
Study of Compressed Sensing Algorithms for Highly

Coherent Systems

A Project Report

submitted by

JAYASOORYA K. E.

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2017



THESIS CERTIFICATE

This is to certify that the Project Report titled Study of Compressed Sensing Algo-

rithms for Highly Coherent Systems, submitted by Jayasoorya K. E., EE15M069,

to the Indian Institute of Technology, Madras, for the award of the degree of Master

of Technology, is a bona fide record of the research work done by her under my super-

vision. The contents of this report, in full or in parts, have not been submitted to any

other Institute or University for the award of any degree or diploma.

Dr. Sheetal Kalyani
Project Guide,
Associate Professor,
Dept. of Electrical Engineering,
IIT Madras, 600 036.

Place: Chennai

Date : June 9, 2017



ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my sincere gratitude to my guide Dr.

Sheetal Kalyani for her continuous support and guidance. I am indebted to her for the

encouragement I received to pursue research. I earnestly thank her for her invaluable

advices and immense support throughout my project.

I would like to extend my thanks to Sreejith and other PhD scholars under Dr.

Sheetal Kalyani for helping me out throughout the project. Without them I wouldn’t

have been able to complete the project.

Finally, I would like to thank my parents and friends for their support all these

years of my life.

i



ABSTRACT

KEYWORDS: Coherent systems, Generalized Space Shift Keying, Compressed Sens-

ing, SWAP, multiple input multiple output, Kronecker channel

Accurate estimation of a sparse vector in a high dimensional linear regression prob-

lem using small number of measurements or compressed sensing (CS) has attracted

considerable attention in the past few years. Compressed sensing based sparse recov-

ery techniques are widely used for variety of applications. Here we are considering

the application of CS to generalized space shift keying (GSSK) detection. GSSK is an

emerging multiple input multiple output (MIMO) technique which uses antenna indices

to transmit information. However, none of the existing GSSK detection algorithms

take into account the significant correlation present in practical MIMO channel models.

In this work, we propose a novel framework for improving the performance of exist-

ing GSSK detection algorithms in the presence of correlated channels. The proposed

framework is based on a modified version of the popular SWAP algorithm. Numerical

simulations indicate that the proposed framework can significantly improve the perfor-

mance of existing CS based GSSK detection schemes with a very modest increase in

the computational complexity even when the channel model is highly correlated.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

NOTATION viii

1 Introduction 1

2 GSSK System Model and Detection Algorithms 5

2.1 GSSK System Model . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Channel Model 1: H with correlated columns and independent
rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Channel Model 2: Kronecker channel model. . . . . . . . . 7

2.1.3 Channel Model 3: H with correlated columns and independent
rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Detection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 GSSK detection using modified SWAP 12

3.1 SWAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Algorithm and Description . . . . . . . . . . . . . . . . . . 13

3.1.2 Selecting the initial support . . . . . . . . . . . . . . . . . 14

3.1.3 Computational complexity . . . . . . . . . . . . . . . . . . 14

3.2 Modified SWAP algorithm . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Proposed two stage GSSK detection framework . . . . . . . . . . . 15

iii



4 Numerical Simulations 17

4.1 Channel Model 1: Hi,: ∼ CN (0Nt ,Σ) . . . . . . . . . . . . . . . . 17

4.2 Kronecker channel model with receiver correlation matrix assumed to
be Identity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Kronecker channel model with transmitter and receiver correlation ma-
trices are arbitrary . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Channel Model: Hi,: ∼ CN (0Nt ,Σ) where Σ is block diagonal matrix 23

4.5 Kronecker channel model with Rtx in block diagonal form and Rrx as
identity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Kronecker channel model with bothRtx andRrx in block diagonal form 25

4.7 Comparison of Kronecker channel with and without correlation at re-
ceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.8 Performance of Modified SWAP for settings with different number of
active antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.9 Performance of Modified SWAP with respect to SNR . . . . . . . . 27

4.10 Comparison of Time Complexity . . . . . . . . . . . . . . . . . . . 28

5 Conclusions and Future work 30



LIST OF TABLES

2.1 Computational complexities of various algorithms . . . . . . . . . . 10

v



LIST OF FIGURES

2.1 Spatial Modulation System Model . . . . . . . . . . . . . . . . . . 6

2.2 GSSK System Model . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Figure shows one iteration of the SWAP algorithm. The shaded region
corresponds to the estimate, say S(t), of the unknown true support that
we seek to estimate. The SWAP algorithm swaps a variable i in S(t)
with a variable i′ not in S(t). . . . . . . . . . . . . . . . . . . . . . 13

4.1 case (4.1): Correlation Vs Bit error Rate for SNR=4 dB, Nt = 32,
Nr = 16 and nt = 3. . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 case (4.1):Correlation Vs Bit error Rate for SNR=8 dB Nt = 32, Nr =
16 and nt = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 case (4.2): Correlation Vs Bit error Rate for SNR=4 dBNt = 32, Nr =
16 and nt = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 case (4.2):Correlation Vs Bit error Rate for SNR=8 dB, Nt = 32, Nr =
16 and nt = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 case (4.3):Correlation Vs Bit error Rate for SNR=8 dB. . . . . . . . 22

4.6 case (4.3): Correlation Vs Bit error Rate for SNR=10 dB. . . . . . . 22

4.7 case(4.4):BER vs correlation curve for exponential and block diagonal
correlation Nt = 32, Nr = 16 and nt = 3,SNR=8 dB. . . . . . . . 23

4.8 case(4.5):Comparison between exponential and block diagonal form for
Rtx and and Rrx = I Nt = 32, Nr = 16 and nt = 3, SNR=8 dB. . . 24

4.9 case(4.6):Comparison between cases when exponential/block diagonal
correlation exists at both transmitter and receiver ends Nt = 32, Nr =
16 and nt = 3, SNR=8 dB. . . . . . . . . . . . . . . . . . . . . . . 25

4.10 case(4.7): Comparison between cases when block diagonal form is used
for (1) both Rtx and Rrx, (2) only Rtx and Rrx = I for Nt = 32,
Nr = 16 and nt = 3, SNR=8 dB. . . . . . . . . . . . . . . . . . . 26

4.11 case(4.8): Comparison between cases when block diagonal form is used
for only Rtx and Rrx = I for Nt = 32, Nr = 16 and SNR=8 dB. . . 27

4.12 case(4.9): BER vs SNR . . . . . . . . . . . . . . . . . . . . . . . . 28

4.13 case(4.10): Runtime vs Number of transmitting antennas . . . . . . 29

vi



ABBREVIATIONS

AAI Active Antenna Indices

ABEP Average Bit Error Probability

BPDN Basis Pursuit De-Noising

BE Band Exclusion

BER Bit Error Rate

CS Compressed Sensing

CSR/ CSS Convex Superset Relaxation/ Selection

GSSK Generalized Space Shift Keying

ISR Iterative Sparse Reconstruction

LASSO Least absolute shrinkage and selection operator

LO Local Optimization

MAP Maximum a Posteriori

MIMO Multiple Input Multiple Output

ML Maximum Likelihood

NCS Normalized Compressed Sensing

OMP Orthogonal Matching Pursuit

ObMP Oblique Matching Pursuit

QAM Quadrature Amplitude Modulation

RF Radio Frequency

RIP Restricted Isometry Property

SBL Sparse Bayesian Learning

SM Spatial Modulation

SNR Signal to Noise Ratio

SSK Space Shift Keying

SR Sparse Reconstruction

i.i.d Independent and Identically Distributed

vii



NOTATION

C Set of complex numbers
R Set of real numbers
E Probability expectation
||x||p lp norm of x ∈ Cn

AT Transpose of matrix A
Re(A) Real part of A
Im(A) Imaginary part of A
In Identity matrix ∈ Cn×n

bxc Largest integer less than or equal to x
x[n] nth sample of the vector observation x
N (µ, σ2) Normal random variable with mean µ and variance σ2

CN (0, σ2In) Zero mean complex Gaussian random vector (R.V) with covariance σ2In
∼ Distributed as, for example, X ∼ N (0, 1) denotes

X is a zero mean Gaussian random variable with variance 1
|I| Cardinality of set I
vec(•) Operator that stacks the columns of a matrix into one tall vector
tr(•) The sum of the diagonal elements of a matrix or the trace of a matrix
� element-wise product of two matrices
〈•, •〉 Inner product

viii



CHAPTER 1

Introduction

Compressed sensing (CS) is a signal acquisition paradigm that has gained popularity

in recent years. CS enables the recovery of a high dimensional sparse signal in an

under-determined system where the number of observations are much less compared

to the dimension of the unknown signal. Some of the standard CS techniques include

LASSO, Orthogonal Matching Pursuit (OMP), Compressive Sampling Matched Pursuit

(CoSaMP), etc. These algorithms perform well when the columns of the measurement

matrices are uncorrelated. However most of the practical problems involve measure-

ment matrices with a structured or non-structured statistical dependency existing be-

tween columns.

Extensive work has been done till date for analyzing the performance of the sparse

recovery procedure with highly coherent measurement matrices. The existing theory

in CS for uncorrelated measurement matrices is extended to observation matrices that

exhibit structured statistical dependencies across its rows and columns in [1]. The spe-

cific example of random Toeplitz matrices is considered for illustration, which arise

naturally from the convolutional structure inherent to linear system identification prob-

lems. In [2], the limiting laws of the coherence of an n × p random matrix in the

high-dimensional setting where p can be much larger than n are derived. Some works

shows the upper bound on mutual coherence values above which algorithms like OMP

fails to recover the unknown sparse signal.

Besides these theoretical works, modifications in existing algorithms are done in

order to improve the performance when subjected to coherent measurement matrices.

In [3, 4], the authors have described modifications in the well known low complexity

algorithm OMP to cope up with the coherence in measurement matrices.

Novel techniques like band exclusion (BE) and Local optimization (LO) are pro-

posed in [5], which can be applied to algorithms like OMP, Subspace Pursuit (SP),

Iterative Hard Thresholding (IHT), Basis Pursuit (BP) and LASSO, and result in the



modified algorithms BLOOMP, BLOSP, BLOIHT, BP-BLOT, and LASSO-BLOT, re-

spectively.

Development of new algorithms which address the problem of coherence in design

matrices are dealt with in [6–8]. The Sparse Bayesian Learning (SBL) algorithms pro-

posed in [6] are widely popular for their superior recovery performance especially in

the presence of high temporal correlation.

A simple greedy algorithm, called SWAP, that iteratively swaps variables until

convergence is described in [9]. SWAP is proved to output the true support, the locations

of the non-zero entries in the sparse vector, under a relatively mild condition on the

measurement matrix. SWAP can also be used to boost the performance of any sparse

regression algorithm.

One of the widely popular method of dealing with coherent dictionaries is clus-

tering [10, 11]. The correlated variables are clustered first using clustering algorithm

based on canonical correlations. Subsequently sparse estimation such as the LASSO

for cluster-representatives or the group LASSO based on the structure is applied in [10].

Similar method is adopted in [11] whereas a clustering removal algorithm is proposed

in [12].

Some of the applications where these algorithms are applied are MIMO detection

with correlated channel, denoising and compression, fMRI (functional Magnetic Res-

onance Imaging), gene expression data analysis, discretization of continuum imaging

problems such as radar and medical imaging, super resolution of images etc. Here we

are taking the specific example of detector design for correlated channels in generalized

space shift keying (GSSK).

GSSK, a special technique based on spatial modulation (SM), is a widely used

multiple input multiple output (MIMO) index modulation technique. GSSK modulation

exploits inherent fading in wireless communication to provide better performance over

conventional amplitude/phase modulation (APM) techniques. Spatial modulation uses

APM techniques, such as PSK and quadrature amplitude modulation (QAM), as well

as the antenna index to convey information whereas in each GSSK transmission, only

a set of selected antennas transmit signals and the location of such active antennas

or active antenna indices (AAI) alone convey information. Since, only few antennas
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are active in each transmission, both energy consumption and transmitter complexity

in terms of RF circuitry is minimal in GSSK systems when compared to traditional

MIMO schemes like spatial multiplexing, space time block coding etc. A fundamental

issue in the design of GSSK system is the incredibly high complexity of the optimal

maximum likelihood (ML) algorithm. This necessitated the development of suboptimal

detection techniques like the compressed sensing (CS) based detection algorithms [13–

16], convex superset relaxation (CSR) [17], Gibbs sampling etc. Most of the existing

suboptimal schemes assume an uncorrelated channel model. However, in practical large

scale MIMO systems, the channel coefficients are found to be highly correlated [18,

19]. Since existing GSSK detection algorithms does not take into account the channel

correlation effects, their performance will be highly degraded when applied to real life

MIMO channel models with significant correlation.

However, significant contributions are made into analyzing the effect of correla-

tion on the performance of optimal ML detection. In [20], the authors have proposed

a general framework based on Moschopoulos method for computing the average bit

error probability (ABEP) of SSK- MIMO systems over a generic Rician fading corre-

lated channel with arbitrary parameters. Exact computation of ABEP over generically

correlated and non- identically distributed Nakagami m fading channels for the special

case of to multiple input single output (MISO) system is reported in [21]. Furthermore,

the performance of spatial modulation (SM) systems over arbitrary correlated fading

channels is studied in [22].

However, no low complexity GSSK detection algorithm robust to the channel cor-

relation is proposed in open literature to the best of our knowledge. In this work, we

propose a novel two stage GSSK detection framework to improve the performance of

existing GSSK detection algorithms. In the first stage any CS or non-CS GSSK detec-

tion algorithm can be used to produce a preliminary estimate of AAI. This preliminary

estimate is latter processed using a novel algorithm called modified SWAP proposed

in this work. Modified SWAP, as the name suggests, is developed by modifying the

SWAP [9] discussed earlier. The proposed modification to SWAP is based on incorpo-

rating the structure in GSSK transmitted vector and has better performance and lower

computational complexity in comparison with the original SWAP algorithm. Numerical

simulations indicate the superior performance of the proposed two stage GSSK detec-

tion framework over existing detection algorithms over a wide range of experiments

3



involving correlated channel models. Note that this improved performance is achieved

without any significant increase in the overall computational complexity.

This thesis is organized as follows:

Chapter 2 discusses the system model of GSSK used in this work. The various

channel models used for illustration are also introduced. The Kronecker channel model

is briefly described along with the generation of simulated correlated channel coef-

ficients. Various algorithms used for GSSK detection are described along with their

performance guarantees and complexities.

Chapter 3 introduces the SWAP algorithm and the proposed modified version. The

two stage framework of using modified SWAP in GSSK detection has been described.

Complexity of the algorithm is also discussed.

Chapter 4 illustrates the performance of modified SWAP in GSSK detection through

numerical simulations. Simulations are done for a range of channel models. Compar-

isons between various channel models are also illustrated.

Chapter 5 provides some concluding remarks along with avenues for future work.
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CHAPTER 2

GSSK System Model and Detection Algorithms

2.1 GSSK System Model

We consider a MIMO system with Nt number of transmit antennas and Nr number of

receive antennas. Figures 2.1 and 2.2 shows the System model of GSSK. [23] The

MIMO model is given by

y = Hx + n, (2.1)

where H represents the channel matrix, y is the received signal, x and n are transmit-

ted symbol and noise respectively. Channel matrix H is assumed to be known at the

receiver. The noise vector n is distributed as CN (0, σ2INr). In a GSSK system with nt

active antennas the transmitted symbol x will have 1 in nt locations corresponding to

the active antennas and 0 in the rest Nt − nt locations. Let I = {i : xi = 1} represents

the active antenna indices (AAI) in a particular transmission. I contains the complete

information in transmitted signal. This GSSK system can achieve a spectral efficiency

of S =
⌊

log2

((
Nt

nt

))⌋
bits/s/Hz and has 2S valid transmitted symbols [13]. Most of the

works consider a channel model where each entry in H is i.i.d sampled from a CN (0, 1)

distribution. However, this model of channel, though widely popular in MIMO litera-

ture, does not reflect the true propagation characteristics. Significant correlation can

exist between individual channel gains. In this article, we consider two channel models

which capture this correlation.

2.1.1 Channel Model 1: H with correlated columns and indepen-

dent rows.

This is a matrix model widely popular in CS literature. Here, each row of H, i.e., Hi,:

is sampled i.i.d from a CN (0Nt ,Σ) distribution. The entries in the correlation matrix

Σ is given by Σi,j = ρ|i−j| as introduced in [24], where the parameter −1 < ρ <



Figure 2.1: Spatial Modulation System Model

Figure 2.2: GSSK System Model
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1 specifies the degree of correlation. As the parameter |ρ| increases, the correlation

between columns in H also increases.

2.1.2 Channel Model 2: Kronecker channel model.

Kronecker model [18] is a widely used MIMO stochastic channel model. One of the

main strengths of the proposed MIMO stochastic model is that it relies on a small set of

parameters to fully characterize the communication scenario, namely the power gain of

the MIMO channel matrix, two correlation matrices describing the correlation proper-

ties at both ends of the transmission links, and the associated Doppler spectrum of the

channel paths.

For the ease of notations define the (i, j)th entry of channel matrix, i.e., Hi,j by

αi,j . It is assumed that αi,j is CN (0, 1) distributed.The spatial complex correlation

coefficient at the transmitter between antenna m1 and m2 is given by

ρTxm1,m2
= 〈αm1,n, αm2,n〉 (2.2)

(2.2) assumes that the spatial correlation coefficient at the transmitter is independent of

j. Similarly, the spatial complex correlation coefficient at the receiver between antenna

n1 and n2 is given by

ρRxn1,n2
= 〈αm,n1 , αm,n2〉 (2.3)

Finally, the correlation coefficient between two arbitrary transmission coefficients con-

necting two different sets of antennas

ρn1,m1
n2,m2

= 〈αm1,n1αm2,n2〉 (2.4)

(2.3) assumes that the spatial correlation coefficient at the receiver is independent of m.

Using 2.2 and 2.3, one can define the transmitter and receiver correlation matrices Rtx

and Rrx as Rtx(m1,m2) = ρTxm1,m2
for 1 ≤ m1,m2 ≤ Nt and Rrx(n1, n2) = ρTxn1,n2

for 1 ≤ n1, n2 ≤ Nr. So,the spatial correlation matrix of the MIMO radio channel is

the Kronecker product of the spatial correlation matrix at the transmitting and receiving

ends and is given by

RMIMO = Rtx ⊗Rrx (2.5)

7



where ⊗ represents the Kronecker product.

Generation of Simulated Correlated Channel Coefficients

Correlated channel coefficients αmn are generated from zero-mean complex i.i.d., ran-

dom variables amn shaped by the desired Doppler spectrum such that

A = Ca (2.6)

where AMN×1 = [α11, α12, ....αM1, αM2...αMN ]T and aMN×1 = [a1, a2, ....aMN]T

where the symmetrical mapping matrix C results from the standard Cholesky factoriza-

tion of the matrix RMIMO = CCT provided that RMIMO is non-singular. Subse-

quently. the generation of the simulated MIMO channel matrix H can be deduced from

the vector A, as A = vec(H).

2.1.3 Channel Model 3: H with correlated columns and indepen-

dent rows.

This is a matrix model widely popular in CS literature. Here, each row of H, i.e., Hi,:

is sampled i.i.d from a CN (0Nt ,Σ) distribution. The entries in the correlation matrix

Σ is assumed as a block diagonal matrix given by

Σi,j =

ρ
|i−j|, if |i− j| ≤ α.

0, otherwise.
(2.7)

, where the parameter−1 < ρ < 1 specifies the degree of correlation. As the parameter

|ρ| increases, the correlation between columns in H also increases.

2.2 Detection Algorithms

Several algorithms are devised till date for GSSK demodulation. However due to rela-

tively small modulation alphabet detection of GSSK has traditionally been carried out in

the optimal maximum likelihood sense [25, 26]. However as the dimension increases,

8



the maximum likelihood (ML) detector incurs considerable computational complexi-

ties. To overcome this issue both optimal and suboptimal schemes are studied in a

number of works.

A simple CS framework, Normalized Compressed Sensing (NCS) is described

in [13]. The computational complexity is reduced considerably compared to ML. Op-

timal detection schemes like tree search and column search achieving optimal ML per-

formance are formulated in [17]. In addition, suboptimal detection methods for large

MIMO systems and large alphabet GSSK signaling based on convex relaxation, greedy

column search, convex superset relaxation (convex superset selection) or CSR (CSS)

and semidefinite relaxation (SDR) are also proposed. A low complexity detector is

proposed in [27] based on l∞ minimization having polynomial complexity. In [28], an

algorithm called sparse reconstruction (SR) is adopted from image processing to GSSK

detection. A modified version of the algorithm, iterative sparse reconstruction (ISR) is

also described in the paper.

Several simple modifications of OMP and oblique matching pursuit (ObMP) are

formulated in [29]. In particular, maximum a posteriori (MAP) principle has been in-

corporated to OMP/ObMP so that the posteriori ratio can be maximized iteratively. Due

to the fact that the posteriori ratio cannot be evaluated at the receiver unless the activated

transmit antennas are known, two types of approximated posteriori ratios are derived.

One is a simple approximation that ignores the terms in the posteriori ratio which need

the information on transmit antenna activity, and the other is a more complex approx-

imation developed by exploiting the transmit antenna activation probabilities. As a

result, two types of MAP-OMPs and MAP-ObMPs are proposed based on these ap-

proximations.

The computational complexities of some of the algorithms [13, 15, 17, 28, 29] are

given in Table. 2.1

Among the given algorithms ML is optimal, however it is not computationally

tractable once the dimension is high. Most of the low complexity algorithms given

above do not perform well when the columns of channel matrix H are correlated. Hence

we propose a low complexity GSSK detection algorithm for improving the performance

of GSSK detection in correlated channels. The problem statement is explained in the

following section.

9



Computational complexities
Algorithm Complexity
ML O(NrN

nt
t )

NCS with OMP O(ntNrNt)
NCS with Lasso O(N3

t )
CSR O(N3

t )
SR O((2Nr)

2Nt + 2N3
t )

ISR (p iterations) O(p((2Nr)
2Nt+2N3

t ))
MMSE O(8N2

rNt)
ObMP O(N2

rNt)
MAP1-OMP O(ntNrNt)
MAP1-ObMP O(N2

rNt)
MAP2-OMP O(N2

t Nr)
MAP2-ObMP O(N2

t Nr)

Table 2.1: Computational complexities of various algorithms

2.3 Problem statement

We consider the sparse reconstruction of the following problem

y = Hx + n, (2.8)

as mentioned in 2.1. We define the sparsity of x as the number of non-zero element in x.

Thus, the sparse reconstruction of x becomes the estimation of x based on y, H, and the

sparsity of x. This problem can be transformed into an l0-norm minimization problem.

However, it is a NP-hard problem.

In [30], Tao and Candes proved that an l0-norm minimization problem has the

same solution as the corresponding l1- norm minimization problem if restricted isom-

etry property (RIP) condition is satisfied. RIP identifies the constant δs of the measure

matrix H as the smallest number such that

(1− δs)||x||22 ≤ ||Hx||22 ≤ (1 + δs)||x||22 (2.9)

holds for sparse vector x. If each element of H is an independent Gaussian variable, the

matrix H satisfies the RIP with high probabilities. The RIP is to ensure that each pair of

columns of H are orthogonal to each other with a high probability.

One commonly used characterization of incoherence in CS is in terms of the mu-

10



tual coherence µ. Let the pairwise coherence between the kth and jth columns be

µ(k, l) =
〈ak, al〉
||ak||||al||

(2.10)

where ak and al are the column vectors of H.

The mutual coherence of H is the maximum pairwise coherence among all pairs of

columns

µ(H) = maxk 6=lµ(k, l) (2.11)

Results are shown that if µ(H) < 1
2k−1 , where k is sparsity of x, then exact support

recovery is possible for algorithms like OMP [31].

However when columns of H are correlated the matrix H may not satisfy RIP and

hence most of the above algorithms perform poorly when the observation matrix is

coherent. In order to improve the performance of these algorithms a novel two stage

compressed sensing framework of low complexity is devised here. The framework is

explained in the next chapter.
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CHAPTER 3

GSSK detection using modified SWAP

In this chapter, we propose a novel two stage GSSK detection framework which is ro-

bust to the correlations in the channel matrix. Note that the detection process in GSSK

involves the estimation of AAI I with the aim of minimizing the bit error rate defined by

BER = P(Î 6= I). A conversion of the complex MIMO channel model y = Hx + n

to its equivalent real form can enhance the detection performance by exploiting the real

nature of x [13–16]. Hence, all the non-ML algorithms discussed in this report are

applied to the model yr = Hrx+nr, where yr, Hr and nr represent the real valued en-

tities
[
Re(y)T , Im(y)T

]T ,
[
Re(H)T , Im(H)T

]T and
[
Re(n)T , Im(n)T

]T respectively.

As aforementioned, the BER of detection techniques based on OMP, BPDN, CSR [17]

etc. for correlated channels is generally very high in comparison with the performance

of same algorithms in uncorrelated channel models. First, we describe an algorithm

called SWAP which is known to be robust to correlation in design matrices and a novel

modification to the same proposed here.

3.1 SWAP

SWAP is a simple greedy algorithm for sparse regression with correlated measurements

[9]. The input to SWAP is an estimate of the support of the unknown sparse vector x,

i.e., the location of its non-zero entries. The main idea behind SWAP is to iteratively

perturb the estimate of the support by swapping variables. The swapping is done in such

a way that a loss function is minimized in each iteration of SWAP. In this way, SWAP

seeks to estimate a support, in a greedy manner, that minimizes a loss function. The

main reason why SWAP is able to handle correlations is because even if an intermediate

estimate contains a variable that is not in the true support, SWAP can swap this variable

with a true variable under relatively mild conditions on H.

For any index set S ⊂ {1, . . . , Nt} of cardinality |S| = nt, the authors of [9]



Figure 3.1: Figure shows one iteration of the SWAP algorithm. The shaded region cor-
responds to the estimate, say S(t), of the unknown true support that we seek
to estimate. The SWAP algorithm swaps a variable i in S(t) with a variable
i′ not in S(t).

considered a loss function of the form

L(S; yr,Hr) = minαεRnt ||yr −Hr(S)α||22
= ||Π⊥[S]yr||22

(3.1)

where HS refers to the Nr × |S| matrix that only includes the columns indexed by

S and Π⊥[S] = In − Π[S], Π[S] = H(S)(H(S)TH(S))−1H(S)T

3.1.1 Algorithm and Description

Algorithm 1 SWAP

1: Inputs: Observation yr, channel matrix Hr and initial support S(1)

2: Let r = 1 and L(1) = L(S(1); yr,Hr)

3: Swap i ∈ S(r) with j ∈ (S(r))C and compute the loss L(r)
i,j = L((S(r)/i)∪j; yr,Hr)

4: if mini,jL
(r)
i,j < L(r) then perform steps 5-7, else, stop.

5: {̂i, ĵ} = arg mini,j L
(r)
i,j (In case of a tie, choose a pair arbitrarily)

6: Let S(r+1) = (S(r)/̂i) ∪ ĵ and L(r+1) be the corresponding loss.
7: Let r = r + 1 and repeat steps 3-6 else
8: Output: Estimate of AAI Î = S(r).

Suppose that we are given an estimate, say S(1);yr,Hr , of the true support and let

L(1) = L(S(1); yr,Hr) be the corresponding least-squares loss. We want to transition

to another estimate S(2) that is closer (in terms of the number of true variables), or

equal, to S∗, the true support. The SWAP algorithm transitions from S(1) to an S(2)

in the following manner: Swap every i ∈ S(1) with i ∈ (S(1))C and compute the loss

L
(1)
i,i′ = L

(
S(1)\i ∪ i′; yr,Hr

)
If mini,i′L

(1)
i,i′ < L(1), then there exists a support that has a lower loss than L(1).

Subsequently, we find (̂i, î′) = argmini,i′L
(1)
i,i′ and let S(2) = S(1)\̂i ∪ î′. We repeat

the above steps to find a sequence of supports S(1),S(2), . . . ,S(r) where S(r) has the

13



property that mini,i′L
(1)
i,i′ ≥ L(r). In other words, we stop SWAP when perturbing S(r)

by one variable increases or does not change the resulting loss.

3.1.2 Selecting the initial support

The main input to SWAP is the initial support S(1), which also implicitly specifies the

desired sparsity level of the estimated support. Recall that nt is the unknown number of

non-zero entries in x. If nt is known, then SWAP can be initialized using the output of

some other sparse regression algorithm. In this way, SWAP can boost the performance

of other sparse regression algorithms.

When nt is not known, which is the case in many applications, SWAP can be easily

used in conjunction with other sparse regression algorithms to compute a solution path,

i.e., a list of all possible estimates of the support over different sparsity levels. Once a

solution path is obtained, model selection methods, such as cross-validation or stability

selection [32], can be applied to estimate the support.

3.1.3 Computational complexity

The main computational step in SWAP algorithm is Line 2, where the loss L(r)
i,i′ is com-

puted for all possible swaps (i, i′). As nt = |S(r)| then clearly nt(Nt − nt) such com-

putations need to be done in each iteration of the algorithm. Using properties of the

orthogonal projection matrix, we have that for any S

Π[S] = Π[S\i] +
(Π⊥[S\i]Hi)(Π

⊥[S\i]Hi)
T

HT
i Π⊥[S\i]Hi

, i ∈ S (3.2)

To compute L(r)
i,i′ , we need to compute the orthogonal projection matrix Π⊥[S(r)\i ∪ i′].

Once Π⊥[S(r)\i] is computed, Π⊥[S(r)\i∪i′] can be easily computed for all i′ ∈ (S(r))C ,

using the above rank one update. Thus, effectively, the computational complexity of

Line 2 is roughly O(nt(Nt − nt)Is−1), where Is−1 is the complexity of computing a

projection matrix of rank s− 1.

14



3.2 Modified SWAP algorithm

We have modified the SWAP algorithm to accommodate the prior information in GSSK

that the non-zero entries in x are all one. The proposed loss function is

L(S; yr,Hr) = ||y −H(S).1nt ||22 (3.3)

Since, the matrix inversions in (3.1) are not present in (3.3), the computational complex-

ity of modified swap is significantly reduced. An algorithmic description of modified

SWAP algorithm is given in Algorithm 2. In general, the iterations of SWAP will be

continued until the condition in Step 4 of Modified SWAP fails. However, to reduce the

computational complexity, we terminate modified SWAP iterations once the iteration

counter r equals max-iter=10.

Algorithm 2 Modified SWAP

1: Inputs: Observation yr, channel matrix Hr and initial support S(1)

2: Let r = 1 and L(1) = L(S(1); yr,Hr)

3: Swap i ∈ S(r) with j ∈ (S(r))C and compute the loss L(r)
i,j = L((S(r)/i)∪j; yr,Hr)

4: if mini,jL
(r)
i,j < L(r) then perform steps 5-7, else, stop.

5: {̂i, ĵ} = arg mini,j L
(r)
i,j (In case of a tie, choose a pair arbitrarily)

6: Let S(r+1) = (S(r)/̂i) ∪ ĵ and L(r+1) be the corresponding loss.
7: Let r = r + 1 and repeat steps 3-6 else
8: Output: Estimate of AAI Î = S(r).

which is same as SWAP algorithm except for the change in loss function.

3.3 Proposed two stage GSSK detection framework

Modified SWAP algorithm requires an initial estimate S(1). One way to generate S(1)

is by randomly sampling without replacement from the set {1, . . . , Nt}. However, it

was shown in [9] that the performance of SWAP when initialized with the the output of

standard algorithms like OMP, BPDN etc. is far superior in comparison with randomly

generated initial estimates. This motivate the two stage GSSK detection framework out-

lined in Algorithm 3 which combine existing GSSK detection algorithms with Modified

SWAP algorithm.

Each iteration of modified SWAP requires the computation of nt(Nt−nt) l2 norms

15



and each norm computation has complexity of order O(Nr). Hence, the per iteration

complexity of modified SWAP is O(ntNrNt). Further, the number of iterations is fixed

at max-iter=10. Hence, the overall complexity of modified SWAP isO(ntNrNt) which

is same as the complexity of OMP and much lower than the O(N3
t ) complexity of

BPDN and CSR. This also implies that complexity of the proposed two stage GSSK

detection with OMP in the first stage (OMP-MS) is same as theO(ntNrNt) complexity

of OMP. Likewise, the complexity of the proposed two stage GSSK detection with CSR

in the first stage (CSR-MS) is same as the O(N3
t ) complexity of CSR.

Algorithm 3 Proposed two Stage GSSK detection framework
1: Inputs: Observation yr, channel matrix Hr.
2: Apply standard GSSK detection schemes like CSR, OMP etc. to produce an initial

estimate S(1) of AAI I.
3: Use Modified SWAP with initial estimate S(1) to produce the final estimate Î.
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CHAPTER 4

Numerical Simulations

In this section we demonstrate the performance of the proposed two stage framework.

We consider GSSK systems with different sets of (Nt, Nr, nt) and different channel

conditions outlined in chapter 2 . The figures present estimates of BER after perform-

ing 104 iterations and in each iteration, the channel, transmitted signal and noise are

randomly generated.

Here, the performance of the proposed framework with different approaches in the

first stage and modified SWAP as second stage is illustrated. In the first stage, OMP,

convex superset selection (CSS) and fast bayesian matching pursuit (FBMP) are used.

CSS and FBMP are supposedly robust to correlations among columns of observation

matrix unlike OMP, however these are computationally more complex compared to

OMP. Hence in the following results, modified SWAP induces more improvement for

OMP compared to CSS and FBMP.

In the following figures, OMP, CSS and FBMP denotes BER curves with only the

respective algorithms used for GSSK detection. OMP-MS, CSS-MS and FBMP-MS

denotes the BER curves for the proposed framework with the respective algorithms

used in the first stage and modified SWAP in the second stage. Expo and block refers

to the cases when the correlation matrix has exponential form and block diagonal form

respectively.

Rtx andRrx denotes the transmitter and receiver correlation matrices respectively.

4.1 Channel Model 1: Hi,: ∼ CN (0Nt,Σ)

Fig. 4.1-Fig. 4.2 plot the SER of proposed two stage framework for a GSSK system

with Nt = 32, Nr = 16 and nt = 3 when the correlation factor ρ in Σi,j = ρi−j

increases from ρ = 0 to ρ = 0.8.
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Figure 4.1: case (4.1): Correlation Vs Bit error Rate for SNR=4 dB, Nt = 32, Nr = 16
and nt = 3.

Fig. 4.1 shows Correlation vs Bit Error Rate curves for OMP and OMP followed

by Modified SWAP for SNR=4 dB. As shown the improvement in OMP is is significant

compared to the other algorithms. As other algorithms are better in performance com-

pared to OMP the improvement is also seen to be less. Almost linear increase in BER

with respect to correlation can be observed. A shift in curves is observed for higher

SNR values as shown in Fig. 4.2.

4.2 Kronecker channel model with receiver correlation

matrix assumed to be Identity matrix

When the receiver correlation matrix is assumed to be identity matrix, i.e., assuming

that the correlation between the links is present only on the transmitter side, the plot

of BER vs correlation is still found to have significant improvement both for OMP and

CSR. FBMP seems to improve lesser in comparison to the other algorithms. This is
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Figure 4.2: case (4.1):Correlation Vs Bit error Rate for SNR=8 dB Nt = 32, Nr = 16
and nt = 3.
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Figure 4.3: case (4.2): Correlation Vs Bit error Rate for SNR=4 dBNt = 32, Nr = 16
and nt = 3.

shown in Fig.4.3 and Fig. 4.4 for different SNR values.

4.3 Kronecker channel model with transmitter and re-

ceiver correlation matrices are arbitrary

Fig. 4.5 and Fig. 4.6 compares the performance of proposed framework assuming the

correlation between links exist on both transmitter and receiver ends. The improvement

after second stage for all the algorithms is found to drop as compared to the previous

channel model (Rrx = I). Similar to the previous cases there is shift in BER curves as

SNR is increased as shown in Fig.4.6.
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Figure 4.4: case (4.2):Correlation Vs Bit error Rate for SNR=8 dB, Nt = 32, Nr = 16
and nt = 3.
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Figure 4.5: case (4.3):Correlation Vs Bit error Rate for SNR=8 dB.
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Figure 4.6: case (4.3): Correlation Vs Bit error Rate for SNR=10 dB.
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Figure 4.7: case(4.4):BER vs correlation curve for exponential and block diagonal cor-
relation Nt = 32, Nr = 16 and nt = 3,SNR=8 dB.

4.4 Channel Model: Hi,: ∼ CN (0Nt,Σ) where Σ is block

diagonal matrix

As described in 2 the channel model has Σ matrix in block diagonal form. Each antenna

is correlated only to adjacent 3(say) antennas on either side. The correlation decreases

exponentially to either sides.

The BER vs correlation plot shown in Fig.4.7 is for Nt = 32, Nr = 16 and nt = 3.
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Figure 4.8: case(4.5):Comparison between exponential and block diagonal form forRtx

and and Rrx = I Nt = 32, Nr = 16 and nt = 3, SNR=8 dB.

4.5 Kronecker channel model with Rtx in block diago-

nal form and Rrx as identity matrix

In this section we have used the same Kronecker channel model but the transmitter

channel matrix following a block diagonal form (as in Channel Model 3 in chapter 2)

and correlation between links is assumed to be absent at the receiver. Fig. 4.8 shows

the BER plots for OMP and OMP followed by modified SWAP at SNR = 8 dB. Here

Nt = 32, Nr = 16 and nt = 3. The results are also compared with the Kronecker

model with exponential correlation between antennas. The results are almost same.
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Figure 4.9: case(4.6):Comparison between cases when exponential/block diagonal cor-
relation exists at both transmitter and receiver ends Nt = 32, Nr = 16 and
nt = 3, SNR=8 dB.

4.6 Kronecker channel model with both Rtx and Rrx in

block diagonal form

In this section we have used the same Kronecker channel model but the transmitter

channel matrix and receiver channel matrix following a block diagonal form (as in

Channel Model 3) . Fig. 4.9 shows the BER plots for OMP and OMP followed by

modified SWAP at SNR = 8 dB. Here Nt = 32, Nr = 16 and nt = 3. The results are

also compared with the Kronecker model with exponential correlation between anten-

nas. The results are found to be almost same.
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Figure 4.10: case(4.7): Comparison between cases when block diagonal form is used
for (1) both Rtx and Rrx, (2) only Rtx and Rrx = I for Nt = 32, Nr = 16
and nt = 3, SNR=8 dB.

4.7 Comparison of Kronecker channel with and with-

out correlation at receiver

In this section we analyze the Kronecker channel model with correlation at both ends

Vs no correlation at receiver. Both the transmitter channel matrix and receiver channel

matrix follow a block diagonal form (as in Channel Model 3) . Fig. 4.10 shows the

BER plots for OMP and OMP followed by modified SWAP at SNR = 8 dB. Here Nt =

32, Nr = 16 and nt = 3. The results shows the obvious, BER degrades as there is

correlation at both ends both for OMP and OMP-MS.
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Figure 4.11: case(4.8): Comparison between cases when block diagonal form is used
for only Rtx and Rrx = I for Nt = 32, Nr = 16 and SNR=8 dB.

4.8 Performance of Modified SWAP for settings with

different number of active antennas

In this section we analyze the Kronecker channel model with no correlation at receiver.

Fig. 4.11 shows the BER plots for OMP and OMP followed by modified SWAP at

SNR = 8 dB. Here Nt = 32, Nr = 16 and nt = 3. The results shows that BER

improves when there are lesser number of active antennas both for OMP and OMP-MS.

The algorithm is able to recover exact locations with higher probability when number

of active antennas are less.

4.9 Performance of Modified SWAP with respect to SNR

The Performance of OMP and OMP followed by modified SWAP are shown in Fig.

4.12. As SNR increases both curves move down showing a decrease in BER. Since
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Figure 4.12: case(4.9): BER vs SNR

there is correlation existing given by ρ value 0.4, the gap between two curves becomes

larger as SNR increases

4.10 Comparison of Time Complexity

The runtime of the algorithms are shown in Fig. 4.13. The number of transmitting

antennas are taken as double the number of receiving antennas. The runtime increases

with number of antennas for all algorithms. CSR is shown to take much larger time

compared to OMP. OMP followed by Modified SWAP and CSR followed by SWAP

takes almost the same amount of time as OMP and CSR themselves. So Modified

SWAP improves the performance without much overhead in time taken. Also as seen

from the previous figures as well, OMP followed by Modified SWAP performs as good

as CSR without taking as much time as CSS.
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CHAPTER 5

Conclusions and Future work

Considering the application of generalized space shift keying (GSSK), a novel CS based

detection framework for improving performance of various applications with correlated

design matrices is proposed. The proposed framework involves any simple CS algo-

rithm as first stage which is followed by Modified SWAP. The second stage involving

Modified SWAP brings about significant improvement in BER without much increase

in time complexity. Numerical simulations indicate that the proposed framework can

significantly improve the performance of existing CS based schemes with a very mod-

est increase in the computational complexity even when the channel model is highly

correlated.

The same algorithm can be extended to improve the performance of generalized

spatial modulation (GSM). In GSM both antenna indices and the symbols transmit-

ted convey information. However, the symbols transmitted belong to a finite alphabet

rather than real numbers. So this prior information of finite alphabet can be used in

implementing SWAP for GSM detection. Again the complexity can be reduced as there

will be no complex inversions.
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