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ABSTRACT

KEYWORDS: Congestion control ; Hopf bifurcation ; TCP fluid flow model ; Sta-

bility ; Nonlinear delay differential equation ; Wireless Networks

In this current work, we aim at the bifurcation behavior of a TCP fluid flow model in

wireless networks is investigated for internet congestion control. We study both wired

and wireless networks where traditionally wired network supporting internet TCP. First,

a nonlinear dynamic model for wireless networks is derived, where the study of modern

control theory on delay differential systems been applied. Later, for this model we

derive conditions to ensure local stability, then we perform Hopf bifurcation analysis

using Poincaré normal forms and the theory of Center manifold. We show how these

bifurcation behaviors may cause heavy oscillation of average queue length and induce

network instability.
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NOTATION

TCP Transmission Control Protocol

RTT Round trip time

RED Random Early Detection

Wi(t) TCP window size at time t
q(t) Queue length of the router buffer

M Number of TCP sessions

C(t) Queue capacity

Ri(t) Round trip time of each flow i
Tp,i Propagation delay of each flow i
p(.) Packet marking probability

Pul Up link channel loss probability

Pdl Down link channel loss probability
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CHAPTER 1

Introduction

1.1 Internet Congestion

Main reason for internet congestion, is packets dropping and increasing delays, the up-

per formation application system performance drop, and can even break the whole sys-

tem by causing congestion collapse. Network congestion already became a bottleneck

that restricted the development and application of networks. If the congestion control

scheme is not well designed, the sources will try to push even more packets through the

network in response to packet drops, thus worsening the congestion.

Over the last decade, congestion control in the internet is an extremely important

and challenging problem, which has been the main subject of intensive studies. The

researchers in network states congestion control becomes a key issue. The stability of

internet largely dependent on the congestion control and avoidance mechanisms imple-

mented in its end to end transmission control protocol (TCP), developed by Jacobson

in 1980s [Jacobson (1988)]. However, this implementing from the network edge con-

trol mechanism is extremely limited, it is not sufficient to provide good services with

only the TCP congestion control on the internet in all circumstances. Therefore we are

trying to stablize the TCP congestion problem in wireless networks for the increase in

demand.

1.2 Wireless Networks

For a typical wireless network sources, we use access from a wired network, which

adapts the internet TCP protocol to transfer data. We knew TCP while operating over

wired networks, delivers good performance as the assumption made by TCP that packet



loss means congestion is valid over wired network. As wired link have very low error

rate which make very few packets get corrupted and dropped due to error introduce by

channel. Thus packet drop over wired network usually occur due to congestion and TCP

performs well as it is tuned for this. In case of wireless networks this assumption does

not hold. Whenever TCP operating over these wireless network it detects packet losses

caused by disconnection or error introduced by wireless channel, which causes unnec-

essary reduction in congestion window, results in degradation of TCP performance.

1.3 Linear Stability Analysis

In the study of dynamical systems, linearization is a method for assessing the local

stability of an equilibrium point of a system of nonlinear differential equations and it’s

first necessary condition for the bifurcation analysis. These equilibrium point help us

to know more about the system’s stability and unstability. In this paper, we examine

nonlinear system for TCP fluid flow model to ensure local stability condition.

1.4 Hopf Bifurcation Analysis

In two dimensions a Hopf bifurcation occurs at a spiral point where stable switches to

unstable (or vice versa) and a periodic solution appears. The fact that a critical point

switches from stable to unstable (or vice versa) alone does not guarantee that a periodic

solution will arise, though one almost always does but we need to check for the extra

conditions have to be satisfied. We will use a second order delay differential equations

to check the occurence of Hopf bifurcation, analytically we show type of the Hopf

bifurcation either supercritical or subcritical and the periodic solution also.

1.5 Summary and Organisation of the Report

In this paper the bifurcation behavior of a TCP fluid flow model for internet congestion

control in wireless networks is investigated. These bifurcation behaviors may cause

heavy oscillation of average queue length and induce network instability. Simulation
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results show that the nonlinear behavior of the system. In section (3), modelling of

nonlinear dynamic TCP fluid flow model for wireless systems is dervied. In section

(4), for the system’s stability existence we perform linearization. In section (5), first we

focus on Hopf bifurcation occurence and then we study the direction and the stability of

bifurcating solution using the Poincaré normal form and the theory of Center manifold.

In section (6), we verify our theoretical analysis for the existence of Hopf bifurcation

and bifurcating periodic solutions of system. Finally in section (7) conclusion will be

drawn.
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CHAPTER 2

Literature Review

Congestion is an inherent property of the current best effort internet, and hence conges-

tion control plays a crucial role on the success of the modern internet. As we already

stated about the literature Jacobson proposed his congestion avoidance and control algo-

rithm [ Jacobson (1988)]. Recently a significant attention to wireless access networks,

especially to the internet has received. This introduces new challenge for network re-

searchers. The main problem for the congestion control in wireless connections is that

the packet loss caused by the fading of wireless channels may be mistaken as the packet

loss caused by the network congestion. Hence the transmission rate is unnecessarily re-

duced. If the wireless connections coexist with other wired connections in the network,

the well behaved fairness maintained by the original internet transmission control pro-

tocol ( TCP ) may be destroyed.

In the past decade, a lot of efforts been made for the congestion control problem for

wired networks and a great progress has achieved. While the same problem for wire-

less networks has received relatively less attention, especially from the control theoretic

viewpoint. Our attention will be focused on the RED ( random early detection ) con-

gestion control algorithm. The reason is that the source transmission rate of wireless

networks using RED will not be affected so severely due explicit feedback information

for the packet marking probability [ Zheng and Nelson (2009)] whereas the networks

using other kinds of congestion control algorithms.

We study a nonlinear TCP fluid flow model for wireless network derived based on

wired networks [ Liu et al. (2012), Misra et al. (2000)]. We study the variations in

system parameters can induce a Hopf bifurcation [Liu et al. (2012)], which would lead

to the emergence of limit cycles. We also characterize the type of the Hopf bifurcation

and verify the stability of the bifurcating limit cycles as in [ Hassard et al. (1981), Raina

(2005)]. Before all of these we focus on the necessary condition.



CHAPTER 3

Nonlinear TCP Fluid Flow Model in Wireless Networks

As it is stated above, we learn about the fluid flow model of TCP congestion avoid-

ance algorithm for wired networks developed by [ Misra et al. (2000)]. Then we derive

a TCP fluid flow model for wireless access networks which is largely based on the

wired networks fluid model. We focus more on the window size and queue length

of the single congested router. Let the count of TCP flows be labeled as M where

i = 1, 2, 3, . . .M traverse the order. Let the round trip time ( RTT ) be Ri(t) and TCP

window size be Wi(t) at time t ≥ 0 of flow i, respectively, i = 1, . . .M . Let the queue

length of the router at time t be q(t) and the propagation delay of each flow, denoted

as Tp,i(i = 1, . . .M), which is fixed. Now, the round trip time of the flows is as the

following form

Ri(t) = Tp,i +
q(t)

C(t)
, i = 1, . . .M (3.1)

where
q(t)
C(t)

is the queuing delay, C(t) is available link bandwidth.

In the present scenario, the sources we use for the wireless network is to get access

from a wired network, which adapts the internet TCP protocol to transfer data. We

further assume that the network employs a RED algorithm to control the congestion.

The dynamic model of window size is captured by the following equation [ Misra et al.

(2000)] for wired access network:

Ẇ (t) =
1

Ri(t)
−

Wi(t)

2

Wi(t− Ri(t))

Ri(t− Ri(t))
p(t−Ri(t)), i = 1, . . .M (3.2)

where p(t) is the packet’s mark probability at time t.



In the above (3.2) the first term of the equation is a window’s additive increase part

i.e. 1
Ri(t)

which adopts the phase of bandwidth probing from (3.1). This approach to

increase the window size, probing for usable bandwidth, until loss occurs. The policy

of additive increase, for every fixed amount round trip time increase the congestion win-

dow. Whereas, the second term of the equation is a window’s multiplicative decrease

part i.e.
Wi(t)

2
in response to packet marking probability p. If once a congestion loss

is detected in RED, the transmitter decreases the window size by a multiplicative fac-

tor i.e. the window size is halved after loss and the marking/dropping is implemented

to distribute the losses in proportion to a flow’s bandwidth share, which is p(t)Wi(t)
Ri(t)

at

time t. The AIMD result is a saw tooth behavior that represents the probe for bandwidth

[Zheng and Nelson (2009)].

Till now we discussed about wired network dynamical model for window size and

AIMD congestion control parameters. Let us know more about the the wireless network

model, transmission and its congestion properties. In wireless the connectivity happens

through up link and down link transmission. As we already stated source for wireless

we use wired network i.e. To transfer the data up link transmission is through wired

network, when it comes to down link transmission the source, marking probability is

fed back to sources. For down link communication two events can happen, One is that

the source has correctly received the marking probability, and second is that the due

to channel fading source has failed to receive the marking probability. In the down

link transmission if feedback packet marking probability is lost the probability of the

event at time t of flow i, respectively , i = 1, . . .M be Pdl,i, i = 1, . . .M ( subscript dl

represents down link ). Whenever this event happens, the source will use the previous

packet marking probability to reduce its window size, and the window size is decreased

by one by convention. This is similar to the response of the source to a timeout loss in

traditional wired networks. Thus for a wireless network dynamics for the transmission

rate is governed by

Ẇ (t) =
1

Ri(t)
−

Wi(t)

2

Wi(t− Ri(t))

Ri(t− Ri(t))
p(t−Ri(t))− Pdl,i(t)(Wi(t)− 1)

×
Wi(t− Ri(t))

Ri(t− Ri(t))
p(t−Rah,i(t)), i = 1, . . .M (3.3)

where Rah,i denotes the time difference between the current time and the time at which

the latest marking probability has been successfully received. In packet losses it clear

6



that Rah,i(t) ≥ Ri(t). In the congestion control algorithm we assume that the Rah,i(t) =

αRi(t), where α is an integer larger than or equal to two.

Now we describe the dynamic model for the queue, in the case of wired networks,

the queue length is represent by the following equation

q̇(t) =











−C(t) +
∑M

i=1
Wi(t)
Ri(t)

,

max
(

0,−C(t) +
∑M

i=1
Wi(t)
Ri(t)

)

when q(t) > 0,

when q(t) = 0.

(3.4)

In wireless access networks, due to channel fading some uplink transmitted packets

will be lost. Let us denote the loss probability due to the fading in as Pul,i(t) ( subscript

ul represents uplink ). Uplink channel loss probability at time t is Pul,i(t). Taking the

channel loss into account, the actual queue length of wireless networks will be governed

by the following equation

q̇(t) =











−C(t) +
∑M

i=1
Wi(t)
Ri(t)

(1− Pul,i(t)),

max
(

0,−C(t) +
∑M

i=1
Wi(t)
Ri(t)

(1− Pul,i(t))
)

when q(t) > 0,

when q(t) = 0.

(3.5)

The system dynamic behavior is completely described by M + 1 differential equa-

tions consisting of (3.3) and (3.5). Based on these M + 1 dynamic equation, it would be

very difficult to study the design method for the congestion control algorithm. To reduce

this kind of difficulty, assumption are made that the channel fading of all the wireless

connections has the same statistical property. We capture some basic characteristics of

each individual flows, these same statistical property makes this kind of representation

reasonable. Correspondingly, let the window size be W , the down and up link channel

loss probabilities be Pul and Pdl, respectively, and the round trip time of the generic

flow be R(t) = Tp +
q(t)
C(t)

.

7



Then the system approximates a new set of ordinary differential equations for dy-

namic behavior described by

Ẇ (t) =
1

R(t)
− (1− Pdl)

W (t)

2

W (t− R(t))

R(t− R(t))
p(t− R(t))

− Pdl(t)(W (t)− 1)
W (t− R(t))

R(t− R(t))
p(t− Rah(t))

q̇(t) = −C(t) +M
W (t)

R(t)

(

1− Pul(t)

)

, when q(t) > 0 (3.6)

8



CHAPTER 4

Linear Stability Analysis

A fluid based TCP dynamic model was developed (3.6). We simplify the model further,

which ignores the timeout and slow start mechanism of TCP. The model relates the

average value of key network variables and is described by the following set of nonlinear

delay differential equations:

Ẇ (t) =
1

R(t)
− (1− Pdl)

W (t)

2

W (t− R(t))

R(t− R(t))
p(t− R(t))

− Pdl(t)(W (t)− 1)
W (t− R(t))

R(t− R(t))
p(t− Rah(t)),

q̇(t) = −C(t) +M
W (t)

R(t)

(

1− Pul(t)

)

, when q(t) > 0

where W (t) denotes the average of TCP windows size ( packets ), q(t) is the average of

queue length ( packets ), M(t) is the number of TCP sessions,C is the queue capacity

( packets/sec ) and R(t) is the round trip time which consists of the propagation delay

Tp and queuing delay, p(∗) is the probability function of a packet mark. Assume that

the round trip delay R(t)(s) and the number of TCP connections M(t) are constants,

i.e, M(t) = M and Rah(t) ≈ R(t) = τ , when the queuing delay is much smaller

than the propagation delay. Considering that the probability marking function p(∗) is

proportional to the queue length, i.e. p(t) = Kq(t) . The down and up link channel

loss probabilities Pdl and Pul are assumed to be constants. The above system can be

simplified as (4.1). We define

g(W, q) =
1

τ
− (1− Pdl)

W (t)

2

W (t)

τ
Kq(t− τ)− Pdl(W (t)− 1)

W (t)

τ
Kq(t− τ),

h(W, q) = −C +M
W (t)

τ
(1− Pul) (4.1)

The equilibrium point (W ∗, q∗) of system (3.6) is given by

W ∗ =
τ0C

M(1 − Pdl)
, p∗ =

2

(1 + Pdl)W ∗2 − 2PdlW ∗

(4.2)



We consider a small perturbation about the equilibrium point, i.e.,

Wd(t) = W (t)−W ∗, qd(t) = q(t)− q∗, pd(t) = p(t)− p∗ (4.3)

Evaluating the following partials at the operating point (W ∗, q∗) defined by (4.2) gives

∂g

∂W
=

PdlP
∗ − 2(1 + Pdl)W

∗P ∗

τ
∂h

∂W
= M

(1− Pul)

τ
∂g

∂q
=

(2PdlW
∗ − (1 + Pdl)W

∗2)K

2τ
∂h

∂q
= 0

Then using the first order Taylor series expansion, we get the linearized expression

and by substituting (4.3) into the these expression, we obtain the following linearized

equations about the equilibrium points.

Ẇd(t) = a0Wd(t) + b0qd(t− τ),

q̇d(t) = c0Wd(t), when q(t) > 0 (4.4)

where

a0 =
PdlP

∗ − (1 + Pdl)W
∗P ∗

τ
,

b0 =
2PdlW

∗ − (1 + Pdl)W
∗2

2τ
K and

c0 =
M(1− Pul)

τ

Then the characteristic of (4.4) is

λ2 + ζ1λ+ ζ2e
−λτ = 0. (4.5)

10



where

ζ1 = a0 =
PdlP

∗ − (1 + Pdl)W
∗P ∗

τ
,

ζ2 = b0c0 =
(2PdlW

∗ − (1 + Pdl)W
∗2K)(M(1− Pul))

2τ 2

We know the exponential series expansion, will consider first three terms in

e−λτ ≈ 1− λτ + λ2τ2

2
and substitute in the characteristic equation, we obtain

(1 +
ζ2τ

2

2
)λ2 + (ζ1 − ζ2τ)λ + ζ1 = 0 (4.6)

To find out the system stability, necessary condition is to have all the roots of the charac-

teristic equation are in the open left-half plane then only the system is stable. According

to Routh-Hurwitz stability criterion states that the system is stable if and only if the the

value of each determinant is greater than zero. For the above characteristic equation,

Determinant one:

∣

∣

∣(ζ1 − ζ2τ)

∣

∣

∣,

Determinant two:

∣

∣

∣

∣

∣

∣

(ζ1 − ζ2τ) 0

(1 + ζ2τ
2

2
) ζ1

∣

∣

∣

∣

∣

∣

System will be stable if it satisfies the following coefficients conditions, then

dynamic system (3.6) is considered to be stable.

(1 +
ζ2τ

2

2
) > 0, (ζ1 − ζ2τ) > 0, ζ1 > 0. (4.7)
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CHAPTER 5

Hopf Bifurcation Analysis

5.1 Hopf Bifurcation Occurrence

In order to conduct a Hopf bifurcation analysis we choose a parameter which induces

the bifurcation. We consider the bifurcation parameter to be K and rewrite the charac-

teristic equation as

λ2 + ζ1λ+ ζkKe−λτ = 0. (5.1)

where

ζ1 =
PdlP

∗ − (1 + Pdl)W
∗P ∗

τ
,

ζk = ζ2/K =
[2PdlW

∗ − (1 + Pdl)W
∗2][M(1 − Pul)]

2τ 2

In this section, We investigate the bifurcation behavior of the TCP fluid model. We

analyze Hopf bifurcation for (3.6) in the following steps

(i) First, we calculate parameter values such that the characteristic equation has pure

imaginary roots, then

(ii) We determine these values and also the critical value for which characteristic

equation has no positive real part roots and, then

(iii) We observe the parameter strictly upper bounded by the critical value.



As this parameter K varies, which induce a Hopf bifurcation.
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Figure 5.1: Stability chart for different TCP flows.

For τ > 0, K > 0, let λ = ±iω, ω > 0 , substituting λ = iω and e−λτ in (5.1),

which gives

λ2 + ζ1λ+ ζkKe−λτ =(iω)2 + ζ1(iω) + ζkKe−iωτ

=− ω2 + iζ1ω + ζkKe−iωτ

=− ω2 + iζ1ω + ζkK(cosωτ − i sinωτ)

=

(

ζkK cosωτ − ω2

)

+ i

(

ζ1ω − ζkK sinωτ

)

(5.2)

From (5.2) which gives

ζkK cosωτ − ω2 = 0

−ζkK sinωτ + ζ1ω = 0 (5.3)

13



we obtain,

ω0 =

√

−ζ1
2 +

√

ζ1
4 ± 4ζk

2Kc
2

2

tan(ω0τ) =
ζ1
ω0

(5.4)

where Kc denotes the critical value of K at ω = ω0.

Next we prove that λ = ±iω0 are simple roots of (5.1) when K = Kc . Now

defining

∆(λ,K) = λ2 + ζ1λ+ ζkKe−λτ (5.5)

Now we need to prove the transversality condition for the occurrence of Hopf

bifucartion. i.e.
d∆(λ,K)

dλ

∣

∣

∣

∣

λ=iω0

6= 0. we differentiate (5.5) and then we substitute e−λτ

from (5.1)

d∆(λ,K)

dλ
= 2λ+ ζ1 − ζkKλe−λτ

= 2λ+ ζ1 − ζkKτ

(

−λ(λ+ ζ1)

ζkK

)

= τλ2 + (τζ1 + 2)λ+ ζ1

d∆(λ,K)

dλ

∣

∣

∣

∣

λ=iω0

= τ(iω0)
2 + (τζ1 + 2)iω0 + ζ1

= ζ1 − τω2
0 + i(τζ1 + 2)ω0 6= 0 (5.6)

Again we differentiate (5.5) and then we substitute e−λτ , λ = iω0 from (5.1),we get

dλ

dK
=

−ζke
−λτ

2λ+ ζ1 − ζkKτe−λτ

=
1

K

λ2 + ζ1λ

λ2 + (ζ1τ + 2)λ+ ζ1

=
−ω2

0 + iζ1ω0

K(ζ1 − ω2
0 + i(ζ1τ + 2)ω0)

Re

(

dλ

dK

)

=
1

K

τω4
0 + τζ21ω

2
0 + ζ1ω

2
0

(ζ1 − ω2
0)

2 + (ζ1τ + 2)2ω2
0

Re

(

dλ

dK

)∣

∣

∣

∣

K=Kc

=
1

Kc

τω4
0 + τζ21ω

2
0 + ζ1ω

2
0

(ζ1 − ω2
0)

2 + (ζ1τ + 2)2ω2
0

(5.7)
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For ω0 > 0,we get Re

(

dλ
dK

)∣

∣

∣

∣

K=Kc

> 0.

5.2 Direction and Stability of Hopf bifurcation

In this section, we use the Poincaré normal forms and the theory of Center manifold

helps to study the direction of Hopf bifurcation and the stability of bifurcating solution

at the equilibrium when K passes through certain critical values. A set of nonlinear

equations for TCP fluid flow model in wireless networks (3.6) are as follows:

Ẇ (t) =
1

R(t)
− (1− Pdl)

W (t)

2

W (t− R(t))

R(t− R(t))
p(t− R(t))

− Pdl(t)(W (t)− 1)
W (t− R(t))

R(t− R(t))
p(t− Rah(t))

q̇(t) = −C(t) +M
W (t)

R(t)

(

1− Pul(t)

)

, when q(t) > 0 (5.8)

above set of equation are further simplified to

Ẇ (t) =
1

τ
−

(1 + Pdl)W (t)W (t)− 2PdlW (t)

τ
Kq(t− τ),

q̇(t) = −C +M
W (t)

τ

(

1− Pul

)

, when q(t) > 0 (5.9)

We know the linearized equation (4.4), Using Taylor series expansion we find quadratic

and cubic terms of defined by (4.2) at equilibrium point (W ∗, q∗)

∂g

∂WW
= −

2(1 + Pdl)P
∗

τ
∂h

∂WW
= 0

∂g

∂Wq
=

PdlK − (1 + Pdl)W
∗K

τ
∂h

∂Wq
= 0

∂g

∂qq
= 0

∂h

∂qq
= 0

∂g

∂qW
=

PdlK − (1 + Pdl)W
∗K

τ
∂h

∂qW
= 0
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similarly we will find the cubic terms.

The Taylor series expansion of (3.6), about the equilibrium point, including the linear,

quadratic, and cubic terms is

Ẇd(t) =

(

PdlP
∗ − (1 + Pdl)W

∗P ∗

τ

)

Wd(t) +

(

2PdlW
∗ − (1 + Pdl)W

∗2

2τ
K

)

qd(t− τ)

+
1

2!

[

(−
(1 + Pdl)P

∗

τ
)W 2

d (t) + (
(2Pdl − 2(1 + Pdl)W

∗)K

τ
)Wd(t)qd(t− τ)

]

+
1

3!

[

−6K(1 + Pdl)

τ
W 2

d (t)qd(t− τ)

]

+ . . . . . .

q̇d(t) =
M(1− Pul)

τ
Wd(t) (5.10)

Let us now consider the following autonomous system

d

dt
u(t) = Lµut + F(ut, µ), (5.11)

t > 0, µ ∈ R, where for τ > 0

ut(θ) = u(t + θ) u :
[

− τ, 0
]

→ R
2, θ ∈ [−τ, 0].

Note that Lµ is a one-parameter family of continuous (bounded) linear operators.

The operator F(ut, µ) contains the non-linear terms. Further assume that F is analytic

and that F and Lµ depend analytically on the bifurcation parameter µ for small |µ|.

Then equation (5.10) is of the form (5.11), with u =
[

w q
]T

where

Lµut =





a0 0

c0 0



ut(0) +





0 b0

0 0



ut(−τ),

F(ut, µ) =





εwwW
2
d (t) + εwqWd(t)qd(t− τ) + εw2qW

2
d (t)qd(t− τ)

0



 .
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where

a0 =
PdlP

∗ − (1 + Pdl)W
∗P ∗

τ
,

b0 =
2PdlW

∗ − (1 + Pdl)W
∗2

2τ
K,

c0 =
M(1 − Pul)

τ
,

εww = −
(1 + Pdl)P

∗

2τ
,

εwq =
(Pdl − (1 + Pdl)W

∗)K

τ
,

εw2q =
−K(1 + Pdl)

τ

The idea is to transform equation (5.11) into a form which contains only ut instead

of both u and ut, i.e.

d

dt
ut = A(µ)ut +Rut. (5.12)

First, we transform the linear problem du(t)/dt = Lµut. For this we employ the

Riesz representation theorem which states that there exists a 2 × 2 matrix function

η(·, µ) : [−τ, 0] → R
2×2, such that the components of η have bounded variation and for

all φ ∈ C[−τ, 0]

Lµφ =

∫ 0

−τ

dη(θ, µ)φ(θ).

In particular,

Lµut =

∫ 0

−τ

dη(θ, µ)u(t+ θ). (5.13)

Comparing equation (5.13) with the expression for Lµφ , we obtain

dη(θ, µ) =





a0δ(θ) b0δ(θ + τ)

c0δ(θ) 0



 dθ,

where δ(θ) is the Dirac-delta function.
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We now define A(µ)φ(θ), for φ ∈ C1
[

− τ, 0
]

, as

A(µ)φ(θ) =











dφ(θ)
dθ

,

∫ 0

−τ
dη(s, µ)φ(s) ≡ Lµφ,

θ ∈ [−τ, 0)

θ = 0,

(5.14)

and

Rφ(θ) =











0,

F(φ, µ),

θ ∈ [−τ, 0)

θ = 0.

As dut/dθ = dut/dt, (5.11) becomes (5.12) as desired.

Let q(θ) be the eigenfunction for A(0) corresponding to λ(0) = iω, namely

A(0)q(θ) = iωq(θ).

To find q(θ) let q(θ) = q0e
iωθ, where q0 = [1 φ1]

T . Substituting in the above equation

and using the expression for A as in (5.14), we obtain

A(0)q(θ) =

∫ 0

−τ





a0δ(θ) b0δ(θ + τ)

c0δ(θ) 0









1

φ1



 eiωθdθ

=

∫ 0

−τ





a0δ(θ) + b0φ1δ(θ + τ)

c0δ(θ)



 eiωθdθ

=





a0 + b0φ1e
−iωτ

c0





we know A(0)q(θ) = iωq(θ), and q(θ) =





1

φ1



 eiωθ by equating, we get φ1 =
c0
iω
.

From above solved ω0 is

ω0 =

√

−ζ1
2 +

√

ζ1
4 ± 4ζk

2Kc
2

2
.

Now define the adjoint operator A∗(0) for α ∈ C1[0, τ ] as

A∗(0)α(s) =











−dα(s)
ds

,

∫ 0

−τ
dηT (t, 0)α(−t),

s ∈ (0, τ ]

s = 0.

(5.15)
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As

A(0)q(θ) = λ(0)q(θ),

λ(0) = −iω
(

conjugate of λ(0)
)

is an eigenvalue for A∗, and

A∗(0)q∗ = −iωq∗,

for some non-zero vector q∗. Let q∗(s) = Beiωs be an eigenvector of A∗ corresponding

to eigenvalue −iω, where B = B[φ2 1]T . Substitute in (5.15) we obtain

A∗(0)q∗(θ) =

∫ 0

−τ

B





a0δ(θ) c0δ(θ)

b0δ(θ + τ) 0









φ2

1



 e−iωθdθ

=

∫ 0

−τ

B





a0φ2δ(θ) + c0δ(θ)

b0δ(θ + τ)



 e−iωθdθ

= B





a0φ2 + c0

b0e
iωτ





We Know A∗(0)q∗ = −iωq∗, and q∗ = B





φ2

1



 e−iωθ by equating, we get φ2 =
−c0

a0+iω
.

For φ ∈ C[−τ, 0] and ψ ∈ C[0, τ ], define an inner product

〈ψ,φ〉 = ψ(0) · φ(0)−

∫ 0

θ=−τ

∫ θ

ζ=0

ψ
T
(ζ − θ)dη(θ)φ(ζ)dζ,

where p · q means
∑n

i=1 piqi. Then, 〈ψ,Aφ〉 = 〈A∗ψ,φ〉 for φ ∈ Dom(A) and

ψ ∈ Dom(A∗).

Let q and q∗, with

B =
(

φ1 + φ2 + τb0φ1φ2e
−iωτ

)

−1

,

be the eigenvectors of A and A∗ corresponding to the eignevalues iω and −iω respec-

tively. These eigenvectors are required to satisfy 〈q∗, q〉 = 1 and 〈q∗, q〉 = 0.
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Now, we verify that 〈q∗, q〉 = 1.

〈q∗, q〉 =B
[

φ2 1
]

·





1

φ1



−

∫ 0

θ=−τ

∫ θ

ζ=0

Be−iω(ζ−θ)





φ2

1





T

×





a0δ(θ) b0δ(θ + τ)

c0δ(θ) 0



 dθ





1

φ1



 eiωζdζ

=B
(

φ2 + φ1

)

−B

∫ 0

θ=−τ

eiωθ
[

φ2 1
]

×





a0δ(θ) + φ1b0αlδ(θ + τ)

c0δ(θ)



 θdθ

=B
(

φ2 + φ1

)

−B

∫ 0

θ=−τ

(

φ2

(

a0δ(θ)

+ b0φ1αlδ(θ + τ)
)

+ c0δ(θ)
)

θeiωθdθ

=B
(

φ2 + φ1

)

+Bτb0φ1φ2e
−iωτ

=1.

Similarly, we may also verify that 〈q∗, q〉 = 0.

〈q∗, q〉 = B
[

φ2 1
]

·





1

φ1



−

∫ 0

θ=−τ

∫ θ

ζ=0

Be−iω(ζ−θ)





φ2

1





T

×





a0δ(θ) b0δ(θ + τ)

c0δ(θ) 0



 dθ





1

φ1



 e−iωζdζ

= B
(

φ2 + φ1

)

− B

∫ 0

θ=−τ

eiωθ
[

φ2 1
]

×





a0δ(θ) + φ1b0δ(θ + τ)

c0δ(θ)





(

1− e−2iωθ

2iω

)

dθ

= B
(

φ2 + φ1

)

− B

∫ 0

θ=−τ

(

φ2

(

a0δ(θ)

+ φ1b0δ(θ + τ)
)

+ c0δ(θ)
)

(

eiωθ − e−iωθ

2iω

)

dθ

= B
(

φ2 + φ1

)

− B
(

φ2φ1b0
)

(

e−iωτ − eiωτ

2iω

)

. (5.16)
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Using the expressions of φ1, φ2 and eiωτ and their conjugates, we have

φ1 + φ2 =
−c0
iω

+
−c0

a0 − iω
= −

a0c0
iω(a0 − iω)

, (5.17)

and

(φ2φ1b0)

(

e−iωτ − eiωτ

2iω

)

=

(

−c0
iω

−c0
a0 − iω

b0

)









−ω2 + a0iω

b0c0
+

ω2 + a0iω

b0c0
2iω









=
a0c0

iω(a0 − iω)
. (5.18)

Substituting (5.17) and (5.18) in (5.16), we get

〈q∗, q〉 =B
a0c0

iω(a0 − iω)
−B

a0c0
iω(a0 − iω)

= 0.

For ut, a solution of (5.12) at µ = 0, define

z(t) = 〈q∗,ut〉,

w(t, θ) = ut(θ)− 2Re
(

z(t)q(θ)
)

.

Then, on the manifold, C0,w(t, θ) = w
(

z(t), z(t), θ
)

, where

w
(

z, z, θ
)

= w20(θ)
z2

2
+w11(θ)zz +w02(θ)

z2

2
+ · · · . (5.19)

Effectively z and z are projections for C0 in C in the directions of q∗ and q∗, respec-

tively. The existence of the center manifold enables the reduction of (5.12) to an ordi-

nary differential equation for a single complex variable on C0. At µ = 0, this is

z
′

(t) =
〈

q∗,Aut +Rut

〉

= iωz(t) + q∗(0) · F
(

w(z, z, θ) + 2Re
(

zq(θ)
)

)

= iωz(t) + q∗(0) · F0(z, z), (5.20)
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which can be abbreviated as

z
′

(t) = iωz(t) + g(z, z). (5.21)

Our next objective is to expand g in powers of z and z and to determine the coefficients

wij(θ) in (5.19). The differential equation (5.20) for z would be explicit when we

determinewij . Expanding g(z, z) in powers of z and z, we have

g(z, z) = q∗(0) · F0

(

z, z
)

= g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
· · · .

Following [Hassard et al. (1981)], we write

w
′

= u
′

t − z
′

q − z
′

q,

and using (5.19) and (5.20), we obtain

w
′

=











Aw − 2Re
(

q∗(0) · F0q(θ)
)

,

Aw − 2Re
(

q∗(0) · F0q(0)
)

+ F0,

θ ∈ [−τ, 0)

θ = 0,

which can be rewritten as

w
′

= Aw + h
(

z, z, θ
)

(5.22)

using (5.19), where

h(z, z, θ) = h20(θ)
z2

2
+ h11(θ)zz + h02(θ)

z2

2
+ · · · . (5.23)

We note that, on C0, near the origin

w
′

= wzz
′

+wzz
′

.

Using (5.19) and (5.21) to replace wz, z
′

( and their conjugates by their power series
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expansion ) and equating this with (5.22), we get

(

2iω −A
)

w20(θ) = h20(θ),

−Aw11(θ) = h11(θ),

−
(

2iω +A
)

w02(θ) = h02(θ).

(5.24)

We note that

ut(θ) = w
(

z, z, θ
)

+ q(θ)z + q(θ)z

= w20(θ)
z2

2
+w11(θ)zz +w02(θ)

z2

2
+ q0e

iωθz

+ q0e
−iωθz + · · · ,

(5.25)

from which we obtain ut(0) and ut(−τ). We only require the coefficients of z2, zz, z2,

z2z from (5.25). There are only two non-linear terms in (5.10) for which we can obtain

the coefficients as given below

u1,t
2(0) = z2 + z2 + 2zz + z2z

(

w201(0)+ 2w111(0)
)

,

u1,t(0)u2,t(−τ) =φ1e
−iωτz2 + φ1e

iωτz2 + zz(φ1e
−iωτ + φ1e

iωτ )

+ z2z
(w201(0)

2
φ1e

iωτ+ w111(0)φ1e
−iωτ +

w202(−τ)

2
+ w112(−τ)

)

,

u1,t
2(0)u2,t(−τ) = z2z

(

2φ1e
−iωτ + φ1e

iωτ
)

,

wherewij = [wij1 wij2]
T

. Recall that

g(z, z) = q∗(0) · F0(z, z) ≡ B · F0(z, z),

where [F01 F02]
T = F0 , and

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
· · · .
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Comparing the two equations above, we get

g20 = B · φ2

(

εww + εwqφ1e
−iωτ

)

,

g11 =
B · φ2

2

(

2εww + εwq(φ1e
−iωτ + φ1e

iωτ )
)

,

g02 = B · φ2

(

2εww + εwqφ1e
iωτ

)

,

g21 = B · φ2

(

2εww(w201(0) + 2w111(0))

+ εwq(
w201(0)

2
φ1e

iωτ + w111(0)φ1e
−iωτ +

w202(−τ)

2
+ w112(−τ))

+
εw2q

3
(2φ1e

−iωτ + φ1e
iωτ )

)

,

For the expression of g21, we still need to evaluate w11(−τ) and w20(−τ). Now for θ

∈ [−τ, 0)

h(z, z, θ) =− 2Re
(

q∗(0) · F0q(θ)
)

=− 2Re
(

g(z, z)q(θ)
)

=−

(

g20
z2

2
+ g11zz + g02

z2

2
+ . . .

)

q(θ)

−

(

g20
z2

2
+ g11zz + g02

z2

2
+ . . .

)

q(θ),

which when compared with (5.23), yields

h20(θ) = −g20q(θ)− g02q(θ)

h11(θ) = −g11q(θ)− g11q(θ)

From (5.14) and (5.24), we get

w
′

20(θ) = 2iωw20(θ) + g20q(θ) + g02q(θ), (5.26)

w
′

11(θ) = g11q(θ) + g11q(θ). (5.27)

Solving the differential equations (5.26) and (5.27), we obtain

w20(θ) = −
g20
iω
q0e

iωθ −
g02
3iω

q0e
−iωθ + ee2iωθ, (5.28)

w11(θ) =
g11
iω
q0e

iωθ −
g11
iω
q0e

−iωθ + f , (5.29)
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for some e = [e1 e2]
T and f = [f1 f2]

T , which we will determine now. Forh(z, z, 0) =

−2Re
(

q∗(0) · F0q(0)
)

+ F0,

h20(0) =− g20q(0)− g02q(0) +





εww + εwqφ1e
−iωτ

0





h11(0) =− g11q(0)− g11q(0) +





2εww + εwq(φ1e
−iωτ + φ1e

iωτ )

0





Again, from (5.14) and (5.24), we get





(2iω − a0)w201(0)− b0w202(−τ)

−c0w201(0) + 2iωw202(0)



 = h20(0)





a0w111(0)− b0w112(−τ)

−c0w111(0)



 = h11(0) (5.30)

from (5.30) and h20(0),h11(0) gives





(2iω − a0)w201(0)− b0w202(−τ)

−c0w201(0) + 2iωw202(0)



 = −g20q(0)− g02q(0) +





εww + εwqφ1e
−iωτ

0









a0w111(0)− b0w112(−τ)

−c0w111(0)



 = −g11q(0)− g11q(0) +





2εww + εwq(φ1e
−iωτ + φ1e

iωτ )

0





(5.31)

we further simplify and substitute the expression for wij(θ), θ ∈ {−τ, 0} from (5.31)

in (5.29) and finally solving for e1, e2, f1 and f2, we have

e =





2iωβ(εww + εwqφ1e
−2iωτ )

c0β(εww + εwqφ1e
−2iωτ )





f =





0

1
b0c0

(2εww + εwq(φ1e
−iωτ + φ1e

iωτ ))




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where

β =
1

2iω(2iω − a0)− b0c0e−2iωτ

Using the values of e and f in (5.28) and (5.29), followed by substituting θ = −τ , we

can obtain the expressions for w11(−τ) and w20(−τ). Using these, we can evaluate

g21. We now, finally, have the expressions for g20, g11, g02 and g21.

Recall that we motivated K as the bifurcation parameter. We denote α
′

(0) =

Re
(

dλ/dK
)∣

∣

K=Kc

. In order to determine the type of the Hopf bifurcation, and the

stability of the limit cycles, we need to evaluate the following quantities [Hassard et al.

(1981)]

µ2 =
−Re

(

c1(0)
)

α′(0)
, B2 = 2Re

(

c1(0)
)

, (5.32)

where c1(0) is the first Lyapunov coefficient, and is given by

c1(0) =
i

2ω

(

g20g11 − 2|g11|
2 −

1

3
|g02|

2

)

+
g21
2
.

Then

• the Hopf bifurcation is supercritical if µ2 > 0 and subcritical if µ2 < 0,

• the limit cycles are asymptotically orbitally stable if β2 < 0 and unstable if β2 >
0.
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CHAPTER 6

Numerical Simulations

In this section, we verify our theoretical analysis for the existence of Hopf bifurcation in

section (5) and determine the stability and direction of the bifurcating periodic solutions

of system (3.6) with the parameters of the system as follows

Table 6.1: Nonlinear Model Results

Parameter Values Units

TCP connections M 60, 120, 240 –

Queue capacity C 100 packets/sec

Round trip time τ 2 sec

Uplink probability Pul 0.001 –

Downlink probability Pdl 0.001 –

Bifurcation parameter Kc 0.034 –

Stability chart, for the system from Fig (5.1) we observe for M = 240 and τ = 2

value using (5.4) equation, we get the bifurcating parameter value to be K = 0.034 and

we can also visualize from the Fig (6.5).

In order to perform a Hopf bifurcation analysis, to verify and visualize the analyt-

ically result we observe the bifurcating parameter is K = 0.034 for M = 240, τ = 2,

and the critical values W ∗ and q∗ are 0.834, and 82.47 respectively from (4.2) in section

(4). Below are the waveform plot to study about the system’s stability and phase portrait

for K < Kc and K > Kc.
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Figure 6.1: Waveform plot for K < Kc.
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Figure 6.2: Phase portrait for K < Kc.
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Figure 6.3: Waveform plot for K > Kc.

30 60 90 120

3
0

6
0

9
0

1
2
0

q(
t
−

τ
)

q(t)

Figure 6.4: Phase portrait for K > Kc.
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Hopf bifurcation occurs at K = Kc.
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Figure 6.5: Bifurcation diagram for K.
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Figure 6.6: µ2,B2 for bifurcation parameter K.
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CHAPTER 7

Conclusion

A nonlinear TCP fluid flow model was analyzed. From Fig (6.2) - Fig (6.5) we visualize

behaviour of system’s stability at K < Kc, K > Kc and K = Kc. The local stability

of the equilibrium was investigated from Fig (6.2) system is stable because bifurcation

parameter K is lesser than the critical value. Occurence of Hopf bifurcation as K passes

from left to right through the critical value K = Kc, which cause the system to sustain

oscillations is where the system loses its stability.

We now knew that as K crosses a critical value, the fluid flow model (3.6) will lose

stability, where Hopf bifurcation occurs. To stabilize the system’s queueing length with

a bifurcation parameter K, we further analysis the system by considering quadratic and

cubic terms which plays a major role for system oscillations (5.10) and to determine the

type of Hopf bifurcation, and stability of limit cycles (5.32) as in section (5). From Fig

(6.6) µ2 > 0, implies the Hopf bifurcation is supercritical and B2 < 0, implies that the

limit cycles are asymptotically orbitally stable.
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