeswaran proposed an upper bound for percolation boundary (any percola-

tion) for Poisson AB model (strictly one-hop connectivity) as

λR = − 1

a(d, 2r)
loge[1− (

pc(d)

1− e−λSa(d,2r)
)] (6.10)

for λS ≥ 0.843.

d = number of dimensions of region = 2

r = coverage radius of node = 1

a(d,2r) = a(2,2) = 0.8227 as given by Iyer and Yogeshwaran

pc(d) = Critical percolation probability = 0.5 as calculated by Iyer and Yogeshwaran.

We will compare this upper bound with the 0.9 percolation boundary in Fig. 6.6.

We observe that this bound is weak for smaller values of sink densities and is a good

approximation at higher values.

Figure 6.6: Iyer upper bound and 0.9 percolation boundary
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CHAPTER 7

Conclusions and Future Scope

Conclusions: We simulated average vacancy and lower bound for vacancy in SNR case.

We require atmost λ = 2 and λ = 3 for the coverage of atleast 80% and 95% respec-

tively even for small values of β. We simulated average vacancy and lower bound for

vacancy in SINR case. As γ increases, the average vacancy increases. The average

vacancy will not goes to 0 as λ increases rather it converges to a constant. In both SNR

and SINR cases, lower bound is a good approximation to average vacancy for lower

values of β. We simulated hop constrained vacancy in SNR case. We studied the opti-

mal cost of the network subject to a vacancy constraint. Decreasing sink node cost will

not further highly reduce optimal cost unless the sink node cost is already low. Later,

we found that the system will percolate only if λS ≥ 1.5 for β = 1. If β ∈ [0, 1] and for

one-hop connectivity, percolation occurs if λS ≥ 1.5 irrespective of relay node density.

If β ∈ [0, 1] and for strictly one-hop connectivity, percolation occurs only if λS ≥ 1.5

and λR ≥ 1.5.

Future scope: Our future study is to find the mathematical equations for average

vacancy and lower bound in SNR and SINR cases. We need to analyse the optimal sink

probability for optimal cost.We have to study the cost optimization problem in SINR

case. We need to find the percolation thresholds analytically.
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