

DESIGN OF AN UNDERWATER PIPE

INSPECTION ROBOT

A Project Report

submitted by

VINAYAK S P

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

MAY 2017

THESIS CERTIFICATE

This is to certify that the thesis DESIGN OF AN UNDERWATER PIPE

INSPECTION ROBOT, submitted by Vinayak S P, to the Indian Institute

of Technology, Madras for the award of the degree of Master of

Technology, is a bona fide record of the research work done by him under

our supervision. The contents of the thesis, in full or in parts, have not

been submitted to any other Institute or University for the award of any

degree or diploma.

Dr K.SRIDHARAN

Research Guide

Professor

Dept. of Electrical Engineering Place: Chennai

IIT MADRAS, 600036

Date : 12

th
 May, 2017

i

ACKNOWLEDGMENTS

It gives me great pleasure in expressing my sincere and heartfelt gratitude

to my project guide Dr K. Sridharan for his excellent guidance, motivation

and constant support throughout my project. I consider myself extremely

fortunate to have had a chance to work under his supervision. It has been a

very learning and enjoyable experience to work under him.

My heartfelt appreciation to my team mate D Aravind and lab mates

Bhaskar, Yashraj and Sharad for spending their invaluable time with me in

discussing about the project and answering my queries.

I am immensely thankful to Dr Tommy Huynh, Associate Lecturer in

Department of Engineering, La Trobe University for providing me with

real time videos of underwater pipe inspection which were a valuable

resource to test the algorithm.

Words cannot express how grateful I am to my parents and sister for their

constant support and encouragement and to the Lordships Sri Radha

Krishna for Their blessings due to which I was able to think in the right

direction and complete the project successfully.

ii

ABSTRACT

An Autonomous Underwater Vehicle(AUV) is a robot which travels

underwater without requiring input from an operator. Most AUVs are

equipped with a video camera and lights. Additional equipment is

commonly added to expand the vehicle’s capabilities.

Design and construction of an AUV has numerous challenges to offer

starting with water proofing, static and hydrodynamic stability, propulsion,

power consumption and control and navigation. A blend of technologies

like image processing, remote communication and embedded systems are

employed in the vehicle.

This thesis examines the design of the AUV which can be grouped in three

verticals - mechanical, electrical and the crack detection algorithm.

The AUV captures images at certain intervals using a camera and they are

recognized for presence of crack using an on-board microcontroller.

The crack detection is achieved by a machine learning algorithm called

logistic regression. Towards the end, a study was made to detect cracks

using image processing library called OpenCV(Open Source Compute

Vision).

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS i

ABSTRACT ii

LIST OF FIGURES v

1. INTRODUCTION 1

 1.1) Motivation 1

 1.2) Objectives 3

 1.3) Contributions of the Thesis 3

 1.4) Challenges in Constructing the AUV 3

 1.5) Organization of the Thesis 4

2. MECHANICAL DESIGN 5

 2.1) Introduction 5

 2.2) Design of Pressure Hull 5

 2.3) Mechanics in Water 6

 2.4) Preliminary Drawing in Google Sketchup 7

 2.5) The Current Design 8

 2.6) Summary 10

3. ELECTRICAL DESIGN 11

 3.1) Introduction 11

 3.2) Battery 11

 3.3) Thrusters 12

 3.4) Arduino Uno 12

 3.5) Camera 13

 3.6) Beaglebone 14

 3.7) Summary 15

4. CRACK DETECTION USING LOGISTIC REGRESSION 16

4.1) Introduction 16

4.2) Binary Classification 17

4.3) Notations 17

iv

 4.4) Hypothesis function 18

 4.5) Gradient descent 19

 4.6) The problem of Underfit and Overfit 19

 4.7) Regularization 20

 4.8) Decision boundary 22

 4.9) Prediction 22

 4.10) Experimental Results - I 23

 4.11) Choosing a crop size for Images 24

 4.12) Reason for low accuracy in predictions 26

 4.13) Principal Component Analysis 26

 4.14) PCA Algorithm 28

 4.15) An Example of Projecting 2-D Data to 1-D Data 30

 4.16) Experimental Results - II 34

 4.17) Testing on Beaglebone 36

 4.18) Summary 36

5. CRACK DETECTION USING COMPUTER VISION 38

 5.1) Introduction 38

 5.2) Procedure for training classifier 39

 5.3) Boosting and AdaBoost Algorithm 39

 5.4) How to train one Model using AdaBoost Algorithm 40

 5.5) Steps involved in training the classifier 42

 5.6) Experimental Results 43

 5.7) Summary 44

6. CONCLUSIONS AND FUTURE WORKS 45

 6.1) Contributions of this Thesis 45

 6.2) Extensions and Future Work 46

A CALIBRATION AND SPEED CONTROL CODE 47

B BEAGLEBONE CODE TO RECOGNIZE CRACK 50

REFERENCES 52

v

LIST OF FIGURES

 Page

Figure 1 A schematic of power plant 1

Figure 2 A section of pipeline to be inspected 2

Figure 3 Free body diagram 6

Figure 4 Side view of design 7

Figure 5 Front view of design 8

Figure 6 Current design 9

Figure 7 Top view 9

Figure 8 Brushless dc motor and ESC 12

Figure 9 PWM Signal Duration 13

Figure 10 Arduino Uno 13

Figure 11 GoPro Hero+ camera 14

Figure 12 Sigmoid function 18

Figure 13 Underfit, Perfect Fit and Overfit Curves 20

Figure 14 Decision boundary formed after training 22

Figure 15 Training set images with cracks(Class 1) 23

Figure 16 Training set images without cracks(Class 0) 23

Figure 17 Test set images with cracks(Class 1) 23

Figure 18 Test set images without cracks(Class 0) 24

Figure 19 A plot of training set images vs L 25

Figure 20 A plot of Accuracy vs L 25

Figure 21 Projection of 2-D data onto principal axis 1 27

Figure 22 Projection of 2-D data onto principal axis 2 27

Figure 23 Observation plotted in 2-D 31

Figure 24 Principal axis 1 vector 31

Figure 25 Mean normalized and original observations 32

Figure 26 Principal axis 1 and 2 vectors 32

Figure 27 Projecting data onto Principal axis 1 33

Figure 28 Distance from origin to projected points 33

Figure 29 Training set for crack Images 34

Figure 30 Crack image templates 41

Figure 31 Generated positive images 42

Figure 32 Detected cracks on images 43

1

CHAPTER 1

INTRODUCTION

Autonomous robots perform a variety of tasks including surveillance,

rescue, cleaning and searching for a specific item. They are generally

equipped with a variety of sensors and a high level computer for high

level tasks besides possibly a microcontroller for low-level tasks.

1.1 MOTIVATION

Power plants use mild steel underground pipelines that carry makeup

water in and out of the condenser as shown in the figure 1.

Figure 1 A schematic of Power Plant

This makeup water flows through the walls of the condenser and

cools the steam inside it by heat exchange.

The visit to National Thermal Power Corporation Ltd., Ramagundam

gave us an idea of the section of pipeline to be inspected as shown in

Figure 2.

2

Figure 2 A Section of Pipeline to be inspected at NTPC

The above figure depicts a mild steel pipeline covered with concrete

which primarily runs underground spanning over a distance of more

than 5km in the power plant.

These mild steel pipelines of the plant being several decades old, get

eroded by constant flow of water throughout the year. This leads to

formation of cracks through which the water seeps out of the pipe.

With time, the size of the crack would increase thereby leading to

reduction of required flow and permanent damage to pipeline.

Previous attempts of manual labour to detect such cracks had proven

to be risky, time consuming, ineffective and costly. The proposed

Autonomous Underwater Vehicle was designed for NTPC to inspect

the pipelines without human intervention.

3

1.2 OBJECTIVES

The objectives of the thesis are as follows:

1. To design and construct a prototype of an Autonomous

Underwater Vehicle.

2. To implement an efficient algorithm to detect cracks in images.

3. To optimise memory consumption by intelligently storing the

images captured by AUV inside the pipeline only if it is

recognized as a crack.

1.3 CONTRIBUTIONS OF THE THESIS

1. A waterproofed and mechanically stable prototype of the AUV.

2. Principal component analysis based dimensionality reduction

technique for image recognition.

3. Study on a Compute Vision algorithm for detecting cracks.

1.4 CHALLENGES IN CONSTRUCTING THE AUV

Water sealing is one of the major challenges while constructing

underwater Robots. The payload that consists of microcontrollers and

battery must be protected from water.

There are various machine learning techniques such as logistic

regression, neural networks, support vector machine, etc., that can be

employed in image recognition. It is therefore a challenge to choose

the right technique which is fast, efficient in terms of accuracy and

has minimal computational requirements.

4

1.5 ORGANIZATION OF THE THESIS

Next chapter presents the details of the mechanical design of the

Autonomous Underwater Vehicle.

Chapter 3 presents the electrical components utilised on board the

Autonomous Underwater Vehicle.

In chapter 4, details of the logistic regression method along with

principal component analysis for dimensionality reduction are

presented.

In chapter 5, a brief study on Boost and Adaboost agorithms used in

Compute Vision are also presented.

Chapter 6 summarises the thesis and discusses the future directions of

work.

5

CHAPTER 2

 MECHANICAL DESIGN

2.1 INTRODUCTION

In this section, we present the various components used to build the

mechanical structure and their advantages. The design ideas originate

from the work of [3].

We begin with the description of the Pressure Hull shape. We then

present the free body diagram of the AUV and analyse the forces

acting on it underwater. The design’s preliminary drawings in Google

Sketchup tool are shown and finally the current design is shown.

2.2 DESIGN OF PRESSURE HULL

Hull provides a waterproof enclosure at atmospheric pressure for the

electronic payloads of the AUV. Generally, several factors influence

the design of the hull.

A cylindrical shaped hull has been incepted in the design because of

the following reasons:

1) It is a good structure to resist hydrostatic pressure.

2) It has a good hydrodynamic form which helps in reducing the

 drag on the vehicle and,

3) It provides sufficient space for placement of electronics.

The hull material should have good resistance to corrosion,

have a high strength to weight ratio and must be affordable.

Considering above factors, acrylic plastic is chosen as the

material for the hull of the AUV. The added advantage

of acrylic is that it is transparent and allows monitoring of the

electronic components inside.

6

2.3 MECHANICS IN WATER

To stabilize the mechanical structure underwater, the centre of

buoyancy should be above the centre of mass. This would ensure that

the rolling motion is inhibited.

Consider a body fully immersed in water as shown in the Figure 3. It

is stable when CM and CB are aligned and unstable when CM and CB

are not aligned. Therefore, when the body is unstable, a righting

moment acts to restore the body in its stable position.

RM = (FM + FB) * GZ/2

RM = (1/2) * (FM + FB) * (GMsin(ø))

where FM is the weight, FB is the buoyancy, GM is the metacentric

height and ø is the roll angle. So the given expression implies that

greater the RM, i.e. greater the metacentric height, greater is the

stability.

Since the supporting structure was made from pvc tubes, to achieve

the above principle extra weight (here we used sand) in the pipe was

added.

Figure 3 Free body Diagram

7

2.4 PRELIMINARY DRAWING IN SKETCH UP

Figures 4 and 5 are the Google Sketchup Drawings depicting the

structure of the Autonomous Underwater Vehicle and placement of

various components on the AUV.

Internal Battery, Processor, Camera and Electronic Speed

Controllers(ESC) are placed inside the waterproofed acrylic hull.

The cords coming out of the AUV are the external power supply that

is for emergency purposes and fibre optic cable for live camera video

feed.

The best choice for the base would be an aluminium exoskeleton

because of its light weight. Ultrasonic sensors are placed at the front

to avoid obstacles inside the pipelines.

Figure 4: Side View of Design

8

Figure 5: Front View of Design

2.5 THE CURRENT DESIGN

The following Figures 6 and 7 show the AUV that we constructed.

The base of the AUV on which the hull and propellers rest is an

acrylic board. Couplers are used to join the motors to the propellers.

The propellers used were pc fans. The couplers and the metal stand to

hold the motors were machined in the college laboratory.

PVC pipes were chosen to build the frame because of its low cost

compared to aluminium. Proper adhesives were used to make the

body rigid.

The sealing was achieved using a 90mm MTA(male threaded adapter

pipe)-FTA(female threaded adapter pipe).

9

Figure 6: The AUV Design

Figure 7: Top View of the AUV

10

2.6 SUMMARY

The proposed design for the AUV uses a cylindrical acrylic hull

supported by a PVC frame. The sealing was accomplished by a

MTA(male threaded adapter pipe)-FTA(female threaded adapter pipe)

combination along with a dummy made from pvc to facilitate easy

detachability.

Provisions were made in the body to ensure that weight of the pvc

frame can be adjusted to ensure the centre of mass remains below the

centre of buoyancy to avoid rolling motion.

The next chapter presents the details of the electrical and electronic

components utilised by the AUV for motion and image recognition.

11

CHAPTER 3

ELECTRICAL DESIGN

3.1 INTRODUCTION

The electrical design involves the choice of motors and their

corresponding Electronic Speed Controllers (ESCs), the calibration

and speed control of the motors, the choice of the battery to power the

motors and the on board microcontrollers.

The propulsion system consists of three brushless dc motors and their

corresponding Electronic Speed Controllers (ESCs). The ESCs are

calibrated using the code shown in Appendix A. The speed control

code (Appendix A) adjusts the duty cycle of the Pulse width

Modulated(PWM) wave that is fed into the ESCs thereby controlling

the speed of the motors.

The following sections describes the components chosen and the

speed control method in detail.

3.2 BATTERY

Li-Po battery is used to power the Autonomous Underwater Vehicle.

Because of its higher power-to-weight ratio, it can drive all the three

brushless dc motors and can also be accommodated easily inside the

hull.

But, the disadvantages of using Li-Po battery is that powering the

microcontroller is risky since it has high discharge rate. Also, extra

protection from water is required for the Li-Po battery apart from the

sealing of the hull due to it being prone to hazards.

The power management system of the AUV has been designed for an

endurance of 15 minutes at maximum continuous load using

4200mAh, 3-cell, and 11.1V DC Lithium-Polymer (Li-Po) batteries.

12

3.3 THRUSTERS

Three 1200kv dc brushless motors are used as thrusters (Figure 8).

The brushless dc motors work smoothly underwater because of the

insulation on the armature winding. These three thrusters provide

three degrees of freedom which are yaw, ballast/heave and sway

motion.

Figure 8: Brushless DC Motor and ESC

The pwm signal from the microcontroller (Arduino Uno) are fed to

the ESCs which in-turn regulate the speed the motors.

3.4 ARDUINO UNO

Arduino Uno board was used to calibrate the ESCs with pwm signals.

The ESC requires 20ms time period pwm waveforms from the

microcontroller with the pulse width ranging between 1000us to

2000us as shown in Figure 9.

13

Figure 9: PWM Signal Duration

The ESC was calibrated between 1000us(0 rpm) upto 1500us(full

speed).

Arduino Uno was also used to generate pwm signals for ESCs to

control the rpm of the motors. After several experiments, for a pwm

width of 1050us minimum speed was achieved and was used for

running the AUV. The calibration and speed control codes used are

shown in Appendix A.

Figure 10: Arduino UNO

3.5 CAMERA

Our AUV uses a waterproof GoPro HERO+ camera(Figure 11)

which is capable of capturing video feed with 1080p resolution. It has

an ultra wide field of view and also supports a video resolution of

720p. It has a USB 3.0 interface for transferring the video feed. If we

are shooting in 720p, there is a Super-View option to capture video

14

with an even wider field of view. The camera provides a consistent

frame rate of 60 fps.

The captured images are stored in a waterproof class-10 SD Card with

32 GB capacity with write speed of 30Mbps.

Figure 11 : GoPro Hero+ Camera

3.6 BEAGLEBONE

Beaglebone Black is a System-on-Chip (SoC) developed by Texas

Instruments Inc. It has an ARM Cortex A8 CPU with a memory of

256MB and a RAM of 256MB.

It runs on Debian based Linux operating system and supports the

necessary libraries and wheels for Python. Since it has USB and

HDMI ports also , it can be interfaced with the GoPro Camera. The

images captured by the camera are accessed by Beaglebone and the

required crack detection is performed on board. Those images that do

not have crack can be erased from camera SD card using Beaglebone.

15

3.7 SUMMARY

The electrical components used in the Autonomous Underwater

Vehicle are presented in this chapter. The procedure to calibrate the

ESCs and control the speed of the motors are also described.

The role of the two microcontrollers(Arduino and Beaglebone) in

calibration , speed control and image recognition is also elaborated.

The next chapter presents the details of principal component analysis

and logistic regression methods along with experimental results of

various tests conducted in image recognition.

16

CHAPTER 4

CRACK DETECTION USING LOGISTIC

REGRESSION

4.1 INTRODUCTION

The problem of predicting an image for presence of crack or no crack

is a binary classification problem.

We used logistic regression, which is one of the most popular and

most widely used learning algorithms today for binary classification.

It is a supervised learning method for classifying data into discrete

outcomes.

In supervised learning, we are given a data set and already know what

our correct output should look like, having the idea that there is a

relationship between the input and the output.

Supervised learning problems are categorized into "regression" and

"classification" problems. In a regression problem, we are trying to

predict results within a continuous output, meaning that we are trying

to map input variables to some continuous function. In a classification

problem, we are instead trying to predict results in a discrete output.

In other words, we are trying to map input variables into discrete

categories.

Example:

(a) Regression - Given a picture of a person, we have to predict their

age on the basis of the given picture

(b) Classification - Given a patient with a tumour, we have to predict

whether the tumour is malignant or benign.

Logistic regression includes both regression and classification.

17

4.2 BINARY CLASSIFICATION

In binary classification problem the variable that we're trying to

predict is a variable ‘y’ that we can think of as taking on two values

either zero or one i.e., an image has a crack or no crack, a tumour is

malignant or benign.

The variable with value zero is called the negative class and the

and variable with value one is the positive class. So, we infer ‘0’ as

the absence of crack, and ‘1’, the positive class with the presence of

crack. The assignment of the two classes - positive and negative to

zero and one is arbitrary.

4.3 NOTATIONS

n = number of features

m = number of training examples

X ϵ R
mxn+1

x
(i)

 = input for the i
th

 training example

xj
(i)

 = value of the feature j in the i
th

 training example

where, 0 < i < m , 0 < j < n

θ Є R
nxnum_class

 = weight matrix, num_class = 2 for binary class

y Є R
m

= A m -dimensional vector representing the y-values for each

example.

Each training example is a n by n pixel grayscale image. Each pixel is

represented by a floating point number indicating the grayscale

intensity at that location. The n by n grid of pixels is unrolled into an

n
2
 -dimensional vector which are the rows of vector X shown:

18

4.4 HYPOTHESIS FUNCTION

Hypothesis function is the function we're going to use to represent our

hypothesis when we have a classification problem.

We would like our logistic regression to output values that are

between 0 and 1. So we use a hypothesis function that satisfies this

property, that is, our predictions are between 0 and 1.

For this purpose, we define our hypothesis function as :

hθ(x
(i)

) = g(x
(i)

 * θ) where g is called the sigmoid function or, the

logistic function

where z = x
(i)

 * θ

The following image shows what the sigmoid function looks like:

Figure 12 : Sigmoid Function

Now, we define the cost function as:

For y = 1, the parameters used in hθ(x
(i)

) are θnx1 and they are

optimized by gradient descent method to maximize

hθ(x
(i)
) which in turn minimizes J(θ).

Similarly, for y = 0, the parameters used in hθ(x
(i)
) are θnx2 and they

are optimized to maximize (1- hθ(x
(i)

)) which in turn minimizes J(θ).

19

This above cost function was chosen to make the optimization

problem to be a convex function. This helps in finding the global

minima easily since there are no local minima in convex functions.

4.5 GRADIENT DESCENT

Given the cost function, in order to fit the parameters, we need to find

the parameters θ that minimize J(θ).

The way we're going to minimize the cost function is using gradient

descent.

If we want to minimize it as a function of θ, our usual template

for graded descent where we repeatedly update each parameter is by

taking θj , updating it as itself minus alpha(learning rate) times the

derivative term as shown:

The above term is simplified as :

α = The learning rate. It should not be very high since it would lead

to divergence.

4.6 THE PROBLEM OF UNDERFIT AND OVERFIT

Under-fitting, or high bias, is when the form of our hypothesis

function ‘h’ maps poorly to the trend of the data. It is usually caused

by a function that is too simple or uses too few features.

At the other extreme, overfitting, or high variance, is caused by a

hypothesis function that fits the available data but does not generalize

well to predict new data. It is usually caused by a complicated

20

function that creates a lot of unnecessary curves and angles unrelated

to the data.

Figure 13 : A – Underfit Curve, B – Perfect Fit, C – Overfit Curve

4.7 REGULARIZATION

When the number of features are high, the learned hypothesis gives

parameters in such a way that J(θ) is zero. But this tries too hard to fit

the training set and fails to provide a general solution that is, apply to

new examples.

There are two ways to deal with over-fitting :

1) Reduce number of features by manually selecting which features to

 keep.

 But, in reducing the number of features we lose some information

 so, we need to select those features which minimize data loss.

2) Regularization

 In this method, we keep all features, but reduce magnitude

 of parameters θ.

 This works well when we have a lot of features, each of which

 contributes a bit to predicting y.

In regularization, small values for parameters corresponds to a

simpler hypothesis(we effectively get rid of some of the terms). A

simpler hypothesis is less prone to overfitting.

21

With regularization, we modify the cost function to shrink all the

parameters by adding a term at the end as shown below:

where, λ is the regularization parameter

λ controls a trade off between our two goals which are to fit the

training set well and also keep parameters small.

Now, the updated partial derivative of regularized logistic regression

cost for θj is defined as :

After computing the J(θ) and the gradient values, we used an

advanced function minimization routine called fmincg.

It takes the cost function, gradients, lambda, initial parameters θ, y

and number of iterations as inputs and optimizes the cost function and

gives the optimal parameters (θopt) as output.

This routine also picks a good learning rate, and so the optimization

ends up converging much faster than gradient descent.

It lets the algorithms scale much better to very large machine learning

problems, such as if we had a very large number of features.

22

4.8 DECISION BOUNDARY

After training the parameters over all training examples, they are

optimized in such a way that a decision boundary is formed where y =

1 class is separated from y = 0 by a hyperplane X*θ = 0 as shown

below:

Figure 14 : Decision Boundary formed after training

So, the training examples are separated in such a way that for y = 1,

X*θ ≥ 0 and for y = 0, X*θ < 0.

4.9 PREDICTION

Consider the following:

The test set (X_test) is of dimension : R
pxn

,

The optimal weight matrix obtained after training is θopt ,

and

hθ(x
(i)
) = g(X_test*θopt) is a R

px2
 matrix with each row representing

one training example and each column representing its probability of

belonging to the classes defined by y.

The maximum probability (P) in each row is selected and if

P ≥ 0.5, the test example is classified as belonging to class

y = 1 else,

the test example is classified as belonging to the class y = 0.

23

4.10 EXPERIMENTAL RESULTS

We obtained 309 images with cracks and 148 images without cracks

from Google to test our algorithm. All of the images were converted

to grayscale beforehand. A few samples of images used in training

and test set are as shown :

Figure 15

Figure 16

Figure 15 and Figure 16 show the images used in training set for images with

cracks(Class 1) and without cracks(Class 0) respectively.

Figure 17

24

Figure 18

Figure 17 and Figure 18 show the images in test set

4.11 CHOOSING A CROP SIZE FOR IMAGE

The primary requirement for logistic Regression is that all the images

used for training and test be of same dimensions.

Since the image data obtained were all of different dimensions we

decided to crop the images into smaller images to increase the number

of images to increase data which is a favourable trait in machine

learning.

Let us assume that all images were split into 100*100 pixel images.

Then each pixel is considered to be a feature which will be modelled.

Thus there are 10000 features per cropped image and logistic

regression works best when the number of training examples per

training class are more than or as large as the number of features. In

situations where collections of such an enormous amount of images is

very difficult, splitting the image is the best alternative.

The new training set now contains 8800 images with cracks and

10019 images without cracks. The same was done for test set images.

25

Figure 19

Logistic regression was run on this training data and the prediction

accuracies obtained on the test set are as shown:

Figure 20

26

To understand the term ‘percent’ in Figure 20, consider the following:

Given, an image (I) is of pxq pixels size,

The image I is cropped into LxL pixel images (each image called as

‘block’ and L is the crop size) and

The number of blocks per image(B) =

 =

For a given image to be predicted,

B = number of blocks into which it is split into

C = number of blocks where y = 1 is predicted

If, C ≥

 then the complete image is classified as having a crack

Else,

the entire image is classified as having no crack.

Thus, percent denotes the threshold for number of blocks per image

to be classified as having crack or no crack.

4.12 REASONS FOR LOW ACCURACY PREDICTION IN THE

CROPPING METHOD

While the amount of data is certainly increased by cropping the

images, the amount of meaningful data does not increase.

This is because, while cropping images for training, many cropped

images will resemble non-crack images which will be modelled as

images with crack during training.

Regularization could not handle the large amount of outliers

generated by cropping as above.

4.13 PRINCIPAL COMPONENT ANALYSIS (PCA)

When the images are all of same size, principal component analysis

helps to reduce the number of dimensions/features in an image. This

helps to speed up the linear regression process.

27

Consider the following example of data where we would like to

reduce the dimension of the 2-D points to 1-D :

Figure 21 : Projection of 2-d data onto Principal axis 1

PCA tries to find a lower dimensional surface, which is a line in this

case, onto which to project the data so that the sum of squares of the

perpendicular projections (blue line segments) is minimized. The

length of those blue line segments is sometimes also called the

projection error.

In contrast to the red line, we can also project our data onto a different

line(green line) as shown in Fig below.

Figure 22: Projection of 2-d data onto Principal axis 2

28

This green line is a much worse direction onto which to project the

data because the projection errors, that is the blue line segments, will

be huge. And so that's why PCA will choose something like the red

line rather than the green line.

The above is a case of reducing data from two-dimensional to one-

dimension. Generally, we have n-dimensional data and we'll want to

reduce it to k-dimensions. In that case we want to find not just a

single vector onto which to project the data but k-dimensions onto

which to project the data so as to minimize this projection error.

4.14 PCA ALGORITHM

The algorithm assumes the input data is in the form of a matrix X ϵ

R
mxn

 .

Where, m = number of input images

 n = number of pixels per image (features)

The first step is data pre-processing wherein each feature is mean

normalized.

Consider the ‘m’ images to be x
(1)

,x
(2)
,…,x

(m)
 and each image having

‘n’ features.

Then, µj =
 j

(i)

And replace each xj
(i)

 with xj - µj

Now, we compute the covariance matrix

∑ = (1/m)* X’*X

This matrix has the covariance of all the features.

For example, if X were a 3X3 matrix, we have:

X =

 =

feature feature feature

29

And X
T
 =

 feature
 feature
 feature

Thus, ∑ = 1/m *
feature feature feature feature feature

feature feature feature feature feature
feature feature feature feature feature

The next step is to compute the Singular Value Decomposition (SVD)

of ∑.

[U,S,V] = svd(∑)

The matrix ∑ being symmetric always, the U and V vectors are

orthogonal and identical and are the principal axis that we require.

Thus, U =

 ...

 ϵ Rnxn

 are the principal axis.

We choose the first ‘k’ columns of this matrix U and obtain the

reduced co-ordinates of the original data as :

X_new = X * U(:,1:k)

where, X_new ϵ R
mxk

 is the reduced image data.

We choose a ‘k’ such that maximum variance of the original image

data is retained. To retain 99% of the variance we choose a ‘k’ such

that

new

≤ 0.01 (1%)

Where the numerator is the summation of the 2-norm distance

between each image and the new reduced image and denominator is

the variance of original image data.

30

In MATLAB, all the steps above can be computed using the

command ‘pca’ which performs mean normalisation and SVD giving

the following return values:

[U,projection,latent,tsquared,explained] = pca(X)

Where projection(:,1:k) = X_new

and, the term ‘explained’ describes the percentage of variance

explained by each principal component.

For example, to choose k such that 99% of the variance is captured,

In Matlab we use,

sum(explained(1:k)) ≥ 99%

and choose the minimum value of k that satisfies the above equation.

This equation is same as the above equation for k.

4.15 EXAMPLE OF PROJECTING 2-D DATA TO 1-D

Consider a 2-D dataset of 5 points as -

11 1

1 15

Thus, our input data X ϵ R
5x2

We would like to reduce this data to ϵ R
5x1

 by projecting the data onto

the 1
st
 principal axis.

By using [U,projection] = pca(X) we obtain the U and projection

matrix as:

U =
 . . 9

 . 9 -0.

Where the first two columns are the two principal axis and,

projection =

 -9.19 -0. 5

- . 90 .

 .0 1 -0. 1

 . 5 . 0

 . -0.

31

Where the first column is the projection of our 2-D data on first

principal axis. The method to obtain these projections is illustrated

from Figure 23 to Figure 28.

Figure 23: Observations plotted in 2-D

Figure 24: Plot of principal axis 1 vector obtained from ‘U’ matrix

32

Figure 25 : Mean normalized observations and original observations

 Figure 26 : Principal axis 1 and principal axis 2 vectors

33

Figure 27: Projecting data onto principal axis 1

 Figure 28: The distance from origin to projected points is the projection

matrix

34

As observed from Figure 28, the distances from origin are the same as

first column of projection matrix obtained above.

Thus, the X_new ϵ R
5x1

is

 .19
 .
 .0
 .
 .

4.16 EXPERIMENTAL RESULTS

Our input data X to PCA is the training data consisting of crack and

non-crack images.

We obtained two videos of real time underground pipe inspection

performed by Western Water Group, Melbourne, Australia.

By taking snapshots, we then separated the images for training the

logistic regression and testing as follows –

 Number of images

with crack

Number of images

without crack

For Training 161 76

For Prediction 33 25

A sample of crack images used for training are as shown below:

Figure 29 : Training set for crack images

Each image is of 720x576 pixels, 161 image with crack and 76

images without crack were used to train the logistic regression.

Thus, X ϵ R
237x414720

35

As we can observe the huge number of features (i.e., 414720) per

image make the computations very slow.

We used the MATLAB command,

[U,projection,l,t,explained] = pca(X) and obtained:

U ϵ R
414720x236

which are the 236 principal axis found,

projection ϵ R
237x236

are the projections of the 237 images on each of

the 236 principal axis obtained.

We choose different values of ‘k’ and use

X_new = projection (:,1:k) as our new training data and train the

parameters of logistic regression and then predict the test data.

Now, with this ‘k’ above we also need to reduce the dimensions of the

test images by using:

X_testnew = X_test * U(:,1:k)

Where X_test is the original test image data ϵ R
58x414720

as 58 images

were predicted and,

X_testnew is the reduced test data ϵ R
58xk

The prediction results for different values of ‘k’ used are as shown

below:

k Lambda PREDICTION

ACCURACY

TRAINING

SET

ACCURACY

10 1 72.4 79.7

20 1 87.9 89.4

30 1 84.5 96.2

40 1 62.0 100

50 1 62.0 100

60 1 63.8 100

70 1 84.5 100

80 1 89.6 100

90 1 87.9 100

100 1 81.03 100

36

110 1 89.6 100

120 TO 230 1 87.9 100

We chose k = 110 because sum(explained(1:110)) = 99.26 %

Thus for k = 110, 32/33 images with crack and 20/25 images without

crack were predicted successfully.

4.17 TESTING ON BEAGLEBONE

After obtaining the matrix ‘U’ ϵ R
414720x236

 , the X_test is reduced to

X_testnew as described in chapter 4.16. This X_testnew is used for

prediction of crack as described in chapter 4.9.

The code used is shown in Appendix B.

The time taken by Beaglebone to perform these operations and

recognize one image of 720x576 pixels for presence of crack was

found out to be 24.8 seconds.

The same operation took 0.3 seconds on a PC with an Intel i7 CPU

with processor speed 3.4Ghz and 8GB RAM.

4.18 SUMMARY

Logistic regression requires all the training and prediction images to

be of the same size. Thus, two methods of running logistic Regression

were investigated – First, with a training set with images of various

sizes and second with a training set of images obtained from Western

Water Group, Australia from their underwater pipe inspection.

Initially, a method of cropping images of various sizes into same crop

sizes and regressing them was presented along with its merits and de-

merits. This method gave a low accuracy of 67% on predictions of

test images.

37

Thereafter, an improved algorithm based on principal component

analysis was presented which improved the accuracy to 89.6%.

It was also observed that the image recognition performance of

Beaglebone is slow and could be improved by using a CPU with

higher processing power in the AUV.

The next chapter presents a method to detect cracks on images of any

size using OpenCV to overcome the drawback of collecting images of

same size in training and test sets for using logistic Regression.

38

CHAPTER 5

CRACK DETECTION USING COMPUTER

VISION

5.1 INTRODUCTION

Computer vision is concerned with automatic extraction and analysis

of data in the form of an image or a collection of images to deduce

useful information. The image data can take the form of an image or a

video sequence or data from a medical scanner.

The project uses programming functions from OpenCV(Open Source

Computer Vision). OpenCV is a library available online , that

contains functions for real-time computer vision. It was originally

developed by Intel.

Areas of Application of OpenCV include facial recognition , pattern

recognition , motion tracking , augmented reality etc. And to achieve

the above mentioned applications , OpenCV includes statistical

machine learning libraries that contains numerous machine learning

algorithms like Boosting , Naive Bayes Classifier , Support vector

Machine(SVM) to name a few.

Machine learning problems that involve classification can be solved

using OpenCV classifier functions that applies one or a combinations

of the above mentioned algorithms for classification problems.

Classifiers are algorithms that implements classification, especially in

a concrete implementation, is known as a classifier. The term

"classifier" sometimes also refers to the mathematical function,

implemented by a classification algorithm, that maps input data to a

category.

39

5.2 PROCEDURE FOR TRAINING CLASSIFIER

A classifier (namely a cascade of boosted classifiers working with

haar-like features) is trained with a few hundred sample views of a

particular object (i.e., a face or a car), called positive examples, that

are scaled to the same size (say, 20x20), and negative examples -

arbitrary images of the same size.

After a classifier is trained, it can be applied to a region of interest (of

the same size as used during the training) in an input image. The

classifier outputs a “1” if the region is likely to show the object (i.e.,

face/car), and “0” otherwise. To search for the object in the whole

image one can move the search window across the image and check

every location using the classifier. The classifier is designed so that it

can be easily “resized” in order to be able to find the objects of

interest at different sizes, which is more efficient than resizing the

image itself. So, to find an object of an unknown size in the image the

scan procedure should be done several times at different scales.

The word “cascade” in the classifier name means that the resultant

classifier consists of several simpler classifiers (stages) that are

applied subsequently to a region of interest until at some stage the

candidate is rejected or all the stages are passed. The word “boosted”

means that the classifiers at every stage of the cascade are complex

themselves and they are built out of basic classifiers using one of four

different boosting techniques (weighted voting). Currently, Discrete

Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are

supported.

5.3 BOOSTING AND ADABOOST ALGORITHMS

Boosting is a general ensemble method that creates a strong classifier

from a number of weak classifiers.

This is done by building a model from the training data, then creating

a second model that attempts to correct the errors from the first

https://en.wikipedia.org/wiki/Boosting_(machine_learning)

40

model. Models are added until the training set is predicted perfectly or

a maximum number of models are added.

AdaBoost was the first really successful boosting algorithm

developed for binary classification. It is the best starting point for

understanding boosting.

5.4 HOW TO TRAIN ONE MODEL USING ADABOOST

A weak classifier (decision stump) is prepared on the training data

using the weighted samples. Only binary (two-class) classification

problems are supported, so each decision stump makes one decision

on one input variable and outputs a +1.0 or -1.0 value for the first or

second class value.

The misclassification rate is calculated for the trained model.

Traditionally, this is calculated as:

error = (correct – N) / N

Where error is the misclassification rate, correct are the number of

training instance predicted correctly by the model and N is the total

number of training instances. For example, if the model predicted 78

of 100 training instances correctly the error or misclassification rate

would be (78-100)/100 or 0.22.

This is modified to use the weighting of the training instances:

error = sum(w(i) * terror(i)) / sum(w)

Which is the weighted sum of the misclassification rate, where w is

the weight for training instance i and terror is the prediction error for

training instance i which is 1 if misclassified and 0 if correctly

classified.

For example, if we had 3 training instances with the weights 0.01, 0.5

and 0.2. The predicted values were -1, -1 and -1, and the actual output

https://en.wikipedia.org/wiki/AdaBoost

41

variables in the instances were -1, 1 and -1, then the terror s would be

0, 1, and 0. The misclassification rate would be calculated as:

error = (0.01*0 + 0.5*1 + 0.2*0) / (0.01 + 0.5 + 0.2) or,

error = 0.704

A stage value is calculated for the trained model which provides a

weighting for any predictions that the model makes. The stage value

for a trained model is calculated as follows:

stage = ln((1-error) / error)

Where stage is the stage value used to weight predictions from the

model, ln() is the natural logarithm and error is the misclassification

error for the model. The effect of the stage weight is that more

accurate models have more weight or contribution to the final

prediction.

The training weights are updated giving more weight to incorrectly

predicted instances, and less weight to correctly predicted instances.

For example, the weight of one training instance (w) is updated using:

w = w * exp(stage * terror)

Where w is the weight for a specific training instance, exp() is the

numerical constant e or Euler’s number raised to a power, stage is the

misclassification rate for the weak classifier and terror is the error the

weak classifier made predicting the output variable for the training

instance, evaluated as:

terror = 0 if(y == p), otherwise 1

Where y is the output variable for the training instance and p is the

prediction from the weak learner.

42

This has the effect of not changing the weight if the training instance

was classified correctly and making the weight slightly larger if the

weak learner misclassified the instance.

5.5 STEPS INVOLVED IN TRAINING CLASSIFIER

The steps involved in training the cascade classifier are as follows:

1) A negative image is selected and 100x100 sections of the image is

cropped out of it from random areas to generate the negative sample

set .

2) The positive images are formed by appending the object to be

detected on to the negative sample set at random positions. Here the

object to be detected is the crack.

Here are some of the cracks the are used for generating positive

sample set.

Figure 30: Crack image templates

43

The generated positive images are shown below :

Figure 31 : Image1 Image 2 Image 3

3) An information file is generated that contains the locations of the

objected to be detected(cracks) on the negative background.

4) The classification is done using the OpenCV trainer that takes in

the negative and the positive data along with the information file

generated. The number of stages have to specified along with it.

5.6 EXPERIMENTAL RESULTS

Once training is done , a .xml file is generated by the classifier that

contains parameters associated with image training.

The training was done using 10 stages. As the number of stages

increase the training time also increases. But as the number of stages

increase , the accuracy of detection will also increase . For the limited

computation capacity that was available to us , we found satisfactory

results with 10 stages. It took about 47min for 10 stages on a system

with 3GHz processor and 4 GB RAM. The detected images are shown

below :

44

Figure 32 : Detected cracks on Images for stage 12, 10 and 8

The blue box indicates the crack location detected by the classifier

after training.

5.7 SUMMARY

This chapter presents a further study into crack detection using

functions from the libraries of OpenCV.

The details of the algorithm that is used by the classifier for detecting

the crack is presented in this chapter as well as the steps involved in

training the classifier.

Once the classifier is trained using collection of positive and negative

sample set of images, an .xml file containing the parameter is

generated by the function which can be then used to detect crack on

any test image.

The experimental results of the trained classifier are also presented in

this chapter.

Next chapter presents the conclusions of this thesis and future work

on the AUV.

45

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this thesis we have investigated the challenges faced in

constructing an Autonomous Underwater Vehicle (AUV). The thesis

describes several methods of image recognition using machine

learning. This chapter provides the summary of the main

contributions and open problems for future work.

6.1 CONTRIBUTIONS OF THE THESIS

The mechanical structure is completed and the hull was water proofed

so that the payloads can be protected. The motor speed was adjusted

to reduce vibration on the body. The design provides three degrees of

freedom movement which can be controlled using pwm signals from

the microcontroller that are fed to the motors via ESCs.

Several image recognition techniques were considered among which

logistic regression with principal component analysis for

dimensionality reduction was chosen because of its simplicity, speed

and robustness for binary classification.

The logistic regression algorithm implemented gave 89.6 % accuracy

on binary classification for detecting cracks.

To overcome the limitation of logistic regression wherein all the

training and prediction images need to be of same size, a study was

done in the area of computer vision and results of different stages

were documented.

The next section describes the extensions to the present work.

46

6.2 EXTENSIONS AND FUTURE WORK

i) Training of cascade classifiers as well as image recognition in the

AUV requires more computational power.

Proposed solution :- Training of cascade classifiers requires high end

Graphical Processing Units(GPUs) to reduce training time which

enables us to test various possible configurations. The image

recognition by the AUV can also be improved by using a GPU instead

of microcontrollers such as Beaglebone.

ii) Location sensing at 30m depth inside a mild steel pipe surrounded

by concrete.

Proposed solution :- Since the range of WiFi /GPS/ GPRS at such

depths are not robust enough to capture the location of the AUV, we

intend to capture images at a regular time interval with a time stamp

embedded onto them to locate the AUV.

iii) The Li-Po battery has high discharge rates and hence cannot be

used to power microcontrollers on board. On the other hand, using

lead acid batteries is safer but increases the weight of AUV.

Proposed solution :- Battery eliminator circuits need to be used if Li-

Po batteries are to be used.

iv) The Li-Po battery that is used has an endurance of only 15min at

maximum load.

Proposed Solution :- We can increase the number of Li-Po batteries

by connecting them in parallel along with an emergency power supply

cable.

v) The pipelines have turn, gradients ,descents and dead ends. So the

AUV has to navigate through such a route.

Proposed Solution :- Waterproof ultrasonic proximity sensors can be

used to calculate the distances from the surface of the pipe and

manoeuvre accordingly.

47

APPENDIX A

CALIBRATION AND SPEED CONTROL CODE

A.1 CALIBRATION CODE

#include <Servo.h>

#define MAX_SIGNAL 1500

#define MIN_SIGNAL 1000

#define MOTOR_PIN 2

Servo motor;

void setup() {

 Serial.begin(9600);

 Serial.println("Program begin...");

 Serial.println("This program will calibrate the ESC.");

 motor.attach(MOTOR_PIN);

 Serial.println("Now writing maximum output.");

 Serial.println("Turn on power source, then wait 2 seconds and press any

key.");

 motor.writeMicroseconds(MAX_SIGNAL);

 // Wait for input

 while (!Serial.available());

 Serial.read();

 // Send min output

 Serial.println("Sending minimum output");

 motor.writeMicroseconds(MIN_SIGNAL);

}

void loop() {

}

48

A.2 SPEED CONTROL CODE

uint16_t pwmSignal[3]={1050,1250,1050 };

uint16_t summationSignal=0;

bool tog=0;

#define MAX_CYCLE 20000// 20mS

#define NUMBER_OF_SIGNAL_CHANNELS 3

#define CH1 0

#define CH2 1

#define CH3 2

void setup() {

 DDRD|=0b00011100; //pin 2,pin3,pin4

 Serial.begin(115200);

 Serial.println("programStart");

 DDRB|=(1<<5); // pin 13 OP

 PORTB|=(1<<5); // switch on pin13

 delay(1000);

 PORTB&=~(1<<5);// switch off pin13

 for(uint8_t i=0;i<NUMBER_OF_SIGNAL_CHANNELS;i++)

 summationSignal+=pwmSignal[i];

}

void loop() {

while(1) // infinite loop makes code run faster

49

{

 PORTD|=(1<<2); // switch on pin 2

 delayMicroseconds(pwmSignal[CH1]);

 PORTD&=~(1<<2); // switch off pin 2

 PORTD|=(1<<3);// switch on pin 3

 delayMicroseconds(pwmSignal[CH2]);

 PORTD&=~(1<<3); // switch off pin 3

 PORTD|=(1<<4);// switch on pin 4

 delayMicroseconds(pwmSignal[CH3]);

 PORTD&=~(1<<4);// switch off pin 4

uint16_t diff=MAX_CYCLE-summationSignal;

delayMicroseconds(diff);

tog=!tog;

tog?PORTB|=(1<<5):PORTB&=~(1<<5); // toggle led pin 13

// end of cycle

}

50

APPENDIX B

IMAGE RECOGNITION IN BEAGLEBONE

from PIL import Image

from scipy import io

import numpy as np

import matplotlib.pyplot as plt

from datetime import datetime

img = Image.open('/projdata/proj/crack-

images/scene03688.png').convert('L')

img.save('greyscale3.jpg')

#conversion to an array

arr = np.asarray(img)

arr =np.reshape(arr , (1,414720))

#load the theta obtained after training

theta = io.loadmat('/projdata/proj/all_theta')

img_arr = []

j = 0

rad = np.zeros(110)

startTime = datetime.now()

for i in range(5):

 a = io.loadmat('/projdata/proj/U'+str(i)+'.mat')

 a = a['tst']

 partial = np.matmul(arr , a)

 rad[j:j+20] = partial

 j+=20

rad = np.concatenate(rad , partial)

51

a = io.loadmat('/projdata/proj/U5.mat')

a = a['tst']

partial = np.matmul(arr , a)

rad[100:110] = partial

theta = theta['all_theta']

theta_trans = np.transpose(theta)

rad = np.append(1, rad)

out = np.matmul(rad , theta_trans)

sigmoid = 1/(1 + np.exp(-1*(out)))

if (sigmoid[0] > sigmoid[1]) :

 y = 0;

else:

 y =1;

print(y)

print(datetime.now() - startTime)

52

REFERENCES

[1] https://en.wikipedia.org/wiki/Autonomous_underwater_vehicle

[2] http://robots.dacloughb.com/project-2/esc-calibration-

programming/

[3] http://www.t5eiitm.org/2014/02/iitms-underwater-journey/

[4] https://www.coursera.org/learn/machinelearning/home/week/3

[5] http://www.holehouse.org/mlclass/06_Logistic_Regression.html

[6] http://www.holehouse.org/mlclass/07_Regularization.html

 https://stats.stackexchange.com/questions/69602/what-is-a-classifier

[7] http://machinelearningmastery.com/boosting-and-adaboost-for-

machine-learning/

[8] http://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classifi

cation.html

https://en.wikipedia.org/wiki/Autonomous_underwater_vehicle
http://www.t5eiitm.org/2014/02/iitms-underwater-journey/

