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ABSTRACT

KEYWORDS: Autonomous Driving, Convolutional Neural Networks, Faster R-CNN,

Object Detection, Range Estimation, Single Shot Multibox Detector

Convolutional deep neural networks are widely used in designing visual percep-

tion systems for autonomous driving. The objective of this project was to develop an

on-road object detection, ranging and tracking module for an autonomous vehicle, mak-

ing use of deep learning architecture. A Convolutional Neural Network based method

was chosen for the detection of objects from monocular images or video frames of the

scene in front of the self-driving vehicle captured using a color camera. A Kalman fil-

ter based solution was developed for tracking of the detected objects. Existing object

detection systems like Faster R-CNN, SqueezeDet and Single Shot MultiBox Detector

were tested and analysed to select the one which would give the best performance, in

terms of speed and accuracy. The Single Shot MultiBox Detector or SSD proved to

be more space efficient and faster than the other detection methods, without compro-

mising on the accuracy. In this work, we propose an extension to the SSD network to

incorporate a range estimation feature. A proximity prediction layer added to the SSD

architecture provides an estimate of the range of detected objects from the ego-vehicle

in meters without using any additional sensors or systems like RADAR or LiDAR.
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CHAPTER 1

Introduction

A vehicle which relies only on automation, without any human input is referred to as

autonomous or self-driving. Vehicular automation is realized using concepts of artifi-

cial intelligence and mechatronics. By reducing human error while driving, automated

vehicles can lower the risk of accidents. Autonomous vehicles help in improvement of

traffic coordination, thereby decreasing pollution and time consumption. Another ad-

vantage of autonomous vehicles is that they can aid in providing mobility to the elderly

and disabled. Many companies around the world are working on developing their own

self-driving cars, some of the big players being Google, Uber and Tesla Motors

Accuracy is of top priority when it comes to driverless cars. A feasible solution

for autonomous driving has to be very fast and cost efficient, in addition to being highly

accurate. Over the past few years, the area of autonomous driving has been receiving

much attention and is fast evolving. Still, the technology is far from being mature. The

automated vehicles which are legally allowed on public roads are not fully autonomous

yet. Hence, self-driving cars continue to be a focus of much research.

Obstacle avoidance is a prime feature in autonomous vehicles. The proper detec-

tion of on-road objects like other vehicles, cyclists, pedestrians or even animals and

estimating their distance from the ego-vehicle is crucial for obstacle avoidance. This

is a very demanding task as an error in detection or missing the detection of obsta-

cles, primarily the less impact-resistant obstacles like pedestrians or cyclists, can lead

to disastrous consequences. An object tracking system can help in cases of missing

detections upto some extent.



1.1 Autonomous Navigation

The key components of autonomous driving are: sensing the road, mapping the road so

as to get information about the location, and understanding traffic rules and learning to

merge with traffic.[5] The state-of-the-art Advance Driver Assistant Systems (ADAS),

which help to automate vehicles, make use of computer vision and image processing

techniques for object detection, tracking and scene understanding. The sensing ele-

ments used by driverless cars include cameras, RADAR, LiDAR, motion sensors and

GPS modules. Advanced control systems in autonomous cars interpret the sensory in-

formation and plan a path to the destination accordingly.

Visual perception module is an essential part of an autonomous driving system. It

helps in scene understanding, which is crucial for path planning. The functions of a

visual perception system include:

• Visual odometry

• Optical flow estimation

• Drivable region extraction

• Lane detection

• Object detection

• Object Tracking

• Differentiating background from important regions and objects

Scene understanding is a very challenging task and in Indian road conditions it is

all the more so. Indian roads being crowded and unpredictable, tracking the motion of

objects is an extremely difficult job in this scenario. An efficient autonomous navigation

system should be able to detect the on-road objects with high precision along with

predicting the probable movement of the objects, especially the nearer ones, in the next

instant.
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1.2 Object Detection

Object classification is the task of assigning a label from a fixed set of object categories

to an input image. There are several machine learning techniques for image classi-

fication problem. When there are multiple objects in the input image, in addition to

classification, localization of the objects also needs to be performed. The task of find-

ing the location of the objects in an image as well as categorizing them is called object

detection.

In autonomous cars, an object detection system is required to detect obstacles in

the path. In this work, we have concentrated on the detection of on-road objects like

car, truck, pedestrian and cyclists. A convolutional Neural Network is best suited for

visual recognition tasks as its architecture is inspired from the organization of animal

visual cortex. Hence, a Convolutional Neural Network based method was chosen for

the object detection and ranging purpose.

1.3 Organization of the Thesis

This thesis is based on the development of a CNN based visual perception system for

autonomous driving. The function of this system is the detection, range estimation and

tracking of on-road objects. The thesis is organized as follows:

Chapter 2 gives the necessary background knowledge in the context of this work.

A basic introduction to machine learning and deep learning is provided in this chapter.

Convolutional Neural Networks and caffe deep learning framework are also introduced.

Chapter 3 includes a survey of popular CNN architectures for object detection like

faster R-CNN. A Kalman filter based object tracking module is also presented.

Chapter 4 presents the Single Shot MultiBox Detector for object detection and the

proposed modification to it to include proximity estimation feature.

Chapter 5 contains details about the experiments done during the course of this

project and the results obtained.

Chapter 6 includes some concluding remarks along with directions for future

work.
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CHAPTER 2

Background

In this chapter we seek to build the basic background required for the understanding of

this work.

2.1 Machine learning for computer vision

Computer vision is an interdisciplinary field which deals with designing systems which

can extract information from digital images or videos. The useful information from

images can be used to build very efficient automation tools. Computer vision focuses

on methods for acquiring, processing, analysing and understanding digital images and

to give information which helps the system to take decisions. It is applied in a wide

variety of fields like biomedical imaging to detect the anomalies in internal organs , text

recognition, self driving cars to detect and track the objects in front of it etc. The aim of

this area of research is to get efficiency as much as human vision systems to understand

an image or a video and make decisions which result in autonomous systems.

The research directions in this area can be mainly captured under the following

subdomains:

• Scene reconstruction

• Event detection

• Video tracking

• Object recognition

• Object pose estimation

• Motion estimation

• Image restoration



In this report we will be focusing on object detection and tracking .This is an essen-

tial application in the case of driverless cars. We will use this technique for building an

application which will help driverless cars to navigate. In this section, we will discuss

some basic concepts in machine learning and will also see how methods in machine

learning can be used to solve computer vision problems.

Tom Mitchell, in his well-known book "Machine learning"[12], defines ML as

"improving performance in some task with experience". He futher defined a well posed

learning problem in the following manner: "A computer program is said to learn from

experience E with respect to some task T and some perfomance measure P ,if its per-

formance on T as measured by P improves with experience E."

Machine learning tasks are typically classified into three broad categories, depend-

ing on the nature of the learning "signal" or "feedback" available to a learning system.

These are:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

2.1.1 Supervised learning

In this method we will have a training set which will contain pairs of input and the

desired output which is also called label. The algorithm will learn the relation between

the training inputs and outputs and infer the function which maps the input to output.

Let us imagine that we want to teach a computer to distinguish pictures of cats and

dogs. We can collect pictures of cats and dogs adding a tag ’cat’ or ’dog’. Labelling

is usually done by human annotators to ensure high quality. So now we know the true

labels of the pictures and can use this data to "supervise" our algorithm in learning the

right way to classify images. Once our algorithm learns how to classify images we can

use it on new data and predict labels (’cat’ or ’dog’ in our case) on previously unseen

5



images.

In order to solve a given problem of supervised learning, one has to perform the

following steps:

• Determine the type of training examples. Before doing anything else, the user
should decide what kind of data is to be used as a training set. In our case it is
image data.

• Gather a training set. A set of input objects is gathered and corresponding outputs
are also gathered, either from human experts or from measurements.

• Determine the input feature representation of the learned function. The accuracy
of the learned function depends strongly on how the input object is represented.

• Determine the structure of the learned function and corresponding learning algo-
rithm.

• Complete the design. Run the learning algorithm on the gathered training set.
Some supervised learning algorithms require the user to determine certain control
parameters. These parameters may be adjusted by optimizing performance on a
subset (called a validation set) of the training set, or via cross-validation.

• Evaluate the accuracy of the learned function. After parameter adjustment and
learning, the performance of the resulting function should be measured on a test
set that is separate from the training set.

A wide range of supervised learning algorithms are available, each with its strengths

and weaknesses. There is no single learning algorithm that works best on all supervised

learning problems.

In the context of our work, one of the main computer vision problems we encouter

is how to classify the objects in an image. In order to solve this problem we imple-

mented state of the art supervised machine learning techniques. The technique we have

used here is based on neural networks.

The figure 2.1 shows an exemplary classification task for samples with two random

variables. The training data (with class labels) are shown in the scatter plots. The red-

dotted lines symbolize linear (left) or quadratic (right) decision boundaries that are used

to define the decision regions R1 and R2. New observations will be assigned the class

labels "w1" or "w2" depending on in which decision region they will fall into. We can

already assume that our classification of unseen instances won’t be "perfect" and some

percentage of samples will be mis-classified.

6



Figure 2.1: Example for classification problem

2.1.2 Unsupervised learning

This technique is used when the labels for the training data are not known. It is called

unsupervised as it is left on the learning algorithm to figure out patterns in the data pro-

vided. The goal is to find some type of structure in the data without knowing the labels.

Clustering is an example of unsupervised learning in which different datasets are

clustered into groups of closely related items. Some examples for the application of

clustering algorithms are :

• Given a set of news reports, cluster related news items together.
(Used by news.google.com)

• Given a set of users and movie preferences, cluster users who have similar taste.

The figure 2.2 shows an example of clustering. We can conclude that there are

three different clusters.

2.1.3 Reinforcement learning

Reinforcement learning is the problem of getting an agent to act in the ideal manner

in some specific context, without explicitly mentioning what the ideal action is. It

allows the machines to learn what the proper behaviour should be so as to maximize

its rewards. For example, consider teaching a dog a new trick: you cannot tell it what

7



Figure 2.2: Example for unsupervised learning problem: Clustering

to do, but you can reward/punish it if it does the right/wrong thing. It has to figure

out what it did that made it get the reward/punishment, which is known as the credit

assignment problem. We can use a similar method to train computers to do many tasks,

such as playing backgammon or chess, scheduling jobs, and controlling robot limbs.

2.2 Artificial Neural networks

Artificial Neural networks (ANNs) are inspired from biological neural networks present

in central nervous system of animals, and are used to approximate or generalize a solu-

tion to a given problem statement after proper training of the network. A neural network

is an interconnected group of nodes called neurons, which mimics the way in which bi-

ological neurons are connected by axons. Typical neural networks consists of several

nodes and the signal traverses from input node to output node through the hidden nodes.

The process of resetting the weights on these nodes for a specific purpose using back-

propagation algorithm is referred to as training the neural network.

A neuron is the basic computational building block of a biological brain. The major

parts to be considered in a neuron or nerve-cell are the dendrites, cell body, axons, and

synapses. The synapses of one neuron is connected to dendrites of other neurons and

axons act as the transferring paths for the signal. Approximately 86 billion neurons can

8



be found in the human nervous system and they are connected with approximately 1014

to 1015 synapses.

Figure 2.3: The structure of a typical neuron

An artificial neuron, on the other hand, is the basic computational unit of an artifi-

cial neural network. It attempts to model the functioning of a biological neural network

mathematically. There can be multiple inputs (xi ) to an artificial neuron and the in-

dividual inputs can have different weights(wi). The computational part of the neuron

is composed of a summation function, which computes the weighted sum of the inputs

with or without a bias. An activation function(f) at the output of the neuron determines

whether the neuron sends information to the subsequent neurons. The sigmoid function

is commonly chosen as the activation function as it compresses the output of the neu-

ron within the range 0-1. To draw an analogy between artificial neurons and biological

Figure 2.4: The structure of an artificial neuron

9



neurons, input signals are received from its dendrites and output signals are produced

along its (single) axon. The transfer function is similar to the cell body and the activa-

tion function is analogous to "firing" of a neuron. The idea is that synaptic strengths or

weights can be learned so as to control the influence of one neuron on another, based

on the inputs. The weights act as inhibitors and activators depending upon their signs.

The weights are multiplied with the corresponding inputs and these multiplied scalars

are summed over at the body. This sum is passed through the pre-decided activation

function to release the output:

y = f(
∑

wixi + b) (2.1)

where xi are the inputs,

wi are the weights,

b is the bias,

f is the activation function, and

y is the output of the neuron.

2.3 Deep Learning

We have seen some machine learning algorithms in the previous sections. The repre-

sentation of the data given to the model has a huge effect on the performance of these

machine learning algorithms. The figure 2.5 shows an example of how a linear classi-

fication algorithm might give different performance for different representations of the

same data.

A feature is an individual measurable property of a phenomenon being observed.

In the context of computer vision there are a large number of possible features, such as

edges and objects. In many cases, the problem with different representations of data can

be overcome by selecting a right set of features from the data for the particular task and

passing this set to the machine learning algorithm. However, for some tasks, like the

object detection task we have at hand for instance, it is impossible to know which fea-

tures to select. Representation learning is one solution to this problem. Feature learning

or representation learning is a set of techniques that learn a feature - a transformation of

10



Figure 2.5: Example of effect of different representations: Classification of the data by
drawing a line separating the two categories is an easy task when tha data
is represented in polar coordinates, but impossible in cartesian coordinate
representation.

raw data input to a representation that can be effectively exploited in machine learning

tasks. Still, it can be very difficult to extract high-level, abstract features from raw data.

Deep Learning approach to representation learning solves this issue.[4]

Deep learning networks are essentially artificial neural networks with more than

one hidden layer which are capable of unsupervised learning of features from the input

data and their transformation. Deep neural networks are a cascade of several layers of

nonlinear processing units and each layer responds to a different level of abstraction.

Several deep learning networks such as deep neural networks, convolutional deep neural

networks, deep belief networks and recurrent neural networks have found applications

in various fields. For our work, we are using convolutional neural networks.

2.4 Convolutional Neural Networks

A convolutional neural network is a type of feed forward artificial neural network made

up of neurons that have learnable weights and biases[8]. A CNN usually takes an order 3

tensor as its input, e.g., an image with H rows, W columns, and 3 channels (R, G, B color

11



channels). Higher order tensor inputs can also be handled by CNN in a similar fashion.

The input then sequentially goes through a series of processing. Each processing step

is called a layer. The different types of layers in a CNN are convolution layer, pooling

layer, normalization layer, fully connected layer, loss layer, etc.

x1 ⇒ w1 ⇒ x2 ⇒ w2 ⇒ ...⇒ xL1 ⇒ wL1 ⇒ z (2.2)

The equation 2.2 illustrates how a CNN runs layer by layer in a forward pass. The

input is x1 , usually an image (order 3 tensor). It goes through the processing in the first

layer, which is the first box. We denote the parameters involved in the first layer’s pro-

cessing collectively as a tensor w1 . The output of the first layer is x2 , which also acts

as the input to the second layer processing. This processing proceeds till the last layer

in the CNN, which outputs xL . One additional layer, however, is added for backward

error propagation, a method that learns good parameter values in the CNN.

2.4.1 Convolutional Layer

The conv layer or convolutional layer is the core building block of a Convolutional

Network. It does most of the computation. The conv layer’s parameters consist of a set

of learnable filters or kernels. Every filter is small spatially (along width and height), but

extends through the full depth of the input volume. During the forward pass, we slide

each filter across the width and height of the input volume and compute dot products

between the entries of the filter and the input at the same position as that of the kernel

(called the receptive field). As we convolve the filter over the width and height of the

input volume we will produce a 2-dimensional activation map or feature map that gives

the responses of that filter at every spatial position. An illustration of the convolution

process can be seen at figure 2.6.

A benefit of the convolution layer is that since all spatial locations share the same

convolution kernel, the number of parameters needed for a convolution layer is greatly

reduced. In a deep neural network setup, convolution encourages parameter sharing.

12



Figure 2.6: Example of convolution on a 2-D input image I, with a kernel K of size 3x3

Two other important parameters of a convolution layer are stride and padding.

Stride controls how the filter convolves around the input volume. In the figure 2.6, the

filter convolves around the input volume by shifting one unit at a time. The amount by

which the filter shifts is the stride. In that case, the stride was implicitly set at 1. Stride

is normally set in a way so that the output volume is an integer and not a fraction. If

the stride s > 1, then every movement of the kernel skips s-1 pixel locations (i.e., the

convolution is performed once every s pixels both horizontally and vertically). Some-

times we need the output of the convolution layer to be of a desired size larger than

the normal convolution outputs. In that case, we can ’pad’ rows above and below the

input, and columns to the left an right of it. The number of padded rows and columns is

chosen according to the desired output size. Elements of the padded rows and columns

are usually set to 0, but other values are also possible.

In a convolution layer, multiple convolution kernels are usually used. Assume D

kernels are used and each kernel is of spatial span HxW. We denote all the kernels as

f. Hence, f is an order 4 tensor in RHxWxDlxD, where Dl is the number of channels in

the input image. Suppose we are considering the lth layer, whose inputs form an order

3 tensor xl with xl ∈ RHlxW lxDl . Thus, we need a triplet index set (il, jl, dl) to locate

any specific element in xl. The triplet (il, jl, dl) refers to one element in xl, which is in

the dlth channel, and at spatial location (il, jl) i.e., at the ilth row, and jlth column.The

simple convolution operation with stride =1 and no padding can be mathematically
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expressed as:

yil+1,jl+1,d =
H∑
i=0

W∑
j=0

Dl∑
dl=0

fi,j,dl,d × xlil+1+i,jl+1+j,dl (2.3)

Hence, we have y(or xl+1) in RHl+1×W l+1×Dl+1 , with H l+1 = H l − H + 1, W l+1 =

W l −W + 1, and Dl+1 = D.[16]

From a high level perspective, convolution filters can be thought of as feature iden-

tifiers. Each convolution layer responds to a particular feature like curve, edge, color

etc. Figure 2.7 shows an oversimplified curve detector filter. As a curve detector, the

filter will have a pixel structure in which there will be higher numerical values along the

area that is a shape of a curve. Thus when the receptive field has a curve of this shape,

the convolution output will be high.

Figure 2.7: A curve detector filter

Each convolution layer in a network responds to different levels of abstraction. The

initial layers detect simple features like curves, lines etc. while the succeeding layers

can detect more complex shapes like wheel, a person’s head etc. which are a combina-

tion of these simple features.

The equation 2.3 seems to be a pretty complex one to implement. Usually in

CNN implementation, the convolution operation is simplified to a matrix multiplication
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operation by transforming the input matrix and vectorizing the kernel.

2.4.2 Rectified Linear Units or ReLU Layer

It is a common convention to apply a non-linear layer immediately after each conv layer.

The purpose of this layer is to introduce nonlinearity to a system that basically has

just been computing linear operations during the conv layers. The ReLU layer applies

the function f(x) = max(0, x) to all of the values in the input volume. Basically, this

layer just changes all the negative activations to 0. This layer increases the nonlinear

properties of the model and the overall network without affecting the receptive fields

of the conv layer. In the past, nonlinear functions like tanh and sigmoid were used, but

researchers found out that ReLU layers work far better because the network is able to

train a lot faster with ReLU, without making a significant difference to the accuracy.

2.4.3 Pooling Layer

The pooling operation requires no parameter. The spatial extent of the pooling (HxW)

is specified in the design of the CNN structure. A pooling layer operates upon xl (the

input to the pooling layer) channel by channel independently. Within each channel,

the matrix with H l × W l elements are divided into nonoverlapping subregions, each

subregion being HxW in size. The pooling operator then maps a subregion into a single

number.

Two types of pooling operators are widely used: max pooling and average pooling. In

max pooling, the pooling operator maps a subregion to its maximum value, while the

average pooling maps a subregion to its average value.

2.4.4 Fully-connected Layer

Neurons in a fully connected layer have full connections to all activations in the previous

layer, as seen in regular Neural Networks. Usually in CNN architectures, after several

convolutional and max pooling layers, the high-level reasoning in the neural network is

done via fully connected layers. A fully connected layer can be implemented using a

convolutional layer setup. The only difference between FC and conv layers is that the
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Figure 2.8: Example of max-pooling layer with kernel size 2x2 and stride = 2

neurons in the conv layer are connected only to a local region in the input. However, the

neurons in both layers still compute dot products, so their functional form is identical.

2.4.5 Training a Convolutional Neural Network

Training a neural network is the process of tuning the weights and biases associated with

the neurons for some particular function. In the case of convolutional neural networks,

the function of neurons is done by convolutional layers. In case of CNN, training essen-

tially means adjusting the weights of the kernels of the different layers to achieve some

function. Training process is ’supervised’ in a convolutional neural network. Along

with the input data, the desired output for that data (ground truth) is also provided to

the network during training phase. The weights are so adjusted that the error between

the ground truth and network output is minimized.

Stochastic gradient descent (SGD)

The parameters of a CNN model are optimized to minimize the loss z, i.e., we want

the prediction of a CNN model to match the ground-truth labels. Stochastic gradient

descent (often shortened in SGD), also known as incremental gradient descent, is a

stochastic approximation of the gradient descent optimization method for minimizing

an objective function that is written as a sum of differentiable functions. The training
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process involves running the CNN network in both directions. We first run the network

in the forward pass to get xl (the output of the last layer in the network) to achieve a

prediction using the current CNN parameters. The training network has an additional

loss layer added at the end of the network. Instead of outputting the prediction, we

continue running the forward pass till the final loss layer and compute the loss z. The

loss z is then a supervision signal, guiding how the parameters of the model should be

modified (updated). The SGD way of modifying the parameters is:

(wi)t+1 = (wi)t − η ∂z

∂(wi)t
(2.4)

where, wi denotes the parameters of the ith layer, z is the loss, η is the learning rate and

t indicates the time index.

The partial derivative vector in the equation is called gradient in mathematical

optimization. In a small local region around the current value of wi , moving wi in

the direction determined by the gradient will increase the value z. Hence, in order to

minimize the loss function, we should update wi along the opposite direction of the

gradient. This updating rule is called the gradient descent.

Figure 2.9: Illustration of Stochastic Gradient Descent

If we move too far in the negative gradient direction, however, the loss function

may increase. Thus, in every update we change the parameters only by a small propor-

tion of the negative gradient, controlled by η (the learning rate).
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Backpropagation

In order to update the weights of each layer in the network by stochastic gradient de-

scent, a method called error backpropagation is used. For every layer, we compute two

sets of gradients: the partial derivatives of z with respect to the layer parameters wi ,

and w.r.t. that layer’s input xi. As seen in equation 2.4, the term ∂z
∂wi can be used to

update the parameters of the ith layer. The partial derivative ∂z
∂xi can be used in updating

the parameters backwards, i.e., to the (i− 1)th layer. This is done using chain rule.

Let’s take the ith layer as an example. When we are updating the ith layer, the back

propagation process for the (i + 1)th layer must have already been done. That is, we

have computed the terms ∂z
∂wi+1 and ∂z

∂xi+1 . Both are stored in memory and ready for use.

Now our task is to compute ∂z
∂wi and ∂z

∂xi . Using the chain rule, we have:

∂z

∂wi
=

∂z

∂xi+1
· ∂x

i+1

∂wi
(2.5)

∂z

∂xi
=

∂z

∂xi+1
· ∂x

i+1

∂xi
(2.6)

The partial derivatives ∂xi+1

∂wi and ∂xi+1

∂xi are easy to compute.

2.5 The Caffe Framework

Training and testing neural networks requires a stable and a reliable platform. Many

libraries like Torch, Theano, TensorFlow, Caffe, Keras, Eblearn C++ are available for

this purpose. Caffe is immensely popular among the researchers and has an easy user

interface. The library was started as a PhD project by Yangqing Jia at UC Berkely and

was further developed by Berkely Vision and Learning Center.[7] This library is open

source and is licensed under BSD 2- Clause. Caffe is a deep learning framework which

enables deep neural network architecture design, training and testing. The library is

designed in C++ language, and the user interaction framework to invoke the functions

is wrapped using python language.
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The designing of network, setting up of training parameters, and classification net-

work settings are done using google protocol buffer files. These files have an extension

of ".prototxt". Protocol buffers are a flexible, efficient, automated mechanism for se-

rializing structured data. The method involves an interface description language that

describes the structure of some data and a program that generates source code from that

description for generating or parsing a stream of bytes that represents the structured

data.The desired structure of data is specified by defining protocol buffer messages in

.proto files.

In caffe, the transfer and storage of data is done using a structure called blob. Blob

is an n-dimensional array which acts as a wrapper around the actual data being pro-

cessed. The conventional blob dimensions for batches of image data are number N x

channel K x height H x width W, where number / N is the batch size of the data and

channel / K is the feature dimension. The value at index (n, k, h, w) is physically located

at index ((n * K + k) * H + h) * W + w.

A layer is the fundamental unit of computation in a caffe network. A layer takes

input through bottom connections and makes output through top connections. Each

layer type defines three critical computations: setup, forward, and backward.

• Setup: The initialization of the weights of the layer and setting up its connections
are done in this step.

• Forward: The computations are done on the input data in the specified manner
and sent to the output blob in this step.

• Backward: Given the gradient w.r.t. the top output, the gradient w.r.t. to the
input is computed and sent backwards to the bottom in this step. A layer with
parameters computes the gradient w.r.t. to its parameters and stores it internally.

Some examples of layers include convolutional layer, pooling layer, ReLU layer,

normalization layer etc.

The collection of a set of layers for some particular function is called a net. A

typical net begins with a data layer that loads from disk and ends with a loss layer that

computes the objective for a task such as classification or reconstruction.
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Data enters Caffe through data layers which lie at the bottom of nets. Data can

come from efficient databases (LevelDB or LMDB), directly from memory, or, when ef-

ficiency is not critical, from files on disk in HDF5 or common image formats. Common

input preprocessing like mean subtraction, scaling, random cropping, and mirroring can

be done in data layers by specifying transformation parameters.
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CHAPTER 3

CNN based Object Recognition and Tracking

As we have already seen, object detection is the process of locating objects of interest,

such as car, bus, pedestrian etc. , in images or videos, using computer vision and image

processing. The state-of-the-art object detection systems leverage the architecture of

CNNs which is inspired from the organization of animal visual cortex. Several CNN

based models are now available for various object detection applications.

3.1 Popular CNN Architectures

The first work that popularized Convolutional Networks in Computer Vision was the

AlexNet, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton[9]. Earlier,

it was common to have only a single conv layer always immediately followed by a pool-

ing layer. But AlexNet is a deeper network with convolutional layers stacked on top of

each other. It contains 8 layers - 5 convolutional layers and 3 fully connected layers.

The architecture of AlexNet is given in figure 3.1. It can be seen in the figure that the

architecture consists of two branches. The purpose of this branching is to split the train-

ing process to 2 GPUs. The size of AlexNet is 233MB. The AlexNet was submitted

Figure 3.1: The AlexNet architecture

to the ImageNet ILSVRC challenge in 2012 and significantly outperformed the second



runner-up (top 5 error of 16% compared to runner-up with 26% error).

The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler and

Rob Fergus. It became known as the ZFNet[17] . It was an improvement on AlexNet

by tweaking the architecture hyperparameters, in particular by expanding the size of

the middle convolutional layers and making the stride and filter size on the first layer

smaller. The size of ZFNet is 117MB.

GoogLeNet[15] is a network developed by Szegedy et al. from Google. GoogLeNet

is a 22 layer CNN and was the winner of ILSVRC 2014 with a top 5 error rate of 6.7%.

Its main contribution was the development of an Inception Module that dramatically re-

duced the number of parameters in the network (4M, compared to AlexNet with 60M).

It uses average pooling instead of Fully Connected layers at the top, thus eliminating a

large amount of parameters.

Figure 3.2: The inception module of GoogLeNet

The runner-up in ILSVRC 2014 was the network from Karen Simonyan and An-

drew Zisserman that became known as the VGGNet[14]. Its main contribution was in

showing that the depth of the network is a critical component for good performance.

Their final best network contains 16 CONV/FC layers, featuring an extremely homo-

geneous architecture that only performs 3x3 convolutions and 2x2 pooling from the

beginning to the end. A downside of the VGGNet is that it is more expensive to evalu-
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ate and uses a lot more memory (93MB) and parameters (140M).

Residual Network or ResNet[6] is a 152 layer network developed by Kaiming He

et al. which was the winner of ILSVRC 2015 with an incredible error rate of 3.6%. It

features special skip connections and a heavy use of batch normalization. The architec-

ture is also missing fully connected layers at the end of the network.

3.2 Object Detection Using Faster R-CNN

Recent advances in object detection are driven by the success of region proposal meth-

ods and region-based convolutional neural networks (R-CNNs). R- CNN is a combina-

tion of convolutional neural networks and region proposals[3].

Figure 3.3: The flow of R-CNN

There are several region proposal methods that can be used in conjunction with

CNNs such as selective search, objectness etc. Selective Search is used in particular for

R-CNN. Selective Search performs the function of generating 2000 different regions

that have the highest probability of containing an object. These region proposals are

then "warped" into an image size that can be fed into a trained CNN (AlexNet in this

case). that extracts a feature vector for each region.A 4096 dimensional feature vec-

tor is extracted from each region proposal by forward propagating a mean subtracted

image through five convolutional layers and two fully connected layers. This vector is

then used as the input to a set of linear SVMs that are trained for each class and output

a classification. The vector also gets fed into a bounding box regressor to obtain the
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most accurate coordinates. Non-maxima suppression is then used to suppress bounding

boxes that have a significant overlap with each other.

R-CNN achieved 54.2% mean average precision (mAP) on PASCAL VOC 2007

dataset and 49.6% mean average precision (mAP) on PASCAL VOC 2012 dataset. But

object detection is slow. At test-time, features are extracted from each object proposal

in each test image. Detection with VGG16 takes 47s / image on a GPU.

Improvements had to be made to the original R-CNN model because of 3 main

problems: training took multiple stages (ConvNets to SVMs to bounding box regres-

sors), was computationally expensive, and was extremely slow. Fast R-CNN[2] is an

object detection method which achieves near real-time rates using very deep networks,

when ignoring the time spent on region proposals. Fast R-CNN employs several inno-

vations to improve training and testing speed while also increasing detection accuracy.

Fast R-CNN was able to solve the problem of speed by sharing computation of the conv

layers between different proposals and swapping the order of generating region pro-

posals and running the CNN. In this model, the image is first fed through a ConvNet,

features of the region proposals are obtained from the last feature map of the ConvNet

and fed to the final fully connected layers as well as regression and classification heads.

Figure 3.4: The Fast R-CNN workflow

Fast R-CNN method takes advantage of GPU while the region proposal methods

are implemented on CPU. A way to speed up the object detection is by re-implemeting

it on GPU. Region Proposal Network (RPN) is a way to do that. Region Proposal
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Network (RPN), a network that shares full-image convolutional features with the de-

tection network, enables nearly cost-free region proposals. An RPN is a fully convolu-

tional network that simultaneously predicts object bounds and objectness scores at each

position[13].

The RPN and Fast R-CNN were merged to a single network - Faster R-CNN. To

unify RPNs with Fast R-CNN object detection networks, a training scheme that alter-

nates between fine-tuning for the region proposal task and then fine-tuning for object

detection, while keeping the proposals fixed, is used. This scheme converges quickly

and produces a unified network with convolutional features that are shared between both

tasks. Hence Faster R-CNN is composed of two modules. The first module is a fully

convolutional network that proposes regions and the second one is the Fast R-CNN de-

tector. The RPN module tells the Fast R-CNN module where to look.

Figure 3.5: The Faster R-CNN workflow
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In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN were the foun-

dations of the first-place winning entries in several tracks. Due to the high detection

accuracy (73.2% mAP on PASCAL VOC 2007 and 70.2% mAP on PASCAL VOC

2012) Faster R-CNN has the potential to be used for high quality object detection tasks.

However, in the experiments done in this project, it was seen that the detection speed of

faster R-CNN is not high enough to be used for real-time object detection applications

like ours.

3.3 Object Tracking

Object tracking is the prediction of the future position of an object. A basic tracking

module was developed as part of this project, mainly to aid with missing detections.

The tracking module was written in C++, using opencv for the image manipulation.

It takes as input the frames of a video and the bounding box coordinates of relevant

objects received from the object detection system. The output is the predicted position

(bounding box coordinates) of corresponding objects in the next frame. In addition to

this, the module does track management too.

The prediction of next position of the object is done using Kalman filter. Kalman

filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a

series of measurements observed over time, containing statistical noise and other in-

accuracies, and produces estimates of unknown variables.[1] The algorithm works in

a two-step process. In the prediction step, the Kalman filter produces estimates of the

current state variables, along with their uncertainties. Once the outcome of the next

measurement is observed, these estimates are updated using a weighted average, with

more weight being given to estimates with higher certainty.

The algorithm is recursive. It can run in real time, using only the present input

measurements and the previously calculated state and its uncertainty matrix; no addi-

tional past information is required.

The Kalman filter keeps track of the estimated state of the system and the variance
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Figure 3.6: Kalman filter algorithm

or uncertainty of the estimate. The estimate is updated using a state transition model

and measurements.x̂k|k−1 denotes the estimate of the system’s state at time step k be-

fore the k-th measurement yk has been taken into account;P̂k|k−1 is the corresponding

uncertainty.

The Kalman filtering algorithm in our model is as follows:

• Step 1:Initialization
Here we start with initial state which contains a state matrix,X0- and process
covariance matrix P0.The state matrix contains the position of the object we need
to track. Kalman filter is used to predict the new state given the previous state
(xk−1, pk−1).We first previous state with initial state.

• Step 2 : Estimating new state and process covariance matrix
The estimate of the new state:

xkp = Axk−1 +Buk + wk

The estimate of the new process covariance matrix:
pkp = Apk−1A

T +Qk

where matrix A and B are determined according to the nature of the problem.

• Step 3: Calculation of Kalman gain and updation of state and covariance
matrix with new measurement

Kalman gain , K =
Pkp

Pkp+R

x̂k|k−1 = xkp +K
[
Y − xkp

]
p̂k|k−1 = [I −KI] pKp

Now this predicted state is made the previous state and these steps are iterated for

a desired number of iterations.
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The other major functions of this module are data association and track manage-

ment. The Data Association function associates the bounding boxes predicted for a

particular frame (second frame onwards) with the corresponding measured bounding

boxes (if present) using k- nearest neighbour search. It also does track management by

maintaining tracks, initiating a new track if needed, or deleting a track if measurements

are absent for that particular track in three consecutive frames. In case the number

of measured bounding boxes is more than the number of associated predicted ones in

some frame, then it can be concluded that new ground truth tracks have been introduced.

Then, new prediction tracks are initialized with the newly added ground truth data by

this function.

Summary

In this chapter, we saw some popular CNN architectures for object recognition. Then,

the potential of Faster R-CNN to be used for real-time purpose was explored. The Faster

R-CNN based object detection model gives high detection accuracy. It has a dedicated

Region Proposal Network for generating region proposals implemented in GPU. This

speeds up the detection compared to Fast R-CNN, but still the detection time is too

high for the model to be used for real-time detections. Hence, we had to look for faster

detection models with high accuracy like SSD, which is presented in next chapter. A

simple object tracking model developed was also discussed in this chapter.
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CHAPTER 4

Single Shot MultiBox Detector for Object Detection and

Ranging

SSD, or Single Shot MultiBox Detector, is a single-deep-neural-network based method

for object detection in images.[10] In this method, the output space of the bounding

boxes is a predefined set of boxes with different aspect ratios and scales per feature map

location.By discretization of the output space to a set of default boxes, the need for ob-

ject proposal generation is eliminated in SSD and hence the network is faster compared

to other object detection systems. SSD is a feedforward CNN based object detection

method which does not use any region proposals or resampling of pixels or features to

produce bounding box hypotheses, but still is as accurate as the methods which do. The

accuracy of SSD is comparable with the current state-of-the-art object detection sys-

tems. There is a pre-fixed collection of default bounding boxes and category scores and

box offsets are predicted for each of these boxes. There have been single shot detectors

like YOLO (You Only Look Once) before SSD, but SSD is significantly faster than

those. Faster R-CNN, as seen before, is a slow technique which uses region proposal

network and pooling, but highly accurate. SSD was found to be as accurate as Faster

R-CNN, while being much faster.

On testing with PASCAL VOC 2007 dataset in Titan X GPU, SSD gave better

performance with a detection speed of 59 FPS with mAP 74.3% compared to Faster

R-CNN (12 FPS with mAP 73.2%) or YOLO (45 FPS with mAP 63.4%). SqueezeDet

is a very small, low power, fully convolutional neural network for object detection.

SqueezeDet coupled with the very small SqueezeNet model takes around 7MB size.

The SqueezeDet model was pretrained for KITTI dataset. The pretrained network gave

good performance on testing with KITTI dataset (57.2 FPS with mAP 76.7%), but the

performance with PASCAL VOC was poor with a speed of around 41 FPS with very

less precision. The advantage of SqueezeDet over SSD in terms of model size is in-

significant when taking into account the detection performance of both. Hence SSD



was finally chosen as the model for object detection in this project.

We propose an extension to the current SSD network for estimating the depth of

objects in the on-road object detection scenario. Given a monocular image of the scene

in front of the vehicle, this modified network will detect the relevant objects and provide

an estimate of the proximity of the objects from the ego-vehicle in meters.

4.1 Architecture of Single Shot MultiBox Detector

The architecture of SSD consists of a base network which is a standard object classifica-

tion architecture like VGG-16, ResNet or ZFNet, truncated before the classification lay-

ers. An auxiliary structure is then added to this base network to produce detections. In

the auxiliary structure, progressively decreasing convolutional layers are added which

give feature maps of multiple scales. The multi-scale feature map characteristic allow

predictions at different scales. Each added feature layer can produce a fixed set of de-

tection predictions using a set of convolutional filters. The basic element of these filters

for predicting the weights for a potential detection is a 3 x 3 x p convolutional kernel,

where p is the number of channels in the input to the particular layer. This small kernel

produces either a score for an object category or a bounding box shape offset relative

to the default box coordinates. The default box coordinates are in turn relative to each

feature map location.

SSD’s output space comprises of a fixed collection of bounding boxes. A set of

default bounding boxes is associated with each feature map cell, for the multiple feature

maps formed at the top of the base network. Each feature map is spanned by boxes of

different aspect ratios in a convolutional manner. At each feature map cell, we predict

offsets relative to default box shapes in the cell as well as per class scores indicating the

presence of objects of each class at the location. Hence, C+4 filters are applied around

each bounding box, where C is the total number of object classes, to give C confidence

score values and 4 offset values. If there are K such bounding boxes per feature map

cell, there are (C + 4) · K filters per cell. Thus, for an m x n feature map, there are

(C + 4) ·K ·m · n convolutional filter outputs.
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During training we need to determine which default boxes correspond to a ground

truth detection and train the network accordingly. For each ground truth box we are se-

lecting from default boxes that vary over location, aspect ratio, and scale. Each ground

truth box is matched to the default box with the best jaccard overlap. The default boxes

are then matched to any ground truth with jaccard overlap higher than a threshold (de-

fault = 0.5). This simplifies the learning problem, allowing the network to predict high

scores for multiple overlapping default boxes rather than requiring it to pick only the

one with maximum overlap.

A layer by layer description of the caffe-ssd architecture follows in the subsequent

sections.

4.1.1 Data Layer

Data enters the ssd network through the Data Layer which lies at the bottom of the net-

work. The image data is stored in the top blob named ’data’ after necessary processing

steps. In the train and test phase, the data layer is replaced by an Annotated Data Layer.

The Annotated Data Layer splits the input data into images and annotations. Then, pre-

processing steps like resizing, expanding, random cropping, distorting, scaling, etc are

done on the images and the annotation is changed accordingly if required. The layer

gives two blobs as outputs - data and label. Data blob stores the processed images while

the label blob stores the modified annotations.

Figure 4.1: Annotated Data Layer

The dimensions of data blob are NxCxHxW, where N is the batch size, C is the
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feature dimension (number of channels), H is the height of the image, and W is the

width. The dimensions of label blob are 1x1x num_bbox x 9, where num_bbox is the

number of annotated objects in the image. Since the number of annotated objects can be

different for each image, the bounding box information is stored such that all bounding

boxes are stored in one spatial plane (num and channels are 1) and each row contains

only one box in the following format:

[item_id, group_label, instance_id, xmin, ymin, xmax, ymax, diff],

where item_id corresponds to the ordinality of the particular image in the batch, group_label

is the integer value assigned to the object class, instance_id gives the count of occur-

rence of objects belonging to this particular class, xmin, ymin, xmax and ymax are the

bounding box coordinates and diff is used to label this object as difficult or not.

Each image in the batch is read from the LMDB file and preprocessing steps are

done according to the transformation parameters specified. If distortion parameters are

present, changes in brightness, saturation, hue, contrast and channel order are done ac-

cording to the parameters.

The two main data augmentation strategies used in SSD are expansion and batch

sampling, which are essentially "zoom out" and "zoom in" operations respectively. Ex-

pansion is a data augmentation trick in which a cv::Mat array filled with mean values

is created such that its size is an expanded version of the original input size and the

input image is pasted at some random position in this canvas. The expand parameter

to be supplied includes a max_expand_ratio, which determines the maximum size the

expanded image can have. An expand_ratio is randomly selected from the uniform dis-

tribution in the range 1 to max_expand_ratio. The width and height of the mean image

will be expand_ratio times that of the input image.

height = img_height× expand_ratio

width = img_width× expand_ratio
(4.1)

A cv::Mat array of same type as the input image is created with the height and

width as in the equations above, and filled with mean values. The position at which the

original image is to be pasted is also selected randomly. The top-left coordinates of the
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box into which the image is to be copied, h_off and w_off, are chosen randomly from

the uniform distributions in the ranges [0, height-img_height] and [0, width-img_width]

respectively. The input image is decoded into a cv::Mat and then copied to the scaled

up mean frame at the location specified by h_off and w_off. The expanded image is

encoded back to the specified format. Then the annotations for this image are also

modified accordingly. The bounding box coordinates are changed according to the ex-

pansion ratio and the location on the mean frame where the image is pasted.

The other data augmentation technique which gives a "zoom in" effect is batch

sampling. It involves random cropping of the expanded image by constructing sample

bounding boxes such that certain constraints are met. The batch sampler parameters

include sampler parameters, sample constraints, max_trials and max_sample. The sam-

pler parameters minimum scale, maximum scale, minimum aspect ratio and maximum

aspect ratio possible for the sample bboxes. Sample constraints can be concerning jac-

card overlap, sample coverage, or object coverage. For each image in the batch, sample

bboxes are constructed with a scale and aspect ratio chosen randomly from the range

specified by sampler parameters. The sample bbox width and height are calculated from

the chosen scale and aspect ratio as follows:

bbox_width = scale×
√
aspect_ratio

bbox_height =
scale√

aspect_ratio

(4.2)

The top-left corner position of the sample bbox is also randomly chosen. If this sam-

ple bbox meets the sampler constraints or if no sampler constraints are mentioned, it is

stored for the final selection process. If minimum jaccard overlap constraint is speci-

fied, the sample bbox is selected only if it has the minimum overlap required with any

of the ground truth bboxes of this image. Similarly, other constraints such as sample

coverage and object coverage are also checked. Sample coverage is the ratio of area of

intersection between the sample bbox and any ground truth object bbox to the sample

bbox size. Object coverage is the ratio of area of intersection between the sample bbox

and any ground truth object bbox to the object bbox size.

There might be several sets of batch sampler parameters present. For each set of
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parameters sample bboxes are generated and tested for constraint matching until the

total number of sample bboxes selected is equal to max_sample or the number of sam-

ple bboxes generated in total is equal to max_trials. For each image, out of the several

sample bboxes selected, one is randomly chosen and the image is cropped along that

bbox. The annotations are suitably modified.

After the data augmentation step, any data transformations like mirror, resize are

done as specified by the transform parameters. Ultimately, the transformed data and

annotations are stored in data and label blobs respectively.

4.1.2 Base Network and Extra Feature Layers

In SSD network, multi scale feature layers are added on top of a base network which

can be formed by choosing the initial layers (other than the ones responsible for classi-

fication) from any standard architecture for high quality image classification like VG-

GNet, ResNet, AlexNet, ZFNet etc. The extra feature layers remain same irrespective

of the base network. In this section, for the description of base network, VGG-16 has

been chosen. The base VGG16 network is truncated after the fully connected layer fc7

(before classification layers) and the extra structure added to it performs the detection

function. The auxiliary structure comprises of 6 convolutional layers producing feature

maps which are progressively decreasing in size. The convolutional model for pre-

dicting detections is different for each feature layer. An average global pooling layer,

pool6, at the end gives a single dimensional vector output.Figure 4.2 shows the SSD

model with VGG-16 base network for an input size of 300x300.

Figure 4.2: SSD model showing base network and extra feature layers for input size of
300x300
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Sl no. Layer Name Layer Type Top Layer Kernel Size Stride Pad Dilation Number of Kernels Input dimension Output Dimension
1 conv1_1 Convolution conv1_2 3 1 1 0 64 300x300x3 300x300x64
2 conv1_2 Convolution pool1 3 1 1 0 64 300x300x64 300x300x64
3 pool1 Max-

Pool
conv2_1 2 2 0 0 - 300x300x64 150x150x64

4 conv2_1 Convolution conv2_2 3 1 1 0 128 150x150x64 150x150x128
5 conv2_2 Convolution pool2 3 1 1 0 128 150x150x128 150x150x128
6 pool2 Max-

Pool
conv3_1 2 2 0 0 - 150x150x128 75x75x128

7 conv3_1 Convolution conv3_2 3 1 1 0 256 75x75x128 75x75x256
8 conv3_2 Convolution conv3_3 3 1 1 0 256 75x75x256 75x75x256
9 conv3_3 Convolution pool3 3 1 1 0 256 75x75x256 75x75x256

10 pool3 Max-
Pool

conv4_1 2 2 0 0 - 75x75x256 38x38x256

11 conv4_1 Convolution conv4_2 3 1 1 0 512 38x38x256 38x38x512
12 conv4_2 Convolution conv4_3 3 1 1 0 512 38x38x512 38x38x512
13 conv4_3 Convolution pool4 3 1 1 0 512 38x38x512 38x38x512
14 pool4 Max-

Pool
conv5_1 2 2 0 0 - 38x38x512 19x19x512

15 conv5_1 Convolution conv5_2 3 1 1 0 512 19x19x512 19x19x512
16 conv5_2 Convolution conv5_3 3 1 1 0 512 19x19x512 19x19x512
17 conv5_3 Convolution pool5 3 1 1 0 512 19x19x512 19x19x512
18 pool5 Max-

Pool
fc6 3 1 1 0 - 19x19x512 19x19x512

19 fc6 Convolution fc7 3 1 6 6 1024 19x19x512 19x19x1024
20 fc7 Convolution conv6_1 1 1 0 0 1024 19x19x1024 19x19x1024
21 conv6_1 Convolution conv6_2 1 1 0 0 256 19x19x512 19x19x256
22 conv6_2 Convolution conv7_1 3 2 1 0 512 19x19x256 10x10x512
23 conv7_1 Convolution conv7_2 1 1 0 0 128 10x10x512 10x10x128
24 conv7_2 Convolution conv8_1 3 2 1 0 256 10x10x128 5x5x256
25 conv8_1 Convolution conv8_2 1 1 0 0 128 5x5x256 5x5x128
26 conv8_2 Convolution pool6 3 2 1 0 256 5x5x128 3x3x256
27 pool6 AVE-

Pool
Multibox 0 1 0 0 - 3x3x256 1x1x256

Table 4.1: Base network and auxiliary layer description for input size of 300x300



The detailed description of the various convolutional layers and pooling layers in

the base VGG-16 network and auxiliary structure for an input dimension of 300x300 is

given in table 4.1.

4.1.3 MultiBox Head

The mutibox layers are a set of convolutional,normalization, permute ,flatten , priorbox

and concat layers which are used for location prediction, confidence prediction and pri-

orbox generation. The mbox layers take input from feature maps at various depths in

the network to enable predictions for different scales of input. In the case of VGG-16

base network, the input is taken from conv4_3 and fc7 layers in the base network, and

conv6_2, conv7_2, conv8_2, conv9_2 layers in the auxiliary set. These are referred to

as mbox source layers.

When combining information from multiple feature maps, the scale of features

from those layers being very different makes the process difficult. L2 normalizing fea-

tures from some layers and then combining them with a scale factor learned through

back propagation makes it easier[11]. For this purpose, the output from conv4_3 layer

is L2 normalized using a normalization layer and scaled with an initial factor of 20.

The priorbox layer is responsible for the generation of prior bounding boxes for

each of the 6 source feature maps. This layer takes input from the corresponding mbox

source layer as well as the data layer. The output blob contains two channels - one for

storing the priorbox coordinates for the particular feature map and the other for storing

the prior variance. The size and aspect ratios of the priorboxes at each feature map cell

is calculated using the preset multibox parameters provided for each source layer. The

different multibox parameters which can be set are aspect ratios, minimum size, and

maximum size of the priorboxes, min_ratio and max_ratio. The size and aspect ratio

parameters can be different for the different mbox source layers. The default value of

min_ratio is 20 and that of max_ratio is 90. This means that the lowest layer has a scale

of 0.2 and the highest layer has a scale of 0.9, and all layers in between are regularly

spaced. Then the scale of the default boxes for the kth feature map is computed as:
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sk = smin +
smax − smin

m− 1
× (k − 1), k ∈ [1,m] (4.3)

where m is the number of feature maps used for prediction.

We impose different aspect ratios for the default boxes, and denote them as ar ∈

{1, 2, 3, 1
2
, 1
3
} .We can compute the width ( wk

a = sk
√
ar) and height (hka = sk/

√
ar

) for each default box.The mbox source layer’s feature map size and the original image

size are used for deducing the positions of priorboxes.

The location prediction layer is a convolution layer with kernel size = 3, pad = 1,

and stride = 1. Initialization of the weights of this convolutional layer is done using

xavier algorithm. The bias is filled with a constant value of zero. After proper tuning,

the location prediction layer gives offset values for each priorbox in the output space so

that the priorbox, when the coordinates are adjusted according to the offsets, contains

an object of some class. SSD provides the option to share the location predictions

among all the object classes of interest, or to generate separate location predictions for

individual classes at each priorbox location. This is carried out using a boolean variable

’share_location’. When share_location is true, only one set of predictions are produced

per priorbox location. Hence, the number of outputs (kernels) in the convolution layer

should be:

num_kernels = 4× num_priors_per_location (4.4)

If location prediction were not shared, the number of kernels would be:

num_kernels = 4× num_priors_per_location× num_classes (4.5)

The output blob from the convolution layer is permuted and flattened using permutation

and flatten layers so as to make the final concatenation easy.

Confidence prediction layer, similar to location prediction layer, is a convolution

layer with kernel size = 3, pad = 1, and stride = 1. The weight filler used is xavier

and bias filler used is of constant type with value zero. The confidence prediction layer

gives an estimate of the confidence scores for the presence of different classes in the

particular priorbox location when passed through a softmax function. Hence, number
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Figure 4.3: The mbox layers with source layer conv4_3



of kernels will be:

num_kernels = num_priors_per_location× num_classes (4.6)

Similar to the location prediction layer, the output of this layer is permuted and flattened

too.

After generating the location prediction, confidence prediction and priorbox gen-

eration layers for all the mbox source layers, the are concatenated to give mbox_loc,

mbox_conf and mbox_priorbox blobs. Figure 4.4 shows the concatenated layers.

4.1.4 MultiboxLoss Layer

In the training phase, the location prediction loss and confidence prediction loss w.r.t

the ground truth have to be computed for tuning the network through back propagation.

The loss computation is done in multibox loss layers. The overall objective loss function

is a weighted sum of the localization loss (loc) and the confidence loss (conf).Smooth

L1 loss is selected as the loss function for localization loss and softmax is chosen for

confidence loss.

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (4.7)

where xpij = {1, 0} is the indicator for matching ith default box to the jth ground

truth box of category p, c is the class confidence, l is the predicted bounding box loca-

tion, g is the ground truth box parameter,and N is the number of matching default boxes.

The localization loss is a smooth L1 loss between predicted box and ground truth

box parameter.

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xkijsmoothL1(l
m

i − ĝmj ) (4.8)

where, cx,cy are the offsets for center coordinates and w,h are the width and height of

the bbox.
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Figure 4.4: The concatenated mbox layers
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The confidence loss is of softmax type. It corresponds to the confidence score for

the presence of a class in the matched bounding box.

Lconf (x, c) = −
N∑

i∈Pos

xpijlog(ĉ
p
i )−

∑
i∈Neg

log(ĉ0i ) (4.9)

where ĉpi =
exp(cpi )∑
p exp(cpi )

.

The weight term α is set to 1 through cross validation.

The inputs to the multibox loss layer include the output blobs from mbox location

prediction, confidence prediction and priorbox layers, as well as the ground truth data

from the label blob.

Figure 4.5: The mbox loss layer

The ground truth data is retrieved from the label layer. The priorbox locations

and their corresponding variances are fetched from the mbox_priorbox blob. The lo-

cation predictions and confidence predictions are also retrieved from mbox_loc and

mbox_conf respectively. If share_location is true, the number of location predictions

will be 4 x num_priors. Otherwise, it will be 4 x num_priors x num_classes. Number

of confidence predictions will be num_priors x num_classes. Once the required data is

recovered, matches between the priorbox locations and ground truth bboxes have to be

found. Matching pairs of priorboxes and ground truth bboxes are found for all images in

the batch in terms of Jaccard overlap between them, and stored. After storing all possi-
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ble matches between priorboxes and ground truth bboxes, hard negative mining is done.

After the matching step, most of the default boxes are negatives, especially when

the number of possible default boxes is large. This introduces a significant imbalance

between the positive and negative training examples. Instead of using all the negative

examples, they are sorted using the highest confidence loss for each default box and the

top ones are picked so that the ratio between the negatives and positives is atmost 3:1.

This is called hard negative mining. This leads to faster optimization and a more stable

training. Currently, hard negative mining is supported only if share_location is true.

Location predictions are in the form of offsets to the default priorboxes. Location

prediction is encoded into the priorboxes by applying these offsets. Similarly, the con-

fidence scores, which are computed by applying a softmax function to the mbox_conf

output values, are also encoded to the default bboxes. Loss is computed using equation

4.7 for all the positive examples and the mined negative ones. It is then back propagated

to the relevant layers for tuning.

4.1.5 Detection Output Layer

When the network is deployed for object detection, the detection output layer is re-

sponsible for generating the results. The top blob of the detection output layer has the

dimensions 1 x 1 x num_bboxes x 7, where num_bboxes is the total number of pre-

dicted bounding boxes with sufficiently high confidence scores for the presence of an

object of interested class in it. Each row stores information of one output bounding box

in the following format:

[image_id, label, confidence_score,xmin,ymin,xmax,ymax]

The output can either be written into text files in some specific output format (eg. voc

style), or visualized using openCV tools. While visualizing, the integer label value is

mapped to its corresponding display name using the labelmap file.

The detection output layer gets data from mbox_loc, mbox_conf and mbox_priorbox

layers. The location predictions are retrieved and decoded into bounding boxes. The
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confidence scores for each of these boxes are computed by applying softmax function

to mbox_conf output. This is followed by a non-maximum suppression (NMS) step to

select the most relevant, non-overlapping bounding boxes.

Figure 4.6: The detection output layer

For applying NMS, the decoded bounding boxes are sorted in the descending order

of the confidence scores associated with them. The first bbox in the list is selected for

displaying in the result by default. The subsequent bounding boxes in the list are se-

lected only if the jaccard overlap between the bbox and all previously stored bboxes is

less than or equal to a preset nms threshold value. By this process, conflicting bounding

boxes at the same location will be removed based on their confidence score.

In the test phase, an additional detection evaluation layer is added after the detec-

tion output layer to evaluate the performance of the model. The detection evaluation

layer receives ground truth data from the label layer. This data is used to estimate the

average detection precision (mAP) of the network. Also, the layer computes the number

true positives and false positives in the detection.

Figure 4.7: The detection evaluation layer
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4.1.6 Training Dataset Preparation and LMDB Creation

The KITTI Vision Benchmark Suite’s object dataset was used for training the SSD

detection and ranging network. The dataset comprises of 7481 training images and 7518

testing images. The label files contain 9 attributes for each image as descibed below.

All values (numerical or strings) are separated via spaces and each row corresponds to

one object. The description of the 15 columns in the label files are given in table 4.2.

Number of Values Name Description

1 type Describes the type of object: ’Car’, ’Van’, ’Truck’,
’Pedestrian’, ’Person_sitting’, ’Cyclist’, ’Tram’, ’Misc’ or

’DontCare’

1 truncated Float from 0 (non-truncated) to 1 (truncated), where
truncated refers to the object leaving image boundaries

1 occluded Integer (0,1,2,3) indicating occlusion state: 0 = fully
visible, 1 = partly occluded, 2 = largely occluded, 3 =

unknown

1 alpha Observation angle of object, in the range [−π, π]

4 bbox 2D bounding box of object in the image (0-based index):
contains left, top, right, bottom pixel coordinates.

3 dimensions 3D object dimensions: height, width, length (in meters).

3 location 3D object location x,y,z in camera coordinates (in meters)

1 rotation_y Rotation ry around Y-axis in camera coordinates [−π..π]

1 score Only for results: Float, indicating confidence in detection,
needed for p/r curves. Higher is better.

Table 4.2: The KITTI dataset label file description

The label files were converted into PASCAL VOC style annotation, which is a

widely accepted annotation format for most of the CNN models. The annotation files

are saved in xml format. Since the ’difficult’ attribute needed for voc style formatting

is not available in the KITTI label files, the said field was set as zero for all objects. A

sample file is given below:
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<annotation>

<folder>KITTI</folder>

<filename>000000.png</filename>

<source>

<database>The KITTI Database</database>

<annotation>KITTI</annotation>

</source>

<size>

<width>1224</width>

<height>370</height>

<depth>3</depth>

</size>

<object>

<name>Pedestrian</name>

<truncated>0.00</truncated>

<occluded>0</occluded>

<bndbox>

<xmin>712</xmin>

<ymin>143</ymin>

<xmax>810</xmax>

<ymax>307</ymax>

</bndbox>

<difficult>0</difficult>

</object>

</annotation>

For SSD, we use a Lightning Memory-Mapped Database (LMDB) to provide data into

the caffe network. LMDB is usually the choice of database in caffe when dealing with

large datasets. In LMDB the data is stored in the form of key-value pairs. The key/data

pairs are stored as byte arrays. LMDB supports multiple data items for a single key.

LMDB uses memory-mapped files, giving much better I/O performance.
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The training images are arbitrarily divided into two sets - an actual ’train set’ con-

taining images which will be used for tuning the network, and a ’test set’ which will

be used for validation. The test set contains a small number of images which have

no direct effect on how the weights are learned by the network. Instead, it helps in

evaluating how well the weights are being learned during the course of training. A

test phase is carried out after each set of a preset number of iterations of the training

phase. In the test phase, the current model is used for detecting objects of interest in

the test set images. At the end of this the detection accuracy is computed, which helps

in estimating if the model parameters are being tuned properly for the particular dataset.

Separate LMDB files are created for the test set and train set. SSD’s tool for LMDB

generation takes as input text files (list files - named trainval.txt and test.txt). Each line

in the list file contains the path to the location of an image file and its corresponding

voc style annotation file. There are separate list files for the training set and the test set.

A few lines from a sample list file are given below:

KITTI/Images/005203.png KITTI/Annotations/005203.xml

KITTI/Images/003451.png KITTI/Annotations/003451.xml

KITTI/Images/000587.png KITTI/Annotations/000587.xml

KITTI/Images/007337.png KITTI/Annotations/007337.xml

KITTI/Images/000488.png KITTI/Annotations/000488.xml

A protocol buffer named ’AnnotatedDatum’ is used to store the images and their

annotation information, before converting to LMDB bytestring. AnnotatedDatum is

an extension of the Datum class to incorporate rich annotations. The differet fields in

AnnotatedDatum message include: Datum (to store images as bytes), AnnotationType

(to specify the type of annotation. Currently it only supports bounding box), and An-

notationGroup (To store a group of annotations belonging to a particular class). The

AnnotationGroup has a group_label field to store the integer label corresponding to the

particular class in consideration and an Annotation field which stores annotations for

each instance of an object in the corresponding class. A ’NormalizedBBox’ container

is used to store annotation information such as normalized bounding box coordinates

(normalized w.r.t the input image size),label, difficulty, score (only for results) and size,

46



for each object.

OpenCV tools are used for any preprocessing of the data if required. The image

is read to a cv::Mat array and preprocessing steps such as resizing, scaling are done if

necessary. The processed image is encoded with the specified extension and then read

into a ’Datum’ buffer. The xml type annotation files for these images are then read and

the required information is retrieved. The class label for each object mentioned in the

annotation file is mapped into an integer value with the help of a ’LabelMap’ prototxt

file. The LabelMap file contains the information required to assign a numerical value

to the string type class label. In this file we can mention the desired display name for

each class also. A sample LabelMap file for a single object class (Car) is given below:

item {

name: "none_of_the_above"

label: 0

display_name: "background"

}

item {

name: "Car"

label: 1

display_name: "Car"

}

Annotation groups are formed for each label mentioned in the LabelMap file. The

annotations are added to these groups according to the class to which the object belongs.

The AnnotatedDatum for each image is serialized into a bytestring and stored with a

unique key in the LMDB format.
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4.2 Modified SSD Network for Object Detection and Range

Estimation

In this project, the ssd network was modified to incorporate a range estimation feature

for autonomous driving. By this, we can estimate the range at which each detected ob-

ject is w.r.t the ego vehicle. The output of the network contains a range value in meters

along with the bounding box coordinates for each detected object. This feature elim-

inates the need to use LiDAR or RADAR systems for the assessment of proximity of

the on-road objects in autonomous vehicles. A monocular image of the scene captured

using a camera is sufficient for the estimation of proximity of objects in the scene from

the ego-vehicle.

The annotations were modified to include the range value also. The LiDAR data

from KITTI was used to get the range information of the annotated objects. The range

was calculated by taking the euclidean distance from the location of ego-vehicle (0,0,0)

to that of the concerned object. The xml files were created with an extra attribute-

’range’ - in the bounding box information. An example is given below.

<bndbox>

<xmin>712</xmin>

<ymin>143</ymin>

<xmax>810</xmax>

<ymax>307</ymax>

<range>0.13</range>

</bndbox>

In the training phase, an annotated data layer is employed by the network to split the

images and annotations from the incoming data. Now the ground truth information has

an extra field - ’range’. Necessary changes were made to the label blob output of the an-

notated data layer to accommodate this change. In particular, now the bounding boxes

are stored in each row of the label blob in the format:

[item_id, group_label, instance_id, xmin, ymin, xmax, ymax,range, diff]
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Figure 4.8: Block Diagram of the Modified SSD for Object Detection and Ranging: The new block introduced is shown in green.

Figure 4.9: Block Diagram showing training procedure for the Modified SSD network: The new block introduced is shown in green.



The data augmentation tricks in SSD, namely expansion and batch sampling, aid in

improving the results and generate more training samples. However, these methods

disturb the global attributes of the image. Range estimation can be affected by such

processes. Hence, they were avoided in the modified network. Since our model is fo-

cused on on-road object detection, the number of object classes for which the network

is to be trained is less. Thus the removal of these data augmetation techniques do not

create a huge impact on the results. Other data transformation steps such as mirroring,

distortion etc which do not disturb the are retained.

The multibox layers are responsible for confidence prediction and location predic-

tion in SSD. For range estimation, an additional layer was added to the set of multibox

layers - the proximity prediction layer. Similar to other prediction layers, this is also a

convolution layer with kernel size = 3, pad = 1, stride = 1. The weight filler is based on

xavier algorithm and bias is set as zero. The proximity prediction layer generates one

range value per priorbox. Hence the number of kernels in the convolution layer will be:

num_kernels = 4× num_priors_per_location (4.10)

where num_priors_per_location is the number of default boxes at each feature map cell.

The output of this convolution layer is also permuted and flattened for final concatena-

tion. Figure 4.11 shows the mbox layers for the modified network.

The concatenation operation after generating the prediction laters and prior gen-

eration layers for all source layers now includes an mbox_prox blob too, which gives

an estimate of proximity of the objects from ego vehicle. The figure 4.10 shows the

concatenated mbox layers of the modified network.

The training objective was modified to incorporate the range prediction loss also.

Eucidean loss (L2) was chosen as the loss function for range estimation. The new

training objective is a weighted sum of confidence loss, location prediction loss and

range estimation loss.

L(x, c, l, r, gb, gr) =
1

N
(αLconf (x, c) + βLloc(x, l, gb) + γLprox(x, r, gr)) (4.11)
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Figure 4.10: The concatenated mbox layers of the modified network
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Figure 4.11: MultiBox layers of the modified network for the source layer conv4_3



where xpij = {1, 0} is the indicator for matching ith default box to the jth ground truth

box of category p, c is the class confidence, l is the predicted bounding box location, r

is the predicted range, gb is the ground truth box parameter, gr is the ground truth range

parameter and N is the number of matching default boxes.

The range estimation loss is an L2 loss function between the estimated range and

ground truth range parameter.

Lprox(x, r, gr) =
N∑

i∈Pos

xpij × (ri − grj)2 (4.12)

The weights of the loss functions α, β and γ when set as 1 gave the best performance.

Thus the mbox_loss layer now takes input from the mbox_prox layer too, from

which the proximity estimates are retrieved.

Figure 4.12: The mbox loss layer of the modified network

The detection output layer was also tweaked to add range estimate also in the

results. The range estimate is retrieved from the mbox_prox blob along with other pre-

dictions and decoded into bounding boxes.
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Figure 4.13: The detection output layer of modified network

The output of the detection output layer for each bounding box is now in the for-

mat:

[image_id, label,range, confidence_score,xmin,ymin,xmax,ymax]

Summary

In this chapter, we discussed the Single Shot MultiBox Detector which is a highly accu-

rate and fast method for object detection, which can be used in real-time. The improve-

ment in speed compared to Faster R-CNN model is due to the elimination of region

proposal methods. Instead, the output space is discretized into a set of default bounding

boxes. The modification we propose to the SSD network for estimating the proximity of

the detected objects from ego-vehicle was also described. The modified network gives

range estimate in meters with reasonable accuracy.
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CHAPTER 5

Experiments and Results

5.1 Fine-Tuning Faster R-CNN for On-road Object De-

tection

Training was done using PASCAL VOC 2012 dataset with CAFFE deep learning frame-

work. The PASCAL VOC 2012 dataset contains 20 classes. The train/val data has

11,530 images containing 27,450 ROI annotated objects. A pre-trained imagenet model

was used as the initial weight for the training procedure. The training scheme used was

a 4 step alternating training in which we first train RPN, and use the proposals to train

Fast R-CNN, and the process is iterated. Two models were trained using ZFNet and

VGG-16 architectures. The trained networks were tested on NVIDIA GeForce GTX

980 Ti.

For our purpose, detection of objects belonging to 20 classes was unnecessary as

the focus is on on-road objects. Hence two other networks were trained by fine-tuning

the pretrained model to detect 5 classes from PASCAL VOC 2012 dataset - ’Bicycle’,

’Bus’, ’Car’, ’Motorbike’, and ’Person’ - instead of 20 classes. 3040 images were

selected for training. The number of images for each class is as listed below:

• Bicycle - 481 images

• Bus - 412 images

• Car - 1000 images

• Motorbike - 496 images

• Person - 1969 images

The pre-trained imagenet model was used as the initial weight for the training

procedure. The training parameters are as follows:



Fast RCNN - Stage 1:
• base_lr: 0.0001

• stepsize: 20000

• lr_policy: "step"

• gamma: 0.1

• average_loss: 100

• momentum: 0.9

• weight_decay: 0.0005

• max_iter: 200000

RPN - Stage 1:
• base_lr: 0.0001

• stepsize: 40000

• lr_policy: "step"

• gamma: 0.1

• average_loss: 100

• momentum: 0.9

• weight_decay: 0.0005

• max_iter: 400000

Fast RCNN - Stage 2:
• base_lr: 0.0001

• stepsize: 20000

• lr_policy: "step"

• gamma: 0.1

• average_loss: 100

• momentum: 0.9

• weight_decay: 0.0005

• max_iter: 200000

RPN - Stage 2:
• base_lr: 0.0001

• stepsize: 40000

• lr_policy: "step"

• gamma: 0.1

• average_loss: 100

• momentum: 0.9

• weight_decay: 0.0005

• max_iter: 400000
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5.1.1 Comparison between ZFNet and VGG-16

Experiments were done using the pre-trained Zeiler and Fergus model(ZF), and the

Simonyan and Zisserman model (VGG-16) to compare their detection performance for

Faster R-CNN on NVIDIA GeForce GTX 980 Ti GPU.

Image 1

Type: JPEG, Size: 1920x1080

(i) Detection Using VGG16

Figure 5.1: Detection took 0.245s for 300 object proposals.

(ii) Detection Using ZF

Figure 5.2: Detection took 0.101s for 300 object proposals
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Image 2

Type: JPEG, Size: 1920x1080

(i) Detection Using VGG16

Figure 5.3: Detection took 0.185s for 300 object proposals.

(ii) Detection Using ZF

Figure 5.4: Detection took 0.080s for 300 object proposals
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Image 3

Type: JPEG, Size: 1001x606

(i) Detection Using VGG16

Figure 5.5: Detection took 0.198s for 300 object proposals.

(ii) Detection Using ZF

Figure 5.6: Detection took 0.065s for 300 object proposals

After testing the pretrained ZF model and VGG16 model for several on-road im-

ages and videos, it was seen that ZF gave considerably better performance with respect

to speed than VGG16, without much difference in detection accuracy.
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5.1.2 Comparison of the new 5-class detection system with the pre-

trained 20-class detection system

The pre-trained ZFNet model for 20 class detection is compared with the finetuned ZF

model for 5 class detection in this section.

(a) 5-class model: Detection took 0.099s (b) 20-class model: Detection took 0.101s

Figure 5.7: Image - 1. Type: JPEG, Size: 1920x1080

(a) 5-class model: Detection took 0.076s (b) 20-class model: Detection took 0.080s

Figure 5.8: Image - 2. Type: JPEG, Size: 1920x1080

(a) 5-class model: Detection took 0.050s (b) 20-class model: Detection took 0.048s

Figure 5.9: Image - 3. Type: PNG, Size: 1392x512
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(a) 5-class model: Detection took 0.041s (b) 20-class model: Detection took 0.071s

Figure 5.10: Image - 4. Type: JPEG, Size: 640x360

The network trained using images from PASCAL VOC 2012 dataset, having ob-

jects of the 5 relevant classes only, gave poorer performance in terms of recall. This

might be due to the lack of sufficient number of training images. It can be seen from

the above result that some instances, for example objects of class ’Person’ in images 2

and 3, are not detected.

5.1.3 Testing the effect of Image Resolution on the Performance

The performance of the trained ZF model was evaluated for different image resolutions

on the Nvidia Jetson TX1 embedded system as well as 980Ti.

Image 1

Type: PNG, Size: 1242x375

Figure 5.11: Detection took 0.976s for 300 object proposals.
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Image 2

Type: PNG, Size: 932x281

Figure 5.12: Detection took 1.045s for 300 object proposals.

Image 3

Type: PNG, Size: 663x200

Figure 5.13: Detection took 0.892s for 300 object proposals.
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Image 4

Type: PNG, Size: 621x188

Figure 5.14: Detection took 0.858s for 300 object proposals.

Image 5

Type: PNG, Size: 311x94

Figure 5.15: Detection took 1.074s for 300 object proposals.
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Figure 5.16: Plot of detection time of the ZFNet based network for different image res-
olutions on Nvidia GeForce 980Ti

This experiment showed that detection performance varies with the resolution of

the input image. The best performance in terms of time and precision was observed

on using the image of resolution 621x188. Another notable point in this result is that

the time taken for detection on the embedded system environment is much longer than

that taken for the normal GPU implementation. The detection time is in the order

of seconds, which is too large to be used for real-time object detection in autonomous

driving. Hence other faster and smaller object detection networks like SSD were looked

into.
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5.2 Object Tracking

The tracking module was tested on Kitti dataset.The annotated frames of a video from

the object detection system were fed to the tracking module one after the other and the

predicted position of objects in each frame were compared with the original (measured)

position of the same objects. The module gave satisfactory results.

(a) Frame number 20 (b) Frame number 21

Figure 5.17: The output of object tracking module for 2 consecutive frames of a video.
The detected position is indicated by the green colour box and the next
position predicted by the tracking module is indicated by the red colour
box.
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5.3 Object Detection and Ranging using SSD

5.3.1 Near/Far Object Classification

This experiment was done to test the capability of SSD network to predict the proximity

of detected objects. A new dataset was prepared for this purpose from the images in

KITTI dataset. Only ’car’ class objects were used for this experiment. The cars in the

images were manually annotated as near or far. The SSD network was trained with this

dataset. The training parameters are as follows:

• base_lr: 0.001

• max_iter: 60000

• lr_policy: "step"

• gamma: 0.1

• momentum: 0.9

• weight_decay: 0.0005

• stepsize: 40000

The trained network was tested using testing images from KITTI dataset. Some of

the results are given below. Red coloured bounding box refers to ’near-car’ class and

the green coloured one refers to ’far-car’ class.
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The network seems to be capable of differentiating between near and far objects

well. But, in image sequences, for a car moving away from the ego-vehicle, the transi-

tion from near class to far class is abrupt and confusing. No pattern could be inferred

from the confidence scores associated with the classifications either. The network is

trained to classify the objects into two extreme levels only. It does not give information

about how near or how far the object is.
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5.3.2 The Modified SSD network for Object Detection and Range

Estimation

Dataset for Training

The KITTI Vision Benchmark Suite’s object dataset was used for training the SSD de-

tection and ranging network. The dataset comprises of 7481 training images and 7518

testing images. 4 Object classes were considered while creating the annotated dataset:

Car, Truck, Pedestrian and Cyclist. In the 7481 training images, a total of 38864 in-

stances of these 4 classes were available.

Object Class Number of training instances

Car 31656

Truck 1094

Pedestrian 4487

Cyclist 1627

Total: 38864

Table 5.1: Number of training instances of each class

The range values for the ground truth is obtained from the LiDAR data available in

KITTI dataset. For these objects the minimum range is 2.88 meters and the maximum

range is 103.63 meters. The average range is 29.03m. The number of training instances

for different range values is given in table 5.2.
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Range Value Number of training instances

2.88 <= range < 10 4542

10 <= range < 20 9471

20 <= range < 30 8755

30 <= range < 40 6575

40 <= range < 50 4489

50 <= range < 60 2701

60 <= range < 70 1416

70 <= range < 80 838

80 <= range < 90 60

range>=90 17

Table 5.2: Number of training instances for different range values

Performance Analysis of Modified SSD

The base network of the modified ssd architecture can be obtained from any CNN archi-

tecture used for image classification. Three different modified ssd models were trained

using different base networks for detection of objects belonging to the classes Car,

Truck, Pedestrian, and Cyclist and the estimation of their proximity from ego-vehicle.

The three base networks used were derived from:

(i) ResNet-101

(ii) VGG-16

(iii) ZFNet

Out of the 7481 training images available, 7000 were used for training and 481

images were used for testing. The training parameters for the ResNet based model

were:

• base_lr: 0.0001

• display: 10

• max_iter: 120000

• lr_policy: "step"
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• gamma: 0.1

• momentum: 0.9

• weight_decay: 0.0005

• stepsize: 40000

For the other two networks the training parameters were same as above except for

learning rate policy. They used a ’multistep’ learning rate decay policy with step values

at 80000, 100000 and 120000. The learning curve for the three models is given in figure

5.18.

Figure 5.18: Training Loss vs Iterations for the three modified-ssd models.

It is seen that the training loss in case of the model with ZFNet base network is

quite high (15.7535) even after 120000 iterations.

A few samples from the detection results of the three models are given below. Each

class is marked with a different colour - red for ’car’, blue for ’truck’, green for ’cyclist’
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and yellow for ’pedestrian. Above each bounding box, the range of the object in meters

is marked. At the bottom of the bounding box, the confidence score associated with the

prediction of that object is given.

Image 1

Figure 5.19: ResNet based model: The detection took 0.0623 seconds in Nvidia Titan
X GPU

Figure 5.20: VGG based model: The detection took 0.0175 seconds in Nvidia Titan X
GPU

Figure 5.21: ZF based model: The detection took 0.0153 seconds in Nvidia Titan X
GPU
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Image 2

Figure 5.22: ResNet based model: The detection took 0.0606 seconds in Nvidia Titan
X GPU

Figure 5.23: VGG based model: The detection took 0.0169 seconds in Nvidia Titan X
GPU

Figure 5.24: ZF based model: The detection took 0.0154 seconds in Nvidia Titan X
GPU
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Image 3

Figure 5.25: ResNet based model: The detection took 0.0611 seconds in Nvidia Titan
X GPU

Figure 5.26: VGG based model: The detection took 0.0172 seconds in Nvidia Titan X
GPU

Figure 5.27: ZF based model: The detection took 0.0153 seconds in Nvidia Titan X
GPU
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Image 4

Figure 5.28: ResNet based model: The detection took 0.0621 seconds in Nvidia Titan
X GPU

Figure 5.29: VGG based model: The detection took 0.0168 seconds in Nvidia Titan X
GPU

Figure 5.30: ZF based model: The detection took 0.0154 seconds in Nvidia Titan X
GPU
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Image 5:

Figure 5.31: ResNet based model: The detection took 0.0621 seconds in Nvidia Titan
X GPU

Figure 5.32: VGG based model: The detection took 0.0174 seconds in Nvidia Titan X
GPU

Figure 5.33: ZF based model: The detection took 0.0155 seconds in Nvidia Titan X
GPU
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Image 6:

Figure 5.34: ResNet based model: The detection took 0.0633 seconds in Nvidia Titan
X GPU

Figure 5.35: VGG based model: The detection took 0.0168 seconds in Nvidia Titan X
GPU

Figure 5.36: ZF based model: The detection took 0.0152 seconds in Nvidia Titan X
GPU
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Image 7:

Figure 5.37: ResNet based model: The detection took 0.0626 seconds in Nvidia Titan
X GPU

Figure 5.38: VGG based model: The detection took 0.0171 seconds in Nvidia Titan X
GPU

Figure 5.39: ZF based model: The detection took 0.0150 seconds in Nvidia Titan X
GPU

It is clear from these examples that ZFNet based model gives poor results com-

pared to the other two. The advantage ZF model has in terms of detection time is

negligible when considering the poor precision and recall which the model exhibits.

The average detection time of the three networks on the test set are:
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• ZFNet based model: 15.36ms,i.e, 65 fps.

• VGG-16 based model: 17.21ms, i.e, 58 fps.

• ResNet-101 based model: 61.56ms, i.e, 16 fps

The comparison of per class precision, recall, and F measure for the three models

are given in figures 5.40, 5.41 and 5.42.

Figure 5.40: The per-class and overall precision for the three models.

Figure 5.41: The per-class and overall recall for the three models.
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Figure 5.42: The per-class and overall F measure for the three models.

From the above plots, it can be seen that all the three networks give poor perfor-

mance for the classes ’Truck’, ’Pedestrian’ and ’Cyclist’. This is due to the very high

class imbalance in the dataset. As seen in table 5.1, the number of training instances

of these three classes combined is less than a quarter of the training instances of ’Car’

class. ’Truck’ is the least represented class in the dataset and hence, the detection re-

sults for this class is the worst. Due to this, the mAP values of all the three models seem

to be quite low.

Car Cyclist Pedestrian Truck mAP

ResNet based model 93.94% 75.86% 90.28% 2.63% 65.68%

VGGNet based model 96.41% 82.86% 86.96% 2.80% 67.26%

ZFNet based model 96.71% 90.91% 97.14% 3.05% 71.95%

Table 5.3: Per class average precision and mean average precision given by the
modified-ssd models in KITTI dataset.

The ZF based model has high precision but the recall is very low,i.e, number of

missing detections is much higher than the other two models. The model with VGG

base network undoubtedly gives the best performance among the three in terms of

precision-recall tradeoff. The ResNet based model also gives comparable precision

and recall, but the speed of detection is very less when compared to the VGG based

model. Hence, the VGG-16 model gives the best detection performance overall. The

Precision-Recall curve in figure 5.43 ascertains this conclusion.

79



Figure 5.43: The Precision-Recall curves for the three modified ssd models

Along with detection performance, the range estimation accuracy is also an impor-

tant evaluation criterion for the modified-ssd networks. Figure 5.44 shows comparison

of the three models in terms of error in range estimation.

Figure 5.44: The per-class and overall range estimation error for the three modified-ssd
networks.

For the classes ’Pedestrian’ and ’Cyclist’, ResNet model gives better range esti-

mate. However, when the overall performance across all the classes is taken, VGG

model outperforms the ResNet model again. The ZF model also gives satisfactory re-

sults for proximity estimation except for the poorly represented class, ’Truck’.

80



Car Cyclist Pedestrian Truck Overall

(Absolute)

Overall

(Percentage)

ResNet 1.1261 0.9595 0.9783 1.0644 1.1158 5.59%

VGGNet 0.9529 1.9915 1.0595 0.8963 0.9724 4.17%

ZFNet 1.2569 0.5013 0.5228 2.8308 1.2686 7.22%

Table 5.4: Per-class and overall average error in meters for the modified-ssd models in
KITTI dataset.

The models used for this analysis were obtained after 120000 training epochs.

The variation in the range estimation error, precision and recall characteristics with

increasing number of iterations for the ResNet based model and VGG based model are

shown in figures 5.45 and 5.46. The values start to converge after 110k iterations in

both cases.

Figure 5.45: Change in Precision,Recall and Range error with increasing iterations for
the ResNet model.
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Figure 5.46: Change in Precision,Recall and Range error with increasing iterations for
the VGG-16 model.

Summary

The different experiments conducted using Faster R-CNN for on-road object detection,

and their results, were presented in the first section. The detection speed was the best

when using ZFNet based model, but it was less than 20 fps. Hence, faster R-CNN

cannot be used for real-time applications, despite being highly accurate. The results

of the modified SSD network for object detection and ranging were also discussed in

this chapter. The VGG-16 based model gives the best performance in terms of preci-

sion, recall and range estimation accuracy. The model was trained for the detection of 4

object classes- ’Car’, ’Truck’, ’Pedestrian’ and ’Cyclist’. The detection speed is com-

paratively high (58 fps) and hence, it has the potential to be used for real-time detection

and ranging. Evaluations were done on a test set of 481 images from the KITTI dataset

with the confidence threshold set as 0.5. The VGG-16 based model gave an average

precision of 95.6% and an mAP of 67.26%. The average error in estimation of range

was 0.9724 meters.
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CHAPTER 6

Conclusion and Future Work

The state-of-the-art techniques for object detection use convolutional neural networks.

Popular CNN architectures for object detection - Faster R-CNN and Single Shot Multi-

Box Detector(SSD) - were investigated to evaluate their potential for real-time object

detection as part of the visual perception system of an autonomous vehicle. Faster R-

CNN network offers high precision in object detection. However, the region proposals

generation step of faster R-CNN slows down the detection process. Hence, it cannot

be employed for real-time applications. SSD, on the other hand, makes use of a default

set of boxes in the output space, in which the object detection will be done. This elim-

inates the need for region proposal generation, thereby improving the detection speed

considerably, without any reduction in accuracy. Thus, SSD was chosen for the on-road

real-time object detection problem. The next task in hand was to estimate the proximity

of the detected objects from ego-vehicle using the monocular images of the scene. The

SSD architecture was modified by adding layers for range estimation and trained for

a 4 class detection and ranging problem. The model with base network derived from

VGG-16 architecture gave the best performance in terms of detection precision as well

as range estimation accuracy (with an error of 4.17%).

Future work in this area would include the generation of a dataset of on-road im-

ages with range information added along with bounding box annotations. The KITTI

dataset was used in this work. The distribution of object classes in this dataset was

highly imbalanced, which led to poor detection results for some classes. An Indian

road dataset with LiDAR data and evenly distributed classes would be beneficial in this

direction. Another area of improvement would be the data augmentation methods. The

data augmentation techniques used for classical SSD disturbs the global attributes of

the image, which would adversely affect the range estimation process. Development of

data augmentation techniques which do not change the global characteristics of the im-

ages would be advantageous. The extension of this network to compute azimuth angle

of the objects also would help in getting the precise location of the objects in 3-D space.



APPENDIX A

Code snippets

A.1 Object tracking demo

Compiling and running the code

To compile the .cpp file:

g++ Object_Tracking_Module.cpp ‘pkg-config –libs opencv‘ -std=c++11 -o out

To run the executable file generated:

./out

Main function

Each frame of the video is read and the detected bounding boxes are stored to the

variable ’Current_bbox’. Then for each frame the following steps are done:

/ / Draw d e t e c t e d bounding boxes

f rame = Draw_Bounding_Box ( frame , Cur ren t_bbox , N o _ o f _ c u r r e n t _ b b o x ) ;

s t d : : o s t r i n g s t r e a m name ;

name << " o r i g i n a l " << frame_num << " . j p g " ;

cv : : i m w r i t e ( name . s t r ( ) , f rame ) ;

i f ( frame_num == 0)

{

/ / I n i t i a l i z a t i o n

Pred_bbox = C u r r e n t _ b b o x ;

d e l e t e _ t r a c k . r e s i z e ( N o _ o f _ c u r r e n t _ b b o x ) ;

N o _ o f _ t r a c k s = N o _ o f _ c u r r e n t _ b b o x ;

}



/ / Draw p r e d i c t e d bounding boxes

f rame = Draw_Bounding_Box_Pred ( frame , Pred_bbox , N o _ o f _ t r a c k s ) ;

/ / D i s p l a y t h e frame

i f ( ! f rame . empty ( ) )

{

imshow ( " Outpu t " , f rame ) ;

s t d : : o s t r i n g s t r e a m name ;

name << " p r e d i c t e d " << frame_num << " . j p g " ;

cv : : i m w r i t e ( name . s t r ( ) , f rame ) ;

wai tKey ( 8 0 ) ;

}

i f ( frame_num > 0)

{

C u r r e n t _ b b o x = D a t a _ A s s o c i a t i o n ( ) ;

}

N o _ o f _ t r a c k s = Pred_bbox . s i z e ( ) ;

f o r ( i =0 ; i < N o _ o f _ t r a c k s ; i ++)

{

f o r ( j =0 ; j < Num_s ta t e_va r ; j ++)

{

P r e v _ s t a t e [ j ] [ 0 ] = Pred_bbox [ i ] [ j ] ;

}

k a l _ p r e d = K a l m a n _ P r e d i c t ( P r e v _ s t a t e , Prev_cov_mat ) ;

A s s i g n _ M a t r i x ( k a l _ p r e d . p r e d i c t e d _ s t a t e , P r e d i c t e d _ s t a t e ) ;

A s s i g n _ M a t r i x ( k a l _ p r e d . p r e d i c t e d _ c o v _ m a t , P r e d i c t e d _ c o v _ m a t ) ;

f o r ( j =0 ; j < Num_s ta t e_va r ; j ++)

{

S t a t e _ m e a s u r e m e n t [ j ] [ 0 ] = C u r r e n t _ b b o x [ i ] [ j ] ;
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}

k a l _ u p d a t e = Kalman_Update ( P r e d i c t e d _ c o v _ m a t ,

P r e d i c t e d _ s t a t e , S t a t e _ m e a s u r e m e n t ) ;

A s s i g n _ M a t r i x ( k a l _ u p d a t e . u p d a t e d _ s t a t e , U p d a t e d _ s t a t e ) ;

A s s i g n _ M a t r i x ( k a l _ u p d a t e . upda ted_cov_mat , Updated_cov_mat ) ;

f o r ( j =0 ; j < Num_s ta t e_va r ; j ++)

{

Pred_bbox [ i ] [ j ] = U p d a t e d _ s t a t e [ j ] [ 0 ] ;

}

}

A s s i g n _ M a t r i x ( Updated_cov_mat , Prev_cov_mat ) ;

Data Association Function

m a t r i x D a t a _ A s s o c i a t i o n ( void )

{

i n t N o _ o f _ c u r r e n t _ b b o x = C u r r e n t _ b b o x . s i z e ( ) ;

i n t No_of_pred_bbox = Pred_bbox . s i z e ( ) ;

i n t l = N o _ o f _ c u r r e n t _ b b o x + 1 ;

i n t f l a g =0;

i n t i , j , N o _ o f _ a s s o c i a t e d _ b b o x , u n a s s i g n e d , i n d e x ;

f l o a t _ a r r a y u n a s s o c i a t e d _ i n d e x ;

f l o a t _ a r r a y a s s o c i a t e d _ i n d e x ;

m a t r i x Ass igned_bbox ;

/ / Find n e a r e s t n e i g h b o u r

a s s o c i a t e d _ i n d e x = N e a r e s t _ N e i g h b o u r _ S e a r c h ( No_of_cur ren t_bbox ,
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No_of_pred_bbox ) ;

f o r ( i =0 ; i <No_of_pred_bbox ; i ++)

{

i f ( a s s o c i a t e d _ i n d e x [ i ] == l )

{

f l a g ++;

}

}

N o _ o f _ a s s o c i a t e d _ b b o x = No_of_pred_bbox − f l a g ;

/ / check i f t r a c k needs t o be d e l e t e d

f o r ( i =0 ; i <No_of_pred_bbox ; i ++)

{

i f ( a s s o c i a t e d _ i n d e x [ i ] == l )

{

i f ( d e l e t e _ t r a c k [ i ] > 3 )

{

Pred_bbox . e r a s e ( Pred_bbox . b e g i n ( ) + i ) ;

d e l e t e _ t r a c k . e r a s e ( d e l e t e _ t r a c k . b e g i n ( ) + i ) ;

a s s o c i a t e d _ i n d e x . e r a s e ( a s s o c i a t e d _ i n d e x . b e g i n ( ) + i ) ;

− −No_of_pred_bbox ;

− − i ;

}

e l s e

{

d e l e t e _ t r a c k [ i ] = d e l e t e _ t r a c k [ i ] + 1 ;

}

}

e l s e

{

d e l e t e _ t r a c k [ i ] = 0 ;

}
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}

/ / check i f new t r a c k i s t o be i n i t i a t e d

i f ( N o _ o f _ c u r r e n t _ b b o x > N o _ o f _ a s s o c i a t e d _ b b o x )

{

u n a s s i g n e d = N o _ o f _ c u r r e n t _ b b o x − N o _ o f _ a s s o c i a t e d _ b b o x ;

f o r ( i =0 ; i < N o _ o f _ c u r r e n t _ b b o x ; i ++)

{

f l a g = No_of_pred_bbox ;

f o r ( j =0 ; j < No_of_pred_bbox ; j ++)

{

i f ( a s s o c i a t e d _ i n d e x [ j ] == i )

{

c o n t in u e ;

}

f l a g = f l a g −1;

}

i f ( f l a g ==0)

{

u n a s s o c i a t e d _ i n d e x . push_back ( i ) ;

}

}

f o r ( i =0 ; i < u n a s s i g n e d ; i ++)

{

i n d e x = u n a s s o c i a t e d _ i n d e x [ i ] ;

/ / i n i t i a t e new t r a c k

Pred_bbox . push_back ( C u r r e n t _ b b o x [ i n d e x ] ) ;
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d e l e t e _ t r a c k . push_back ( 0 ) ;

++ No_of_pred_bbox ;

a s s o c i a t e d _ i n d e x . push_back ( i n d e x ) ;

}

}

/ / Reorder c u r r e n t bounding box

Ass igned_bbox . r e s i z e ( No_of_pred_bbox ) ;

f o r ( i =0 ; i < No_of_pred_bbox ; i ++)

{

i n d e x = a s s o c i a t e d _ i n d e x [ i ] ;

i f ( i n d e x == l )

{

f o r ( j =0 ; j < Num_s ta t e_va r ; j ++)

{

Ass igned_bbox [ i ] [ j ] = 0 ;

}

}

e l s e

{

Ass igned_bbox [ i ] = C u r r e n t _ b b o x [ i n d e x ] ;

}

}

a s s o c i a t e d _ i n d e x . c l e a r ( ) ;

u n a s s o c i a t e d _ i n d e x . c l e a r ( ) ;

re turn Ass igned_bbox ;

}
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A.2 Code snippet for training and testing the modified

SSD network

# C re a t e t r a i n n e t .

n e t = c a f f e . NetSpec ( )

n e t . da t a , n e t . l a b e l = C r e a t e A n n o t a t e d D a t a L a y e r ( t r a i n _ d a t a ,

b a t c h _ s i z e = b a t c h _ s i z e _ p e r _ d e v i c e , t r a i n =True ,

o u t p u t _ l a b e l =True , l a b e l _ m a p _ f i l e = l a b e l _ m a p _ f i l e ,

t r a n s f o r m _ p a r a m = t r a i n _ t r a n s f o r m _ p a r a m ,

b a t c h _ s a m p l e r = b a t c h _ s a m p l e r )

VGGNetBody ( ne t , f r o m _ l a y e r = ’ d a t a ’ , f u l l y _ c o n v =True , r e d u c e d =True ,

d i l a t e d =True , d r o p o u t = F a l s e )

AddExt raLaye r s ( ne t , use_ba tchnorm , l r _ m u l t = l r _ m u l t )

mbox_ laye r s = Crea teMul t iBoxHead ( ne t , d a t a _ l a y e r = ’ d a t a ’ ,

f r o m _ l a y e r s = m b o x _ s o u r c e _ l a y e r s ,

u se_ba tchnorm = use_ba tchnorm ,

m i n _ s i z e s = m i n _ s i z e s , max_s i ze s = max_s izes ,

a s p e c t _ r a t i o s = a s p e c t _ r a t i o s , s t e p s = s t e p s ,

n o r m a l i z a t i o n s = n o r m a l i z a t i o n s ,

n u m _ c l a s s e s = num_c las ses , s h a r e _ l o c a t i o n = s h a r e _ l o c a t i o n ,

f l i p = f l i p , c l i p = c l i p , p r i o r _ v a r i a n c e = p r i o r _ v a r i a n c e ,

k e r n e l _ s i z e =3 , pad =1 , l r _ m u l t = l r _ m u l t )

# C re a t e t h e M u l t i B o x L o s s L a y e r .

name = " mbox_loss "

mbox_ laye r s . append ( n e t . l a b e l )

n e t [ name ] = L . Mul t iBoxLoss (* mbox_layers ,

m u l t i b o x _ l o s s _ p a r a m = m u l t i b o x _ l o s s _ p a r a m ,

l o s s _ p a r a m = loss_pa ram ,

i n c l u d e = d i c t ( phase = c a f f e _ p b 2 . Phase . Value ( ’TRAIN ’ ) ) ,

p ropaga te_down =[ True , True , True , F a l s e , F a l s e ] )
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wi th open ( t r a i n _ n e t _ f i l e , ’w’ ) a s f :

p r i n t ( ’ name : "{} _ t r a i n " ’ . format ( model_name ) , f i l e = f )

p r i n t ( n e t . t o _ p r o t o ( ) , f i l e = f )

s h u t i l . copy ( t r a i n _ n e t _ f i l e , j o b _ d i r )

# C re a t e t e s t n e t .

n e t = c a f f e . NetSpec ( )

n e t . da t a , n e t . l a b e l = C r e a t e A n n o t a t e d D a t a L a y e r ( t e s t _ d a t a ,

b a t c h _ s i z e = t e s t _ b a t c h _ s i z e , t r a i n = F a l s e ,

o u t p u t _ l a b e l =True ,

l a b e l _ m a p _ f i l e = l a b e l _ m a p _ f i l e ,

t r a n s f o r m _ p a r a m = t e s t _ t r a n s f o r m _ p a r a m )

VGGNetBody ( ne t , f r o m _ l a y e r = ’ d a t a ’ , f u l l y _ c o n v =True , r e d u c e d =True ,

d i l a t e d =True , d r o p o u t = F a l s e )

AddExt raLaye r s ( ne t , use_ba tchnorm , l r _ m u l t = l r _ m u l t )

mbox_ laye r s = Crea teMul t iBoxHead ( ne t , d a t a _ l a y e r = ’ d a t a ’ ,

f r o m _ l a y e r s = m b o x _ s o u r c e _ l a y e r s ,

u se_ba tchnorm = use_ba tchnorm , m i n _ s i z e s = m i n _ s i z e s ,

max_s i ze s = max_s izes , a s p e c t _ r a t i o s = a s p e c t _ r a t i o s ,

s t e p s = s t e p s , n o r m a l i z a t i o n s = n o r m a l i z a t i o n s ,

n u m _ c l a s s e s = num_c las ses ,

s h a r e _ l o c a t i o n = s h a r e _ l o c a t i o n ,

f l i p = f l i p , c l i p = c l i p ,

p r i o r _ v a r i a n c e = p r i o r _ v a r i a n c e ,

k e r n e l _ s i z e =3 , pad =1 , l r _ m u l t = l r _ m u l t )

conf_name = " mbox_conf "

i f m u l t i b o x _ l o s s _ p a r a m [ " c o n f _ l o s s _ t y p e " ] == P . Mul t iBoxLoss .SOFTMAX:

reshape_name = " {} _ r e s h a p e " . format ( conf_name )

n e t [ reshape_name ] = L . Reshape ( n e t [ conf_name ] ,

shape = d i c t ( dim =[ 0 , −1, n u m _ c l a s s e s ] ) )

sof tmax_name = " {} _sof tmax " . format ( conf_name )
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n e t [ sof tmax_name ] = L . Softmax ( n e t [ reshape_name ] , a x i s =2)

f l a t t e n _ n a m e = " {} _ f l a t t e n " . format ( conf_name )

n e t [ f l a t t e n _ n a m e ] = L . F l a t t e n ( n e t [ sof tmax_name ] , a x i s =1)

mbox_ laye r s [ 1 ] = n e t [ f l a t t e n _ n a m e ]

e l i f m u l t i b o x _ l o s s _ p a r a m [ " c o n f _ l o s s _ t y p e " ] == P . Mul t iBoxLoss . LOGISTIC :

sigmoid_name = " {} _s igmoid " . format ( conf_name )

n e t [ s igmoid_name ] = L . Sigmoid ( n e t [ conf_name ] )

mbox_ laye r s [ 1 ] = n e t [ s igmoid_name ]

n e t . d e t e c t i o n _ o u t = L . D e t e c t i o n O u t p u t (* mbox_layers ,

d e t e c t i o n _ o u t p u t _ p a r a m = de t_ou t_pa ram ,

i n c l u d e = d i c t ( phase = c a f f e _ p b 2 . Phase . Value ( ’TEST ’ ) ) )

n e t . d e t e c t i o n _ e v a l = L . D e t e c t i o n E v a l u a t e ( n e t . d e t e c t i o n _ o u t , n e t . l a b e l ,

d e t e c t i o n _ e v a l u a t e _ p a r a m = d e t _ e v a l_ p a r am ,

i n c l u d e = d i c t ( phase = c a f f e _ p b 2 . Phase . Value ( ’TEST ’ ) ) )

w i th open ( t e s t _ n e t _ f i l e , ’w’ ) a s f :

p r i n t ( ’ name : "{} _ t e s t " ’ . format ( model_name ) , f i l e = f )

p r i n t ( n e t . t o _ p r o t o ( ) , f i l e = f )

s h u t i l . copy ( t e s t _ n e t _ f i l e , j o b _ d i r )

# C re a t e d e p l o y n e t .

# Remove t h e f i r s t and l a s t l a y e r from t e s t n e t .

d e p l o y _ n e t = n e t

w i th open ( d e p l o y _ n e t _ f i l e , ’w’ ) a s f :

ne t_param = d e p l o y _ n e t . t o _ p r o t o ( )

# Remove t h e f i r s t ( Anno ta tedData ) and l a s t ( D e t e c t i o n E v a l u a t e ) l a y e r

d e l ne t_param . l a y e r [ 0 ]

d e l ne t_param . l a y e r [−1]

ne t_param . name = ’ {} _dep loy ’ . format ( model_name )

ne t_param . input . e x t e n d ( [ ’ d a t a ’ ] )

ne t_param . i n p u t _ s h a p e . e x t e n d ( [

c a f f e _ p b 2 . BlobShape ( dim = [1 , 3 , r e s i z e _ h e i g h t , r e s i z e _ w i d t h ] ) ] )

p r i n t ( ne t_param , f i l e = f )

s h u t i l . copy ( d e p l o y _ n e t _ f i l e , j o b _ d i r )
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# C re a t e s o l v e r .

s o l v e r = c a f f e _ p b 2 . S o l v e r P a r a m e t e r (

t r a i n _ n e t = t r a i n _ n e t _ f i l e ,

t e s t _ n e t =[ t e s t _ n e t _ f i l e ] ,

s n a p s h o t _ p r e f i x = s n a p s h o t _ p r e f i x ,

** s o l v e r _ p a r a m )

wi th open ( s o l v e r _ f i l e , ’w’ ) a s f :

p r i n t ( s o l v e r , f i l e = f )

s h u t i l . copy ( s o l v e r _ f i l e , j o b _ d i r )

m a x _ i t e r = 0

# Find most r e c e n t s n a p s h o t .

f o r f i l e in os . l i s t d i r ( s n a p s h o t _ d i r ) :

i f f i l e . e n d s w i t h ( " . s o l v e r s t a t e " ) :

basename = os . p a t h . s p l i t e x t ( f i l e ) [ 0 ]

i t e r = i n t ( basename . s p l i t ( " {} _ i t e r _ " . format ( model_name ) ) [ 1 ] )

i f i t e r > m a x _ i t e r :

m a x _ i t e r = i t e r

t r a i n _ s r c _ p a r a m = ’−−w e i g h t s ="{}" \ \ \ n ’ . format ( p r e t r a i n _ m o d e l )

i f r e s u m e _ t r a i n i n g :

i f m a x _ i t e r > 0 :

t r a i n _ s r c _ p a r a m = ’−−s n a p s h o t ="{} _ i t e r _ { } . s o l v e r s t a t e " \ n ’ .

format ( s n a p s h o t _ p r e f i x , m a x _ i t e r )

i f remove_old_models :

# Remove any s n a p s h o t s s m a l l e r than m a x _ i t e r .

f o r f i l e in os . l i s t d i r ( s n a p s h o t _ d i r ) :

i f f i l e . e n d s w i t h ( " . s o l v e r s t a t e " ) :

basename = os . p a t h . s p l i t e x t ( f i l e ) [ 0 ]

i t e r = i n t ( basename . s p l i t ( " {} _ i t e r _ " . format ( model_name ) ) [ 1 ] )

i f m a x _ i t e r > i t e r :

os . remove ( " { } / { } " . format ( s n a p s h o t _ d i r , f i l e ) )
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i f f i l e . e n d s w i t h ( " . c a f f e m o d e l " ) :

basename = os . p a t h . s p l i t e x t ( f i l e ) [ 0 ]

i t e r = i n t ( basename . s p l i t ( " {} _ i t e r _ " . format ( model_name ) ) [ 1 ] )

i f m a x _ i t e r > i t e r :

os . remove ( " { } / { } " . format ( s n a p s h o t _ d i r , f i l e ) )

# C re a t e j o b f i l e .

wi th open ( j o b _ f i l e , ’w’ ) a s f :

f . w r i t e ( ’ cd { } \ n ’ . format ( c a f f e _ r o o t ) )

f . w r i t e ( ’ . / b u i l d / t o o l s / c a f f e t r a i n \ \ \ n ’ )

f . w r i t e ( ’−−s o l v e r ="{}" \ \ \ n ’ . format ( s o l v e r _ f i l e ) )

f . w r i t e ( t r a i n _ s r c _ p a r a m )

i f s o l v e r _ p a r a m [ ’ so lve r_mode ’ ] == P . S o l v e r .GPU:

f . w r i t e ( ’−−gpu {} 2>&1 | t e e { } / { } . l o g \ n ’ . format ( gpus ,

j o b _ d i r , model_name ) )

e l s e :

f . w r i t e ( ’2>&1 | t e e { } / { } . l o g \ n ’ . format ( j o b _ d i r , model_name ) )

# Copy t h e py t ho n s c r i p t t o j o b _ d i r .

p y _ f i l e = os . p a t h . a b s p a t h ( _ _ f i l e _ _ )

s h u t i l . copy ( p y _ f i l e , j o b _ d i r )

# Run t h e j o b .

os . chmod ( j o b _ f i l e , s t a t . S_IRWXU)

i f run_soon :

s u b p r o c e s s . c a l l ( j o b _ f i l e , s h e l l =True )

}

Running the programs for training and testing

For training the network with VGG base network, from $CAFFE_ROOT run:

python/examples/ssd/ssd_python.py

For ResNet-101 base network:

python/examples/ssd/ssd_python_resnet.py
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For ZF base network:

python/examples/ssd/ssd_python_zf.py

For testing a trained model, the ssd_detect.cpp program can be used.

Usage example:

From $CAFFE_ROOT run: ./build/examples/ssd/ssd_detect.bin models/ZFNet/SSD_300x300/

deploy.prototxt models/ZFNet/SSD_300x300/ ZF_iter_120000.caffemodel /data/Kitti_for_Ranging/

test_full_link.txt –out_file ZF_120k.txt

The first argument is the location of deploy.prototxt file of the trained model and

the second argument is the .caffemodel of the same. The third arg is the location to a

text file containing the locations of the images to be tested. Eg:

/home/guest/data/Kitti_for_Ranging/data_object_image_2/training/image_2/000296.png

/home/guest/data/Kitti_for_Ranging/data_object_image_2/training/image_2/007358.png

/home/guest/data/Kitti_for_Ranging/data_object_image_2/training/image_2/004549.png

/home/guest/data/Kitti_for_Ranging/data_object_image_2/training/image_2/000751.png

The location of output file can be specified with –out_file flag.
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