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ABSTRACT

KEYWORDS: Cognitive Radio, Spectrum Models, Reinforcement Learning, Thomp-

son Sampling, Optimal Channel Sensing, Bayesian Approach

Cognitive radios is an efficient tool in maximising the utilisation of available spec-

trum. Secondary users in a cognitive radio network achieve this by occupying the spec-

trum holes when the primary user is not transmitting. The performance of CR networks

can be further improved by considering factors like number of sensing required to find a

vacant channel and time taken for sensing. This is addressed in this thesis where we try

to formulate an optimal sensing scheme based on a Bayesian approach which reduces

the number of times we have to sense the spectrum before transmission. The proposed

algorithm involves a two layer learning strategy-learning which channel to pick and

learning the optimal sensing strategy. We have validated the performance of our al-

gorithm in two widely used primary user traffic models, based on Generalised Pareto

Distribution and Discrete Time Markov Chain Model. The optimal channel selection

and sensing policy implements the Thompson Sampling approach and a conjugate prior

based updation rule. The performance of our algorithm is compared against other Rein-

forcement Learning algorithms in terms of throughput, interference to the primary user

and the number of sensing required.
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CHAPTER 1

THE CHANGING WIRELESS SCENARIO

1.1 Introduction

With the ever increasing demand for wireless communication, the scarcity of frequency

spectrum is a major problem that limits its capabilities. Thus researchers have been try-

ing to implement technologies that can help expand the capabilities of a wireless system

even when the available spectrum is less. Surveys conducted by Federal Communica-

tions Commission(FCC) clearly indicate the underutilization of the licensed frequency

spectrum assigned to licensed users. With the increase in number of applications that

require wireless communication, utilizing the underutilized spectrum seems like a feasi-

ble approach. Cognitive Radio [1] is an ingenious solution to this problem. The ability

to share the less occupied licensed spectrum with unlicensed users when the primary

user is not transmitting makes cognitive radio an innovative solution especially in the

present scenario. By allowing the secondary users, i.e. the unlicensed users, to use

the unoccupied spectrum, cognitive radio-enabled wireless communication systems ef-

ficiently utiilises the channels.

One of the major requirements in the cognitive radio setting is that, secondary users

should cause negligible interference to the primary users. This requires the secondary

user to sense the channels to detect the presence of primary user traffic before using

them. This gives rise to the dilemma of how much time should be spent on sensing

the channels and how much time will be left to actually transmit the data [2]. This is

because more you sense the channel less is the probability of interference with the pri-

mary but we lose out on throughput. Moreover sensing requires energy which is also

a constraint in the cognitive network. Therefore by reducing the number of times we

sense the channels we gain in energy as well as time. Predicting which channels are

more likely to be vacant can improve throughput performance of cognitive radios. This

can be done efficiently by learning the traffic patterns on each channel.

The primary user traffic on the channels can be modeled based on the ON and OFF du-

ration of transmission or the busy/idle period which can be assumed to be drawn from



particular distributions. The channel occupancy at any instant can also be modeled as a

simple independent coin toss model with different channels having different probabili-

ties of success. In this case employing a Bayesian approach for channel selection would

give the best possible results. But it has been shown that traffic models explained in Sec.

2.4 capture the dynamics of primary user traffic better [3]. It can also be observed from

the channel realization that once a channel is found idle, it will mostly be vacant for the

duration of the next frame. This information can be used to skip sensing the channel to

check if it is busy.

Finding the algorithms that perform in different channel models provides an intuition

as to which learning algorithm(or a combination of different algorithms) can give good

performance in the cognitive radio scenario whatever be the traffic model. Arriving at

an optimal algorithm is a trade off between throughput, sensing period used and inter-

ference to the primary user. This can be done by analyzing the performance of existing

algorithms for different channel models and modifying them such as to capture the dy-

namics of the traffic model better.

1.2 Related work done

Environment

Observe

Learn

Decide

Act

Cognition Cycle

Figure 1.1: Cognition Cycle

From the time Mitola [4] presented the idea of Cognitive Radios (CR) in his doctoral

thesis, a lot of research has been done to improve its performance. In his seminal paper

he describes a system that works on a cognition cycle which observes, learns, decides
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and acts from it’s environment (Figure 1.1). This has motivated the identification of

diverse applications for Cognitive Radios from short range wireless access to wireless

backhaul links [5]. The efficiency of a cognitive radio system depends on detecting

a vacant spectrum for transmission. Channel occupancy can be determined by differ-

ent spectrum sensing methods. The advantages and disadvantages of spectrum sensing

methods that use Matched Filter (MF), Energy Detector (ED) and cyclostationary fea-

ture detection techniques have been analyzed in [6]. But all these detectors, except the

ED, have the following disadvantages - they are complex to implement, they require

exact knowledge of primary user signals and perfect synchronization with the primary

user. Most of the work formalizes the spectrum selection problem in cognitive radios as

a multi-objective optimization problem to maximize throughput of the secondary user

and minimize either the number of times the channels are sensed [7] or the interference

to the primary user [8]. Some works have also considered the optimization problem of

minimizing the sensing duration while maximizing secondary user throughput [2] [9] .

The secondary user accesses the licensed channels when the primary user is not trans-

mitting. Expriments have shown that the primary user traffic ON/OFF time can be

modeled by probability distributions. Most of the work done assumes that the ON/OFF

times are sampled from an exponential distribution. But in [10] it has been shown that

the generalized Pareto and the hyper-exponential distribution (HED) capture the pri-

mary user traffic variations more accurately. The channel occupancy evolution can also

be modeled using Hidden Markov Models (HMM) [11] [12] which capture the dynam-

ics of channel transitions. The importance of the learning capability of CR has been

described by Mitola in his thesis [4]. Employing machine learning and reinforcement

learning algorithms in CR enhances it’s learning capability. The primary user traffic

models learned can be employed to predict which channels are likely to be idle, which

can then used for transmission instead of blindly sensing all the channels [13]. The

spectrum selection problem can be mapped to Multi-Armed Bandit (MAB) algorithms

as explained in [14] [15].

Reinforcement Learning algorithms like Q Learning [16] and Artificial Neural Net-

works (ANN) [17] have also been shown to improve CR performance. Some of the other

methods for spectrum sensing suggested in [18] include Multi-layer Perceptron based

neural networks, Bayesian inference methods, Auto-Regressive(AR) model based method,

static neighbour graphs and Moving Average( MA ) based methods.

3



Judicious sensing is quite important for achieving maximum throughput as time utilized

for channel sensing is time lost for data transmission. In [19], the authors formulate

an optimization problem to maximize throughput given a constraint on the probabil-

ity of detection and prove that an optimal sensing time exists for a fixed frame size.

On the other hand, [20] considers a transmission scheme where the sensing duration is

fixed. An expression for the optimal frame size that maximizes normalizes throughput

is derived; this determines how often sensing is carried out. However, this expression

depends on the parameters of the primary traffic which might not be available to be

secondary user or might be changing with time. The above mentioned works assume

that the ON/OFF times are sampled from an exponential distribution.

There are many methods that are explained in literature to quantify the perfor-

mance of algorithms employed in CR networks. The performance of CR is most com-

monly evaluated in terms of metrics like throughput of primary or secondary users,

overall system throughput, interference to the primary user, number of sensing required,

etc. [21]. In [8] a new performance metric called the interference efficiency has also

been introduced.

In this report, a novel Bayesian approach to pick the optimal skipping duration with-

out prior knowledge about primary user traffic parameters is proposed. This method is

used in conjunction with a standard reinforcement learning algorithm to decide which

channel to sense. Comparison results with other existing learning algorithms show that

the proposed approach performs better in terms of throughput of the secondary user,

number of sensing required per frame and number of frame collisions.

1.3 Organization of this thesis

This thesis is organized as follows:

Chapter 2 explains in detail the Cognitive Radio Network. The spectrum sens-

ing technique used and the frame structures considered for transmission in Cognitive

Radio are explained in brief. The primary user traffic can be captured using different

mathematical models which are explained in Section 2.4.

Chapter 3 tries to introduce Reinforcement Learning (RL) and few widely used

Reinforcement Learning algorithms for wireless communication. The update equations
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of algorithms give an intuition of how the algorithms learn the channel occupancy mod-

els by getting rewards from the environment and appropriately using them in the update

equations.

Chapter 4 explains the algorithm that is proposed which is based on a Bayesian

Learning approach and gives an intuition as to why it should work in the Cognitive

Radio setting.

In Chapter 5, the simulation setup used for experiments is explained. The per-

formance of different algorithms are analyzed in terms of graphs of throughput of sec-

ondary user, interference to the the primary user and the number of sensing required to

find an unoccupied channel.

Chapter 6 summarizes the work done and provides some concluding remarks and

avenues for future work.
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CHAPTER 2

SYSTEM MODEL

2.1 Introduction

This chapter describes in detail the system model employed for the simulations. A

typical snap shot of the channel spectrum across time and frequency is shown in Figure

2.1. As can be seen from the figure when a channel is not being used by the primary

user, the channel remains idle which is called a spectrum hole. Thus cognitive radio

improves the spectrum utilization.

Time

Fr
eq

ue
nc

y

Primary User

Spectrum Hole

Figure 2.1: Illustration of spectrum utilization by primary user

Another observation that can be seen in a realistic scenario is that the traffic on each

channels varies. Therefore it makes sense to learn the traffic model on each channel so

that a channel that is mostly unoccupied can be chosen. This is where RL algorithms

play a crucial role by learning the dynamics of the channels efficiently.

In our system model, we consider N channels that can be accessed by the secondary

user, at any given instant. The primary goal of the secondary user is to transmit data

packets so as to maximize its own throughput while causing minimal interference to



the licensed users. Before the data is sent, the channel is sensed to check whether it is

idle or busy, unless we are positive that the channel is available for transmission. This

depends on the channel model that is used. We assume that the sensing operation is

done until we find a channel that is idle or we exhaust all available channels. The aim

is to reduce the number of sensing operations that need to be performed so that a larger

part of the frame is available for data transmission.

The learning algorithm used to predict the current state of the channel returns a

ranked list of channels in the order of estimated probability of occupancy. The sensing

of channels is carried out in that order. Once a channel is found to be idle, the secondary

user transmits its data. Upon transmission, we encounter one of the two scenarios: ei-

ther collision occurs due to primary transmission or the packet is delivered successfully.

If a packet collision occurs, we achieve a low throughput at the receiver end, else, high

throughput is achieved. Packets can also be lost due to bad channel conditions. In this

case the packet is said to be lost due to channel error. So, if a packet is successfully

transmitted a ACK is received and when a packet is lost due to collision or channel

error no ACK is sent which is equivalent to a NACK.

2.2 Spectrum Sensing in Cognitive radio networks

Identifying an appropriate spectrum sensing for CR is vital to the performance of CR.

Commonly employed detection techniques are

• Matched filter detection

• Cyclostationary feature detection

• Energy detection

In this work, we consider energy detector for spectrum sensing as it is the sim-

plest detector in terms of complexity and implementation [22]. Moreover, it does not

require any primary user signal specific information, nor does it need a huge number

of samples to determine the presence of primary user. Incidentally, this also happens to

be the optimal detector for weak signal detection when the primary user signal arrival
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and departure times are unknown. The energy detector is explained here. The energy

detector considers a simple Hypothesis Testing.

y[n] =

 w[n] : H0

s[n] + w[n] : H1

, (2.1)

where s[n] denotes the unknown primary user signal and w[n] denotes additive white

Gaussian noise (AWGN). The null hypothesis H0 stands for the absence of primary

user signal and the alternative hypothesis H1 denotes the presence of the primary user.

The noise is assumed to be from a normal distribution with mean 0 and variance σ2
n,

w[n] ∼ N (0, σ2
n). Similarly, primary user signal is assumed to be from a normal

distribution with mean 0 and variance σ2
n + σ2

s , s[n] ∼ N (0, σ2
n + σ2

s). The energy

detector is implemented for a prespecified probability of false alarm, Pf and probability

of detection, Pd. For a given value of Pf and number of samples N , the threshold(η) is

calculated as,

η = χ−12 (1− Pf,N) (2.2)

The decision made based on the energy (E) received, i.e. the sum of squares of the

received samples is given below:

E =
i=N∑
i=1

x2i
H1

≷
H0

η (2.3)

2.3 Frame Structure

The data is transmitted by the secondary user in frames. Each frame that is transmitted

has a sensing duration and a transmission duration. During the sensing duration the

secondary user senses the channels either randomly or based on input from the learning

algorithms. It is assumed that each channel sensing takes time τ . Once a channel is

sensed free then during the transmission duration data transmission occurs. The sens-

ing in each frame can be done in two ways: single slot sensing and multi-slot sensing.

In the first frame type only one channel can be sensed in each frame and if this channel

is found to be vacant the user transmits. But this method denies the secondary user the

chance to find another free channel that might have been vacant during that time.

8



τ T − τ

Sensing
Transmission

Figure 2.2: Single slot sensing frame

In the multi-slot sensing frames [23] the secondary user keeps on sensing the chan-

nels till it finds a vacant channel to transmit. This method has the advantage that the

throughput is higher when compared to the case where the secondary user gives up

sensing if the first channel sensed is occupied. The disadvantage is the fact that the

secondary user has to sense more than one channel before it finds a vacant channel and

the duration left for data transmission may vary from frame to frame.

S1 S2 Sk1

k1τ T − k1τ

Sensing Transmission

S1 S2 Sk2

k2τ T − k2τ

Figure 2.3: Multi slot sensing frame

2.4 Primary User Traffic models

The primary traffic on N channels is modeled to be independent. We take two ap-

proaches to model the primary traffic [3]: the discrete-time model and the continuous-

time model.

2.4.1 Discrete Time Model

In the Discrete-Time Markov Chain(DTMC) model, the time index set is discrete. The

discrete formulation of the primary traffic is adopted in [23–25].The behaviour of the

channel can be expressed by a transition probability matrix as given below.

P =

p00 p01

p10 p11

 (2.4)

9



where pij represents the probability that the system transitions from state si to sj .

Duty Cycle(Ψ) is defined as the probability that the channel is busy and can be

written as P (S = s0) = 1−Ψ and P (S = s1) = Ψ. The DTMC model can be used to

reproduce any arbitrary DC, Ψ, by selecting the transition probabilities as p01 = p11 =

Ψ and p00 = p10 = 1−Ψ, which yields,

P =

1−Ψ Ψ

1−Ψ Ψ

 (2.5)

For channels with varying load, the P matrix will also vary with time and the duty cycle

will become a time varying quantity, Ψ(t).

The channel load under this model is considered to be a random variable, which

can be characterized by its PDF. The empirical PDFs of Ψ in real systems can be accu-

rately fit with the Beta distribution(Eqn.2.6) or the Kumaraswamy distribution(Eqn.2.7).

The Beta distribution is given by

fBX (x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ (0, 1) (2.6)

where α > 0, β > 0 and B(α, β) is the Beta function.
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Figure 2.4: Beta distribution for different values of α and β

The Kumaraswamy distribution is given by

fKX (x; a, b) = abxa−1(1− xa)b−1, x ∈ (0, 1) (2.7)
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where a > 0, b > 0. For our simulations we have considered the model based on the

Beta distribution. A single channel instance for medium traffic condition when using

this traffic model is shown in figure 2.5
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Figure 2.5: Channel occupancy plot for a Discrete Time model with medium traffic load

Various traffic intensities can be modeled using this model [3] if the parameters α

and β are chosen as given in Table 2.1

Traffic Type α β

Low Traffic(L-I) (0, 1] [1, 5]

Medium Traffic(M-I) (0, 1] (0, 1]

High Traffic(H-I) [1, 5] [1, 5]

Table 2.1: Table with parameter ranges for α and β for different traffic intensities
DTMC model

2.4.2 Continuous Time Model

For the continuous-time model, we assume that the on and off times are distributed ac-

cording to the Generalized Pareto Distribution(GPD). This is a heavy-tailed distribution

that allows us to model a wider range of traffic [26]. The probability density function

of a GPD is given by

f(x|k, σ, θ) =
1

σ

(
1 + k

x− θ
σ

)−1− 1
k

θ < x; k > 0 (2.8)
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where k, σ and θ are the shape, scale and location parameters respectively.
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Figure 2.6: Generalised Pareto Distribution for different values of shape parameter and
scale parameter with 0 location parameter

Varying traffic load can be generated by varying the parameters of GPD. The chan-

nel occupancy simulated using is given in Figure 2.7
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Figure 2.7: Channel occupancy plot when considering a Generalised Pareto Distribu-
tion for ON/OFF times

As can be seen from the occupancy plots, some channels are more likely to be idle

than others. Therefore, rather than randomly sensing channels to see which are idle

and which are busy, a learning algorithm can be employed to learn the occupancy on

12



channels. The next chapter explains a few Reinforcement Learning (RL) algorithms

which have been employed for channel selection in cognitive radios.
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CHAPTER 3

REINFORCEMENT LEARNING

3.1 Introduction

The past few decades have seen the emergence of learning algorithms and artificial intel-

ligence that is now being employed widely for data analytics in diverse fields from robot

manipulations and control systems to medicine and wireless communication.Some di-

verse applications where RL is employed is given in [27], [28] [29] and [30].Artificial

Neural Networks (ANN), Artificial Intelligence (AI) and Genetic algorithms are now

being explored widely for it’s learning capabilities. But, whatever be the learning algo-

rithm it involves interaction with the environment and formulating future actions based

on past learning experiences. Learning can be broadly categorized as supervised, unsu-

pervised and reinforcement learning. In Reinforcement Learning(RL), the agent learns

to act appropriately by interacting with the environment [31]. With each action, a re-

ward is obtained which is the only mode of feedback for the learning agent. RL is

attractive as it does not require a dataset for training as in machine learning problems.

It learns from the observations it gets from the environment and hence, can be used

in real-time applications. RL is often employed to solve complex online optimization

problems in areas such as robotics, online recommendation etc.

Multi-armed bandits(MABs) are a class of RL problems which can be modeled

using a single state. The formulation was inspired from a one-armed slot machine where

a gambler wishes to maximize his earning by picking the slot machine that is most likely

to give him/her a high reward. A learning agent chooses one of the N actions available

to it and updates the value of the action according to the reward it obtains. The next

action chosen is a function of the learnt values. A standard problem that is addressed

in this setting is the exploration exploitation tradeoff. The algorithm needs to optimally

balance utilizing the action that has performed the best so far, and looking for new

options that can potentially better. Various algorithms have been proposed to achieve

this tradeoff and some of them are listed below.



3.2 MDP based Approach

These algorithms assume a Markov Decision Process (MDP) that satisfies the Markov

property [32]. A finite MDP is characterized by its state and action sets. The probability

of reaching a state s′ and getting a reward r from state s after taking an action a is given

by the probability p(s′, r|s, a), which is the state transition probability.

3.2.1 Q Learning

The Q Learning Algorithm is a widely used reinforcement learning algorithm. It was

first introduced in 1989 by Watkins [33] . The Q Learning algorithm works on a Markov

model with multiple states and actions. The algorithm selects the optimal action in each

state by learning Q-values, Q(s, a), associated with each action in each state. Q Learn-

ing also incorporates an exploration strategy like ε-greedy or softmax in its framework.

This makes sure that the algorithm does not always exploit. The Q Learning algorithm

has been shown to converge to the optimal action for each state [34] . The Q Learning

algorithm is as given in Algorithm 1. In the algorithm α is the learning rate, γ is the dis-

count factor. The learning rate decides how much to weigh previously obtained values

and the reward obtained in the current time step and the discounting factor discounts

the rewards obtained in future.

Algorithm 1 Q Learning

1: Initialization: Q(s, a) = 0, ∀a ∈ A,A is set of all possible actions and∀s ∈ S, S
is set of all possible states

2: for t = 1, 2, 3, . . . do
3: Select the action a based on the exploration strategy
4: Take action a selected, s′ is new state reached
5: Obtain reward r(s, a, s′)
6: Update Qt+1(s, a)← (1− α)Qt(s, a) + α ∗ (r + γ ∗ max

b∈A(s′)
Qt(s

′, b))

7: end for

The stateless Q Learning variant [35] assumes a single state with multiple actions.

It does not assume multiple states as in the conventional Q-Learning algorithm. The

update equation for stateless Q Learning is obtained by setting the discounting param-

eter γ in the Q Learning algorithm to be 0. This is similar to the Multi-Armed Bandit

(MAB) setting for which the algorithms explained in the next section can be employed.
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3.3 Frequentist Approaches

In the frequentist inference approach the observer performs a finite number of exper-

iments and the value inferred is approximated to be the value obtained after infinite

number of observations. This method assumes values from unobserved samples which

can go wrong especially if the basic characteristics of the observations is not stationary.

3.3.1 Upper Confidence Bound Policies

Upper confidence bound policies attaches a quantity called upper confidence bound to

the value of each arm and then chooses the one with maximum combined values [36].

The confidence bound gives an indication of how confident we are about the value as-

sociated with each arm. The confidence term for a less explored arm will be large. This

makes the algorithm pick that arm in the next time instants and thus also incorporates

exploration. UCB policies are known to achieve logarithmic regret uniformly over time

rather than asymptotically. These policies are easy to implement and are computation-

ally efficient.

Algorithm 2 UCB1 Policy
1: Initialization: Play each arm once.
2: for t = 1, 2, 3, . . . do
3: Calculate average value x̄i for i = 1, . . . , K

4: Calculate UCB index
√

2 log(t)
Nt(i)

for i = 1, . . . , K; where Nt(i) represents the

number of times ith arm is played till time t

5: Calculate xi = x̄i +
√

2 log(t)
Nt(i)

for each arm
6: Play the arm with highest xi value
7: end for

There are other variants of UCB policies called UCB2, UCB-NORMAL [36], etc.

which tightens the confidence bounds with the knowledge of new parameters. The

UCB-NORMAL algorithm is specifically proposed for the case where the rewards are

drawn from normal distributions with unknown mean and variance.
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3.3.2 EXP3

EXP3 is proposed for adversarial bandit problems which is a subset of non-stationary

bandits, where the reward structure evolves over time [37]. In an adversarial setting

the adversary or environment is such that it always tries to minimize the reward that the

player gets. EXP3 is given in Algorithm 3. Here, the distribution over the arms is a mix-

ture of uniform distribution and a distribution based on the observed rewards from each

arm. EXP3 performs better in an adversarial setting as the algorithm brings in a random-

ization when it assigns a probability with which to pick an arm. This fetches better re-

wards than playing a deterministic policy which the adversary can figure out. The scal-

Algorithm 3 EXP3 with weak regret

1: Parameters: γ = min(1,
√

Klog(K)
(e−1)T )

2: Initialization: wi(1) = 1 for i = 1, . . . , K
3: for t = 1, 2, . . . , T do
4: for i = 1, . . . , K do
5: pi(t)← (1− γ) wi(t)

K∑
j=1

wj(t)

+ γ
K

6: end for
7: Pull arm it according to the distribution p(t)
8: Receive feedback xit(t) ∈ [0, 1]

9: Set wit(t+ 1)← wit(t) · exp
(
γ
K

xit
pit

)
10: end for

ing by pit(t) during weight update ensures that the new estimated reward x̂it(t) =
xit (t)

pit (t)

gives an unbiased estimator of the rewards.

3.4 Bayesian Approach

3.4.1 Conjugate Priors

In estimation theory Bayesian inference is the method where using the prior distribu-

tion of the parameter to be estimated, say θ and based on the value of the observation

received we update the posterior distribution for θ.

p(θ|y) =
p(θ, y)

p(y)
=
p(y|θ)p(θ)
p(y)

(3.1)
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Here, p(y|θ) is the likelihood function and p(θ) is the prior distribution on parameter θ.

A distribution for which the the posterior distribution for a given likelihood distribution

has the same form as the prior is called a conjugate prior. For example consider the

case where the likelihood function is a Bernoulli distribution with parameter θ.

p(y|θ) = nCkθ
k(1− θ)n−k (3.2)

k =
n∑
i=1

yi (3.3)

If the prior on θ is a beta distribution with parameters α and β, i.e.,

p(θ) =
Γ(α, β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (3.4)

Then, the posterior distribution is given by

p(θ|y) ∝ θk(1− θ)n−kθα−1(1− θ)β−1 (3.5)

∝ θk+α−1(1− θ)n−k+β−1 (3.6)

which is again a beta distribution with parameters α + k and β + n− k. Therefore the

beta distribution is a conjugate prior for the Bernoulli distribution.

3.4.2 Thompson Sampling

Thompson Sampling comes from a family of randomized probability matching algo-

rithms. It is a Bayesian approach where Bayesian prior of the original distribution is

used as tool to encode the current knowledge about the arms. This algorithm is first

introduced in [38] and is further analyzed by [39]. Thompson Sampling algorithm has

been shown to perform well especially when the reward is the output of Bernoulli trials.

In this case the update equations perfectly captures the mean of the distribution.
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Algorithm 4 Thompson Sampling
1: Initialization: αi0 = 1, βi0 = 1 ∀ i = 1, . . . , K

2: for t = 1, 2, 3, . . . do

3: Sample θi from Beta(αit−1, β
i
t−1) for all arms

4: Select arm with highest value of θi

5: Pull that arm It and receive reward xIt,t

6: αItt ← αItt−1 + xIt,t

7: βItt ← βItt−1 + (1− xIt,t)

8: end for

The above algorithms have been employed in the CR setting in literature. The

stateless Q-learning algorithm is employed for choosing the channel to transmit by in-

corporating some heuristic system information like Inter-cell Interference Coordination

(ICIC) signals and Radio Environment Map(REM) in [40]. Q-learning is also employed

for channel selection in cognitive radio by [16]. Work done in [41] and [42] use ideas

from Thompson sampling to propose an algorithm for channel selection in CR. A vari-

ant of the UCB algorithm is also used for channel selection in CR in wireless sensor

networks in [43]. These applications mostly look at selecting an optimum channel for

transmission. But the proposed algorithm explained in the next chapter uses learning

not only for channel selection, but also to find the optimal sensing duration.
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CHAPTER 4

PROPOSED APPROACH

4.1 Motivation for the Proposed Approach

Most of the work in CR literature focuses on finding the optimal channel to transmit.

Channel sensing to find a vacant channel is repeated every frame. In our algorithm we

introduce two stages of learning. Learning to pick the right channel through an MAB

formulation and learning an optimal strategy for sensing that channel. A metric, known

as value, is maintained for all the arms which indicates quantitatively how beneficial it is

to pick that arm. In the context of cognitive radio, this is an indicator of whether a chan-

nel is likely to be idle or vacant. When an arm is played, i.e., when a channel is chosen,

we receive a reward from the environment in the form of throughput/interference which

is used to update the value of that arm. At any instant, the SU can decide to exploit -

pick the channel with the maximum value, or explore - pick among other channels so

as to learn more about their behaviour. We illustrate our algorithm using the Thompson

sampling algorithm [38] although any of the other bandit or RL algorithms can be em-

ployed. As we use the multi-slot sensing approach, the Thompson Sampling algorithm

returns a ranked list of channels instead of just one optimal arm.

To determine the sensing strategy, one possible approach is to have the secondary

user transmit on a channel until it encounters a collision from the primary data. How-

ever, this implies sending on a channel is interrupted only when a collision occurs. This

increases the interference caused to the primary user. Thus, ideally we should stop

transmitting before a collision occurs and switch to another channel. To do so, we need

to estimate the underlying traffic distribution of the primary user. The ideal number of

frames for which sensing can be skipped can be predicted using a Bayesian approach. A

prior distribution for the parameter is maintained which is updated when a data sample

is observed. In practical situations, secondary users do not have exact knowledge about

the primary traffic; hence, in our algorithm, SU assumes that the primary traffic follows

exponential on/off model and maintains a prior for the exponential parameter, θ. The



conjugate prior for an exponential distribution is a gamma distribution whose param-

eters we update to estimate θ. The Generalized Pareto Distribution has a heavier tail

when compared to the exponential model; hence, assuming an exponential distribution

is justified as it prepares the SU for shorter idle times than the actual traffic.

The OFF time of the channel is a sample from an exponential distribution with

parameter θ, i.e., TOFF ∼ Exp(θ). The mean of the distribution is 1/θ. Using the con-

jugate prior we are estimating the parameter θ. Therefore, to determine the number of

steps for which sensing can be skipped, we consider the inverse of the sample obtained

from the prior distribution. Physically, 1
θ

signifies the mean time duration for which the

channel stays idle, which is the quantity that has to be estimated.

Let the SU assume that the primary traffic (OFF time) is exponential with parame-

ter θ for a specific channel; let the conjugate gamma prior be parametrized by α and β,

i.e., θ ∼ G(α, β).

p(θ) =
βα

Γ(α)
θα−1e−βθ (4.1)

In the cognitive radio context we get a data sample x which denotes the duration for

which data is transmitted without experiencing a collision. It is essentially a sample of

the primary traffic(OFF time) quantized to the frame size T as we assume that we do not

have information of any collisions that occur within one frame duration. The posterior

distribution is given by

p(θ|x) ∝ p(θ)l(θ|x)

∝ βα

Γ(α)
θα−1e−βθθe−θx

∝ θα+1−1e−(β+x)θ

p(θ|x) ∼ G(α + 1, β + x) (4.2)

The gamma distribution is hence updated by the above equation. The number of frames

to be skipped is then obtained as a function of the posterior.
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4.2 Algorithm Description

The steps involved in the choosing the optimal channel skipping policy are listed here.

The algorithm operates in two states: the SENSE state and the SKIP state.

• SENSE state: In this state, the algorithm always asks for a ranked list of preferred
channels from the Thompson Sampling algorithm. Then, it follows the multi-slot
sensing policy to sense the channels to find a vacant channel. Only on finding
a vacant channel, will it transmit the data. Also, the duration to skip sensing is
found by taking the inverse of a sample from the gamma prior distribution and
calculating the number of frames to skip tskip.

• SKIP state: In this state the algorithm, primary channel sensing is not performed.
The data to be transmitted is sent on the channel which was previously found to
be vacant. Cskip, a counter for number of skips performed, is also incremented.

The detailed algorithm is as given below:

Step 1: Initialization - Set the parameters αi and βi of the gamma prior for all channels

to 1. Also, set the algorithm in the SENSE state and the Cskip to 0.

Step 2: Channel Selection - If in the SENSE state then obtain a new ranked list of

preferred channels from TS algorithm and sense the channels sequentially to find a

vacant channel to transmit. A sample is drawn from G(αi, βi) ∀ i and tskip,i = 1/θi is

calculated. Else, if the algorithm is in the SKIP state then transmit on channel used in

the previous time step and increment Cskip.

Step 3: Obtain feedback - After frame transmission reward is obtained in the form of

a collision indicator which is used to update the TS algorithm and ACK is obtained

when frame is successfully transmitted. Absence of ACK indicates frame is lost due to

collision with the primary or because of channel error.

Step 4: Prior Updation - Three cases can occur here as given below:

(a) ACK received and Cskip < tskip,i, then continue in SKIP state

(b) ACK received and Cskip = tskip,i, update αi and βi of gamma prior of channel i
used to transmit as given below and reset Cskip and go to SENSE state

αi ← αi + 1

βi ← βi + tskip,i ∗ frameLength

(c) ACK not received, update αi and βi of gamma prior of channel i used to transmit
as given below and reset Cskip and go to SENSE state

αi ← αi + 1

βi ← βi + (Cskip − 1) ∗ frameLength
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Step 5: Goto Step 2

The Thompson Sampling algorithm modified to return a ranked list of channels

instead of a single channel is given by Algorithm 5.

Algorithm 5 Thompson Sampling (TS) functions

1: Parameters Si = 1, Fi = 1 ∀ i ∈ {1, . . . , N}
2: function GETRANKEDLIST()
3: di ∼ Beta(Si, Fi)
4: Sort di in descending order
5: Return the index of sorted order
6: end function
7: function UPDATEOBSERVATION(channelIndex,collisionOccured)
8: for All channel i preceding channelIndex in preference list do
9: Fi ← Fi + 1

10: end for
11: if collisionOccurs then
12: FchannelIndex ← FchannelIndex + 1
13: else
14: SchannelIndex ← SchannelIndex + 1
15: end if
16: end function

4.3 Intuitive working of the algorithm

Here, we aim to estimate the idle time of the primary user on each of the channels

using a Bayesian approach. The duration for which we can forgo sensing a channel is

found by drawing a sample from the conjugate distribution and taking the inverse. The

β parameter is updated with the duration for which data was successfully transmitted

without channel sensing: (Cskip−1)×T when a collision occurs and tskip×T when there

is no collision. Independent of whether a collision occurs or does not occur, α is always

incremented by 1 when a β sample is updated; it accounts for the number of samples

observed.The mean of the gamma distribution is given by α/β which is the estimate of

θ. As mentioned in Section 4.1, the number of frames (OFF duration of primary traffic)

that can be skipped is inversely proportional to θ. When no collision occurs, we update

β with a higher value; this reduces the mean of the posterior, which implies longer OFF

times. On performing this update with each sample that is received, we arrive at an

an optimal duration to skip. The motivation behind drawing a sample from the gamma
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distribution rather than directly using the estimated values is that drawing a sample

from a distribution holds the possibility of exploring a higher value for time duration

to skip sensing which will help to converge to the best possible skip duration rather

than exploiting a skip duration which might actually be lower than the ideal value. As

we observe higher number of samples, the variance of the gamma distribution, α/β2,

decreases. This implies that with more number of samples, picking a sample from the

gamma distribution is very close to picking its mean value α/β. Also, α/β is the MMSE

estimate of θ. Figures 4.1 and 4.2 show the flow of control in the proposed algorithm.
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Begin

αi = 1, βi = 1 ∀ i ∈ {1, . . . , N},

STATE = SENSE, CSkip = 0, t = 0

t = t + 1 C

STATE?

Use same channel to trans-

mit as previous time step

SKIP

TS::GETRANKEDLIST()

SENSE

θi,t ∼ G(αi,t, βi,t) ∀ i

tskip,i = 1/θi,t

Find vacant channel

to transmit by sensing

Transmit on chosen channel

Increment CSkip

TS::UPDATE()

Collision?

A B

Yes No

Figure 4.1: Flow chart of proposed algorithm
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A

αi ← αi + 1

βi ← βi+(CSkip−1)∗FrameLength

Reset SkipCounter

STATE = SENSE

C

B

CSkip = ti,skip?

STATE = SKIP

No

C
αi ← αi + 1

βi ← βi + ti,skip ∗ FrameLength

Yes

STATE = SENSE

C

Figure 4.2: Flow chart of proposed algorithm(Contd.)

Each channel maintains a different gamma distribution. So, considering the chan-

nel occupancy model in Figure 2.7, channel 5 with a longer OFF time, and hence will

have a higher value for tskip and channel 2 with short OFF time will have a lower value

for tskip .
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CHAPTER 5

SIMULATION RESULTS

5.1 Simulation Setting

For the simulations N = 10 channels are considered and the analysis is done for a

single secondary user setting. The underlying primary user traffic on the channels is

simulated according to the models that are mentioned in section 2.4. The main traffic

scenarios simulated are:

• Continuous Time Model based on the GPD ON/OFF time

• Discrete Time Model with Low traffic intensity

• Discrete Time Model with Medium traffic intensity

• Discrete Time Model with High traffic intensity

The values of α and β for the discrete time model are chosen for different traffic

intensities in the corresponding ranges given in Table 2.1. For each of the 10 channels

randomly chosen parameters in the specified range is chosen to simulate a real time

scenario of different traffic levels on different channels. The frame duration is taken

to be 100ms as considered in [13], [2] for which the sensing duration is taken to be

6ms. A smaller frame length of 50ms is also considered with a sensing duration of 3ms

to analyze the performance of the algorithms when more samples are available to the

learning algorithms. The performance of the learning algorithms described in Chapter

3 are evaluated in terms of three metrics:

• Throughput obtained by the secondary user(in Mbps)

• Average number of frame loss

• Average number of sensing required per frame till finding a vacant channel

Let τ be the time SU takes to sense the state of one channel and k be the number

of the channels the SU senses before the transmission begins. Then the achievable



throughput of each strategy is calculated as

Throughput =
T − kτ
T

· C (5.1)

where

C = log2 (1 + SNRsec) . (5.2)

Here, SNRsec represents the SNR experienced at the receiver of the secondary user. For

the experiments, the value of SNRsec is set to 20dB. Reported results are the averaged

metrics over 5000 independent runs for a time duration of 40s. We also provide results

of a random agent as a baseline. The random agent picks a channel uniformly at random

from the set of channels.

The throughput parameter gives an intuition of how efficiently we are actually able

to pick a channel that remains idle for the duration of data transmission.The average

number of frame loss takes into account the number of frames lost due to collision with

the primary user, due to channel errors and the acknowledgment of frame reception lost

due to a bad channel after transmission. The number of sensing per frame is indirectly a

measure of how time we can save by not sensing as we will be transmitting during that

duration which increases throughput. Less number of sensing required also indicates

energy saved.

5.2 Simulation Results

5.2.1 Continuous Time Model

The simulation results for the continuous time model are given in Figures 5.1 and 5.2.

As can be seen from the graphs, the proposed algorithm performs well in terms of

throughput and the number of sensing compared to all other algorithms considered.

The number of sensing required is only once in two frames while the number of frame

collisions is only around 8% as seen from Figure 5.1b. Even though the number of

frame collisions is slightly lower for Q Learning, it loses out in throughput and number

of sensing required, which is clearer better for the proposed approach by a fair margin.
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Another observation is that, the UCB1 algorithm seems to take more time to learn when

the frame duration is 100ms. But in the 50ms case when double the number of samples

are available it learns and converges faster.

The simulation using a GPD model represents a stationary environment as the param-

eters of the model do not vary with time. The proposed method of approximating the

GPD model used for simulating the channel with an exponential distribution gives good

results in terms of throughput and number of sensing. The proposed algorithm suggests

a clearly better sensing scheme without having to sense in each frame without losing

out on throughput.
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Figure 5.1: Plots for frame size 50ms GPD model
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Figure 5.2: Plots for frame size 100ms GPD model

5.2.2 Discrete Time Model

The simulation results for the discrete time model are given in Figures 5.3 to 5.6. The

learning curves in this case is not as smooth as in the case of the GPD model especially

for the medium and high traffic models as observed in 5.4a and 5.4d. This could be due

to the following reason - the proposed algorithm assumes an exponential traffic model

for primary users, but the underlying model used for simulating traffic is not. However,

it is seen that the algorithm eventually learns some trend in the traffic. And the Thomp-

son Sampling algorithm used for channel selection takes care of the non-stationarity in

the environment inherently, but it takes a longer duration to converge.

As is expected the throughput decreases with increase in traffic intensity and more num-

ber of channel sensing is required before a free channel can be found for transmission.

This is because with increase in traffic the channels will be mostly occupied. But irre-

30



spective of the traffic intensity, the proposed approach gives better throughput with less

number of sensing. Another interesting observation is the gain margin for the proposed

approach in the number of sensing in the low traffic model scenario compared to other

algorithms (Figure 5.3). When the frame duration is 50ms the learning curves seems

to be better compared to the 100ms frame, possibly because of more frequent updation

of learning algorithms. All the learning algorithms have a performance similar to the

random algorithm initially, but it improves with time. When the frame duration is 50ms

algorithms like UCB and EXP3 seem to have lower number of frame collision. But, our

algorithm performs better when considering throughput and number of sensing.

The number of channel sensing required per frame is less than 0.5 for the low traffic

DTMC model( Figure 5.3 and Figure 5.5c) which implies sensing only one channel in

two frames before finding a vacant channel. Our proposed approach performs well even

for a high traffic model even though the gain margin is not very high.
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(f) No. of Sensing per frame DTMC-H-I model

Figure 5.4: Plots for frame size 100ms
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(f) No. of Sensing per frame DTMC-M-I model

Figure 5.5: Plots for frame size 50ms
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Figure 5.6: Plots for frame size 50ms
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The importance of Cognitive Radio in the present day world has increased with the ever

increasing demand for spectrum resources. Especially with the standardization of 5G

and the emergence of Internet of Things(IoT) that envisions everything interconnected

with wireless links, ideas like CR and it’s improvement gains importance. The proposed

approach provides improvement to the performance of CR in terms of reducing the

number of sensing required and increased throughput. This work only considered a

single secondary user as a starting point. The performance of this algorithm in a multi-

user scenario with and without coordination between users is an interesting extension

to this work. Similarly, study of the algorithm as a function of number of channels and

higher traffic load would be interesting.
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