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ABSTRACT

KEYWORDS: Noise; GCLT; Stable distribution; Classification; Sample size; K-L

Divergence; L-Kurtosis; FLOM.

Noise modelling in communication systems often decides the level of the efficiency of

its operation. Depending on the scenario, the underlying noise source characteristics

differ over a large set of probability distributions by being thin tailed to heavy tailed.

For noise sources exhibiting a tail decay rate ∼ |x|−α, as a direct consequence of the

Generalized Central Limit Theorem, aggregate noise behaviour turn out to be stable dis-

tributed. Symmetric α-Stable noise models are widely used in systems with impulsive

noise. Along with these models comes the requirement of classifying the noise to the

suitable SαS distribution. Here, different methods to map given noise data to a set of

selected pdfs is explored, with focus on SαS pdfs. The performance of these classifiers

with sample size is examined. Distance metrics are investigated as tools for classifi-

cation of the data. For this purpose, divergence calculation methods are examined in

detail. A two-stage classification method based on L-Kurtosis and Fractional Lower

Order Moments is proposed for assigning noise data to suitable SαS distribution.
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CHAPTER 1

INTRODUCTION

In communication system design, one of the fundamental considerations is the noise

model adopted. The efficiency of the receiver in extracting the transmitted data with

sufficient fidelity, heavily depends on its ability to sift out the non-signal part of the re-

ceived data. For devising an optimal receiver structure, the noise model characteristics

has to be nearly identical to that of the actual random fluctuations the signal undergoes

in the channel. In most scenarios, the individual noise sources can be considered in-

dependent and identically distributed. Gaussian distributed models are ubiquitous by

virtue of Central Limit Theorem and yields good results, provided the noise sources are

finite variance or non-impulsive in nature.

But when the noise sources are impulsive in nature, normal distribution does not

adequately capture the noise behaviour. With slower tail decay rates for the aggregate

noise, the resulting distribution becomes heavy tailed. Proceeding with Gaussian noise

assumption in scenarios where heavy-tailed noise is present will lead to erroneous signal

extraction and poor system performance. Alternatively, the approach using a heavier-

tailed model like Cauchy distribution in the place of Gaussian noise is sub-optimal. So

it is imperative that the relevant noise model is selected to ensure proper and optimal

operation.

Consider the generic model where the underlying distribution of the noise can vary

between any of the various possible distributions at different instances. Since it is im-

possible for the system to keep track of all those distributions and map each data to the

suitable distribution, a compromise can be made by having a set of most probable pdfs,

each with different tail decay rates and map the noise sample set to the most suitable

among these distributions. Any probability distance metric can be used to do this clas-

sification of the received data. The efficiency of the classification will then depend on

the distance metric chosen, as well as the metric calculation strategy. In this project,

Kullback-Leibler distance, Pearson divergence, and maximum mean discrepancy were

explored as candidates for this classification, with primary focus on the K-L divergence.



The generalized Central Limit Theorem states that the only possible non-trivial limit

of the sum of n independent and identically distributed random variables tends to be

stable distributed as n → ∞. In the case of impulsive noise sources, the α-stable

distribution model characterizes the aggregate noise behaviour better than a Gaussian

model. By selecting the suitable characteristic exponent α, heavy-tailed distributions

like Cauchy distribution(α = 1) can be used to model the noise. The stable model

also includes the Gaussian model as a limiting case in the form of Symmetric α-Stable

model with α = 2.

The Stable distribution is specified by its characteristic function as:

Φ (t) = e(iδt−|γt|αBt,α) (1.1)

where

Bt,α =

1− iβsgn (t) tan
(
πα
2

)
, α 6= 1

1− iβsgn (t)
(

2
π

)
log (|t|) , α = 1

(1.2)

with the parameters:

• α→ Characteristic Exponent

• β → Skewness

• γ → Scale

• δ → Location.

Symmetric α-stable distribution is stable distribution with skewness parameter, β =

0.

When i.i.d. impulsive noise sources are considered, the generic model can be re-

placed by a set of SαS distributions with varying characteristic exponent. A requirement

of large sample sizes is inherent while dealing with heavy-tailed data. Deducing the na-

ture of the underlying distribution from low number of samples is a hard problem. In

this project, order statistics based moments known as L-moments, as well as fractional

lower order moments (FLOMs), are used for processing the noise data instead of con-

ventional moments. An estimator of low complexity for the scale parameter based on

FLOMs is proposed. A two-stage classification algorithm is provided for mapping the

samples to SαS pdf with the nearest α value. The first stage is based on the L-Kurtosis
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metric of the noise samples which helps in distinguishing between Gaussian and non-

Gaussian distributed data. Then the non-Gaussian distributed data is further mapped to

the fitting α value using a FLOM based algorithm.

1.1 Thesis Outline

The thesis is organized as follows:

Chapter 2 gives a detailed formulation of the general classification procedure

adopted, the assumptions taken on the data samples, the probability distributions of the

test data, and the reference set of probability distributions to which the data is to be

mapped.

The different classification methods based on distance metrics are discussed

in Chapter 3. The simulation results/observations for the classification are also included.

In Chapter 4, estimators for the scale (γ) and exponent (α) parameters of

symmetric α-stable distributed data and low complexity methods for classifying given

data to a set of SαS distributions are proposed.

1.2 Literature Survey

We first give a brief summary of literature in the context of α-stable PDFs then summa-

rize literature on noise classification.

Gnedenko and Kolmogorov (1968); Zolotarev (1986) presented the generalized cen-

tral limit theorem and the properties of the stable distribution. McCulloch (1986) gave

low complexity, quantile based parameter estimators using lookup tables for α-stable

distributions.Kogon and Williams (1998) introduced characteristic function regression

based estimator and Kuruoglu (2001) derived closed form estimators for the parame-

ters. Sufficient mathematical background on handling stable distributed data including

the Fractional Lower Order Moments, is available in Arce (2005).

Past works have pointed out that non-Gaussian behaviour is observed in many real

life scenarios. In various domains, heavy-tailed models based on α-stable distribution

3



were put forward in Georgiou et al. (1999); Briassouli et al. (2005); Niranjayan and

Beaulieu (2008); Gulati et al. (2010).

By modelling node distribution by spatial poisson process and individual interferer

amplitudes with spherically symmetric pdfs, Ilow and Hatzinakos (1998); Win et al.

(2009) showed that the aggregate wireless network interference amplitude followed

Symmetric α-Stable distribution. Both proceeded to derive the relation between the

parameters of the SαS distributed interference and the network parameters. Meanwhile

Gulati et al. (2010) had modelled a special case of co-channel interference using SαS

models.

In other words, there exists a rich literature on both α-stable distribution and its

applications. What we aim to study in this project is that given a set of noise samples,

can we classify these as being closest to one of a set of α-stable distributions.

Classification based on K-L divergence involves computation of the divergence

value. Wang et al. (2005); Perez-Cruz (2008) provided methods based on data parti-

tion to calculate the K-L distance. Density ratio estimation techniques were explored

in detail by Sugiyama et al. (2009). Sugiyama et al. (2012) contrasted the existing den-

sity estimation methods including kernel density estimation Parzen (1962) and near-

est neighbour density estimation methods. Sugiyama et al. (2011) compared the Least

Squares Two-samples Test (LSTT) with the Maximum mean discrepancy (MMD) based

homogeneity test.

4



CHAPTER 2

PROBLEM SETUP

2.1 Problem

2.1.1 Problem Definition

The noise samples {xj}nj=1 from an unknown probability distribution p(x) is available.

A set of reference probability distributions qi(x) of varying levels of tail decay rate

T {qi(x)} are provided to model the noise data. The problem is to map the data to

the best/nearest reference probability distribution.The classification of the data to the

reference pdf is based on the pdf of the noise samples.

Let Hi be the hypothesis such that the noise sample is best modelled by the reference

probability distribution qi(x).

Hi : {xj}nj=1 ∼ qi(x) (2.1)

The optimum decision rule in the scenario, δ
(
{xj}nj=1

)
is such that p(x) is ade-

quately approximated by qi(x) and T {p(x)} vanishes at a similar or faster rate than

T {qi(x)}.

2.1.2 Assumptions

• The real and imaginary parts of the noise data are assumed to be independent.

• Noise probability distribution functions discussed here is for one component (real/imaginary)
of the actual noise data.

• From the assumption of independence, noise probability distribution function is
one dimensional.

• Noise probability distribution function p(x) is symmetric about x = 01.

1zero mean, zero skewness



2.2 Reference Probability Distributions

The reference distributions considered here are all univariate distributions. Tail decay

rate of a PDF p(x) is given by, lim
x→∞

P (X > x) = T {p(x)}.

• Normal Distribution:
fN(x) = 1

σ
√

2π
e−

(x−µ)2

2σ2 where −∞ < µ <∞, σ > 0

T {fN(x)}) ∼
√

2e
− x2

2σ2

x
√
π

• Laplacian Distribution:
fL(x) = 1

2γ
e−
|x−µ|
γ where −∞ < µ <∞, γ > 0

T {fL(x)}) ∼ 1
2
e−

x
γ

• Holtsmark Distribution:
fH(x) = Stable

(
α = 3

2
, β = 0, γ, δ

)
where γ > 0, −∞ < δ <∞

T {fH(x)}) ∼ γ
3
2

2
√

2πx
3
2

• Cauchy Distribution:
fC(x) = 1

π
γ

(x−x0)2+γ2
where −∞ < x0 <∞, γ > 0

T {fC(x)}) ∼ γ
πx

• SαS Distribution:
fSαS(x) = Stable (α, β = 0, γ, δ) where γ > 0, −∞ < δ <∞
T {fSαS(x)} ∼ |x|−α

with all distributions having support as −∞ < x < ∞. The Normal, Cauchy,

Holtsmark distributions are special cases of the symmetric α-stable distribution with

α = 1, 2, 1.5 respectively. Additionally, SαS pdfs with α = 1.25, 1.75 are also used

as reference pdfs. For a fair comparison, the distribution parameters are taken so as to

make the Geometric Power2 Arce (2005) same for all. Since the noise is modelled as

zero mean, the location parameter is selected as zero which eases matching the geomet-

ric power.The parameters thus determined are as follows:

• Fix Normal distribution parameters: µ = 0, σ = σN

• Cauchy parameters satisfying the constraint: x0 = 0, γ = σN√
2
∗ e− 1

2
Ce

• Laplacian parameters satisfying the constraint: µ = 0, γ = σN√
2
∗ e 1

2
Ce

• Holtsmark parameters satisfying the constraint: δ = 0, γ = σN√
2
∗ e− 1

6
Ce

• SαS parameters satisfying the constraint: δ = 0, γ = σN√
2
∗ e−( 2−α

2α )Ce

2

Geometric Power, S0(X) = eE[log|X|]

6



where Ce is the Euler-Mascheroni constant.

The distance between the various distributions can be quantified in terms of K-L di-

vergence. The K-L Divergence from q(x) to p(x) is defined as:

‘DKL (p||q) =

∫
p(x)log

(
p(x)

q(x)

)
dx (2.2)

This expression can be numerically computed3. The values are computed for different

choices of σN . It is observed that the divergence values are consistent over variations in

scale parameter.

Table 2.1: Kullback-Leibler Divergence (DKL (P ||Q)) between probability distribu-
tions P & Q

P
Q

fN(x) fC(x) fL(x) fH(x)

fN(x) 0 0.189195 0.0617442 0.0538536
fC(x) ∞ 0 ∞ 0.0783718
fL(x) 0.174293 0.0912061 0 0.0276048
fH(x) ∞ 0.0623275 0.169214 0

The above values are computed based on the actual PDF values. In our problem,

the noise sample set {xj}nj=1 is available instead of the actual noise PDF. Hence, for

classification purposes, the empirical estimates of the distance metrics need to used.

There are multiple methods available for computed these empirical values from the

samples. The focus of the problem is classification of the sample set, not the accuracy

of the distance estimates. Therefore, it is sufficient if the distance estimates can help in

proper classification.

2.3 Input Probability Distributions

The input probability distributions used are the same as the reference probability distri-

butions.

3Computed using Mathematica
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CHAPTER 3

CLASSIFICATION METHODS

3.1 Classification Methods

Distance based methods are used to classify the received data into the reference distri-

bution models. K-L divergence, Pearson divergence, and Maximum mean discrepancy

are explored as the distance metrics. Different classification methods exist depending

on the way the distance metric is computed. The parameters of Laplace distributed

data is calculated using their ML estimators and the scale parameter for SαS distributed

data is calculated using Algorithm 2 on page 31. Reference data is generated from the

reference PDFs wherever required.

3.2 Classification Based on K-L Divergence

In literature, K-L divergence has been used as a tool to measure the goodness of fit

Kapur and Kesavan (1992). The K-L divergence between the given sample distribution

and the reference distributions is calculated and the given noise sample is mapped to the

reference distribution to which it has minimum divergence. It is framed as a multiple

hypothesis testing problem below:

• Let Hi be the hypothesis such that the sample is best modelled by the reference
probability distribution qi(x).

Hi : {xj}mj=1 ∼ qi(x) (3.1)

• Calculate the K-L divergences, DKL (p||qi) from qi(x) to p(x)

• Decision rule is
δ = argmin

i
{DKL (p||qi)} (3.2)



K-L Divergence Calculation

We have,

‘

DKL (p||q) =

∫
p(x)log

(
p(x)

q(x)

)
dx

= Ep(x)

[
log

(
p(x)

q(x)

)]
= Ep(x) [log (r (x))]

(3.3)

Hence, the problem of calculating the K-L divergence can be expressed as finding the

expectation of the density ratio, r(x) = p(x)
q(x)

w.r.to p(x). Empirically,

Ep(x)

[
log

(
p(x)

q(x)

)]
≈

n∑
j=1

p(xj)log (r̂(xj))

≈ 1

n

n∑
j=1

log (r̂(xj))

(3.4)

yields the K-L divergence estimate Sugiyama et al. (2009, 2012).

3.2.1 Data Partition Methods

Data partition methods require two sets of samples. Here, we have the given noise sam-

ple {xj}nj=1 and the reference sample {yj}mj=1 generated from the reference pdf. The

data partition based methods calculate the K-L divergence by partitioning the reference

sample and/or the given noise sample into equal number of partitions according to a

simple or adaptive rule. The probability density(ratio) values at each partition is as-

sessed from the number of samples that fall into each partition. The ratio of the PDF

values thus calculated is used to find the K-L divergence value as follows:

If p̂(x) is the calculated probability distribution of the given noise and q̂(x) is the cal-

culated reference probability distribution,

D̂KL(p||q) = DKL(p̂||q̂) =
∑

p̂(x)log(
p̂(x)

q̂(x)
) (3.5)

where the summation is over the partitions.
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Wang, Kulkarni, Verdu algorithm A Wang et al. (2005)

The reference sample-set {yj}mj=1 is partitioned uniformly by dividing into empirically

equal segments (i.e., each segment except the ones nearest to −∞ and∞ contain equal

number of samples). Then the number of samples from {xj}nj=1 in each segment is

tallied and used to calculate the empirical probability of each segment. These empirical

probability values are used to calculate the K-L divergence using Equation (3.5).

Simulation Results

SαS and Laplace distributed data of different sample sizes are generated over 1000

iterations and classified to nearest SαS distribution. Table 3.1 to Table 3.4 give the

results of classification in percentage.

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 42.5 10.0 29.6 14.9 2.7 0.3
Laplace 9.8 38.6 10.8 17.5 18.8 4.5
α = 1.75 29.7 13.5 28.1 20.2 8.1 0.4
α = 1.5 12.6 13.4 27.0 27.3 17.1 2.6
α = 1.25 3.6 4.7 15.5 25.9 34.9 15.4
α = 1 0.3 0.4 3.1 11.2 29.3 55.7

Table 3.1: WKV_Alg_A, n = 200

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 55.4 4.1 31.7 8.6 0.2 0.0
Laplace 2.7 54.1 8.8 21.1 12.8 0.5
α = 1.75 30.6 7.5 41.0 19.5 1.4 0.0
α = 1.5 8.0 8.7 26.0 39.7 17.3 0.3
α = 1.25 0.7 0.9 5.1 24.9 54.0 14.4
α = 1 0.0 0.0 0.0 1.8 26.1 72.1

Table 3.2: WKV_Alg_A, n = 400

Wang, Kulkarni, Verdu algorithm C Wang et al. (2005)

The uniform partitioning in algorthm A is not efficient enough in cases where p(x)
q(x)

is

high. Algorithm C employs a reasonable partition scheme to improve this by using
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p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 66.7 0.1 31.8 1.4 0.0 0.0
Laplace 0.7 74.0 3.4 17.7 4.2 0.0
α = 1.75 34.4 4.4 48.6 12.4 0.2 0.0
α = 1.5 2.7 4.8 25.2 55.0 12.3 0.0
α = 1.25 0.0 0.0 0.8 20.5 69.8 8.9
α = 1 0.0 0.0 0.0 0.0 13.1 86.9

Table 3.3: WKV_Alg_A, n = 800

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 88.9 0.0 11.1 0.0 0.0 0.0
Laplace 0.0 93.4 0.4 6.2 0.0 0.0
α = 1.75 18.3 1.6 74.1 6.0 0.0 0.0
α = 1.5 0.0 1.1 11.3 82.0 5.6 0.0
α = 1.25 0.0 0.0 0.0 7.9 90.4 1.7
α = 1 0.0 0.0 0.0 0.0 2.5 97.5

Table 3.4: WKV_Alg_A, n = 1600

finer partitions where the rate of change is high, and coarser partitions where the rate of

change is low.

Simulation Results

SαS and Laplace distributed data of different sample sizes are generated over 1000

iterations and classified to nearest SαS distribution. Table 3.5 to Table 3.8 give the

results of classification in percentage.

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 52.8 9.7 26.5 9.4 1.5 0.1
Laplace 37.9 30.9 12.8 10.3 7.0 1.1
α = 1.75 43.9 13.3 26.2 13.0 3.5 0.1
α = 1.5 34.7 10.7 24.4 21.4 8.2 0.6
α = 1.25 19.0 4.0 21.8 23.2 22.4 9.6
α = 1 10.2 0.2 13.1 16.1 26.5 33.9

Table 3.5: WKV_Alg_C, n = 200
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p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 57.5 4.2 31.8 6.5 0.0 0.0
Laplace 31.8 41.9 5.4 12.0 8.6 0.3
α = 1.75 53.6 6.8 28.8 10.3 0.5 0.0
α = 1.5 41.5 6.1 23.5 21.0 7.9 0.0
α = 1.25 23.4 0.7 16.2 20.4 30.2 9.1
α = 1 8.2 0.0 4.8 5.5 26.4 55.1

Table 3.6: WKV_Alg_C, n = 400

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 79.4 0.4 20.0 0.2 0.0 0.0
Laplace 12.9 74.9 3.3 8.5 0.4 0.0
α = 1.75 61.5 3.0 29.6 5.9 0.0 0.0
α = 1.5 37.4 5.0 17.1 34.4 6.1 0.0
α = 1.25 10.5 0.1 3.5 20.8 59.7 5.4
α = 1 5.0 0.0 0.0 0.8 16.7 77.5

Table 3.7: WKV_Alg_C, n = 800

Fernando Perez-Cruz algorithm Perez-Cruz (2008)

Another method is by constructing a piecewise linear CDF function from the samples

empirically and use the constructed ECDFs to evaluate the density ratio at the input

sample points. The evaluated ratio can then be used to get a K-L divergence estimate.

Simulation Results

SαS and Laplace distributed data of different sample sizes are generated over 1000

iterations and classified to nearest SαS distribution. Table 3.9 to Table 3.12 give the

results of classification in percentage.

Inferences

The algorithms A and C from Wang et al. (2005) shows classification accuracy that gets

better with sample size. It is observed that FPC based K-L divergence classification

performs poorly, even though it yields the best K-L divergence values among the three,

at high sample sizes (∼ 106). The algorithm A performs best among the data partition

methods discussed.
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p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 88.3 0.0 11.7 0.0 0.0 0.0
Laplace 2.3 92.5 0.5 4.7 0.0 0.0
α = 1.75 67.1 0.6 30.2 2.1 0.0 0.0
α = 1.5 30.2 1.6 11.5 53.0 3.7 0.0
α = 1.25 1.5 0.0 0.1 11.9 85.6 0.9
α = 1 2.9 0.0 0.0 0.0 3.2 93.9

Table 3.8: WKV_Alg_C, n = 1600

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 56.3 14.0 17.4 9.3 2.9 0.1
Laplace 84.1 5.9 7.2 1.7 0.8 0.3
α = 1.75 70.4 9.0 13.4 5.5 1.6 0.1
α = 1.5 75.9 5.6 13.2 3.8 1.5 0.0
α = 1.25 76.7 0.5 16.6 4.3 1.6 0.3
α = 1 67.2 0.1 22.5 6.8 2.9 0.5

Table 3.9: FPC, n = 200

3.2.2 Non-parametric Methods for Density Estimation

The individual probability densities of the given noise and reference sample can be eval-

uated using one of the non-parametric metrics and can be used to calculate an empirical

approximation of the K-L divergence. The non-parametric density estimation approach

is as follows:

• Let {xj}nj=1 ∈ D (domain) and {xj}nj=1 ∼ p(x)

• Then for any region RD ∈ D of volume V , probability of x ∈ RD can be ap-
proximated as,

PRD ≈ V ∗ p(x′) (3.6)

where x′ is any point in the regionRD
• If m samples fall in the region RD out of the n samples, then probability of
x ∈ RD can again be approximated as,

PRD ≈
m

n
(3.7)

Using Equation (3.6) and Equation (3.7), we have an estimate of the PDF as:

p(x) ≈ m

nV
(3.8)

Since the PDF estimate depends on how m and V is chosen, the quality of the
approximation depends on the choice ofRD.
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p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 59.9 10.2 21.6 7.0 1.2 0.1
Laplace 91.4 5.2 1.7 1.2 0.4 0.1
α = 1.75 81.5 6.7 8.0 3.1 0.7 0.0
α = 1.5 88.4 3.3 5.9 1.8 0.5 0.1
α = 1.25 87.9 0.5 8.1 2.6 0.7 0.2
α = 1 75.1 0.0 14.7 6.7 2.6 0.9

Table 3.10: FPC, n = 400

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 69.0 5.2 21.8 3.7 0.3 0.0
Laplace 92.7 5.7 0.6 0.9 0.1 0.0
α = 1.75 90.5 3.8 4.5 1.0 0.2 0.0
α = 1.5 95.7 1.2 2.0 0.8 0.3 0.0
α = 1.25 92.5 0.0 4.3 1.6 1.1 0.5
α = 1 80.2 0.0 11.9 4.4 2.5 1.0

Table 3.11: FPC, n = 800

Non-parametric methods explained here can be used to obtain the values {p(xj)}nj=1

and {r(xj)}nj=1.

Kernel Density Estimation

Kernel density estimation (KDE) Parzen (1962); Sugiyama et al. (2012) is a non-

parametric approach for approximating the probability density function of a sample

set. The PDF of the underlying distribution is obtained as the mean of the kernel func-

tions centred at the sample points and of a suitable bandwidth. The kernel controls the

weights of assigning samples to different regions RD ∈ D based on proximity to other

samples. Hence, each sample xj contributes to every regionRD with different weight.

For a sample set {xj}nj=1 and a normalized kernel KB(x, x′) with bandwidth B, the

KDE based PDF estimate is given by:

p̂KDE(x) :=
1

n

n∑
j=1

KB(x, xj) (3.9)
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p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 74.2 3.9 19.6 2.3 0.0 0.0
Laplace 92.3 6.1 0.6 0.8 0.2 0.0
α = 1.75 96.6 1.4 1.8 0.2 0.0 0.0
α = 1.5 98.6 0.1 0.8 0.5 0.0 0.0
α = 1.25 95.8 0.0 2.2 1.0 0.9 0.1
α = 1 78.5 0.0 9.3 4.1 4.6 3.5

Table 3.12: FPC, n = 1600

For Gaussian Kernel,

Kσ(x, x′) =
1

σ
√

2π
e

(
(x−x′)2

2σ2

)

p̂DE(x) =
1

nσ
√

2π

n∑
j=1

e

(
(x−x′)2

2σ2

) (3.10)

Simulation Results

SαS and Laplace distributed data of different sample sizes are generated over 1000

iterations and classified to the nearest SαS distribution. Table 3.13 to Table 3.16 give

the results of classification in percentage.

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 95.6 2.4 2.0 0.0 0.0 0.0
Laplace 0.1 97.4 2.0 0.5 0.0 0.0
α = 1.75 4.9 9.7 74.6 10.8 0.0 0.0
α = 1.5 0.4 6.2 12.0 71.9 9.5 0.0
α = 1.25 0.0 0.8 0.1 12.9 78.8 7.4
α = 1 0.0 0.0 0.0 0.0 8.4 91.6

Table 3.13: KDE, n = 200

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 99.7 0.0 0.3 0.0 0.0 0.0
Laplace 0.0 99.3 0.6 0.1 0.0 0.0
α = 1.75 0.6 2.3 92.1 5.0 0.0 0.0
α = 1.5 0.0 1.2 6.1 88.1 4.6 0.0
α = 1.25 0.0 0.0 0.0 5.8 91.9 2.3
α = 1 0.0 0.0 0.0 0.0 4.5 95.5

Table 3.14: KDE, n = 400
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p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 99.9 0.0 0.1 0.0 0.0 0.0
Laplace 0.0 99.9 0.1 0.0 0.0 0.0
α = 1.75 0.0 0.2 98.1 1.7 0.0 0.0
α = 1.5 0.0 0.0 1.1 98.1 0.8 0.0
α = 1.25 0.0 0.0 0.0 1.0 98.9 0.1
α = 1 0.0 0.0 0.0 0.0 0.5 99.5

Table 3.15: KDE, n = 800

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 100.0 0.0 0.0 0.0 0.0 0.0
Laplace 0.0 100.0 0.0 0.0 0.0 0.0
α = 1.75 0.0 0.0 100.0 0.0 0.0 0.0
α = 1.5 0.0 0.0 0.1 99.9 0.0 0.0
α = 1.25 0.0 0.0 0.0 0.0 100.0 0.0
α = 1 0.0 0.0 0.0 0.0 0.0 100.0

Table 3.16: KDE, n = 1600

Nearest Neighbour Density Estimation

For a domain D with dimension d, NNDE Sugiyama et al. (2012) uses hyperspheres

with radius τ as the regionRD. The volume V ofRD is given by

V =
πd/2τ d

Γ
(
d
2

+ 1
) (3.11)

The PDF is then calculated using Equation (3.8).

Simulation Results

SαS and Laplace distributed data of different sample sizes are generated over 1000

iterations and classified to the nearest SαS distribution. Table 3.17 to Table 3.20 give

the results of classification in percentage.

Inferences

The KDE and NNDE based computation of the K-L divergence yields good results for

the sample sizes considered. This performance does come with the penalty of reference
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p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 96.1 1.2 2.7 0.0 0.0 0.0
Laplace 0.1 96.0 2.7 1.1 0.1 0.0
α = 1.75 5.0 11.1 72.5 11.3 0.1 0.0
α = 1.5 0.2 6.9 11.9 72.0 9.0 0.0
α = 1.25 0.0 0.9 0.0 12.9 79.7 6.5
α = 1 0.0 0.0 0.0 0.0 10.4 89.6

Table 3.17: NNDE, n = 200

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 99.3 0.3 0.4 0.0 0.0 0.0
Laplace 0.0 98.9 1.0 0.1 0.0 0.0
α = 1.75 0.3 3.0 91.9 4.8 0.0 0.0
α = 1.5 0.0 1.1 6.1 87.8 5.0 0.0
α = 1.25 0.0 0.0 0.0 6.6 91.5 1.9
α = 1 0.0 0.0 0.0 0.0 3.5 96.5

Table 3.18: NNDE, n = 400

PDF value generation which requires additional time and memory. Also, KDE requires

kernel matrix evaluation.

3.2.3 Density Ratio Estimation

One way to use Equation (3.3) without going through the hassle of computing the in-

dividual densities is by computing the density ratio, r(x) from the interference data

points {xj}nj=1 such that a convenient K-L divergence approximation is obtained. Equa-

tion (3.4) can be used to empirically evaluate the divergence metric with r̂(x) computed

using a density ratio estimation algorithm Sugiyama et al. (2009, 2012).

Kullback-Leibler Importance Estimation Procedure (KLIEP)

The density ratio of p(x) and q(x) is given by r(x) = p(x)
q(x)

. Supposing we have an

estimate for the density ratio r̂(x), an estimate for p(x) is obtained as:

p̂(x) = r̂(x) ∗ q(x) (3.12)
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p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 99.9 0.1 0.0 0.0 0.0 0.0
Laplace 0.0 100.0 0.0 0.0 0.0 0.0
α = 1.75 0.1 0.1 98.4 1.4 0.0 0.0
α = 1.5 0.0 0.0 0.5 99.0 0.5 0.0
α = 1.25 0.0 0.0 0.0 0.7 99.0 0.3
α = 1 0.0 0.0 0.0 0.0 0.5 99.5

Table 3.19: NNDE, n = 800

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 100.0 0.0 0.0 0.0 0.0 0.0
Laplace 0.0 100.0 0.0 0.0 0.0 0.0
α = 1.75 0.0 0.0 100.0 0.0 0.0 0.0
α = 1.5 0.0 0.0 0.1 99.7 0.2 0.0
α = 1.25 0.0 0.0 0.0 0.2 99.7 0.1
α = 1 0.0 0.0 0.0 0.0 0.0 100.0

Table 3.20: NNDE, n = 1600

Minimizing the K-L divergence from p̂(x) to p(x) is one way of obtaining a good esti-

mate p̂(x).

DKL (p(x)||p̂(x)) =

∫
p(x)log

(
p(x)

p̂(x)

)
dx

=

∫
p(x)log

(
p(x)

r̂(x) ∗ q(x)

)
dx

=

∫
p(x)log

(
p(x)

q(x)

)
dx−

∫
p(x)log (r̂(x)) dx

= DKL (p(x)||q(x))−
∫
p(x)log (r̂(x)) dx

= C −
∫
p(x)log (r̂(x)) dx

(3.13)

where C is a constant since the K-L divergence evaluates to the same constant indepen-

dent of the estimators p̂(x) or r̂(x) chosen. The problem then becomes maximizing the

term
∫
p(x)log (r̂(x)) dx. r̂(x) is then empirically approximated as follows:

r̂(x) = argmax
r̂(x)

1

n

n∑
j=1

log (r̂(xj)) (3.14)
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with the additional implicit constraints
∫
p̂(x)dx = 1 and r(x) ≥ 0 empirically imposed

as:
1

m

m∑
j=1

r̂(yj) = 1 (3.15)

and

r̂(x) ≥ 0 ∀x (3.16)

Linear
(∑b

l=1 θlψl(x)
)

and kernel
(∑b

l=1 θlK(x, cl)
)

models can be used to estimate

r(x) while implementing KLIEP.

GMM based Kullback-Leibler Importance Estimation Procedure

The optimization problem defining GM-KLIEP is the same as that of KLIEP. Here, the

major difference is modelling the density ratio as a Gaussian mixture:

r(x) =
c∑

k=1

θkN (x;µk,Σk) (3.17)

Since the noise data is assumed to be one dimensional, using GM-KLIEP is the same

as KLIEP with Gaussian kernel.

Inferences

KLIEP is computationally intensive because of the kernel matrix evaluation, gradient

ascent convergence time and cross validation for model selection. It is inconvenient for

implementation in real time systems.

3.3 Classification Based on Pearson Divergence

K-L divergence minimization is equivalent to minimizing the log error. Similarly, min-

imizing the squared error yields the Pearson divergence. The Pearson divergence is
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given by:

PE(p||q) =
1

2

∫ (
p(x)

q(x)
− 1

)2

q(x)dx

=
1

2

∫
r(x)p(x)−

∫
r(x)q(x) +

1

2

(3.18)

3.3.1 Density Ratio Estimation

Hence, the problem of calculating the Pearson divergence is equivalent to empirically

computing Equation (3.18). Similar to what was discussed for K-L divergence, we can

compute the density ratio empirically at convenient data points and use it for arriving at

the empirical approximation Sugiyama et al. (2009, 2012).

Assuming a kernel model for r(x):

r(x) = α0 +
b∑
l=1

αiK (x,xi)

= αTk(x)

(3.19)

Pearson divergence is evaluated empirically from a density ratio estimate r̂(x) as:

P̂E({xj}nj=1, {yj}
m
j=1) =

1

2n

n∑
j=1

r̂(xi)−
1

m

m∑
j=1

r̂(yi) +
1

2
(3.20)

The Pearson divergence between the given sample distribution and the reference distri-

butions is calculated and the given noise sample is mapped to the reference distribution

to which it has minimum divergence. It is framed as a multiple hypothesis testing prob-

lem below:

• Let Hi be the hypothesis such that the noise sample is best modeled by the refer-
ence probability distribution qi(x).

Hi : {xj}mj=1 ∼ qi(x) (3.21)

• Calculate the divergences, PE (p||qi) from qi(x) to p(x)

• Decision rule is
δ = argmin

i
{PE (p||qi)} (3.22)
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where r̂(x) is computed using a density ratio estimation algorithm.

Least Squares Importance Fitting Sugiyama et al. (2009)

The formulation of least squares importance fitting (LSIF) is similar to that of KLIEP.

The density ratio of p(x) and q(x) is given by r(x) = p(x)
q(x)

. Supposing we have an

estimate for the density ratio r̂(x), the squared error in the estimate is obtained as:

SE ′ (r̂(x)) =
1

2

∫
(r(x)− r̂(x))2 q(x)dx

=
1

2

∫
r̂(x)2q(x)dx−

∫
r̂(x)p(x)dx+

1

2

∫
r(x)p(x)dx

(3.23)

Here, the last term is a constant independent of our choice of r̂(x) and can be ignored.

Empirically approximating the remaining terms, we get

SE (r̂(x)) =
1

2m

m∑
j=1

r̂(yj)
2 − 1

n

n∑
j=1

r̂(xj) (3.24)

The optimization problem which yields the density ratio estimate is now:

r̂(x) = argmin
r̂(x)

SE (r̂(x)) (3.25)

Additional constraints of non-negativity r̂(x) is also imposed empirically. r(x) is mod-

eled as linear -
(∑b

l=1 θlψl(x) = ψ(x)T θ
)

- for estimation purposes and θ is then esti-

mated.

Unconstrained Least Squares Importance Fitting Sugiyama et al. (2009)

Unconstrained least squares importance fitting (uLSIF) is LSIF without non-negativity

constraint for the density ratio. The negative r̂(x) values are rounded to zero by having

a θ̂k = min (θk, 0b) step in θ update.

3.3.2 Least Squares Two-samples Test

The least squares two-samples test (LSTT) is a homogeneity test making use of em-

pirical Pearson divergence estimates Sugiyama et al. (2011) based on uLSIF algo-
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rithm. Consider the input sample set X = {xj}nj=1 ∼ p(x) and reference sample

set Y = {yj}mj=1 ∼ q(x) with m = n. Denoting the distribution of P̂E (X ,Y) as F , let

β = sup {t ∈ R|F (t) ≤ 1− α} (3.26)

be the upper 100α-percentile point of F . If p(x) = q(x), we have

P
(
P̂E (X ,Y) > β

)
≤ α (3.27)

The two-samples test is based on the permutation test Efron and Tibshirani (1994). The

test procedure is as follows:

• The hypotheses of the test are:

H0 : X and Y are from populations with same distribution. i.e. p(x) ≡ q(x)

H1 : X and Y are not from populations with same distribution. i.e. p(x) 6≡ q(x)

• Calculate the Pearson divergence estimate for the original datasets X and Y .

PE0 = P̂E (X ,Y) (3.28)

• Randomly permute the |X ∪ Y| samples, assign first |X | samples to Xi and the
rest |Y| samples to Yi. Calculate the divergence between the new sets.

PEi = P̂E (Xi,Yi) (3.29)

• Repeat random shuffling and divergence calculation many number of times (T) to
construct a distribution of P̂E under the null hypothesis.

• Approximate the p-value as the relative ranking of PE0 among {PEi}Ti=1

̂p−value =
1

T

T∑
i=1

I (PEi > PE0) (3.30)

where I (true) = 1 and I (false) = 0

• Since Pearson divergence is not symmetric, the divergence in the opposite order
is also calculated and the procedure is carried out. The final p-value is determined
as the minimum of the p-values obtained from both procedures.

Inferences

As demonstrated in Sugiyama et al. (2011), the LSTT works well as a homogeneity test.

But extending the test to map a given data to a set of multiple reference distributions by
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comparing the p-values of pairwise tests with each reference sample does not work. The

reason is that the procedure uses naive bootstrap which is ill-suited for handling heavy-

tailed data. Additionally, the execution time is often long due to the uLSIF algorithm,

which comprises kernel matrix evaluation, matrix inversion and cross validation steps.

3.4 Classification Based on Integral Probability Metric

Using the K-L divergence and Pearson divergence as metrics for classification required

estimating the individual densities or the density ratio. Maximum mean discrepancy

(MMD) is a statistical distance which maximizes the difference expected values of a

function defined on a universal reproducing kernel Hilbert space (RKHS). The key idea

is to use empirically calculated mean values instead of estimating the density to measure

the distance.

3.4.1 Maximum Mean Discrepancy

Maximum mean discrepancy Sugiyama et al. (2011) is an integral probability metric

between two distributions p(x) and q(x) defined on a function classH : Rd → R given

by

MMD (H, p(x), q(x)) = sup
f∈H

[∫
f(x)p(x)dx−

∫
f(x)q(x)dx

]
(3.31)

If the function class H is a unit ball in a universal reproducing kernel Hilbert space

defined on a compact metric space, then the MMD vanishes if and only if p(x) ≡ q(x).

Gaussian kernels are universal RKHSs. Reproducing property of the kernel allows us

to obtain the value of a function at a point x provided we know the inner product of the

function and the kernel centred at x.

f(x) = 〈f(.), K (x, .)〉H (3.32)
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Using the reproducing property of the RKHS, we can arrive upon an empirical approx-

imation of MMD2. If we have X = {xj}nj=1 ∼ p(x) and Y = {yj}mj=1 ∼ q(x), then

M̂MD2 (H, p(x), q(x)) =
1

n2

n∑
j=1

n∑
k=1

K (xj, xk) +
1

m2

m∑
j=1

m∑
k=1

K (yj, yk)

− 2

nm

n∑
j=1

m∑
k=1

K (xj, yk) (3.33)

Extending to Multiple Reference Distributions

The metric M̂MD2 (H, p(x), qi(x)) are calculated for all reference samples with qi(x)

and p(x) is mapped to the qi(x) which yields the smallest M̂MD
2

estimate.

Simulation Results

SαS and Laplace distributed data of different sample sizes are generated over 1000

iterations and classified to nearest SαS distribution. Table 3.21 to Table 3.24 gives the

classification accuracy of each class in percentage.

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 30.4 7.7 30.4 21.7 8.4 1.4
Laplace 6.7 21.2 12.3 17.7 22.4 19.7
α = 1.75 21.2 12.1 23.1 21.7 16.3 5.6
α = 1.5 10.3 11.3 19.8 21.6 21.6 15.4
α = 1.25 2.5 3.8 11.1 19.3 33.6 29.7
α = 1 0.2 2.2 5.4 13.7 28.2 50.3

Table 3.21: MMD, n = 200

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 39.4 2.1 41.4 16.4 0.7 0.0
Laplace 4.6 34.4 10.5 20.7 19.0 10.8
α = 1.75 23.8 10.6 29.5 25.9 7.7 2.5
α = 1.5 7.4 8.0 18.7 30.7 24.1 11.1
α = 1.25 0.3 1.8 6.6 23.4 40.6 27.3
α = 1 0.0 1.6 1.0 8.3 32.7 56.4

Table 3.22: MMD, n = 400
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p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 56.5 0.0 38.7 4.8 0.0 0.0
Laplace 0.7 63.2 3.9 14.7 12.3 5.2
α = 1.75 27.8 4.0 41.5 24.4 2.3 0.0
α = 1.5 2.5 3.1 23.6 43.0 22.9 4.9
α = 1.25 0.0 0.9 1.6 20.1 52.5 24.9
α = 1 0.0 0.6 0.0 3.8 23.6 72.0

Table 3.23: MMD, n = 800

p(x)
qi(x)

α = 2 Laplace α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 67.4 0.0 32.3 0.3 0.0 0.0
Laplace 0.0 91.3 0.7 4.5 3.3 0.2
α = 1.75 26.8 1.4 55.1 16.4 0.3 0.0
α = 1.5 0.0 0.3 16.3 69.6 13.4 0.4
α = 1.25 0.0 0.2 0.0 12.1 68.5 19.2
α = 1 0.0 0.6 0.0 0.2 19.0 80.2

Table 3.24: MMD, n = 1600

Inference

MMD classification results improve as the sample size increases. MMD involves multi-

ple kernel matrix evaluations which increase the time complexity. The calculations take

a significant amount of time which makes this test ill suited for implementing in a real

time system.

3.4.2 Summary of Classification Methods

In the classification methods discussed so far, the classification based on K-L diver-

gence using KDE and NNDE performs the best. They have the upper hand due to the

reference PDF being used rather than reference data as in other methods. The empirical

methods proposed by Wang et al are computationally faster but gives less classifica-

tion accuracy. Density ratio estimation and MMD are computationally expensive. The

LSTT and K-L divergence based on FPC algorithm gives poor classification results. For

low complexity with good classification results, a different approach is required.
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CHAPTER 4

SαS MODEL SPECIFIC ESTIMATION AND

CLASSIFICATION

One of the challenges in selecting the appropriate SαS model for p (x) is accurately

identifying Gaussian data from near-Gaussian data. From Monte-Carlo simulations to

classify Gaussian (α = 2) and near-Gaussian (α = 1.75) data, a tendency to classify

near-Gaussian data as Gaussian was observed. An initial test which can segregate the

Gaussian data from the other stable models may then increase the classification per-

formance. A 2-stage classification approach using order statistics and fractional lower

order moments is presented here. A scale parameter estimator with better performance

than existing low complexity estimator is also proposed.

4.1 Identifying Gaussian data from Near-Gaussian data

Various normality tests are available in literature which are capable of distinguishing be-

tween Gaussian and non-Gaussian data but not necessarily Near-Gaussian data. Simple

normality tests like G-Kurtosis test, Jarque-Bera test and empirical CDF based normal-

ity tests like one-sample Kolmogorov-Smirnov Test and Anderson-Darling test were

used to classify the data as Gaussian or not by using different sample sizes. For stan-

dard threshold values, all tests classified SαS,α = 1.75 distributed data wrongly as

Gaussian (α = 2).

Since we are more concerned with the shape of the probability distribution here, L-

moments - quantities analogous to conventional moments but based on order statistics

- can be used. It has already been shown that L-moments and their ratios can be used to

characterize the PDF Hosking (2006). L-moments are calculated from order statistics

of the data as follows:

λr ≡ r−1

r−1∑
k=0

(−1)k
(
r − 1

k

)
E [Xr−k:r] (4.1)



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
L-Kurtosis, λκ

0

5

10

15

20

25

30

35

40

E
m
p
i
r
i
c
a
l
P
D
F

o
f
L
-
K
u
r
t
o
s
i
s
,
P
(
λ
κ
)

Empirical PDF of L-Kurtosis for n = 400

α = 2

Laplace

α = 1.75

α = 1.5

α = 1.25

α = 1

Figure 4.1: Empirical PDF of λκ for sample size, n = 400 and scale γ = 100

The dotted line represent the threshold(τ = 0.159) for the test

where Xk:n is the kth order statistic of a sample of X with size n. The L-Kurtosis λκ is

defined as:

λκ =
λ4

λ2

(4.2)

The direct sample based estimators Hosking (1990) can be used to get estimates for λ2

and λ4.

The threshold to which the test statistic should be compared is obtained empirically

by fixing the probability of wrong classification and running Monte-Carlo simulations

to find the threshold that achieves that probability. The threshold chosen here, τ =

0.159, is obtained by fixing the probability of wrong classification at 0.005 for a sample

size of n = 800. Figure 4.1 and Figure 4.2 show the empirical PDFs of the L-Kurtosis

metric for 2 different sample sizes. Algorithm 1 explains the test procedure.
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The dotted line represent the threshold(τ = 0.159) for the test

Algorithm 1: Classification of p(x) using L-Kurtosis
Data: Samples {xj}nj=1 ∼ p(x)

Result: Gaussian or non-Gaussian (Heavier-tailed)

1 Sort {xj}nj=1 and obtain the order statistics Xi:n from the sample

2 Calculate λ̂2 and λ̂4

λ̂2 =
1

2
(
n
2

) n∑
i=1

((
i− 1

1

)
−
(
n− i

1

))
Xi:n

λ̂4 =
1

4
(
n
4

) n∑
i=1

((
i− 1

3

)
− 3

(
i− 1

2

)(
n− i

1

)
+ 3

(
i− 1

1

)(
n− i

2

)
−
(
n− i

3

))
Xi:n

3 Calculate L-Kurtosis as λ̂κ = λ̂4
λ̂2

4 Compare with λ̂κ threshold:

if λκ < τ then
p̂(x) ≡ Gaussian

else
p̂(x) ≡ non-Gaussian (Heavier-tailed)
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4.1.1 Simulation Results

SαS and Laplace distributed data of different sample sizes are generated over 1000

iterations and classified. L-kurtosis is calculated from the order statistics and compared

against the threshold τ as calculated earlier, to classify the samples as Gaussian/Non-

Gaussian. Table 4.1 to Table 4.4 show the results of classification in percentage for

sample sizes from 200 to 1600.

p(x)
qi(x)

Gaussian Non-Gaussian

α = 2 98.3 1.7
Laplace 0.3 99.7
α = 1.75 12.4 87.6
α = 1.5 0.2 99.8
α = 1.25 0.0 100.0
α = 1 0.0 100.0

Table 4.1: Algorithm 1, n = 200

p(x)
qi(x)

Gaussian Non-Gaussian

α = 2 99.8 0.2
Laplace 0.1 99.9
α = 1.75 3.7 96.3
α = 1.5 0.0 100.0
α = 1.25 0.0 100.0
α = 1 0.0 100.0

Table 4.2: Algorithm 1, n = 400

p(x)
qi(x)

Gaussian Non-Gaussian

α = 2 100.0 0.0
Laplace 0.0 100.0
α = 1.75 0.5 99.5
α = 1.5 0.0 100.0
α = 1.25 0.0 100.0
α = 1 0.0 100.0

Table 4.3: Algorithm 1, n = 800
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p(x)
qi(x)

Gaussian Non-Gaussian

α = 2 100.0 0.0
Laplace 0.0 100.0
α = 1.75 0.0 100.0
α = 1.5 0.0 100.0
α = 1.25 0.0 100.0
α = 1 0.0 100.0

Table 4.4: Algorithm 1, n = 1600

4.2 Estimating Scale Parameter from Fractional Lower

Order Moments

Fractional Lower Order Moments of a Symmetric α-Stable variable with zero location

parameter and scale parameter γ is given by Zolotarev (1986) as

FLOM(p) = E (|X|p) =

C (p, α) γp 0 < p < α

Doesn’t exist p ≥ α

(4.3)

where

C (p, α) =
2p+1Γ

(
p+1

2

)
Γ
(−p
α

)
α
√
πΓ
(−p

2

) (4.4)

From Equation (4.3), for a given α and p with 0 < p < α, E (|X|p) is solely a

function of γ. A FLOM based estimator for γ - provided α is known - can than be

formulated from the above relations. For fixed α and p,

γ̂p =
FLOM(p)

C (α, p)
(4.5)

It is empirically observed that calculating γ based on above relation for a range of

p values and taking the mean gives a reasonable estimate of γ. For a suitable selec-

tion of P = {pk}npk=1, this method outperforms the popular scale parameter estimator
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McCulloch (1986) in terms of bias and Mean Square Error performance.

Algorithm 2: Estimate scale parameter γ from Fractional Lower Order Moments
Data: Samples {xj}nj=1, fractional powers P = {pk}npk=1, alpha value α

Result: Estimate of scale parameter, γ̂

Init: γ̂ = 0

foreach k do

FLOM (pk) = 1
N

n∑
j=1

|xj|pk

C (α, pk) =
2pk+1Γ( pk+1

2 )Γ(−pkα )
α
√
πΓ(−pk2 )

γ̂ ← γ̂ + 1
np

(
FLOM(k)

Ci,k

) 1
pk

4.3 Estimating Characteristic Exponent from Fractional

Lower Order Moments from a Discrete Set of α

Building upon the scale parameter estimate specified in the previous section, a proce-

dure for selecting the most apt characteristic exponent α from a set of alpha values

A = {αi}Mi=1 for the given data is proposed by minimizing the mean square error over

p across α in estimating γ̂. The error function J(α) thus proposed, when empirically

calculated and plotted, exhibits a minima at the α value closest to that of the actual PDF

of the data. Figure 4.3 to Figure 4.6 show the convex nature of J(α).
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Figure 4.4: Cost function J(α) vs α for Laplace data
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Algorithm 3: Classify p(x) based on Fractional Lower Order Moments
Data: Samples {xj}nj=1, fractional powers P = {pk}npk=1, alpha values

A = {αi}Mi=1, qi(x) = Sαi(0, γ, 0) max
k

pk < min
i
αi

Result: p̂ (x)

foreach k do

FLOM (k) = 1
N

n∑
j=1

|xj|pk

foreach i do

Ci,k =
2pk+1Γ( pk+1

2 )Γ
(
−pk
αi

)
αi
√
πΓ(−pk2 )

γ̂i,k =
(
FLOM(k)

Ci,k

) 1
pk

foreach i do
J (αi) = V ar

(
{γ̂i,k}npk=1

)
î = argmin

i
J (αi)

p̂(x) ≡ qî (x)

4.3.1 Simulation Results

SαS and Laplace distributed data of different sample sizes are generated over 10000

iterations and classified. Gamma estimates are calculated from the data samples with

assumption on α, and the α value yielding the lowest error is chosen. Table 4.5 to

Table 4.8 show the results of classification in percentage for sample sizes from 200 to

1600.

p(x)
qi(x)

α = 2 α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 78.4 20.7 0.9 0.0 0.0
Laplace 1.5 32.5 64.2 1.7 0.0
α = 1.75 31.4 52.2 15.8 0.6 0.0
α = 1.5 2.5 25.9 58.9 12.3 0.3
α = 1.25 0.0 0.9 26.6 63.5 9.0
α = 1 0.0 0.0 0.2 24.2 75.6

Table 4.5: Algorithm 3, n = 200
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p(x)
qi(x)

α = 2 α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 85.0 15.0 0.0 0.0 0.0
Laplace 0.1 27.2 72.5 0.1 0.0
α = 1.75 22.0 67.0 10.8 0.2 0.0
α = 1.5 0.3 19.1 73.1 7.4 0.1
α = 1.25 0.0 0.0 16.1 78.0 5.9
α = 1 0.0 0.0 0.0 13.4 86.6

Table 4.6: Algorithm 3, n = 400

p(x)
qi(x)

α = 2 α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 92.7 7.3 0.0 0.0 0.0
Laplace 0.0 19.6 80.4 0.0 0.0
α = 1.75 11.7 83.5 4.8 0.0 0.0
α = 1.5 0.0 7.7 88.1 4.2 0.0
α = 1.25 0.0 0.0 6.4 90.7 2.9
α = 1 0.0 0.0 0.0 5.5 94.5

Table 4.7: Algorithm 3, n = 800

4.4 Estimating Characteristic Exponent from Fractional

Lower Order Moments from a Given Range of α

If we have a continuous range of α instead of a discrete setA = {αi}Mi=1, a minimization

algorithm1 can be used on J (α) to get the estimate of the characteristic exponent. The

resulting estimator operation is similar to Algorithm 3 except that the error function

values are calculated on successive iterations rather than being precomputed.

4.4.1 Simulation Results

SαS distributed data of different sample sizes are generated over 10000 iterations and

SαS parameter estimates are obtained. Figure 4.7 gives the Mean Square Error (MSE)

performance of the estimator for different SαS input. The performance is contrasted

with existing FLOM based estimator Kuruoglu (2001) for α.

1fminbnd() in MATLAB uses golden section search and parabolic interpolation
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p(x)
qi(x)

α = 2 α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 97.9 2.1 0.0 0.0 0.0
Laplace 0.0 9.1 90.9 0.0 0.0
α = 1.75 4.8 93.6 1.6 0.0 0.0
α = 1.5 0.0 2.8 95.8 1.3 0.0
α = 1.25 0.0 0.0 1.4 97.1 1.5
α = 1 0.0 0.0 0.0 0.8 99.2

Table 4.8: Algorithm 3, n = 1600
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Figure 4.7: Proposed α̂ estimator performance for different SαS data

4.5 SαS Model Selection

Using Algorithm 1 to do initial classification of data into Gaussian or Non-Gaussian,

followed by Algorithm 3 to identify the nearest characteristic exponent yields better

classification results.

4.5.1 Simulation Results

SαS and Laplace distributed data of different sample sizes are generated over 10000

iterations and classified to nearest SαS distribution. Table 4.9 to Table 4.12 give the

results of classification in percentage.
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p(x)
qi(x)

α = 2 α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 96.6 3.2 0.2 0.0 0.0
Laplace 0.5 34.4 63.4 1.7 0.0
α = 1.75 9.9 72.4 17.2 0.4 0.0
α = 1.5 0.1 28.4 58.7 12.4 0.5
α = 1.25 0.0 1.1 26.5 62.9 9.5
α = 1 0.0 0.0 0.2 24.9 74.9

Table 4.9: SαS model selection, n = 200

p(x)
qi(x)

α = 2 α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 99.5 0.5 0.0 0.0 0.0
Laplace 0.0 26.8 73.1 0.1 0.0
α = 1.75 2.5 86.4 10.9 0.2 0.0
α = 1.5 0.0 19.4 72.6 7.9 0.1
α = 1.25 0.0 0.0 15.6 78.2 6.2
α = 1 0.0 0.0 0.0 13.7 86.3

Table 4.10: SαS model selection, n = 400

4.5.2 Inferences

The simulation results for Algorithm 1 shows that it is capable of minimizing the oc-

currences of α = 1.75 from classified as α = 2. Algorithm 3 simulation results show

that there is a significant amount of cases where near-Gaussian is classified as Gaussian.

The continuous version of the classifier has better MSE performance than the existing

FLOM based estimator for α. By making use of the two-stage classification, the classi-

fication accuracy improves and is found to be second only to the K-L divergence based

classification using non-parametric methods.
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p(x)
qi(x)

α = 2 α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 100.0 0.0 0.0 0.0 0.0
Laplace 0.0 17.5 82.5 0.0 0.0
α = 1.75 0.2 94.7 5.1 0.0 0.0
α = 1.5 0.0 9.7 86.2 4.0 0.0
α = 1.25 0.0 0.0 7.1 89.5 3.4
α = 1 0.0 0.0 0.0 4.9 95.1

Table 4.11: SαS model selection, n = 800

p(x)
qi(x)

α = 2 α = 1.75 α = 1.5 α = 1.25 α = 1

α = 2 100.0 0.0 0.0 0.0 0.0
Laplace 0.0 9.3 90.7 0.0 0.0
α = 1.75 0.0 98.4 1.6 0.0 0.0
α = 1.5 0.0 3.0 95.9 1.1 0.0
α = 1.25 0.0 0.0 1.5 97.2 1.3
α = 1 0.0 0.0 0.0 0.9 99.1

Table 4.12: SαS model selection, n = 1600
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CHAPTER 5

CONCLUSIONS AND FUTURE SCOPE

5.1 Conclusions

In this project, methods of classifying data with unknown characteristics to a set of

known distributions were explored and contrasted. As one would expect, among dis-

tance based classifiers, the Kernel Density Estimation and Nearest Neighbour Density

Estimation based methods which use reference probability distribution functions, out-

performed the methods using reference data. But, both have the computational over-

head of generating the reference pdf values. Moving on from a generic model to a SαS

model, FLOM based scale and characteristic exponent estimators were proposed. Also,

a 2-stage classification method was introduced. The initial stage served as a separa-

tor for Gaussian from non-Gaussian and the final stage mapped the suitable symmetric

α-stable model to the data.

5.2 Future Scope

Focussing on speeding up the classification process, with significant accuracy for smaller

samples sizes, will help in realizing algorithms which can cater to the requirements of

real life systems. Such an algorithm can raise the performance of the system as the

noise modelling will be more accurate. Also, existence of a reliable classifier will help

in faster adoption of the flexible α-stable models for industrial design.
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