FPGA Prototyping of OFDM transmitter using HDL

coder for MmWave communication

A Project Report

submitted by

GUTHULA SATHISH

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2017

THESIS CERTIFICATE

This is to certify that the thesis titled FPGA prototyping of OFDM transmitter us-
ing HDL coderfor MmWave communication, submitted by GUTHULA SATHISH
bearing Roll No: EE15M067, to the Indian Institute of Technology, Madras, for the
award of the degree of Master of Technology, is a bonafide record of the research
work done by him under our supervision. The contents of this thesis, in full or in parts,
have not been submitted to any other Institute or University for the award of any degree

or diploma.

Prof. Radha Krishna Ganti
Research Guide
Asst. Professor

Dept. of Electrical Engineering
II'T-Madras, 600 036

Place: Chennai

Date: 9th June, 2017

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my project guide, Dr.Radhakrishna Ganti,
for all the helps and facilities provided to make this project a reality. His wholehearted
encouragement, trust and guidelines helped me in the successful completion of this
project. I am privileged to be a student at II'T Madras and I express my sincere gratitude
to all the teachers for all the academic insights I obtained from them. With their guid-
ance, | gained some wonderful insights into the field of communication systems and

into the research environment in general.

I would like to thank all my friends at IIT for their support and and encouragement
that helped me to keep myself occupied.Especially I would like to thank Zaid who
helped me in vivado design. I express my thanks to my lab mates Manoj Kumar, Ravi

and all others for maintaining a cheerful atmosphere

My deepest gratitude to my mother and father for their tremendous amount of sup-

port, encouragement, patience, and prayers.

ABSTRACT

KEY WORDS: OFDM(orthogonal frequency division multiplexing),FPGA(Field
Programmable Gate Array),HDL (Hardware Description Language),Simulink ,HDL
Coder,Virtex 7, FMC230(DAC),FMC126(ADC)

OFDM Transmitter is implemented on FPGA (Virtex 7) , the digital processing part
is done in FPGA and these digital signal are converted into Analog using FMC230.
Output of DAC is a baseband signal of one sided bandwidth 360MHz,720MHz.The
Transmitter algorithms are written in simulink and this simulink model is used to gen-

erate HDL code .

The area and timing optimisation of the fixed point design is done with the aid of
traceability reports generated by the HDL coder. Timing optimisation is done by Dis-
tributed pipe lining and area optimisation is done by resource sharing and word length
optimisation. The generated HDL code is verified using FPGA-in-the-Loop cosim-
ulation by interfacing Simulink with FPGA board Xilinx virtex-7 .The rapid FPGA
prototyping of OFDM Transmitter using High Level Synthesis tool such as Simulink
and the use of High speed DAC and ADC and modifying there reference designs and

verification challenges are the main focus of the thesis.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT ii
1 Introduction 2
2 OFDM Modulation and Demodulation 3
2.1 Transmitter Architecture: 3
2.2 Receiver Architectureo 4

3 OFDM Simulink Model 5
3.1 Trasmitter: e 5
3.1.1 Source: 5

3.1.2 Null carrierinsertion: 5

3.1.3 FFTShift: s 6

3.1.4 CyclicPrefix Insertion: 7

4 Digital to Analog Convertor (FMC230) 9
4.1 Introduction 9
4.2 Characteristicsof DAC 9
42.1 Clock characteristics 9

4.3 Firmware Architecture e 10
4.4 A4DSP Reference Firmware Architecture 10

il

4.4.1 FMC230 Star (sip_fmc230) Description

4.5 Conversion of Stellar IP interface to AXI interface

4.6 Vivado Design

4.7 Usage of Software API .

S Analog to Digital Convertor (FMC126)

5.1 Introduction
5.2 Characteristics of ADC .

5.3 Output Format.

5.4 4DSP reference Firmware Architecture

6 Generation of HDL Code from Simulink Using HDL Coder

6.1 Introductionto HDL Coder:

6.2 Creating Simulink Model

6.3 HDL code Generation from Simulink Model

6.4 Opimizing Generated HDL Code

7 Results

v

11

13

14

15

16

16

17

17

17

19

19

20

21

22

24

2.1

22

3.1

3.2

33

34

3.5

3.6

4.1

4.2

43

4.4

4.5

5.1

5.2

5.3

6.1

6.2

6.3

LIST OF FIGURES

Transmitter Architecture oo

Receiver Architecture

QPSK symbol generation
Null carrier insertion
Symbol Structure Lo
Symbol Structure after shifting
FFT SHIFT e

Cpinsertion e

Clock configuration
Firmware Archictureo oL,
FMC230 Fimware
FMC230star e

FMC2301IP e

FMCI126 Block Diagram
Output formatof ADC

Output formatof ADC

Model-Based Design flow using Matlab/Simulink
SImulink HDL Library

FFT block that support HDL generation

10

10

12

14

16

17

17

19

20

21

6.4

6.5

7.1

7.2

7.3

7.4

7.5

Workflow Advisor.

Pipeline

I component spectrum
Q component spectrum . . .
I component spectrum

Q component spectrum . . .

Resource Utilization Report

22

23

24

25

26

27

27

CHAPTER 1

Introduction

Orthogonal frequency division multiplexing (OFDM) is used widely in the current wire-
less communication system because of its high data rate transmission and the robustness
against frequency selective fading. OFDM converts frequency selective fading channel

to set of parallel flat fading channels.

In this Project I have used used OFDM modulation Scheme to achieve high data
rate.] have used HDL coder to generate HDL code . I have generated OFDM IP from

HDL coder and used the same in vivado.

For Digital to Analog conversion we used FMC230 which can operate a 2.4 GSps
to get high data rate.In depth understanding of FM(C230 is provided in chapter 4.

For Analog to Digital conversion we used FMC126 which can operate a 1.25 GSps
to get high data rate.In depth understanding of FMC126 is provided in chapter 5.

I have used matlab HDL verifier to check the data validity and to verify the algo-
rithms. The process of generating HDL code from HDL coder is described in chapter
6.

CHAPTER 2

OFDM Modulation and Demodulation

2.1 Transmitter Architecture:

Below Diagram is the Transmitter Architecture

Data Mapping null carriers Serial to Cyclic
Generation to ——— Parallel IFFT Prefix DAC
(bits) Symbols convertor Insertion

Figure 2.1: Transmitter Architecture

Data Generation: We generate binary data using LFSR or else we can give known

data bits.

Mapping to Symbols: The generated bits are mapped to symbols using only one
of the modulation schemes such as QPSK,16-QAM etc.

Null carrier insertion: We insert zeros at the both ends to prevent spectral growth

and a zero at middle to avoid saturation at amplifier.

serial to parallel convertor: We convert the serial data to parallel and give it to

IFFT block.

IFFT: This block applies IFFT on the data which is the major operation in OFDM

modulation.

Cyclic Prefix Insertion: Here a part from the rear part of symbol is copied on the
front of the symbol. It is useful to mitigate multipath effect and it can be used to detect

symbol timing and frequency offset correction.

DAC: All the digital signals that come out of above block are converted to analog

signals by using FMC230 (DAC).

2.2 Receiver Architecture

Below is the receiver architecture.

Cyclic ' Farsiieito Demodul Received
»| Prefix FFT Serial . .
ation Data (bits)
Removal convertor

Figure 2.2: Receiver Architecture

Above Receiver Architecture is the basic Receiver architecture in which the analog
signal is converted to digital using ADC (FMC126) and these digital and signals are fed
into cyclic removal block in which cyclic prefix is removed and after that we apply FFT

operation on the signal. Later we demodulate the signal to extract the bits.

CHAPTER 3

OFDM Simulink Model

3.1 Trasmitter:

3.1.1 Source:

Below is the simulink model for source.In this section random bits are generate and

these bits are mapped to symbols using QPSK modulaion.

Out1 P In1 Out1 1)

qpsk_data_out

bit generation QPSK modulation

Figure 3.1: QPSK symbol generation

3.1.2 Null carrier insertion:

Simulink model for Null carrier insertion is shown below. The IFFT_Subcarrier Counter
generates a counter signal in the range of 0 to IFFT Length, where each value corre-
sponds to one IFFT bin (or OFDM subcarrier). The remainder of the logic in the top-
level of the OFDM Symbol Mapping block maps the data to the central subcarriers of
the IFFT, zeros the DC (zero frequency) subcarrier, and reserves the correct number of
samples for the CP extension operation. A valid out signal is also generated to indicate
the validity of data further down the signal processing path. As there is a pipeline delay
associated with the symbol mapping stage, the valid signal is therefore delayed to match

the pipeline delay of the data path.

L cmms o z! 1 z? T -lz‘ i

Compare
Ta Constent

Figure 3.2: Null carrier insertion

Frame Structure:

SR N P e e PN e

Figure 3.3: Symbol Structure

3.1.3 FFT Shift:

Above structure is shifted as follows using FFTSHIFT.The incoming OFDM symbol
samples are written to a Dual Port RAM block with an addressable range of 2 x IFFT
size. After an initial latency of one IFFT frame, the first FFT shifted samples can be read
from RAM. The correct read address for the FFT shifted samples is computed by the
Compute_Read_Address subsystem. As there is a single clock cycle delay associated

with reading data from the RAM block, the valid signal is therefore delayed accordingly.

N S e e s S W e P =

Figure 3.4: Symbol Structure after shifting

r_dou
i
Convert wr_addr Terminator

wi_en
i ' o
Convert |1 rd_addr dataOut

rdAddr

o Y ' s
validOut

Compute_Read_Address

rdEnable

o '
validin

Figure 3.5: FFT SHIFT

3.1.4 Cyclic Prefix Insertion:

The Compute_CP_Pass_Through_Index subsystem detects the end of the current OFDM
symbol, determines the length of the CP that corresponds to that symbol and subtracts
it from the IFFT length to create the fftMinusCP output. This value is used to sched-
ule the CP extension. Another output, fftMinusCPandWindow, is created and used to
schedule the windowing operations. The Check Window Multiply subsystem schedules
the windowing operation by creating control and indexing signals, which are used by
the Multiply_by_Window subsystem to multiply the "head" and "tail" of the OFDM

symbol by raised-cosine windowing samples.

Compute_CP_Pass_Through_Index: As the length of the CP is longer for the
first symbol in each slot, it is necessary to detect the end of each OFDM symbol. The
end of the symbol can be determined by the change in level of the validIn signal. The
detection logic creates a strobe which is high for a single clock cycle which, in turn,

enables the OFDM Symbol Counter to advance.

Multiply_by_Window: The windowing process is split into two subprocesses (one
for the head of the symbol, and one for the tail) to allow a windowing length that is
greater than that of the CP. If the windowing length were to be constrained to less than
or equal to that of the CP, this process could be optimized to use a single counter and
Lookup Table (LUT) combination. The blocks which multiply the head of the OFDM
symbol are situated at the top of the subsystem. As cyclic prefix extension is required

for an OFDM modulator, depending on the window length, the windowing of the head

may be applied to only the CP samples, and not those that make up the symbol itself. For
the relevant CP data samples (0 to window length), an up-counter is used to address a
Lookup Table (LUT) containing the pre-calculated Raised-Cosine windowing samples.
The output of the RC Window Lookup is then multiplied by the incoming CP data
sample. All non-windowed samples are multiplied by 1. The blocks which perform
the window multiplication on the tail of the OFDM symbol are situated in the bottom
half of the subsystem. In a similar fashion to the windowing of the head samples, for
the relevant tail samples (the final IFFT length - window length-1 to IFFT length-1
samples), a down-counter addresses an LUT containing the windowing samples. The
output of the RC Window Lookup is then multiplied by the incoming CP data sample.

All non-windowed samples are multiplied by 1.

Figure 3.6: Cp insertion

CHAPTER 4

Digital to Analog Convertor (FMC230)

4.1 Introduction

FCM230 is a Dual channel 14-bit D/A convertor , it operates at 5.6Gsps (provided
external clock). With internal clock each channel operates at 2.5Gsps. It has features
like Burst control, Number of bursts per second and Burst size which can be configured
through software. There is one trigger input for customized sampling control. The FMC
daughter card is mechanically and electrically compliant to FMC standard (ANSI/VITA
57.1). The FMC has a high-pin count connector, front panel I/O, and can be used in a

conduction-cooled environment.

4.2 Characteristics of DAC

Number of channels : 2

Channel Resolution : 14-bit

Output voltage range 1.12 Vpp (5 dBm)

Output impedance : 5052 (optimized output impedance for mixed-mode operation)

Analogue output bandwidth : 1.4GHz

4.2.1 Clock characteristics

FMC230 AD9517-1 2300MHz - 2650MHz 2457.60MHz | 2457.60MHz

Figure 4.1: Clock configuration

4.3 Firmware Architecture

4’{ FMC230_CTRL

AD9129_PHY AD9129_WFM
-
- 2x 2x
[L
d—b{ AD9517_CTRL
-

AD9129_C I
P — D IZZ_FTRL
- X
._.{ CPLD_CTRL

FREQ_CNT ‘

Figure 4.2: Firmware Archicture

4.4 4DSP Reference Firmware Architecture

FMC230 is a product of 4DSP, they have there own tool known as Stellar IP. They have
created architecture for FMC230 using Stellar IP tool which can’t understand VHDL
or Verilog.In this architecture each block is given a name called star and each star is
connected by a interface known as wormhole.This Reference Frimware has following

Stars.

0 cmdek oul [y e 1
1_cmd - -

omd_out g o
5_clkout "
s

Figure 4.3: FMC230 Fimware

10

The constellation has the following stars:

1. Constellation ID Star (sip_cid)

2. MAC Engine Star (sip_vc707_mac_engine_sgmii)
3. 1-to-3 Router Star (sip_router_s1d3)

4. FMC230 Star (sip_fmc230)

5. I2C Master Star (sip_i2c_master)

6. Command Multiplexer Star (sip_cmd12_mux)

This Firmware takes data from PC through Ethernet and convert that data to Analog
waveform. This Firmware should be modified according to our own requirement. Among

above mentioned Stars the one that is useful to us is FMC230 Star(sip_fmc230).

4.4.1 FMC230 Star (sip_fmc230) Description

The FMC230 star takes care of communication with the FMC230 daughter card. Fur-
thermore, it sends data to the D/A converters and provides burst size control. The
FMC230 star has an internal waveform memory (WFM) in the D/A path to accommo-
date the high bandwidth.Below is the FMC230 star

11

sip frmc 230

Clk cmd _out ——
rst

cmdclk_in

cmd _in

dac

dac

Figure 4.4: FM(C230 star

This Star has Stellar IP interface known as wormhole, this wormhole interface is not
compatible with our vivado.
clk : clock input to star
rst : reset
cmdclk_in : clock input to command wormhole
cmd_in : command input
dac0 : DacO wormhole

dacl : Dacl wormhole

We need to convert this Stellar IP interface to Axi interface.

12

4.5 Conversion of Stellar IP interface to AXI interface

We have to convert the Stellar IP interface(wormhole) to Axi interface , so that we can
generate an I[P which can be integrated in our own vivado design. We convert cmd_in

to axilite interface and Dac interface to axistream interface.

Following is the procedure.

1. Create a new project in vivado 2014 .4.

2. Locate the VHDL source of the FM(C230 star .1t is typically located in the star lib
folder "star_lib/sip_fmc230".

3. Copy the IP source files according to the list file "sip_fmc230_v7_vivado.Ist" ,this

is present in folder "star_lib/sip_fmc230/sip_files".

4. Now we need to copy conversion entities which are useful to convert Stellar IP
interface to Axi interface ,these are present at "/4dsp/4FM Core Development

Kit/StellarIP/Training Material/AN Materials/AN0O02/Src/conversion".
5. Copy these files axistream_to_whin, delay_bit, stellarcmd_to_axilite.
6. Copy proper constraint file from "star_lib/sip_fmc230/sip_files".
7. Edit the constraints to meet the timing requirements.
8. Follow AN0O2 material provided by 4DSP.

All the IP’s in sip_fmc230 star were created in vivado 2014.4, it would be better to
use vivado 2014 .4.

After adding all the files yours sources tab in vivado will have following entities
sip_fmc230, inst_stellarcmd_to_axilite,inst_axistream_to_whin,inst_axistream_to_whin_0

Above entities are to be instantiated under a file axi_fmc230, axi_fmc230 is instan-

tiated by axi_fmc230_synth.

13

4.6 Vivado Design

All the source files and project that is used to create IP axi_fmc230_synth are present

at "E:/FMC230_GOLDEN/FMC230_golden_ip_files"

IP is present at "E:/FMC230_GOLDEN/fmc_230_ip_2016.2"

axi_fmc230_synth_0

dac0_enablem=
- X dacl_enablem=
.- [5 AXI
= fmc_to_cpid[3:0] Se—
—=| L dacO
= dac0_dci_pa=———
—— Ll daC] h
= dac0_dci_npe——
—==ck200
) dac0_frm_pe=——
———=s_axi_adk
) dac0_frm_n p=——7r- -—
—fs_axi_aresetn
dac0_p0_p[13:0] pee—
————=clk_to_fpga_p
dac0_p0_n[13:0] me—
——=clk_to_fpga_n
dacO_p1_p[13:0] me—
————=mext_trigger_p
) dac0_pl_n[13:0] mee—
——==ext_trigger_n ,
dacl dci pa=——
————e=dac0_dco_p v
dacl_dci_np——o
———==dac0_dco_n
dacl_frm_pg=——
————e=dacl_dco_p
dacl_frm_npg=——
——==dacl_dco_n
dacl_p0_p[13:0] Ser—
———==pg_m2c
dacl_p0_n[13:0] Se—
——==prsnt_m2c_|
dacl_pl p[13:0] See—
dacl_pl_n[13:0] mee—

axi_fmc230_synth_v1_0

Figure 4.5: FMC230 IP

clk200 should be connected to 200MHz clock, s_axi_aclk should be connected to
125MHz clock,s_axi_aresetn should be connected to suitable reset pin, dacO_enable

and dacl_enable are use to enable data source.

s_axi should be connected to microblaze since it is an axilite interface. dac0O,dacl
are axi stream interfaces they can be connected to the source which has axistream inter-

face.

Except the above pins remaining pins are to made external which are mapped ac-

cording to constraints file present in IP itself.

14

4.7 Usage of Software API

4DSP provide a reference software which is used configure FMC230 through Ethernet,
this software takes commands and route them to command input wormhole.We can edit

this reference software and use the C++ code on microblaze through SDK.

15

CHAPTER 5

Analog to Digital Convertor (FMC126)

5.1 Introduction

FMCI126 is a four channel 1.25Gsps ADC. It provides four 10-bit ADC channels that
enable simultaneous sampling of four channel at 1.25Gsps , two channels at 2.5Gsps
and one channel at 5Gsps sample rate.This ADC has 10-bit EVI0OAQ190 quad 1.25Gsps
ADC with DDR LVDS outputs. Below is the block diagram of FMC126.

[
= — Board
(=
2 |l Monitoring ‘ =drhdeli ‘
A A
mmm—m
Clock / - Board Fe - _—
Reference Clock / Sync Control | > } :—.
Tree . @2
Status KBS
s _b; Tz g
} Control LVDS Sync [1] = Rx [5] | E ; pt
LVDS Clock [1] - g : =53
Trigger / LVDS Trigger [1) _ = } ﬁ 3
Sync > = -
= = | =
s LVDS Overrange [4] . o !
- SYNC > ES [
o
A _ LVDS Clock [1] @2 Fem—
o LVDS Data [10] . 32 |
> ~ | B
B - Quad ADC LVDS Clock [1] > .g -
EV10AQ190 LVDS Data [10] . k-3 Tx 5] } A:?‘ 3
> =] 79 4
c o LVDS Clock [1] o 0 p—-| g G g
> > Rx[5] | &~
LVDS Data [10] > < ‘ .‘E EE
D _ LVDS Clock [1] o B 3
il | o
LVDS Data [10] - -2
- [
|
|

Figure 5.1: FMC126 Block Diagram

5.2 Characteristics of ADC

Number of channels : 1 or 2 or 4
Channel Resolution : 10-bit
Input voltage range: 0.5Vpp
Input impedance : 502

5.3 Output Format

Data is outputted as 16-bit words having the sample bits in the LSB positions. The

overrange flag is available in each 16-bit word as well. Unused bits are forced to zeros.

O's overrange 10-bit sample

MSB LSB

Figure 5.2: Output format of ADC

5.4 4DSP reference Firmware Architecture

Figure 5.3: Output format of ADC

17

The constellation has the following stars:
1) Constellation ID Star (sip_cid)

2) MAC Engine Star (sip_mac_engine)
3) 5-to-1 Router Star (sip_router_s5d1)
4) FMC126 Star (sip_fmc126)

5) Command Multiplexer Star (sip_cmd12_mux)

Constellation ID Star:

The constellation ID star holds information about the constellation (constellation
ID, star IDs,star address ranges, etcetera). The memory is filled by the Stellar IP tool or

manually assigned by the user and can be access by register read cycles
MAC Engine Star:

The MAC engine star distributes register read and register write commands coming
from the Ethernet MAC. In addition the star transfers data to/from the host through the
Ethernet MAC. This star also generates and distributes the clock and reset signals for

the other stars in the constellation.
5-to-1 Router Star:
The 5-to-1 router star routes data from one of the input port to the output port.
FMC126 Star:

The FMC126 star takes care of communication with the FMC126 daughter card
and provides burst control. Since the high bandwidth requirement the FMC126 star has
internal memories (FIFO) in the A/D path.

Command Multiplexer Star:

The command multiplexer star merges the command output wormholes of all stars
and connects a single command output wormhole to the MAC Engine. This star does

not require to be controlled by the user.

18

5.5 Conversion of Stellar IP interface to AXI interface

We have to convert the Stellar IP interface(wormhole) to Axi interface , so that we can
generate an I[P which can be integrated in our own vivado design. We convert cmd_in

to axilite interface and Dac interface to axistream interface.

We can follow the same process mentioned in chapter 4 to build AXI interface.

19

CHAPTER 6

Generation of HDL Code from Simulink Using HDL
Coder

6.1 Introduction to HDL Coder:

HDL coder is a High Level Synthesis tool which can generate VDHL and Verilog codes
from MATLAB functions, Simulink models and state flow charts. The generated HDL
code can be used for FPGA programming or ASIC prototyping and design.HDL Coder

provides a worflow advisor that automates the programming of Xilinx and Altera FP-

GA:s.

In HDL coder,there is a provision to control HDL architecture and implemenation
,highlight critical paths and generate hardware resource utilization estimates. HDL

coder provides traceability between the simulink model and the generated VHDI code .

MATLAB® and Simulink®

Algorithm and System Design

HDL Coder HDL Verifier
RTL Creation HDL Co-Simulation

ﬁ Back Annotation

Implement Design

Functional Simulation

Synthesis

Map Static Timing Analysis

Timing Simulation

Place & Route

HDL Verifier !
FPGA in the Loop

Figure 6.1: Model-Based Design flow using Matlab/Simulink

Code generation using HDL coder is relatively easy with the help of HDL workflow

advisor.In this project Simulink modles are used for fPGA prototyping. Above figure

describes the complete design flow of HDL code generation and verification using HDL

coder and HDI verifier.

6.2 Creating Simulink Model

The first in generation of HDI code starts with creating the simulink model that mimic
our algorithm or Algorithm can be directly witten in simulink using blocks that HDL
code generation .HDL coder has a library of more than 200 blocks that support HDL
code generation which can be used for implementing signal processing algorithms .Ba-
sic mathematical operations (addition, multiplication etc.) as well as logical operations
can be implemented in the FPGA directly using the blocks from HDL coder library.How
ever, complex mathematical operations are difficult to implement in a single step and re-
quires iterative algorithms or mathematical approximations.We can find the block that
are supported for HDL genartion by using "hdllib on" command.Below is the HDL

simulink library.

S8 HDL Coder: Library Browser = O X

<8 |E'l-.-':'_:.':1;-_-"| V|h Ay 9= @

DSP System Toolbox HDL Support/ Transforms.

w HOL Coder ~

Commenly Used Blocks M dataln EFT dataQut [M din
D?smnunumes HDL Optimized dvalid [¥
Discrete i Latency = -- X
HOL Operaticns 2 validin validOutp P siant ready [P
HOL Subsystems

Logic and Bit Operations
Lookup Tables

Math Operations

dowt [

FFT HDL
HDL Optimized Minimum Resource
FFT

Model Verification
Model-Wide Utilities 3 datain IFET dataCut p
Ports & Subsystems HOL Optimized
Signal Attributes Svaidn T idouth
Signal Routing
Sinks IFFT
Sources HDL Optimized
User-Defined Functions
Stateflow

w DSP System Toolbox HOL Support

Filtering

Math Functions
Signal Management
Signal Operations
Sinks
Sources
Statistics
Transforms
» Communications System Toolbox HDL Support
Comm Filters
Comm Sinks

Figure 6.2: SImulink HDL Library

21

—| dataln data Ot H
FET
HOL Optimized
Latency = — !
—{ validin walidOut [H
FFT
HOL Optimized

D1

6.3 HDL code Generation from Simulink Model

HDI code can be generated from simulink by following step by step procedure laid by
HDL workflow advisor. Entire simulink model should be made into a single subsys-

tem and it should be made as atomic before the start of workflow advisor.Below is the

! Block Parameters: IFFT HDL Optimized

IFFT HOL Optimized

Compute the inverse fast Fourier transform (IFFT) of a complex or real input.

The IFFT implementation is a streaming algorithm optimized for HDL code generation.

For vector data, input and output data must be in opposite orders.

Check only one of "Output in bit-reversed order” or "Input in bit-reversed order”.

Main Data Types Control Ports
Farameters

Architecture: Streaming Radix 22
Complex Multiplication: |Use 3 multipliers and 5 adders
[output in bit-reversed order

[Input in bit-reversed order

Divide butterfly outputs by two

FFT length: nsub_car_fft

_‘) Cancel Help

Apply

Figure 6.3: FFT block that support HDL generation

worflow advisor screenshot.

22

& HDL Workflow Advisor - ofdm_te_final_cp_upsamp_300MHz/ofdm_te_cp_up

File Edit Run Help

o — T

v [gg HDL Workflow Advisor
hd La 1. Set Target
o “1.1. Set Target Device and Synthesis Tool Generate HDL for: | ofdm_tx_final_cp_upsamp_300MHz/ofdm_tx_cp_up
0 “#1.2. Set Target Interface
hd La 2. Prepare Maodel For HDL Code Generation
@ 2.1. Check Global Settings Folder: hdl_pri_fir_up
o #2.2. Check Algebraic Loops
o ~2.3. Check Block Compatibility
o “#2.4. Check Sample Times D Generate traceability report
v I._a 3. HDL Code Generation
A La 3.1. Set Code Generation Options
0 3.1.1. Set Basic Options
o 3.1.2. Set Advanced Options D Generate optimization report
o 3.1.3. Set Optimization Options
o “3.2. Generate RTL Code and 1P Core

3.1.1. Set Basic Options

Target

Language: VHDL -

Code generation report

D Generate resource utilization report

D Generate high-level timing critical path report

D Generate model Web view

Figure 6.4: Workflow Advisor

There are steps in IP core generation as you can see it from above figure.We need to
specify the target interface in section 1.2, it can be AXI Lite, AXi stream or a external
port.Once you run section 3.2 our required IP will be generated.In section 3.1 we can

set options like traceability report, resource utilization report etc.

6.4 Opimizing Generated HDL Code

After generating HDL code, worflow advisor will generate a report that has estimated
critical path. We can reduce this path delay by pipelining that path. We can do pipelin-

ing by two ways.

One way is we can directly insert delays on the critical path, each delay will be
translated as a register in HDL code. Other way is we can right click the subsystem or
block that is in critical path and go to "HDL block properties",there we can insert input

and output pipelines.

23

14 (c) D"
—

dataln dataOut

validin validOut

Cyclic Prefix insertion

HDL Properties: Cyclic Prefix insertion
General Target Specification
Implementation
Architecture | Module - |
Implementation Parameters
AdaptivePipelining inherit -
BalanceDelays ||'nherit - |
ClockRatePipelining inherit -
ConstrainedOutputPipeline |Cl |
DistributedPipelining off -
DSPStyle |nane - |
FlattenHierarchy ||'nherit - |
InputPipeline |G |
OutputPipeline o |
SharingFactor o |
StreamingFactor |Cl |

[ok || cancel || Help | Apply

=8

Figure 6.5: Pipeline

24

CHAPTER 7

Results

OFDM transmit scheme :

FFT Size 512

Sampling Frequency of DAC 2.4576 GSps

Sub carrier Spacing 4.8MHz
Modulation Scheme QPSK
No. of Data symbols 150

Occupied Bandwidth (one sided) | 360MHz
CP length 40

Output spectrum of OFDM (I component):

REW 3 MH=x Markas 1 [T1]
WEW 10 MH= —23.37 d4Em
Hef —-10 4Bm ATT i0 4B SGWI 10 ms 18€.201755733 MHz
-10 OBW3E1 22E1PE4 =
Tamp 1| [T1 OBW]

|—-100,

-110

Canter 535.06825165 MH=x 107 .012%033 MH=z/ Span 1.07012%2033 GH=

Date: 27.J0L.2003 23:33:20

Figure 7.1: | component spectrum

Output spectrum of OFDM (Q component):

REW 3 MH= Mazkes 1 [T1]
WEW 10 MH=x —27.08 d4dEm
Raf -10 4Bm ATT 20 4B S9WI 10 ms 361 . T0Z22E1254 MH=x

bl o e 10

|--100.

=110

Centaer Z35.0823I18& MH=x 107 .0125033 MH=z/ Span 1.070122033 CSH=z

Figure 7.2: Q component spectrum

26

OFDM transmit scheme :

FFT Size 512
Sampling Frequency of DAC 2.4576 GSps
Sub carrier Spacing 4.8MHz
Modulation Scheme QPSK

No. of Data symbols 300
Occupied Bandwidth (one sided) | 720MHz

CP length 40

Output spectrum of OFDM (I component):

REW 3 BMH=zx Marzkas 1 [T1]
WEW 10 MH=x —-31.€0 dBm

SwWT

10 ma T13.324004081 MEHz

|--100.

=110

Canter S0X.8878101 MH=z

152 MH=x /S Span 1.3X2 CH=z

Figure 7.3: I component spectrum

27

Output spectrum of OFDM (Q component):

REW 3 MH= Mazkas 1 [T1
WEW 10 MH=x —34.8€ 4dBEm
Raf -10 4Bm ATT 20 4B 9WTI 10 ms T713.53E24004081 MH=x

Iililhn‘ hljlnl Ll inl |I Iy |

|--100D

=110

Centaer S05_887S101 MH= 122 MH=z /S Span L_.Z22 CH=

Figure 7.4: Q component spectrum

Resource Utilization Report:

Resource Utilization Available Utilization %%

LuT 15051 303800 4,96
LUTRAM 1544 130800 1.18
FF 21190 B07200 3.49
BRAM 935 1030 90.78
DSP 16 2800 0.57
10 139 F00 19.86
BUFG 16 32 50.00
MMCM 3 14 21.43

Figure 7.5: Resource Utilization Report

28

	ACKNOWLEDGEMENTS
	ABSTRACT
	Introduction
	OFDM Modulation and Demodulation
	Transmitter Architecture:
	Receiver Architecture

	OFDM Simulink Model
	Trasmitter:
	Source:
	Null carrier insertion:
	FFT Shift:
	Cyclic Prefix Insertion:

	Digital to Analog Convertor (FMC230)
	Introduction
	Characteristics of DAC
	Clock characteristics

	Firmware Architecture
	4DSP Reference Firmware Architecture
	FMC230 Star (sip_fmc230) Description

	Conversion of Stellar IP interface to AXI interface
	Vivado Design
	Usage of Software API

	Analog to Digital Convertor (FMC126)
	Introduction
	Characteristics of ADC
	Output Format
	4DSP reference Firmware Architecture

	Generation of HDL Code from Simulink Using HDL Coder
	Introduction to HDL Coder:
	Creating Simulink Model
	HDL code Generation from Simulink Model
	Opimizing Generated HDL Code

	Results

