
FPGA Prototyping of OFDM transmitter using HDL

coder for MmWave communication

A Project Report

submitted by

GUTHULA SATHISH

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2017

THESIS CERTIFICATE

This is to certify that the thesis titled FPGA prototyping of OFDM transmitter us-

ing HDL coderfor MmWave communication, submitted by GUTHULA SATHISH

bearing Roll No: EE15M067, to the Indian Institute of Technology, Madras, for the

award of the degree of Master of Technology, is a bonafide record of the research

work done by him under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree

or diploma.

Prof. Radha Krishna Ganti
Research Guide
Asst. Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 9th June, 2017

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my project guide, Dr.Radhakrishna Ganti,

for all the helps and facilities provided to make this project a reality. His wholehearted

encouragement, trust and guidelines helped me in the successful completion of this

project. I am privileged to be a student at IIT Madras and I express my sincere gratitude

to all the teachers for all the academic insights I obtained from them. With their guid-

ance, I gained some wonderful insights into the field of communication systems and

into the research environment in general.

I would like to thank all my friends at IIT for their support and and encouragement

that helped me to keep myself occupied.Especially I would like to thank Zaid who

helped me in vivado design. I express my thanks to my lab mates Manoj Kumar, Ravi

and all others for maintaining a cheerful atmosphere

My deepest gratitude to my mother and father for their tremendous amount of sup-

port, encouragement, patience, and prayers.

i

ABSTRACT

KEY WORDS: OFDM(orthogonal frequency division multiplexing),FPGA(Field

Programmable Gate Array),HDL (Hardware Description Language),Simulink ,HDL

Coder,Virtex 7, FMC230(DAC),FMC126(ADC)

OFDM Transmitter is implemented on FPGA (Virtex 7) , the digital processing part

is done in FPGA and these digital signal are converted into Analog using FMC230.

Output of DAC is a baseband signal of one sided bandwidth 360MHz,720MHz.The

Transmitter algorithms are written in simulink and this simulink model is used to gen-

erate HDL code .

The area and timing optimisation of the fixed point design is done with the aid of

traceability reports generated by the HDL coder. Timing optimisation is done by Dis-

tributed pipe lining and area optimisation is done by resource sharing and word length

optimisation. The generated HDL code is verified using FPGA-in-the-Loop cosim-

ulation by interfacing Simulink with FPGA board Xilinx virtex-7 .The rapid FPGA

prototyping of OFDM Transmitter using High Level Synthesis tool such as Simulink

and the use of High speed DAC and ADC and modifying there reference designs and

verification challenges are the main focus of the thesis.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

1 Introduction 2

2 OFDM Modulation and Demodulation 3

2.1 Transmitter Architecture: . 3

2.2 Receiver Architecture . 4

3 OFDM Simulink Model 5

3.1 Trasmitter: . 5

3.1.1 Source: . 5

3.1.2 Null carrier insertion: . 5

3.1.3 FFT Shift: . 6

3.1.4 Cyclic Prefix Insertion: . 7

4 Digital to Analog Convertor (FMC230) 9

4.1 Introduction . 9

4.2 Characteristics of DAC . 9

4.2.1 Clock characteristics . 9

4.3 Firmware Architecture . 10

4.4 4DSP Reference Firmware Architecture 10

iii

4.4.1 FMC230 Star (sip_fmc230) Description 11

4.5 Conversion of Stellar IP interface to AXI interface 13

4.6 Vivado Design . 14

4.7 Usage of Software API . 15

5 Analog to Digital Convertor (FMC126) 16

5.1 Introduction . 16

5.2 Characteristics of ADC . 17

5.3 Output Format . 17

5.4 4DSP reference Firmware Architecture 17

6 Generation of HDL Code from Simulink Using HDL Coder 19

6.1 Introduction to HDL Coder: . 19

6.2 Creating Simulink Model . 20

6.3 HDL code Generation from Simulink Model 21

6.4 Opimizing Generated HDL Code 22

7 Results 24

iv

LIST OF FIGURES

2.1 Transmitter Architecture . 3

2.2 Receiver Architecture . 4

3.1 QPSK symbol generation . 5

3.2 Null carrier insertion . 6

3.3 Symbol Structure . 6

3.4 Symbol Structure after shifting . 6

3.5 FFT SHIFT . 7

3.6 Cp insertion . 8

4.1 Clock configuration . 9

4.2 Firmware Archicture . 10

4.3 FMC230 Fimware . 10

4.4 FMC230 star . 12

4.5 FMC230 IP . 14

5.1 FMC126 Block Diagram . 16

5.2 Output format of ADC . 17

5.3 Output format of ADC . 17

6.1 Model-Based Design flow using Matlab/Simulink 19

6.2 SImulink HDL Library . 20

6.3 FFT block that support HDL generation 21

v

6.4 Workflow Advisor . 22

6.5 Pipeline . 23

7.1 I component spectrum . 24

7.2 Q component spectrum . 25

7.3 I component spectrum . 26

7.4 Q component spectrum . 27

7.5 Resource Utilization Report . 27

1

CHAPTER 1

Introduction

Orthogonal frequency division multiplexing (OFDM) is used widely in the current wire-

less communication system because of its high data rate transmission and the robustness

against frequency selective fading.OFDM converts frequency selective fading channel

to set of parallel flat fading channels.

In this Project I have used used OFDM modulation Scheme to achieve high data

rate.I have used HDL coder to generate HDL code . I have generated OFDM IP from

HDL coder and used the same in vivado.

For Digital to Analog conversion we used FMC230 which can operate a 2.4 GSps

to get high data rate.In depth understanding of FMC230 is provided in chapter 4.

For Analog to Digital conversion we used FMC126 which can operate a 1.25 GSps

to get high data rate.In depth understanding of FMC126 is provided in chapter 5.

I have used matlab HDL verifier to check the data validity and to verify the algo-

rithms.The process of generating HDL code from HDL coder is described in chapter

6.

CHAPTER 2

OFDM Modulation and Demodulation

2.1 Transmitter Architecture:

Below Diagram is the Transmitter Architecture

Figure 2.1: Transmitter Architecture

Data Generation: We generate binary data using LFSR or else we can give known

data bits.

Mapping to Symbols: The generated bits are mapped to symbols using only one

of the modulation schemes such as QPSK,16-QAM etc.

Null carrier insertion: We insert zeros at the both ends to prevent spectral growth

and a zero at middle to avoid saturation at amplifier.

serial to parallel convertor: We convert the serial data to parallel and give it to

IFFT block.

IFFT: This block applies IFFT on the data which is the major operation in OFDM

modulation.

Cyclic Prefix Insertion: Here a part from the rear part of symbol is copied on the

front of the symbol. It is useful to mitigate multipath effect and it can be used to detect

symbol timing and frequency offset correction.

DAC: All the digital signals that come out of above block are converted to analog

signals by using FMC230 (DAC).

2.2 Receiver Architecture

Below is the receiver architecture.

Figure 2.2: Receiver Architecture

Above Receiver Architecture is the basic Receiver architecture in which the analog

signal is converted to digital using ADC (FMC126) and these digital and signals are fed

into cyclic removal block in which cyclic prefix is removed and after that we apply FFT

operation on the signal. Later we demodulate the signal to extract the bits.

4

CHAPTER 3

OFDM Simulink Model

3.1 Trasmitter:

3.1.1 Source:

Below is the simulink model for source.In this section random bits are generate and

these bits are mapped to symbols usinq QPSK modulaion.

Figure 3.1: QPSK symbol generation

3.1.2 Null carrier insertion:

Simulink model for Null carrier insertion is shown below. The IFFT_Subcarrier_Counter

generates a counter signal in the range of 0 to IFFT Length, where each value corre-

sponds to one IFFT bin (or OFDM subcarrier). The remainder of the logic in the top-

level of the OFDM Symbol Mapping block maps the data to the central subcarriers of

the IFFT, zeros the DC (zero frequency) subcarrier, and reserves the correct number of

samples for the CP extension operation. A valid out signal is also generated to indicate

the validity of data further down the signal processing path. As there is a pipeline delay

associated with the symbol mapping stage, the valid signal is therefore delayed to match

the pipeline delay of the data path.

Figure 3.2: Null carrier insertion

Frame Structure:

Figure 3.3: Symbol Structure

3.1.3 FFT Shift:

Above structure is shifted as follows using FFTSHIFT.The incoming OFDM symbol

samples are written to a Dual Port RAM block with an addressable range of 2 x IFFT

size. After an initial latency of one IFFT frame, the first FFT shifted samples can be read

from RAM. The correct read address for the FFT shifted samples is computed by the

Compute_Read_Address subsystem. As there is a single clock cycle delay associated

with reading data from the RAM block, the valid signal is therefore delayed accordingly.

Figure 3.4: Symbol Structure after shifting

6

Figure 3.5: FFT SHIFT

3.1.4 Cyclic Prefix Insertion:

The Compute_CP_Pass_Through_Index subsystem detects the end of the current OFDM

symbol, determines the length of the CP that corresponds to that symbol and subtracts

it from the IFFT length to create the fftMinusCP output. This value is used to sched-

ule the CP extension. Another output, fftMinusCPandWindow, is created and used to

schedule the windowing operations. The Check Window Multiply subsystem schedules

the windowing operation by creating control and indexing signals, which are used by

the Multiply_by_Window subsystem to multiply the "head" and "tail" of the OFDM

symbol by raised-cosine windowing samples.

Compute_CP_Pass_Through_Index: As the length of the CP is longer for the

first symbol in each slot, it is necessary to detect the end of each OFDM symbol. The

end of the symbol can be determined by the change in level of the validIn signal. The

detection logic creates a strobe which is high for a single clock cycle which, in turn,

enables the OFDM Symbol Counter to advance.

Multiply_by_Window: The windowing process is split into two subprocesses (one

for the head of the symbol, and one for the tail) to allow a windowing length that is

greater than that of the CP. If the windowing length were to be constrained to less than

or equal to that of the CP, this process could be optimized to use a single counter and

Lookup Table (LUT) combination. The blocks which multiply the head of the OFDM

symbol are situated at the top of the subsystem. As cyclic prefix extension is required

for an OFDM modulator, depending on the window length, the windowing of the head

7

may be applied to only the CP samples, and not those that make up the symbol itself. For

the relevant CP data samples (0 to window length), an up-counter is used to address a

Lookup Table (LUT) containing the pre-calculated Raised-Cosine windowing samples.

The output of the RC Window Lookup is then multiplied by the incoming CP data

sample. All non-windowed samples are multiplied by 1. The blocks which perform

the window multiplication on the tail of the OFDM symbol are situated in the bottom

half of the subsystem. In a similar fashion to the windowing of the head samples, for

the relevant tail samples (the final IFFT length - window length-1 to IFFT length-1

samples), a down-counter addresses an LUT containing the windowing samples. The

output of the RC Window Lookup is then multiplied by the incoming CP data sample.

All non-windowed samples are multiplied by 1.

Figure 3.6: Cp insertion

8

CHAPTER 4

Digital to Analog Convertor (FMC230)

4.1 Introduction

FCM230 is a Dual channel 14-bit D/A convertor , it operates at 5.6Gsps (provided

external clock). With internal clock each channel operates at 2.5Gsps. It has features

like Burst control, Number of bursts per second and Burst size which can be configured

through software. There is one trigger input for customized sampling control. The FMC

daughter card is mechanically and electrically compliant to FMC standard (ANSI/VITA

57.1). The FMC has a high-pin count connector, front panel I/O, and can be used in a

conduction-cooled environment.

4.2 Characteristics of DAC

Number of channels : 2

Channel Resolution : 14-bit

Output voltage range 1.12 Vpp (5 dBm)

Output impedance : 50Ω (optimized output impedance for mixed-mode operation)

Analogue output bandwidth : 1.4GHz

4.2.1 Clock characteristics

Figure 4.1: Clock configuration

4.3 Firmware Architecture

Figure 4.2: Firmware Archicture

4.4 4DSP Reference Firmware Architecture

FMC230 is a product of 4DSP, they have there own tool known as Stellar IP. They have

created architecture for FMC230 using Stellar IP tool which can’t understand VHDL

or Verilog.In this architecture each block is given a name called star and each star is

connected by a interface known as wormhole.This Reference Frimware has following

Stars.

Figure 4.3: FMC230 Fimware

10

The constellation has the following stars:

1. Constellation ID Star (sip_cid)

2. MAC Engine Star (sip_vc707_mac_engine_sgmii)

3. 1-to-3 Router Star (sip_router_s1d3)

4. FMC230 Star (sip_fmc230)

5. I2C Master Star (sip_i2c_master)

6. Command Multiplexer Star (sip_cmd12_mux)

This Firmware takes data from PC through Ethernet and convert that data to Analog

waveform. This Firmware should be modified according to our own requirement.Among

above mentioned Stars the one that is useful to us is FMC230 Star(sip_fmc230).

4.4.1 FMC230 Star (sip_fmc230) Description

The FMC230 star takes care of communication with the FMC230 daughter card. Fur-

thermore, it sends data to the D/A converters and provides burst size control. The

FMC230 star has an internal waveform memory (WFM) in the D/A path to accommo-

date the high bandwidth.Below is the FMC230 star

11

Figure 4.4: FMC230 star

This Star has Stellar IP interface known as wormhole, this wormhole interface is not

compatible with our vivado.

clk : clock input to star

rst : reset

cmdclk_in : clock input to command wormhole

cmd_in : command input

dac0 : Dac0 wormhole

dac1 : Dac1 wormhole

We need to convert this Stellar IP interface to Axi interface.

12

4.5 Conversion of Stellar IP interface to AXI interface

We have to convert the Stellar IP interface(wormhole) to Axi interface , so that we can

generate an IP which can be integrated in our own vivado design. We convert cmd_in

to axilite interface and Dac interface to axistream interface.

Following is the procedure.

1. Create a new project in vivado 2014.4.

2. Locate the VHDL source of the FMC230 star .It is typically located in the star lib

folder "star_lib/sip_fmc230".

3. Copy the IP source files according to the list file "sip_fmc230_v7_vivado.lst" ,this

is present in folder "star_lib/sip_fmc230/sip_files".

4. Now we need to copy conversion entities which are useful to convert Stellar IP

interface to Axi interface ,these are present at "/4dsp/4FM Core Development

Kit/StellarIP/Training Material/AN Materials/AN002/Src/conversion".

5. Copy these files axistream_to_whin, delay_bit, stellarcmd_to_axilite.

6. Copy proper constraint file from "star_lib/sip_fmc230/sip_files".

7. Edit the constraints to meet the timing requirements.

8. Follow AN002 material provided by 4DSP.

All the IP’s in sip_fmc230 star were created in vivado 2014.4, it would be better to

use vivado 2014.4.

After adding all the files yours sources tab in vivado will have following entities

sip_fmc230, inst_stellarcmd_to_axilite,inst_axistream_to_whin,inst_axistream_to_whin_0

Above entities are to be instantiated under a file axi_fmc230, axi_fmc230 is instan-

tiated by axi_fmc230_synth.

13

4.6 Vivado Design

All the source files and project that is used to create IP axi_fmc230_synth are present

at "E:/FMC230_GOLDEN/FMC230_golden_ip_files"

IP is present at "E:/FMC230_GOLDEN/fmc_230_ip_2016.2"

Figure 4.5: FMC230 IP

clk200 should be connected to 200MHz clock, s_axi_aclk should be connected to

125MHz clock,s_axi_aresetn should be connected to suitable reset pin, dac0_enable

and dac1_enable are use to enable data source.

s_axi should be connected to microblaze since it is an axilite interface. dac0,dac1

are axi stream interfaces they can be connected to the source which has axistream inter-

face.

Except the above pins remaining pins are to made external which are mapped ac-

cording to constraints file present in IP itself.

14

4.7 Usage of Software API

4DSP provide a reference software which is used configure FMC230 through Ethernet,

this software takes commands and route them to command input wormhole.We can edit

this reference software and use the C++ code on microblaze through SDK.

15

CHAPTER 5

Analog to Digital Convertor (FMC126)

5.1 Introduction

FMC126 is a four channel 1.25Gsps ADC. It provides four 10-bit ADC channels that

enable simultaneous sampling of four channel at 1.25Gsps , two channels at 2.5Gsps

and one channel at 5Gsps sample rate.This ADC has 10-bit EV10AQ190 quad 1.25Gsps

ADC with DDR LVDS outputs. Below is the block diagram of FMC126.

Figure 5.1: FMC126 Block Diagram

5.2 Characteristics of ADC

Number of channels : 1 or 2 or 4

Channel Resolution : 10-bit

Input voltage range: 0.5Vpp

Input impedance : 50Ω

5.3 Output Format

Data is outputted as 16-bit words having the sample bits in the LSB positions. The

overrange flag is available in each 16-bit word as well. Unused bits are forced to zeros.

Figure 5.2: Output format of ADC

5.4 4DSP reference Firmware Architecture

Figure 5.3: Output format of ADC

17

The constellation has the following stars:

1) Constellation ID Star (sip_cid)

2) MAC Engine Star (sip_mac_engine)

3) 5-to-1 Router Star (sip_router_s5d1)

4) FMC126 Star (sip_fmc126)

5) Command Multiplexer Star (sip_cmd12_mux)

Constellation ID Star:

The constellation ID star holds information about the constellation (constellation

ID, star IDs,star address ranges, etcetera). The memory is filled by the Stellar IP tool or

manually assigned by the user and can be access by register read cycles

MAC Engine Star:

The MAC engine star distributes register read and register write commands coming

from the Ethernet MAC. In addition the star transfers data to/from the host through the

Ethernet MAC. This star also generates and distributes the clock and reset signals for

the other stars in the constellation.

5-to-1 Router Star:

The 5-to-1 router star routes data from one of the input port to the output port.

FMC126 Star:

The FMC126 star takes care of communication with the FMC126 daughter card

and provides burst control. Since the high bandwidth requirement the FMC126 star has

internal memories (FIFO) in the A/D path.

Command Multiplexer Star:

The command multiplexer star merges the command output wormholes of all stars

and connects a single command output wormhole to the MAC Engine. This star does

not require to be controlled by the user.

18

5.5 Conversion of Stellar IP interface to AXI interface

We have to convert the Stellar IP interface(wormhole) to Axi interface , so that we can

generate an IP which can be integrated in our own vivado design. We convert cmd_in

to axilite interface and Dac interface to axistream interface.

We can follow the same process mentioned in chapter 4 to build AXI interface.

19

CHAPTER 6

Generation of HDL Code from Simulink Using HDL

Coder

6.1 Introduction to HDL Coder:

HDL coder is a High Level Synthesis tool which can generate VDHL and Verilog codes

from MATLAB functions, Simulink models and state flow charts. The generated HDL

code can be used for FPGA programming or ASIC prototyping and design.HDL Coder

provides a worflow advisor that automates the programming of Xilinx and Altera FP-

GAs.

In HDL coder,there is a provision to control HDL architecture and implemenation

,highlight critical paths and generate hardware resource utilization estimates. HDL

coder provides traceability between the simulink model and the generated VHDl code .

Figure 6.1: Model-Based Design flow using Matlab/Simulink

Code generation using HDL coder is relatively easy with the help of HDL workflow

advisor.In this project Simulink modles are used for fPGA prototyping. Above figure

describes the complete design flow of HDL code generation and verification using HDL

coder and HDl verifier.

6.2 Creating Simulink Model

The first in generation of HDl code starts with creating the simulink model that mimic

our algorithm or Algorithm can be directly witten in simulink using blocks that HDL

code generation .HDL coder has a library of more than 200 blocks that support HDL

code generation which can be used for implementing signal processing algorithms .Ba-

sic mathematical operations (addition, multiplication etc.) as well as logical operations

can be implemented in the FPGA directly using the blocks from HDL coder library.How

ever, complex mathematical operations are difficult to implement in a single step and re-

quires iterative algorithms or mathematical approximations.We can find the block that

are supported for HDL genartion by using "hdllib on" command.Below is the HDL

simulink library.

Figure 6.2: SImulink HDL Library

21

Figure 6.3: FFT block that support HDL generation

6.3 HDL code Generation from Simulink Model

HDl code can be generated from simulink by following step by step procedure laid by

HDL workflow advisor. Entire simulink model should be made into a single subsys-

tem and it should be made as atomic before the start of workflow advisor.Below is the

worflow advisor screenshot.

22

Figure 6.4: Workflow Advisor

There are steps in IP core generation as you can see it from above figure.We need to

specify the target interface in section 1.2, it can be AXI Lite, AXi stream or a external

port.Once you run section 3.2 our required IP will be generated.In section 3.1 we can

set options like traceability report, resource utilization report etc.

6.4 Opimizing Generated HDL Code

After generating HDL code, worflow advisor will generate a report that has estimated

critical path. We can reduce this path delay by pipelining that path. We can do pipelin-

ing by two ways.

One way is we can directly insert delays on the critical path, each delay will be

translated as a register in HDL code. Other way is we can right click the subsystem or

block that is in critical path and go to "HDL block properties",there we can insert input

and output pipelines.

23

Figure 6.5: Pipeline

24

CHAPTER 7

Results

OFDM transmit scheme :

FFT Size 512

Sampling Frequency of DAC 2.4576 GSps

Sub carrier Spacing 4.8MHz

Modulation Scheme QPSK

No. of Data symbols 150

Occupied Bandwidth (one sided) 360MHz

CP length 40

Output spectrum of OFDM (I component):

Figure 7.1: I component spectrum

Output spectrum of OFDM (Q component):

Figure 7.2: Q component spectrum

26

OFDM transmit scheme :

FFT Size 512

Sampling Frequency of DAC 2.4576 GSps

Sub carrier Spacing 4.8MHz

Modulation Scheme QPSK

No. of Data symbols 300

Occupied Bandwidth (one sided) 720MHz

CP length 40

Output spectrum of OFDM (I component):

Figure 7.3: I component spectrum

27

Output spectrum of OFDM (Q component):

Figure 7.4: Q component spectrum

Resource Utilization Report:

Figure 7.5: Resource Utilization Report

28

	ACKNOWLEDGEMENTS
	ABSTRACT
	Introduction
	OFDM Modulation and Demodulation
	Transmitter Architecture:
	Receiver Architecture

	OFDM Simulink Model
	Trasmitter:
	Source:
	Null carrier insertion:
	FFT Shift:
	Cyclic Prefix Insertion:

	Digital to Analog Convertor (FMC230)
	Introduction
	Characteristics of DAC
	Clock characteristics

	Firmware Architecture
	4DSP Reference Firmware Architecture
	FMC230 Star (sip_fmc230) Description

	Conversion of Stellar IP interface to AXI interface
	Vivado Design
	Usage of Software API

	Analog to Digital Convertor (FMC126)
	Introduction
	Characteristics of ADC
	Output Format
	4DSP reference Firmware Architecture

	Generation of HDL Code from Simulink Using HDL Coder
	Introduction to HDL Coder:
	Creating Simulink Model
	HDL code Generation from Simulink Model
	Opimizing Generated HDL Code

	Results

