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ABSTRACT 

 
An Autonomous Underwater Vehicle(AUV) is a robot which travels 

underwater without requiring input from an operator. Most AUVs are 

equipped with a video camera and lights. Additional equipment is 

commonly added to expand the vehicle’s capabilities. 

 

Design and construction of an AUV has numerous challenges to offer 

starting with water proofing, static and hydrodynamic stability, propulsion, 

power consumption and control and navigation. A blend of technologies 

like image processing, remote communication and embedded systems are 

employed in the vehicle.  

 

This thesis examines the design of the AUV which can be grouped in three 

verticals - mechanical, electrical and the crack detection algorithm. 

The AUV captures images at certain intervals using a camera and they are 

recognized for presence of crack using an on-board microcontroller.  

 

The crack detection is achieved by a machine learning algorithm called 

logistic regression. Towards the end, a study was made to detect cracks 

using image processing library called OpenCV(Open Source Compute 

Vision). 
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CHAPTER 1 

 

INTRODUCTION 
 

Autonomous robots perform a variety of tasks including surveillance, 

rescue, cleaning and searching for a specific item. They are generally 

equipped with a variety of sensors and a high level computer for high 

level tasks besides possibly a microcontroller for low-level tasks. 

 
1.1 MOTIVATION 

 
Power plants use mild steel underground pipelines that carry makeup 

water in and out of the condenser as shown in the figure 1. 

 

 
Figure 1 A schematic of Power Plant 

 

This makeup water flows through the walls of the condenser and 

cools the steam inside it by heat exchange. 

The visit to National Thermal Power Corporation Ltd., Ramagundam 

gave us an idea of the section of pipeline to be inspected as  shown in 

Figure 2. 
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Figure 2 A Section of Pipeline to be inspected at NTPC 

 

The above figure depicts a mild steel pipeline covered with concrete 

which primarily runs underground spanning over a distance of more 

than 5km in the power plant. 

 

These mild steel pipelines of the plant being several decades old, get 

eroded by constant flow of water throughout the year. This leads to 

formation of cracks through which the water seeps out of the pipe. 

With time, the size of the crack would increase thereby leading to 

reduction of required flow and permanent damage to pipeline. 

 

Previous attempts of manual labour to detect such cracks had proven 

to be risky, time consuming, ineffective and costly. The proposed 

Autonomous Underwater Vehicle was designed for NTPC to inspect 

the pipelines without human intervention. 
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1.2 OBJECTIVES 

 
The objectives of the thesis are as follows: 

 

 

1. To design and construct a prototype of an Autonomous 

Underwater Vehicle. 

 

2. To implement an efficient algorithm to detect cracks in images. 

 

3. To optimise memory consumption by intelligently storing the 

images captured by AUV inside the pipeline only if it is 

recognized as a crack. 

 
1.3 CONTRIBUTIONS OF THE THESIS 

 
1. A waterproofed and mechanically stable prototype of the AUV. 

 

2. Principal component analysis based dimensionality reduction 

technique for image recognition. 

 

3. Study on a Compute Vision algorithm for detecting cracks. 

 
1.4 CHALLENGES IN CONSTRUCTING THE AUV 

 
Water sealing is one of the major challenges while constructing 

underwater Robots. The payload that consists of microcontrollers and 

battery must be protected from water. 

 

There are various machine learning techniques such as logistic 

regression, neural networks, support vector machine, etc., that can be 

employed in image recognition. It is therefore a challenge to choose 

the right technique which is fast, efficient in terms of accuracy and 

has minimal computational requirements. 
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1.5 ORGANIZATION OF THE THESIS 

 

Next chapter presents the details of the mechanical design of the 

Autonomous Underwater Vehicle. 

 

Chapter 3 presents the electrical components utilised on board the 

Autonomous Underwater Vehicle. 

 

In chapter 4, details of the logistic regression method along with 

principal component analysis for dimensionality reduction are 

presented. 

 

In chapter 5, a brief study on Boost and Adaboost agorithms used in 

Compute Vision are also presented. 

 

Chapter 6 summarises the thesis and discusses the future directions of 

work. 
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CHAPTER 2  

 

 MECHANICAL DESIGN 

 

2.1 INTRODUCTION 

 

In this section, we present the various components used to build the 

mechanical structure and their advantages. The design ideas originate 

from the work of [3]. 

 

We begin with the description of the Pressure Hull shape. We then 

present the free body diagram of the AUV and analyse the forces 

acting on it underwater. The design’s preliminary drawings in Google 

Sketchup tool are shown and finally the current design is shown. 

 

2.2 DESIGN OF PRESSURE HULL 

 

Hull provides a waterproof enclosure at atmospheric pressure for the 

electronic payloads of the AUV. Generally, several factors influence 

the design of the hull. 

 

A cylindrical shaped hull has been incepted in the design because of 

the following reasons: 

1) It is a good structure to resist hydrostatic pressure. 

2) It has a good hydrodynamic form which helps in reducing the    

    drag on the vehicle and, 

3) It provides sufficient space for placement of electronics. 

 

The hull material should have good resistance to corrosion, 

have a high strength to weight ratio and must be affordable. 

Considering above factors, acrylic plastic is chosen as the 

material for the hull of the AUV. The added advantage 

of acrylic is that it is transparent and allows monitoring of the 

electronic components inside.  
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2.3 MECHANICS IN WATER 

 
To stabilize the mechanical structure underwater, the centre of 

buoyancy should be above the centre of mass. This would ensure that 

the rolling motion is inhibited.  

Consider a body fully immersed in water as shown in the Figure 3. It 

is stable when CM and CB are aligned and unstable when CM and CB 

are not aligned. Therefore, when the body is unstable, a righting 

moment acts to restore the body in its stable position. 
 

RM = (FM + FB) * GZ/2 

RM = (1/2) * (FM + FB) * (GMsin(ø)) 

 

where FM is the weight, FB is the buoyancy, GM is the metacentric 

height and ø is the roll angle. So the given expression implies that 

greater the RM, i.e. greater the metacentric height, greater is the 

stability. 

Since the supporting structure was made from pvc tubes, to achieve 

the above principle extra weight (here we used sand) in the pipe was 

added. 

 
Figure 3 Free body Diagram 
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2.4 PRELIMINARY DRAWING IN SKETCH UP 

 

Figures 4 and 5 are the Google Sketchup Drawings depicting the 

structure of the Autonomous Underwater Vehicle and placement of 

various components on the AUV. 

 

Internal Battery, Processor, Camera and Electronic Speed 

Controllers(ESC) are placed inside the waterproofed acrylic hull. 

The cords coming out of the AUV are the external power supply that 

is for emergency purposes and fibre optic cable for live camera video 

feed. 

 

The best choice for the base would be an aluminium exoskeleton 

because of its light weight. Ultrasonic sensors are placed at the front 

to avoid obstacles inside the pipelines. 

 

 
Figure 4: Side View of Design 
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Figure 5: Front View of Design 

 
2.5 THE CURRENT DESIGN 

 
The following Figures 6 and 7 show the AUV that we constructed. 

The base of the AUV on which the hull and propellers rest is an 

acrylic board. Couplers are used to join the motors to the propellers. 

The propellers used were pc fans. The couplers and the metal stand to 

hold the motors were machined in the college laboratory. 

 

PVC pipes were chosen to build the frame because of its low cost 

compared to aluminium. Proper adhesives were used to make the 

body rigid. 

 

The sealing was achieved using a 90mm MTA(male threaded adapter 

pipe)-FTA(female threaded adapter pipe). 

 



 

9 

 

 
Figure 6: The AUV Design 

 

 
Figure 7: Top View of the AUV 
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2.6 SUMMARY 

 

The proposed design for the AUV uses a cylindrical acrylic hull 

supported by a PVC frame. The sealing was accomplished by a 

MTA(male threaded adapter pipe)-FTA(female threaded adapter pipe) 

combination along with a dummy made from pvc to facilitate easy 

detachability.  

 

Provisions were made in the body to ensure that weight of the pvc 

frame can be adjusted to ensure the centre of mass remains below the 

centre of buoyancy to avoid rolling motion. 

 

The next chapter presents the details of the electrical and electronic 

components utilised by the AUV for motion and image recognition. 
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CHAPTER 3 

 

ELECTRICAL DESIGN 
 

3.1 INTRODUCTION 

 

The electrical design involves the choice of motors and their 

corresponding Electronic Speed Controllers (ESCs),  the calibration  

and speed control of the motors, the choice of the battery to power the 

motors and the on board microcontrollers. 

The propulsion system consists of three brushless dc motors and their 

corresponding Electronic Speed Controllers (ESCs). The ESCs are 

calibrated using the code shown in Appendix A. The speed control 

code (Appendix A) adjusts the duty cycle of the Pulse width 

Modulated(PWM) wave that is fed into the ESCs thereby controlling 

the speed of the motors.  

 

The following sections describes the components chosen and the 

speed control method in detail.  

 
3.2 BATTERY 

 

Li-Po battery is used to power the Autonomous Underwater Vehicle. 

Because of its higher power-to-weight ratio, it can drive all the three 

brushless dc motors and can also be accommodated easily inside the 

hull. 

But, the disadvantages of using Li-Po battery is that powering the 

microcontroller is risky since it has high discharge rate. Also, extra 

protection from water is required for the Li-Po battery apart from the 

sealing of the hull due to it being prone to hazards. 

 

The power management system of the AUV has been designed for an 

endurance of 15 minutes at maximum continuous load using 

4200mAh, 3-cell, and 11.1V DC Lithium-Polymer (Li-Po) batteries. 
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3.3 THRUSTERS 

 

Three 1200kv dc brushless motors are used as thrusters (Figure 8). 

The brushless dc motors work smoothly underwater because of the 

insulation on the armature winding. These three thrusters provide 

three degrees of freedom which are yaw, ballast/heave and sway 

motion. 

 

 

 

 
 

 

 

 

 

 

 
 

Figure 8: Brushless DC Motor and ESC 

 
The pwm signal from the microcontroller (Arduino Uno) are fed to 

the ESCs which in-turn regulate the speed the motors.  

 

3.4 ARDUINO UNO 

 

Arduino Uno board was used to calibrate the ESCs with pwm signals. 

The ESC requires 20ms time period pwm waveforms from the 

microcontroller with the pulse width ranging between 1000us to 

2000us  as shown in Figure 9. 
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Figure 9: PWM Signal Duration 

 

The ESC was calibrated between 1000us(0 rpm) upto 1500us(full 

speed). 

Arduino Uno was also used to generate pwm signals for ESCs to 

control the rpm of the motors. After several experiments, for a pwm 

width of 1050us minimum speed was achieved and was used for 

running the AUV. The calibration and speed control codes used are 

shown in Appendix A. 

 
Figure 10: Arduino UNO 

 

3.5 CAMERA 

 

Our AUV uses a waterproof  GoPro HERO+ camera(Figure 11) 

which is capable of capturing video feed with 1080p resolution. It has 

an ultra wide field of view and also supports a video resolution of  

720p. It has a USB 3.0 interface for transferring the video feed. If we 

are shooting in 720p, there is a Super-View option to capture video 
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with an even wider field of view. The camera provides a consistent 

frame rate of 60 fps. 

The captured images are stored in a waterproof class-10 SD Card with 

32 GB capacity  with write speed of  30Mbps.  

 
Figure 11 : GoPro Hero+ Camera 

 

3.6 BEAGLEBONE 

 

Beaglebone Black is a System-on-Chip (SoC) developed by Texas 

Instruments Inc. It has an ARM Cortex A8 CPU with a memory of 

256MB and a RAM of 256MB.  

It runs on Debian based Linux operating system and supports the 

necessary libraries and wheels for Python. Since it has USB and 

HDMI ports also , it can be interfaced with the GoPro Camera. The 

images captured by the camera are accessed by Beaglebone and the 

required crack detection is performed on board. Those images that do 

not have crack can be erased from camera SD card using Beaglebone. 
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3.7 SUMMARY 

 
The electrical components used in the Autonomous Underwater 

Vehicle are presented in this chapter. The procedure to calibrate the 

ESCs and control the speed of the motors are also described.  

 

The role of the two microcontrollers(Arduino and Beaglebone) in 

calibration , speed control and image recognition is also elaborated. 

 
The next chapter presents the details of principal component analysis 

and logistic regression methods along with experimental results of 

various tests conducted in image recognition. 
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CHAPTER 4 

  

CRACK DETECTION USING LOGISTIC 

REGRESSION 

 
4.1 INTRODUCTION 

 
The problem of predicting an image for presence of crack or no crack 

is a binary classification problem. 

We used logistic regression, which is one of the most popular and 

most widely used learning algorithms today for binary classification. 

It is a supervised learning method for classifying data into discrete 

outcomes. 

 

In supervised learning, we are given a data set and already know what 

our correct output should look like, having the idea that there is a 

relationship between the input and the output. 

 

Supervised learning problems are categorized into "regression" and 

"classification" problems. In a regression problem, we are trying to 

predict results within a continuous output, meaning that we are trying 

to map input variables to some continuous function. In a classification 

problem, we are instead trying to predict results in a discrete output. 

In other words, we are trying to map input variables into discrete 

categories. 

Example: 

(a) Regression - Given a picture of a person, we have to predict their 

age on the basis of the given picture 

(b) Classification - Given a patient with a tumour, we have to predict 

whether the tumour is malignant or benign. 

 

Logistic regression includes both regression and classification. 
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4.2 BINARY CLASSIFICATION 

 

In binary classification problem the variable that we're trying to 

predict is a variable ‘y’ that we can think of as taking on two values 

either zero or one i.e., an image has a crack or no crack, a tumour is 

malignant or benign. 

The variable with value zero is called the negative class and the 

and variable with value one is the positive class. So, we infer ‘0’ as 

the absence of crack, and ‘1’, the positive class with the presence of 

crack. The assignment of the two classes - positive and negative to 

zero and one is arbitrary. 

 

4.3 NOTATIONS 

 

n = number of features 

m = number of training examples 

X ϵ R
mxn+1

 

x 
(i)

 = input for the i
th

 training example  

xj
(i)

  = value of the feature j in the i
th

  training example  

where, 0 < i < m , 0 < j < n   

θ Є R
nxnum_class

 = weight matrix, num_class = 2 for binary class 

y Є R
m 

= A m -dimensional vector representing the y-values for each 

example. 

 

Each training example is a n by n pixel grayscale image. Each pixel is 

represented by a floating point number indicating the grayscale 

intensity at that location. The n by n grid of pixels is unrolled into an  

n
2
 -dimensional vector which are the rows of vector X shown: 
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4.4 HYPOTHESIS FUNCTION 

 

Hypothesis function is the function we're going to use to represent our 

hypothesis when we have a classification problem. 

We would like our logistic regression to output values that are 

between 0 and 1. So we use a hypothesis function that satisfies this 

property, that is, our predictions are between 0 and 1. 

 

For this purpose, we define our hypothesis function as : 

 

hθ(x
(i)

) = g(x
(i)

 * θ) where g is called the sigmoid function or, the 

logistic function 

     
 

     
 

 

where z = x
(i)

 * θ 

 

The following image shows what the sigmoid function looks like: 

 
Figure 12 : Sigmoid Function 

Now, we define the cost function as: 

 

For y = 1, the parameters used in hθ(x
(i)

) are θnx1 and they are 

optimized by gradient descent method to maximize  

hθ(x 
(i)
) which in turn minimizes J(θ). 

 

Similarly, for y = 0, the parameters used in hθ(x
(i)
) are θnx2 and they 

are optimized to maximize (1- hθ(x
(i)

)) which in turn minimizes J(θ). 
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This above cost function was chosen to make the optimization 

problem to be a convex function. This helps in finding the global 

minima easily since there are no local minima in convex functions. 

 

4.5 GRADIENT DESCENT 

 

Given the cost function, in order to fit the parameters, we need to find 

the parameters θ that minimize J(θ).  

  

The way we're going to minimize the cost function is using gradient 

descent.  

If we want to minimize it as a function of θ, our usual template 

for graded descent where we repeatedly update each parameter is by 

taking θj , updating it as itself minus alpha(learning rate) times the 

derivative term as shown: 

 

 
 

The above term is simplified as : 

 

 
 

α =  The learning rate. It should not be very high since it would lead 

to divergence.  

 

4.6 THE PROBLEM OF UNDERFIT AND OVERFIT 

 

Under-fitting, or high bias, is when the form of our hypothesis 

function ‘h’ maps poorly to the trend of the data. It is usually caused 

by a function that is too simple or uses too few features.  

At the other extreme, overfitting, or high variance, is caused by a 

hypothesis function that fits the available data but does not generalize 

well to predict new data. It is usually caused by a complicated 
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function that creates a lot of unnecessary curves and angles unrelated 

to the data. 

 

 
Figure 13 : A – Underfit Curve, B – Perfect Fit, C – Overfit Curve 

 

4.7 REGULARIZATION 

 

When the number of features are high, the learned hypothesis gives 

parameters in such a way that J(θ) is zero. But this tries too hard to fit 

the training set and fails to provide a general solution that is, apply to 

new examples. 

 

There are two ways to deal with over-fitting :  

 

1) Reduce number of features by manually selecting which features to  

    keep. 

    But, in reducing the number of features we lose some information   

    so, we need to select those features which minimize data loss. 

 

2) Regularization 

    In this method, we keep all features, but reduce magnitude      

    of parameters θ. 

    This works well when we have a lot of features, each of which  

    contributes a bit to predicting y. 

 

In regularization, small values for parameters corresponds to a 

simpler hypothesis(we effectively get rid of some of the terms). A 

simpler hypothesis is less prone to overfitting. 
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With regularization, we modify the cost function to shrink all the 

parameters by adding a term at the end as shown below: 

 

 

where, λ is the regularization parameter 

λ controls a trade off between our two goals which are to fit the 

training set well and also keep parameters small. 

 

Now, the updated partial derivative of regularized logistic regression 

cost for θj is defined as :  

  

 
After computing the J(θ) and the gradient values, we used an 

advanced function minimization routine called fmincg. 

 

It takes the cost function, gradients, lambda, initial parameters θ, y 

and number of iterations as inputs and optimizes the cost function and 

gives the optimal parameters (θopt ) as output. 

 

This routine also picks a good learning rate, and so the optimization 

ends up converging much faster than gradient descent. 

 

It lets the algorithms scale much better to very large machine learning 

problems, such as if we had a very large number of features.  
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4.8 DECISION BOUNDARY 

 

After training the parameters over all training examples, they are 

optimized in such a way that a decision boundary is formed where y = 

1 class is separated from y = 0 by a hyperplane X*θ = 0 as shown 

below: 

 

 
Figure 14 : Decision Boundary formed after training 

 

So, the training examples are separated in such a way that for y = 1, 

X*θ ≥ 0 and for y = 0, X*θ < 0. 

 

4.9 PREDICTION 

 

Consider the following: 

The test set (X_test) is of dimension : R
pxn

, 

The optimal weight matrix obtained after training is θopt , 

and 

hθ(x
(i)
) = g(X_test*θopt) is a R

px2
 matrix with each row representing 

one training example and each column representing its probability of 

belonging to the classes defined by y. 

 

The maximum probability (P) in each row is selected and if 

P ≥ 0.5, the test example is classified as belonging to class  

y = 1 else, 

the test example is classified as belonging to the class y = 0. 
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4.10 EXPERIMENTAL RESULTS 

 

We obtained 309 images with cracks and 148 images without cracks 

from Google to test our algorithm. All of the images were converted 

to grayscale beforehand. A few samples of images used in training 

and test set are as shown : 

 

 
Figure 15 

 
Figure 16 

Figure 15 and Figure 16 show the images used in training set for images with 

cracks(Class 1) and without cracks(Class 0) respectively. 

 

 

 
Figure 17 
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Figure 18 

Figure 17 and Figure 18 show the images in test set  

 

 

4.11 CHOOSING A CROP SIZE FOR IMAGE 

 

The primary requirement for logistic Regression is that all the images 

used for training and test be of same dimensions. 

Since the image data obtained were all of different dimensions we 

decided to crop the images into smaller images to increase the number 

of images to increase data which is a favourable trait in machine 

learning. 

 

Let us assume that all images were split into 100*100 pixel images. 

Then each pixel is considered to be a feature which will be modelled. 

Thus there are 10000 features per cropped image and logistic 

regression works best when the number of training examples per 

training class are more than or as large as the number of features. In 

situations where collections of such an enormous amount of images is 

very difficult, splitting the image is the best alternative. 

The new training set now contains 8800 images with cracks and 

10019 images without cracks. The same was done for test set images. 
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Figure 19 

 

Logistic regression was run on this training data and the prediction 

accuracies obtained on the test set are as shown: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 20 
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To understand the term ‘percent’ in Figure 20, consider the following: 

 

Given, an image (I) is of pxq pixels size, 

The image I is cropped into LxL pixel images (each image called as 

‘block’ and L is the crop size) and  

The number of blocks per image(B) =               

     
 =    

     
 

 

For a given image to be predicted,  

B = number of blocks into which it is split into 

C = number of blocks where y = 1 is predicted 

 

If, C ≥          

   
 then the complete image is classified as having a crack  

Else, 

the entire image is classified as having no crack. 

Thus, percent denotes the threshold for number of blocks per image  

to be classified as having crack or no crack. 

 

4.12 REASONS FOR LOW ACCURACY PREDICTION IN THE 

CROPPING METHOD 

 

While the amount of data is certainly increased by cropping the 

images, the amount of meaningful data does not increase. 

This is because, while cropping images for training, many cropped 

images will resemble non-crack images which will be modelled as 

images with crack during training. 

 

Regularization could not handle the large amount of outliers 

generated by cropping as above. 

 

4.13  PRINCIPAL COMPONENT ANALYSIS (PCA) 

 

When the images are all of same size, principal component analysis 

helps to reduce the number of dimensions/features in an image. This 

helps to speed up the linear regression process. 

 



 

27 

 

Consider the following example of data where we would like to 

reduce the dimension of the 2-D points to 1-D : 

 

 

 

 

 

 

 

 

 

 
Figure 21 : Projection of 2-d data onto Principal axis 1 

 

PCA tries to find a lower dimensional surface, which is a line in this 

case, onto which to project the data so that the sum of squares of the 

perpendicular projections (blue line segments) is minimized. The 

length of those blue line segments is sometimes also called the 

projection error. 

 

In contrast to the red line, we can also project our data onto a different 

line(green line) as shown in Fig below. 

 

 

 

 

 

 

 

 

 

 

 
Figure 22: Projection of 2-d data onto Principal axis 2 



 

28 

 

This green line is a much worse direction onto which to project the 

data because the projection errors, that is the blue line segments, will 

be huge. And so that's why PCA will choose something like the red 

line rather than the green line.  

 
The above is a case of reducing data from two-dimensional to one-

dimension. Generally, we have n-dimensional data and we'll want to 

reduce it to k-dimensions. In that case we want to find not just a 

single vector onto which to project the data but k-dimensions onto 

which to project the data so as to minimize this projection error. 

 
4.14 PCA ALGORITHM 

 

The algorithm assumes the input data is in the form of a matrix X ϵ 

R
mxn

 . 

Where, m = number of input images 

     n = number of pixels per image (features) 

 

The first step is data pre-processing wherein each feature is mean 

normalized. 

 

Consider the ‘m’ images to be x
(1)

,x
(2)
,…,x

(m)
 and each image having 

‘n’ features. 

Then, µj =     
   j

(i) 

And replace each xj
(i)

 with xj - µj 

 

Now, we compute the covariance matrix  

∑ = (1/m)* X’*X 

This matrix has the covariance of all the features.  

 

For example, if X were a 3X3 matrix, we have: 

 

X =  

               

               

               

  =  
   

feature feature feature 
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And X
T
 =  

 feature  
 feature  
 feature  

  

 

Thus, ∑ = 1/m *  
feature  feature  feature feature  feature 

feature  feature feature  feature  feature 
feature  feature feature  feature feature  

  

 
The next step is to compute the Singular Value Decomposition (SVD) 

of ∑. 

[U,S,V] = svd(∑) 

 

The matrix ∑ being symmetric always, the U and V vectors are 

orthogonal and identical and are the principal axis that we require. 

 

Thus, U =  

   

    ...     

   
  ϵ Rnxn

 are the principal axis. 

 

We choose the first ‘k’ columns of this matrix U and obtain the 

reduced co-ordinates of the original data as : 

 

X_new = X * U(:,1:k) 

 

where, X_new ϵ R
mxk

 is the reduced image data. 

 

We choose a ‘k’ such that maximum variance of the original image 

data is retained. To retain 99% of the variance we choose a ‘k’ such 

that 

  
            

new     
  

   

       
          

≤ 0.01 (1%) 

 

Where the numerator is the summation of the 2-norm distance 

between each image and the new reduced image and denominator is 

the variance of original image data. 
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In MATLAB, all the steps above can be computed using the 

command ‘pca’ which performs mean normalisation and SVD giving 

the following return values: 

 

[U,projection,latent,tsquared,explained] = pca(X) 

 

Where projection(:,1:k) = X_new 

and, the term ‘explained’ describes the percentage of variance 

explained by each principal component. 

For example, to choose k such that 99% of the variance is captured, 

In Matlab we use, 

sum(explained(1:k)) ≥ 99% 

and choose the minimum value of k that satisfies the above equation. 

This equation is same as the above equation for k. 

 

4.15 EXAMPLE OF PROJECTING 2-D DATA TO 1-D 

 

Consider a 2-D dataset of 5 points as -  

 
 
 
 
 
  
  
  
11 1 

1 15 
 
 
 
 

  

 

Thus, our input data X ϵ R
5x2

 

We would like to reduce this data to ϵ R
5x1

 by projecting the data onto 

the 1
st
 principal axis. 

 

By using [U,projection] = pca(X) we obtain the U  and projection 

matrix as: 

U =  
 .     .  9 

 .  9 -0.    
  

Where the first two columns are the two principal axis and, 

projection = 

 
 
 
 
 
 -9.19  -0.   5

- .  90  .    

 .0  1 -0.  1 

 . 5       .  0 

 .       -0.     
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Where the first column is the projection of our 2-D data on first 

principal axis. The method to obtain these projections is illustrated 

from Figure 23 to Figure 28. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Observations plotted in 2-D 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 24: Plot of principal axis 1 vector obtained from ‘U’ matrix 
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Figure 25 : Mean normalized observations and original observations 

 

 
  Figure 26 : Principal axis 1 and principal axis 2 vectors 
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Figure 27: Projecting data onto principal axis 1 

 

 
 Figure 28:  The distance from origin to projected points is the projection 

matrix 
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As observed from Figure 28, the distances from origin are the same as 

first column of projection matrix obtained above. 

Thus, the X_new ϵ R
5x1 

is 

 
 
 
 
 
  .19
  .  
 .0 
 .  
 .   

 
 
 
 

 

 

4.16 EXPERIMENTAL RESULTS 

 

Our input data X to PCA is the training data consisting of crack and 

non-crack images. 

We obtained two videos of real time underground pipe inspection 

performed by Western Water Group, Melbourne, Australia. 

 

By taking snapshots, we then separated the images for training the 

logistic regression and testing as follows –  

 

 Number of images 

with crack 

Number of images 

without crack 

For Training 161 76 

For Prediction 33 25 

 

A sample of crack images used for training are as shown below: 

 

Figure 29 : Training set for crack images 

 

Each image is of 720x576 pixels, 161 image with crack and 76 

images without crack were used to train the logistic regression. 

Thus, X ϵ R
237x414720
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As we can observe the huge number of features (i.e., 414720) per 

image make the computations very slow. 

 

We used the MATLAB command, 

[U,projection,l,t,explained] = pca(X) and obtained: 

 

U ϵ R
414720x236 

which are the 236 principal axis found, 

 

projection ϵ R
237x236 

are the projections of the 237 images on each of 

the 236 principal axis obtained. 

 

We choose different values of ‘k’ and use 

X_new = projection (:,1:k) as our new training data and train the 

parameters of logistic regression and then predict the test data. 

Now, with this ‘k’ above we also need to reduce the dimensions of the 

test images by using:  

X_testnew = X_test * U(:,1:k) 

Where X_test is the original test image data ϵ R
58x414720 

as 58 images 

were predicted and, 

X_testnew is the reduced test data ϵ R
58xk

 

 

The prediction results for different values of ‘k’ used are as shown 

below: 

k Lambda PREDICTION 

ACCURACY 

TRAINING 

SET 

ACCURACY 

10 1 72.4 79.7 

20 1 87.9 89.4 

30 1 84.5 96.2 

40 1 62.0 100 

50 1 62.0 100 

60 1 63.8 100 

70 1 84.5 100 

80 1 89.6 100 

90 1 87.9 100 

100 1 81.03 100 
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110 1 89.6 100 

120 TO 230 1 87.9 100 

 

We chose k = 110 because sum(explained(1:110)) = 99.26 % 

 

Thus for k = 110, 32/33 images with crack and 20/25 images without 

crack were predicted successfully. 

 
4.17 TESTING ON BEAGLEBONE 

 

After obtaining the matrix ‘U’ ϵ R
414720x236

 , the X_test is reduced to 

X_testnew as described in chapter 4.16. This X_testnew is used for 

prediction of crack as described in chapter 4.9. 

The code used is shown in Appendix B. 

 

The time taken by Beaglebone to perform these operations and 

recognize one image of 720x576 pixels for presence of crack was 

found out to be 24.8 seconds.  

 

The same operation took 0.3 seconds on a PC with an Intel i7 CPU 

with processor speed 3.4Ghz and 8GB RAM. 

 

4.18 SUMMARY 

 

Logistic regression requires all the training and prediction images to 

be of the same size. Thus, two methods of running logistic Regression 

were investigated – First, with a training set with images of various 

sizes and second with a training set of images obtained from Western 

Water Group, Australia from their underwater pipe inspection. 

 

Initially, a method of cropping images of various sizes into same crop 

sizes and regressing them was presented along with its merits and de-

merits. This method gave a low accuracy of 67% on predictions of 

test images.  
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Thereafter, an improved algorithm based on principal component 

analysis was presented which improved the accuracy to 89.6%.  

 

It was also observed that the image recognition performance of 

Beaglebone is slow and could be improved by using a CPU with 

higher processing power in the AUV. 

 

The next chapter presents a method to detect cracks on images of any 

size using OpenCV to overcome the drawback of collecting images of 

same size in training and test sets for using logistic Regression. 
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CHAPTER 5 

 

CRACK DETECTION USING COMPUTER 

VISION 

 

5.1 INTRODUCTION  
 

Computer vision is concerned with automatic extraction and analysis 

of data in the form of an image or a collection of images to deduce 

useful information. The image data can take the form of an image or a 

video sequence or data from a medical scanner.  

 

The project uses programming functions from OpenCV(Open Source 

Computer Vision). OpenCV is a library available online , that 

contains functions for real-time computer vision. It was originally 

developed by Intel. 

 

Areas of Application of OpenCV include facial recognition , pattern 

recognition , motion tracking , augmented reality etc. And to achieve 

the above mentioned applications , OpenCV includes statistical 

machine learning libraries that contains numerous machine learning 

algorithms like Boosting , Naive Bayes Classifier , Support vector 

Machine(SVM) to name a few. 

 

Machine learning problems that involve classification can be solved 

using OpenCV  classifier functions that applies one or a combinations 

of the above mentioned algorithms for classification problems.  

Classifiers are algorithms that implements classification, especially in 

a concrete implementation, is known as a classifier. The term 

"classifier" sometimes also refers to the mathematical function, 

implemented by a classification algorithm, that maps input data to a 

category.  
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5.2 PROCEDURE FOR TRAINING CLASSIFIER  
 

A classifier (namely a cascade of boosted classifiers working with 

haar-like features) is trained with a few hundred sample views of a 

particular object (i.e., a face or a car), called positive examples, that 

are scaled to the same size (say, 20x20), and negative examples - 

arbitrary images of the same size. 

 

After a classifier is trained, it can be applied to a region of interest (of 

the same size as used during the training) in an input image. The 

classifier outputs a “1” if the region is likely to show the object (i.e., 

face/car), and “0” otherwise. To search for the object in the whole 

image one can move the search window across the image and check 

every location using the classifier. The classifier is designed so that it 

can be easily “resized” in order to be able to find the objects of 

interest at different sizes, which is more efficient than resizing the 

image itself. So, to find an object of an unknown size in the image the 

scan procedure should be done several times at different scales. 

 

The word “cascade” in the classifier name means that the resultant 

classifier consists of several simpler classifiers (stages) that are 

applied subsequently to a region of interest until at some stage the 

candidate is rejected or all the stages are passed. The word “boosted” 

means that the classifiers at every stage of the cascade are complex 

themselves and they are built out of basic classifiers using one of four 

different boosting techniques (weighted voting). Currently, Discrete 

Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are 

supported.  

 

5.3 BOOSTING AND ADABOOST ALGORITHMS 

 

Boosting is a general ensemble method that creates a strong classifier 

from a number of weak classifiers. 

This is done by building a model from the training data, then creating 

a second model that attempts to correct the errors from the first 

https://en.wikipedia.org/wiki/Boosting_(machine_learning)
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model. Models are added until the training set is predicted perfectly or 

a maximum number of models are added. 

AdaBoost was the first really successful boosting algorithm 

developed for binary classification. It is the best starting point for 

understanding boosting. 

5.4 HOW TO TRAIN ONE MODEL USING ADABOOST 

A weak classifier (decision stump) is prepared on the training data 

using the weighted samples. Only binary (two-class) classification 

problems are supported, so each decision stump makes one decision 

on one input variable and outputs a +1.0 or -1.0 value for the first or 

second class value. 

The misclassification rate is calculated for the trained model. 

Traditionally, this is calculated as: 

error = (correct – N) / N 

Where error is the misclassification rate, correct are the number of 

training instance predicted correctly by the model and N is the total 

number of training instances. For example, if the model predicted 78 

of 100 training instances correctly the error or misclassification rate 

would be (78-100)/100 or 0.22. 

This is modified to use the weighting of the training instances: 

error = sum(w(i) * terror(i)) / sum(w) 

Which is the weighted sum of the misclassification rate, where w is 

the weight for training instance i and terror is the prediction error for 

training instance i which is 1 if misclassified and 0 if correctly 

classified. 

For example, if we had 3 training instances with the weights 0.01, 0.5 

and 0.2. The predicted values were -1, -1 and -1, and the actual output 

https://en.wikipedia.org/wiki/AdaBoost


 

41 

 

variables in the instances were -1, 1 and -1, then the terror s would be 

0, 1, and 0. The misclassification rate would be calculated as: 

error = (0.01*0 + 0.5*1 + 0.2*0) / (0.01 + 0.5 + 0.2) or, 

error = 0.704 

A stage value is calculated for the trained model which provides a 

weighting for any predictions that the model makes. The stage value 

for a trained model is calculated as follows: 

stage = ln((1-error) / error) 

Where stage is the stage value used to weight predictions from the 

model, ln() is the natural logarithm and error is the misclassification 

error for the model. The effect of the stage weight is that more 

accurate models have more weight or contribution to the final 

prediction. 

The training weights are updated giving more weight to incorrectly 

predicted instances, and less weight to correctly predicted instances. 

For example, the weight of one training instance (w) is updated using: 

w = w * exp(stage * terror) 

Where w is the weight for a specific training instance, exp() is the 

numerical constant e or Euler’s number raised to a power, stage is the 

misclassification rate for the weak classifier and terror is the error the 

weak classifier made predicting the output variable for the training 

instance, evaluated as: 

terror = 0 if(y == p), otherwise 1 

Where y is the output variable for the training instance and p is the 

prediction from the weak learner. 
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This has the effect of not changing the weight if the training instance 

was classified correctly and making the weight slightly larger if the 

weak learner misclassified the instance. 

5.5 STEPS INVOLVED IN TRAINING CLASSIFIER 

 

The steps involved in training the cascade classifier are as follows:  

 

1)  A negative image is selected and 100x100 sections of the image is 

cropped out of it from random areas to generate the negative sample 

set . 

 

2) The positive images are formed by appending the object to be 

detected on to the negative sample set at random positions. Here the 

object to be detected is the crack. 

 

Here are some of the cracks the are used for generating  positive 

sample set.  
 

 

 

 

 

 

 

 

 

 

 
 

Figure  30: Crack image templates 
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The generated positive images are shown below :  

 

 

 

 

 

 

 

 

 
Figure 31  : Image1              Image 2                                  Image 3 

 

3) An information file is generated that contains the locations of the 

objected to be detected(cracks) on the negative background. 

4) The classification is done using the OpenCV trainer that takes in 

the negative  and the positive data along with the information file 

generated. The number of stages have to specified along with it. 

 

5.6 EXPERIMENTAL RESULTS 

 

Once training is done , a .xml file is generated by the classifier that 

contains parameters associated with image training.  

 

The training was done using 10 stages. As the number of stages 

increase the training time also increases. But as the number of stages 

increase , the accuracy of detection will also increase . For the limited 

computation capacity that was available to us , we found satisfactory 

results with 10 stages. It took about 47min for 10 stages  on a system 

with 3GHz processor and 4 GB RAM. The detected images are shown 

below : 
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Figure 32 :     Detected cracks on Images for stage 12, 10  and  8 
 

The blue box indicates the crack location detected by the classifier 

after training.  

 
5.7 SUMMARY  

 

This chapter presents a further study into crack detection using 

functions from the libraries of OpenCV.  

The details of the algorithm that is used by the classifier for detecting 

the crack is presented in this chapter as well as the steps involved in 

training the classifier.  

 

Once the classifier is trained using collection of positive and negative 

sample set of images, an .xml file containing the parameter is 

generated by the function which can be then used to detect crack on 

any test image.  

 

The experimental results of the trained classifier are also presented in 

this chapter. 

Next chapter presents the conclusions of this thesis and future work 

on the AUV. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORKS 

 
 

In this thesis we have investigated the challenges faced in 

constructing an Autonomous Underwater Vehicle (AUV). The thesis 

describes several methods of image recognition using machine 

learning. This chapter provides the summary of the main 

contributions and open problems for future work.  

  

6.1 CONTRIBUTIONS OF THE THESIS 

 

The mechanical structure is completed and the hull was water proofed 

so that the payloads can be protected. The motor speed was adjusted 

to reduce vibration on the body. The design provides three degrees of 

freedom movement which can be controlled using pwm signals from 

the microcontroller that are fed to the motors via ESCs. 

 

Several image recognition techniques were considered among which 

logistic regression with principal component analysis for 

dimensionality reduction was chosen because of its simplicity, speed 

and robustness for binary classification. 

The logistic regression algorithm implemented gave 89.6 % accuracy 

on binary classification for detecting cracks. 
 

To overcome the limitation of logistic regression wherein all the 

training and prediction images need to be of same size, a study was 

done in the area of computer vision and results of different stages 

were documented. 

 

The next section describes the extensions to the present work. 
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6.2 EXTENSIONS AND FUTURE WORK 

 

i) Training of cascade classifiers as well as image recognition in the 

AUV requires more computational power. 

Proposed solution :- Training of cascade classifiers requires high end 

Graphical Processing Units(GPUs) to reduce training time which 

enables us to test various possible configurations. The image 

recognition by the AUV can also be improved by using a GPU instead 

of microcontrollers such as Beaglebone. 

 

ii) Location sensing at 30m depth inside a mild steel pipe surrounded 

by concrete. 

Proposed solution :- Since the range of WiFi /GPS/ GPRS at such 

depths are not robust enough to capture the location of the AUV, we 

intend to capture images at a regular time interval with a time stamp 

embedded onto them to locate the AUV. 

 

iii) The Li-Po battery has high discharge rates and hence cannot  be 

used to power microcontrollers on board. On the other hand, using 

lead acid batteries is safer but increases the weight of AUV. 

Proposed solution :- Battery eliminator circuits need to be used if Li-

Po batteries are to be used. 

 

iv) The Li-Po battery that is used has an endurance of only 15min at 

maximum load. 

Proposed Solution :- We can increase the number of Li-Po batteries 

by connecting them in parallel along with an emergency power supply 

cable. 

 
v) The pipelines have turn, gradients ,descents and dead ends. So the 

AUV has to navigate through such a route. 

Proposed Solution :- Waterproof  ultrasonic proximity sensors can be 

used to calculate the distances from the surface of the pipe and 

manoeuvre accordingly. 
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APPENDIX A 

 

CALIBRATION AND SPEED CONTROL CODE 
 

A.1 CALIBRATION CODE 
 

#include <Servo.h> 

 

#define MAX_SIGNAL 1500 

#define MIN_SIGNAL 1000 

#define MOTOR_PIN 2 

 

Servo motor; 

 

void setup() { 

  Serial.begin(9600); 

  Serial.println("Program begin..."); 

  Serial.println("This program will calibrate the ESC."); 

 

  motor.attach(MOTOR_PIN); 

 

  Serial.println("Now writing maximum output."); 

  Serial.println("Turn on power source, then wait 2 seconds and press any 

key."); 

  motor.writeMicroseconds(MAX_SIGNAL); 

 

  // Wait for input 

  while (!Serial.available()); 

  Serial.read(); 

 

  // Send min output 

  Serial.println("Sending minimum output"); 

  motor.writeMicroseconds(MIN_SIGNAL); 

 

} 

 

void loop() {   

} 
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A.2 SPEED CONTROL CODE 
 

uint16_t pwmSignal[3]={1050,1250,1050 }; 

uint16_t summationSignal=0; 

 

bool tog=0; 

 

#define MAX_CYCLE 20000// 20mS 

 

#define NUMBER_OF_SIGNAL_CHANNELS 3 

 

#define CH1 0 

 

#define CH2 1 

 

#define CH3 2 

 

void setup() { 

 

  DDRD|=0b00011100; //pin 2,pin3,pin4  

 

  Serial.begin(115200); 

 

  Serial.println("programStart"); 

 

  DDRB|=(1<<5); // pin 13 OP 

 

  PORTB|=(1<<5); // switch on pin13 

 

  delay(1000); 

 

  PORTB&=~(1<<5);// switch off pin13 

 

  for(uint8_t i=0;i<NUMBER_OF_SIGNAL_CHANNELS;i++) 

  summationSignal+=pwmSignal[i]; 

 

} 

 

void loop() { 

 

while(1) // infinite loop makes code run faster 
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{ 

 

 PORTD|=(1<<2); // switch on pin 2 

 delayMicroseconds(pwmSignal[CH1]); 

 PORTD&=~(1<<2); // switch off pin 2 

 

 PORTD|=(1<<3);// switch on pin 3 

 delayMicroseconds(pwmSignal[CH2]); 

 PORTD&=~(1<<3); // switch off pin 3 

 

 PORTD|=(1<<4);// switch on pin 4 

 delayMicroseconds(pwmSignal[CH3]); 

 PORTD&=~(1<<4);// switch off pin 4 

 

uint16_t diff=MAX_CYCLE-summationSignal; 

delayMicroseconds(diff); 

 

tog=!tog; 

 

tog?PORTB|=(1<<5):PORTB&=~(1<<5); // toggle led pin 13 

 

// end of cycle  

} 
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APPENDIX B 

 

IMAGE RECOGNITION IN BEAGLEBONE 

 
from PIL import Image 

from scipy import io 

import numpy as np 

import matplotlib.pyplot as plt 

from datetime import datetime 

 

 

img = Image.open('/projdata/proj/crack-

images/scene03688.png').convert('L') 

img.save('greyscale3.jpg') 

 

#conversion to an array  

arr = np.asarray(img) 

arr =np.reshape(arr , (1,414720)) 

 

#load the theta obtained after training 

 

 

theta = io.loadmat('/projdata/proj/all_theta') 

img_arr = [] 

j = 0 

rad = np.zeros(110) 

startTime = datetime.now() 

for i in range(5): 

    a = io.loadmat('/projdata/proj/U'+str(i)+'.mat') 

    a = a['tst'] 

    partial = np.matmul(arr , a) 

    rad[j:j+20] = partial 

    j+=20 

        

#    rad = np.concatenate(rad , partial) 
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a = io.loadmat('/projdata/proj/U5.mat') 

a = a['tst'] 

partial = np.matmul(arr , a) 

rad[100:110] = partial 

 

theta = theta['all_theta'] 

theta_trans = np.transpose(theta) 

 

 

rad = np.append(1, rad) 

out = np.matmul(rad , theta_trans) 

 

sigmoid = 1/(1 + np.exp(-1*(out))) 

if (sigmoid[0] > sigmoid[1]) : 

     y = 0; 

else: 

    y =1; 

print(y) 

print(datetime.now() - startTime) 
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