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ABSTRACT

The increasing data rates push us to go for higher bandwidth systems. While the data

needs of everyone can be taken care of, higher bandwidth systems need very high sam-

pling rates for the ADCs being used. This becomes a major problem as ADCs consume

high power as the sampling rate increases. So to avoid this situation, instead of using

8 or 12 bit ADCs, lower resolution ADCs using 1-4 bits can be used. But then the

problem of channel estimation from the quantized data comes into picture. This mo-

tivates us to develop advanced estimation algorithms that take the quantizer effect on

the system into consideration. This project is aimed to design one such method using

Expectation Maximization algorithm to estimate the channel impulse response in case

of lower resolution ADCs(1-4 bits).
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The ever increasing need for higher data rates led to the invention of Millimeter wave

systems which utilize the frequency bands between 30 and 300 GHz. Because of the

small wavelength of operation, the dimensions of the transmitter and receiver can be

reduced by packing antenna arrays in small area. But with increase in the bandwidth

of operation, the sampling rate also increases dramatically. This in turn makes the

Analog-to-Digital(ADC) converters more and more power hungry. ADCs become the

bottleneck to the system.

The main challenge here is to be efficient with our signal processing while avoiding

high power losses. To reduce the power consumption we have to resort to using low

resolution ADCs. Channel State Information(CSI) is needed at the receiver to get back

the transmitted signal. So the aim of this project is to improve the estimation algorithm

to work efficiently even with low precision ADCs.

1.2 Literature Survey

There are two ways in which we can optimize the performance even while using low

bit ADCs.

• To improve the signal processing before passing through the ADC so that the

lower resolution might not affect the whole system.[1] In this paper, a dither signal

is used for closed loop estimation based on linear feedback, with the dither signal

being the MMSE estimator of the signal which is fed back to the quantizer. This

reduces the dynamic range of the signal entering the quantizer. (In the thesis ADC

and quantizer are used interchangeably; quantizer denotes the inner function of



the Analog to Digital converter while ADC denotes the physical block used for

the function.)

• To take the lower resolution as given and improve the estimation methods to better

demodulate the data.[2] In this paper, Expectation Maximization(EM) algorithm

is used to estimate the channel impulse response. This method is used in this

project.

1.2.1 Why EM algorithm?

EM algorithm is an iterative algorithm to find Maximum Likelihood(ML) or Maximum

A posteriori(MAP) estimates. It is known to give good results for parameter estima-

tion from an observed variable; especially when the observed signal is incomplete or

has missing data.That is specifically the case with the CSI estimation; the signal after

passing through the ADC is incomplete. And also as we increase the resolution of the

quantizer, we can get close to the performance of the full precision ADCs. EM method

was first proposed in[3]. It is also used for channel estimation with multipath doppler

channel model[4]. In this case too, the signal at the receiver is the sum of the delayed

versions of the transmitted signal and is missing the complete information of the trans-

mitted signal. Details about how EM algorithm is used are discussed in Chapter 3.

1.3 Thesis outline

The rest of the thesis has been organized as follows. Chapter 2 of the thesis describes the

system model and the assumptions considered. In Chapter 3 the estimation methods and

the procedure to obtain optimal channel impulse response is discussed briefly. Chapter

4 gives the simulation results and observations made from the comparison of EM based

method with existing LS method. Also the future possibilites are discussed. Finally the

project is concluded in Chapter 5.
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CHAPTER 2

System Model

Figure 2.1 gives the block diagram of the system implemented. In this project, the EM

method id compared with the already existing Least Squares(LS) Estimate method of

channel estimation for OFDM system with low precision ADCs(1,2,4 and 8 bits). In

LS method, the channel estimation is done after taking the FFT on the receiver side.

But while using EM method the time domain impulse response of the channel is being

estimated instead of the frequency response. So channel estimation is done just after

passing the received signal through the quantizer, before Cyclic Prefix(CP) removal.

Figure 2.1: System Block Diagram

2.1 Assumptions

The noise added is assumed to be Additive White Gaussian(AWGN) in nature. The

number of taps in the channel impulse response is assumed to be known at the receiver.

Also, the channel response is assumed to be constant over an OFDM symbol. The

estimation is pilot-aided. All the 1024 subcarriers of an OFDM symbol are used for

pilot samples. And finally, the cyclic prefix length is assumed to be greater than the

channel taps.



2.2 System equations

The following section gives the mathematical equations the describe the system shown

in the figure above. x denotes the Nx1 input signal vector (here N=1024), X denotes the

signal after taking the IFFT, h denotes the channel impulse response, N is the AWGN

noise added, Y is the signal after passing through the channel, hls is the estimated

channel response for LS estimation and hem is the estimated channel response for EM

method. Lh is the length of h.

The cyclic prefix addition refers to the prefixing of a symbol with a repetition of the

end. It helps in reducing the Inter symbol interference and also lets us model the linear

convolution operation of the input signal and the channel with circular convolution. In

our system, the circular convolution is modeled as a matrix operation where the input

signal vector is modified into a NxLh matrix. For example, if

x =


1

2

3


and if Lh=3, the modified matrix will be


1 0 0

2 1 0

3 2 1


The convolution of x and h will be equivalent to xmodifiedh. So, the system equations are

given by,

Y = Xh + N (2.1)

The signal is complex and can be written as the combination of its real and imaginary

parts.

Y = Yr + jYim (2.2)

X = Xr + jXim (2.3)
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Yr + jYim = Xh + N

= (Xr + jXim) h + (Nr + jNim)

= (Xrh + Nr) + j (Ximh + Nim)

(2.4)

which implies that

Yr = (Xrh + Nr) (2.5)

and

Yim = (Ximh + Nim) (2.6)

This shows that we can use just the real or the imaginary part of the received sig-

nal alone to estimate h as it holds the whole information about the channel impulse

response. At the receiver, the signal is passed through the quantizer. The quantizer

function is denoted by Qu.

rr = Qu(Yr) (2.7)

The quantizer function is described in the following section.

2.3 Quantizer function

Figure 2.2: Quantizer function

The quantizer used here is uniform symmetric mid-riser type which takes values from

the receive alphabet

ri ∈
{

(−2b/2− 1/2 + k)∆; k = 1, 2, ...2b
}

(2.8)
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where ∆ = [max(y)−min(y)]/(2b − 1) is the quantizer step size and b is the number

of bits of the quantizer. In this project, b= 1, 2, 4 and 8 bits are considered and their

performance is compared. As the number of bits increases, the power consumed and

the complexity increases but the performance goes closer to the full precision quantizer

as the quantization error decreases. Each quantization level has an upper and a lower

quantization threshold which is defined as,

rilo =

{
ri −∆/2, ri ≥ −

∆

2
(2b − 2)

−∞, otherwise
(2.9)

riup =

{
ri + ∆/2, ri ≤

∆

2
(2b − 2)

∞, otherwise
(2.10)

For simulation purposes infinity is approximated as 105.
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CHAPTER 3

Channel Estimation

3.1 Least-Squares Method

This is the basic channel estimation method used in OFDM systems. Frequency re-

sponse of the channel is estimated here. It is done after the FFT step in the block

diagram above. Let y be the N point FFT of the received signal r and x be the N point

FFT of the BPSK modulated input signal. Then the Least Squares estimate is given by

Hls = y/x (3.1)

An index wise division is done and this gives the frequency response of the channel

which is a Nx1 vector. To get the time domain impulse response, we just take the N

point IFFT of Hls and take the first Lh samples from it. This gives us hls.

The main advantage of this method is that it is simple to execute and it does not

involve any time consuming matrix inversions. It just operates on FFT and IFFT which

are linear matrix multiplication operations. The only problem with this; it is inefficient

when low bit quantizers are used. Because, the signal r does not contain the whole in-

formation about the received signal Y. This method does not take into fact the quantizer

or its effect on the system. This is why we go for another method of estimating the

channel response.

3.2 Expectation Maximization Method

3.2.1 Algorithm Explained

EM algorithm presents a general approach to iterative computation of maximum-likelihood

estimates when the observations can be viewed as incomplete data. Since each iteration

of the algorithm consists of an expectation step followed by a maximization step we



call it the EM algorithm. The EM process is remarkable in part because of the sim-

plicity and generality of the associated theory, and in part because of the wide range of

examples which fall under its umbrella. This sections explains the general idea of the

EM algorithm and its applications.

The Maximum Likelihood estimation involves finding the Likelihood function and

maximizing it to find the value of the parameter at which the maxima occurs. But this

way of getting the parameter value is not always feasible. It is not always necessary that

solving the differential equation gives a closed form expression in getting the parameter.

And it might not always be simple to solve the differential equation itself. This is the

reason to go to an iterative approach. The idea behind this algorithm is even though

we do not have the exact values of the complete data, we try to get the value of the

parameter from the conditional probability distribution of the complete data variable

given the current parameter value and the value of the incomplete data. And this is done

iteratively till the parameter converges to some value. This is explained with equations

below. A block diagram in figure 3.11 shows the steps of the algorithm.

Let x be the complete data which is not observable. Let y be the incomplete data or

data with missing information; This is the observed data. The parameter estimation is

to be done using this data. let θ be the parameter to be estimated. The algorithm starts

with randomly assuming an initial value for the parameter. Let this initial value be θ(0)

and θ(k) denotes the value of the parameter at kth iteration.

Let f(x|θ) be the pdf of the complete data and g(y|θ) be the pdf of the incomplete

data. If the complete data is available for us, the problem would be to find θ that max-

imizes log(f(x|θ)); the log likelihood function. But since we do not have x, we in turn

maximize the expected value of log(f(x|θ)) given y and the current value of θ.

Expectation Step (E-step): Compute

Q(θ; θ(k)) = E[log(f(x|θ)|y, θ(k)] (3.2)

Here θ is the variable and θ(k) is the parameter value in kth iteration. θ(k) is known at

every iteration.

1This figure is taken from[5]
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Maximization Step (M-step) : Update the value of θ(k+1) as the value of θ that maxi-

mizes the function Q.

θ(k+1) = argmax
θ

[Q(θ; θ(k))] (3.3)

Figure 3.1: Block diagram for EM algorithm
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These two steps are iteratively repeated till θ value converges. The proof that this

convergence is possible is discussed in[3]. The main factors that determine the rate of

convergence are the initial value and the stopping criterion. The algorithm might not

always converge to a particular value. Even if it does, it might change for the next

iteration and the system might start diverging from the optimal value. Or in some cases

we might not need the value to be so accurate and we cannot spend our resources for

too many iterations; We are fine if the value is close to the actual optimal value. So

a condition is put to stop the iterations once it is satisfied. This is called a stopping

criterion. The convergence also depends on the initial value of θ chosen. Because if the

initial value is close to a local optima, it might converge to a local maxima instead of

global maxima. If that is not the case, it might take longer time and more number of

iterations for convergence if the initial value is not chosen carefully.

3.2.2 Applications

A typical application area of this algorithm is in genetics, where the observed data

(the phenotype) is a function of the underlying unobserved gene pattern (the genotype).

Another area is estimating parameters of the mixture distributions. In the area of signal

processing, it is used in maximum likelihood tomographic image reconstruction, to train

hidden markov models for speech recognition. Other applications include parameter

estimation, pattern recognition, image reconstruction, neural network training, noise

suppression, simultaneous detection and estimation among many others.

3.2.3 Channel estimation using EM

Coming to the problem at hand, Y is the complete data, r is the incomplete data and the

parameter to be estimated is the channel impulse response h. As given by eqn(2.7), the

observed variable is rr. The log likelihood equation is

L(h) = log[p(rr|h)] (3.4)
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So the estimated value hls is given by

hls = argmax
h

[L(h)] (3.5)

We define a function

Q(h; h(i)) =

∫
g(i)(Yr)log[p(Yr, rr|h)/g(i)(Yr)]dYr (3.6)

where g(i)(Yr) = p(Yr|h(i), r). By applying Jensen’s Inequality to the above equation,

Q(h; h(i)) 6 log[

∫
g(i)(Yr)p(Yr, rr|h)/g(i)(Yr)]dYr

= log[p(rr|h)]

(3.7)

which is the log likelihood function in eqn(3.4). So maximizing Q(h;h(i)) maximizes

L(h) and eqn(3.5) can be written as,

hls = argmax
h

[Q(h; h(i))] (3.8)

Since we have assumed the noise to be AWGN, the probability distribution

p(Yr, rr|h) =

∫ rup

rlo

1

(2π)
N
2 σN

e−
‖Yr−Xh‖2

2σ2 dYr (3.9)

where σ is the noise variance and rlo and rup are the lower and upper quantization thresh-

olds respectively as described in section 2.3.

Now Q(h;h(i)) can be decomposed as

Q(h; h(i)) = Q1(h; h(i)) +H (3.10)

where

Q1(h; h(i)) =

∫
g(i)(Yr)log[p(Yr, rr|h)]dYr (3.11)

and

H = −
∫
g(i)(Yr)log[g(i)(Yr)]dYr (3.12)

12



Since H does not depend on h, we need not consider it while maximizing Q(h; h(i)). So

eqn(3.8) can be rewritten as

hls = argmax
h

[Q1(h; h(i))] (3.13)

Substituting the value of p(Yr, rr|h) in the eqn(3.11) and evaluating eqn(3.13), we get

h(i+1) = (Xr
TXr + σ2Rh

−1)−1Xr
T (Xrh(i) + b(i)) (3.14)

where

b(i) = − σ√
2π
.
e−

(rrup−Xrh(i))2

2σ2 − e−
(rrlo−Xrh(i))2

2σ2

Φ( rrup−Xrh(i)

σ
)− Φ( rrlo−Xrh(i)

σ
)

(3.15)

Rh denotes the channel covariance matrix and Φ(x) represents the cummulative Gaus-

sian distribution function given as

Φ(x) =
1√
2π

∫ x

−∞
e(−t

2/2)dt (3.16)

3.2.4 Channel estimation in case of complex h

In the previous section the channel impulse response is assumed to be real. But when it

comes to complex h, the estimation changes slightly. The real and the imaginary parts

of h are to be estimated separately. This is illustrated from the system equations given

below.

Y = Xh + N (3.17)

Yr + jYim = (Xr + jXim) (hr + him) + (Nr + jNim) (3.18)

Yr = Xrhr − Ximhim (3.19)

Yim = Xrhim + Ximhr (3.20)

13



rr = Qu(Yr) (3.21)

rim = Qu(Yim) (3.22)

From the above equations it can be shown that both hr and him cannot be obtained

from either the real or the imaginary parts of the observed variable. So, the real and the

imaginary parts are to be jointly estimated from both rr and rim.

The initial values for the first iteration are taken randomly for both hr and him. The

observed variables here would be rr and rim from both the ADCs. Following the same

procedure as done for real h case, we will have two equations, one from maximizing the

Qr function with respect to hir and one from maximizing the Qim function with respect

to hiim where

Qr(hr; h(i)
r ) =

∫
g(i)r (Yr)log[p(Yr, rr|hr)/g(i)r (Yr)]dYr (3.23)

Qr(him; h(i)
im) =

∫
g
(i)
im(Yim)log[p(Yim, rim|him)/g

(i)
im(Yim)]dYim (3.24)

Solving these two equations we get,

hr(i+1) = (Xr
TXr + Xim

TXim + σ2Rh
−1)−1(Xr

Tp + Xim
Tq) (3.25)

him(i+1) = (Xr
TXr + Xim

TXim + σ2Rh
−1)−1(Xr

Tq− Xim
Tp) (3.26)

where

p = Yr
(i) + br

(i) (3.27)

q = Yim
(i) + bim

(i) (3.28)
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CHAPTER 4

Results

The metric used to decide if the system is better is Mean Square Error(MSE) which is

given by,

MSEem =‖ h− hem ‖2 (4.1)

and

MSEls =‖ h− hls ‖2 (4.2)

Figure 4.1: MSE vs SNR plots for EM and LS methods

The initial value is taken randomly and the stopping criterion is set as

‖ h(i+1) − h(i) ‖2< 10−6 (4.3)



The above figure is plotted for a 3 tap channel when 2 bit quantizer is used. It can

be seen that Expectation Maximization method gives better performance than Least

Squares method as it gives lower MSE than LS.

The performance of the algorithm when different resolution ADCs are used is shown

by plotting the MSE vs SNR curves for different bits. This is shown in the figure below.

Figure 4.2: MSE vs SNR plots for different bit ADCs using EM method

As it can be seen, at very low snr, the one bit ADC is giving lower MSE compared

to higher resolution ADCs. It is attributed to a phenomenon called stochastic resonance

where even noise helps in getting a better estimate at low snrs.

The MSE curve for complex h is also plotted when 1 bit ADC is used.This is shown

in the figure below. When complex case is considered, several factors come into play.

The random initialization may affect the system performance since estimating both real

and imaginary components has to be done.
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Figure 4.3: MSE vs SNR plot for complex h when 1 bit ADC is used

4.1 Further Improvements

The system can be further improved by taking the Least Squares estimate as the initial

value for the iterations rather than randomly initializing. This might help getting better

performance for the complex h. This might also reduce the number of iterations it takes

to converge to a final desired value of the channel impulse response h. Also this can be

extended to the MIMO OFDM case too.
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CHAPTER 5

Conclusion

A new approach has been proposed to estimate the channel impulse response when

quantized ADCs are used. This method involves iteratively obtaining the maximum

likelihood estimate using an algorithm called Expectation Maximization. OFDM sys-

tem is considered and the estimation method for the cases of both real and imaginary

h has been discussed. A general quantizer function that works for different bit resolu-

tions has been defined. Mean Square Error is taken as the performance metric and MSE

curves for different ADC resolutions are compared. It is shown that EM method gives

a better performance when compared to the Least Squares method. This is because EM

method take into account the non linear quantizer function and maximizes the pdf func-

tion accordingly.
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