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ABSTRACT

Reinforcement Learning is a branch of machine learning that tries to mathematically
formulate and emulate learning as it happens in animals and human beings. This thesis
investigates the applicability of reinforcement learning to the control and stabilization
of two mechanical systems - the Twin-Rotor MIMO system and the Pendulum-on-a-cart
system. First, reinforcement learning is employed in a model-free setting and stabilization
is achieved without providing any knowledge of the system model to the RL controller.
The control law is chosen to be bang-bang and the RL controller learns the parameters of
this control law. This method is successfully applied on the Pendulum on a Cart system,

both in simulation and real-time experiments.

Next, RL is used in the context of a control theoretic stabilization algorithm called IDA-
PBC. In this method, the control takes the form of the IDA-PBC law and the RL controller
learns its parameters, namely the Mass Matrix, the Potential energy and a damping co-
efficient term. Introducing RL to learn these parameters guarantees optimality in the
control while still having the interpretability of the IDA-PBC. The learning experiments
are performed and successfully applied on both the systems in simulation. IDA-PBC is
an energy-based algorithm and is not very considerate about the system response char-
acteristics measured in terms of the maximum overshoot, settling time etc. Using RL,
learned a state-modulated damping control term which is added to the IDA-PBC control

law to provide appropriate damping and improve the system response.
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Chapter 1

Introduction

"Reinforcement learning is one of the major neural-network approaches to
learning control. How should it be viewed from a control systems perspective?
Control problems can be divided into two classes: 1) regulation and tracking
problems, in which the objective is to follow a reference trajectory, and 2)
optimal control problems, in which the objective is to extremize a functional
of the controlled system’s behavior that is not necessarily defined in terms of
a reference trajectory. Adaptive methods for problems of the first kind are
well known, and include self-tuning regulators and model-reference methods,
whereas adaptive methods for optimal-control problems have received rela-
tively little attention. Moreover, the adaptive optimal-control methods that
have been studied are almost all indirect methods, in which controls are re-
computed from an estimated system model at each step. This computation
is inherently complex, making adaptive methods in which the optimal con-
trols are estimated directly more attractive. We view reinforcement learning
methods as a computationally simple, direct approach to the adaptive optimal

control of nonlinear systems”

The above paragraph quoted from [I12] strongly motivates reinforcement learning as a
way of doing adaptive-optimal control. This thesis applies reinforcement learning to
control theory problems of stabilization of two mechanical control systems - the Twin-
Rotor MIMO system and the Pendulum on a Cart system. Learning is introduced in
two variants. In the first variant, the RL controller learns the parameters of an arbitrary

control law(in this thesis, a bang-bang control law is used) to stabilize the system using a
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suitable rewarding mechanism without any knowledge of the system model. In the second
variant, the RL controller is used to learn the parameters of an IDA-PBC control law,
parametrized by My(closed loop mass matrix), Vy(closed loop potential energy function)
and K, (damping coefficient). This approach is inspired from [$] which learns an IDA-PBC
control law for a simple, fully-actuated SISO inverted pendulum system. In this thesis,
this procedure is extended to more complex 2-input, 2-output system like the Twin-rotor

system and the under-actuated Pendulum on a Cart system.

The second variant of learning requires the knowledge of the system model. However,
compared to the model-free learning of the first variant, it buys a lot more advantages in
that cost. For instance, in control theory, the IDA-PBC control law is typically obtained
by mathematically solving a set of complex partial differential equations for the Mass ma-
trix and Potential energy and by choosing an arbitrary positive damping term. Instead,
employing RL to learn these parameters guarantees optimality in the IDA-PBC control.
More importantly, the resultant IDA-PBC control law applied on the system is still in-
terpretable in terms of energy shaping part and damping injection part. Compare this
to the first approach where the bang-bang control law is learned with no way of relating
which component of the control law to be responsible for energy shaping or damping etc.

Thus, the resulting control is both optimal and interpretable.

The IDA-PBC algorithm typically has system response characteristics with multiple over-
shoots and longer settling and rise times. It is possible to add an extra state-modulated
damping term to the IDA-PBC control law to provide better system response curves while
still maintaining the passivity and the port-Hamiltonian structure of the overall closed
loop system as in [1]. This uses a pre-designed functional form for the state-modulated
damping term. However, when RL is used to learn this function, the design process is
automated and at the end of learning, a reward-optimal damping function that minimizes

both overshoot and settling time is learned.

What are the other motivations for employing learning to control? Control theory in
general, assumes perfect knowledge about the system of interest and the objective is
to find the best control law to be applied to the system in order to achieve a control
task. However, due to the presence of noise or other factors whose interactions with the
system are difficult to model, it is not always possible to come up with a perfect system
model. In this viewpoint, reinforcement learning methods are on-line algorithms which
are continually responsive to system changes and hence do not require a perfect system

model. Another point to note is the ability of RL to learn a control law respecting the
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physical system’s constraints like Control input saturation! in addition to handling the

noise factors of the real-time system.

On the contrary, it is also apparent that RL cannot learn a good controller without failing
in the task initially. It would be disastrous to employ RL to tasks where failures matter
more than the successes®. These initial failures in the task and the time taken to learn a
control law from the interactions with the system are some of the compromises of RL, so

to say.

1.1 Organization of the thesis

Chapter 1 of this thesis puts forth the problem statement and motivates the application
of RL to the control theory problem of stabilization of mechanical systems. Chapter 2
provides the system specifications of the mechanical control systems used, namely the
Pendulum on a Cart system and the Twin-rotor MIMO system. Chapter 3 explains the
idea of IDA-PBC algorithm applied on port-Hamiltonian systems, and also shows how the
complex PDEs can be simplified to system-specific ODEs for the two mechanical systems
under consideration. These ODEs are later used in Chapter 5 to set up the RL controller.
State-modulated damping is introduced to improve the system response characteristics
of IDA-PBC. Chapter 4 introduces basic terminology used in Reinforcement Learning
and also discusses the Actor-Critic learning algorithm which is used for the learning
experiments in Chapter 5. Chapter 5 discusses the implementation of the actor-critic
algorithm in two different settings:-model-free setting and in a model-based setting to
learn the parameters of the IDAPBC algorithm. Results obtained in simulation/real-time

are also included. Chapter 6 concludes the thesis.

Many physical systems allow only control values within a limited range, say [-2.5 V,2.5 V]
2Safe Reinforcement Learning is an active area of research to address the safety concerns during

the learning process of RL[7]



Chapter 2

Mechanical Systems of interest

2.1 Pendulum on a Cart

The pendulum on a cart is a SIMO(Single Input Multiple Output) plant. The two outputs
from the plant are the cart position and the pendulum angle readings from the sensors.
The control input can directly control only the position of the cart on the track. Therefore
the system is under-actuated. Figure 2.1 shows the system setup used for experiments

and 2.2 shows the flow of signals in the control system. Summing the forces acting on the

Figure 2.1: Pendulum on a Cart setup used for experiments|3]

system, we obtain the following nonlinear system dynamics equations:

(m + M)i + bi + milf cos @ — mlf?sinf = F 2.1)
(I +mi?)d — mglsinf + mlicosf + df =0 '

2
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Figure 2.2: Pendulum Control System][3]

with the following system parameters

Parameter Value
g - gravity 9.81 m/s?
1 - pole length 0.36 m
M - cart mass 2.4 kg
m - pole mass 0.23 kg
I - moment of inertia of the pole 0.099 kgm?
b - cart friction coefficient 0.05 Ns/m
d - pendulum damping coefficient | negligible, 0.005 Nms/rad

Table 2.1: Pendulum on a Cart system parameters

x and 6 are the position of the cart on the track and the pendulum angle respectively. The
system has two equilibrium points at § = O(inverted pendulum) and 6§ = 7 (freely hanging
pendulum). Hence, stabilization is possible only in one of these two positions. The control
task in this system is to stabilize the system in the inverted, unstable equilibrium position
6 = 0. Both the cart position and the control signal are bounded for this system. The
bound for the control signal is the interval [-2.5V...2.5V] and the cart position is limited
to [-0.4m...0.4m].



Figure 2.3: Twin Rotor MIMO System][!3]

2.2 Twin Rotor MIMO System (TRMS)

The Twin Rotor System demonstrates the principles of a non-linear multi-input, multi-
output(MIMO) system. Its dynamics is similar to that of a helicopter though the un-
derlying mechanism of creating thrust forces on the rotor blades is different. Unlike the
helicopter, the angle of attack of the rotors is fixed and the pitch/yaw thrust forces are
varied by adjusting the speeds of the motors controlled by the two input voltages. The
setup has two perpendicular rotors/propellers driven by DC motors at the ends of a beam,
which is pivoted on a stationary base. The larger pitch rotor moves the system in the
pitch direction of angular motion. Similarly, the smaller yaw rotor moves the system in
the yaw direction. The beam can rotate in the pitch and yaw directions of angular motion
as can be seen from Figure (2.3). Significant cross-coupling is observed in the control in-
puts of the two rotors, with the input control signal to the pitch/yaw rotor affecting both
the Pitch and Yaw angular positions. Also it is clear from figure(2.3) that the system can
neither fly nor be controlled in the roll direction of angular motion. Control algorithms
are tested for regulating the system to desired pitch and yaw angles. Unlike the Pendu-
lum on a Cart system, the equilibrium point to stabilise the system could be any pitch
or yaw angular position admissible in the physical system. The system dynamics of the
TRMS is more detailed than that of the Pendulum on a Cart due to the angular speeds
of the rotors also entering into the system dynamics'. Additionally, the pitch thrust/yaw
thrust forces and the corresponding control inputs to the pitch and yaw rotors are also
not linearly related. The readers are referred to [5] for a detailed derivation of the full

system dynamics and to [13] for the setup in figure(2.3).

n addition to the pitch angle(a,), yaw angle(ay), d, and aj, the rotor speeds(w, and wy,) also

affect the system dynamics



Chapter 3

Interconnection and Damping

Assignment Passivity Based Control

3.1 Introduction to IDA-PBC

Passivity-based control (PBC) is an energy-based method to achieve stabilization of a
system by passivation of the closed-loop dynamics. The objective here, is to render the
closed-loop system passive with a stored energy function that has a minima at the desired

equilibrium state.

Consider a system with state x € R”, input v € R™ and output y € R™. The system
map from u —y is passive if there exists a state-dependent function H(z), bounded from

below, and a non-negative function d(t) > 0 such that

[ s = Haw) - BeO)+ Ay @©z0 G
0 —~—

~
N ~~ d stored energy dissipated energy
energy supplied to the system

The system’s stored energy H(x(t)) — H(z(0)) is also called the Hamiltonian function of
the system. The above definition of a passive system implies that for a bounded energy
supplied by the inputs, the system has a bounded stored energy for ¢ > 0. Thus a passive
system is a stable system. Also, if this passive system is left at rest, the system stabilizes

at the position of lowest energy configuration of the system.

Passivity Based Control (PBC) applies control to make the closed loop system passive at

the desired position configuration. The control action is split into two parts:



1. Energy Shaping

2. Damping Injection

Given an unstable mechanical system, the energy shaping part transforms the system
via feedback to a stable mechanical system whose stored energy function gets a minimum
value at the equilibrium point of interest. The damping injection part injects a dissipative

feedback force to obtain asymptotic stability at this equilibrium point.

Interconnection and Damping Assignment Passivity Based Control (IDA-PBC), in addi-
tion to following the same steps of PBC also preserves the closed-loop structure of the
system by allowing to choose for a desired interconnection and damping structure for the
closed loop system. An IDA-PBC controller can only be applied to systems that can
be represented in a port-Hamiltonian(PH) structure. Given below is the general form of
system dynamics of a port-Hamiltonian system

i= |7 = [ - mw)] | 20 4| 32

p V,H(x) G

Here ¢ € R™!, p € R™! are the generalized position and momentum vectors of the sys-
tem. n is the number of degrees of freedom in the system. The variable x encompasses the
state of the system, ie. = = [q,p]. J € R™™ and R € R"*"are the natural Interconnection
and Damping matrices of the system respectively. In the case of mechanical systems, if
we assume no natural damping in the system, R can be neglected and equation 3.2 can

be re-written as
] 0 I,| |V,H 0
1| - Ol IRl B9 (3.3)
P -1, 0| |V,H G

H is the total energy or the Hamiltonian of the open loop system given by

1

H@m=§ﬂM”@W+V@ (3.4)

where M is the Mass matrix(M = M7 > 0) and V is the potential energy of the open

loop system. The matrix G captures the actuated degrees of freedom in the system. For

1
instance, G € R?*! = for a Pendulum-on-a-Cart system with under-actuation degree
0

one. For the fully actuated Twin Rotor system, G € R?*? =
01

Since IDAPBC preserves the closed loop structure, a port-Hamiltonian system in feedback

with an IDAPBC controller also yields a port-Hamiltonian system in closed loop. The

6



closed loop system dynamics can be taken to be of the form

vV, H,
N [Jd - Rd} " (3.5)
P vad
T 0 M_lMd . .
Jo=—J; = : Jois skew-symmetric (3.6)

—M M~ Jy(q,p)

_ pT _ 0 0 .
Ry=RT = K, >0 (3.7)
0 GK,GT

where Ry and J; represent the desired interconnection and damping structures for the

system. The total energy function can similarly be written as

1

Ha(g,p) = 50" My (9)p + Va(p, ) (3.8)

where My=M?T > 0 and Vj represent the closed loop mass matrix and potential energy
function respectively. To get the minima of the stored energy of the closed loop system

at the desired position ¢*, it is also required that
q* = argmin Hy(q,p) = argmin V;(q) (3.9)

The second equality follows in equation (3.9) since the task is that of stabilisation where
the final system configuration is at rest with zero kinetic energy. In addition to the
port-Hamiltonian structure, the system also retains its passivity in closed loop. We can
mathematically check the passivity of the closed loop system using the differential form

of equation(3.1) as follows

Hy(z) = (Vo Hy(z))"d
= (VoHy(2))" (Ja — Ra) (Vo Ha(x)) (3.10)
= (Vo Hy(2))" Jo(VoHy(x)) — (Vo Ha(2))" Ra(VoHy(x))

= —(V,Hy(x))" Ry(V,Hy(x)) Since J; is skew-symmetric
This implies that the closed loop system is passive as long as the damping matrix Ry is

positive-definite.

Following the energy shaping and damping injection steps of IDAPBC, the control law

can be split as
U = Ues(q,p) + uai(q, D) (3.11)

The following can be observed from the above equations:



1. From the first component of the vector equation (3.3) and the vector equation (3.5),

the following result is valid in both open-loop and closed-loop,

i=M"1p (3.12)

2. The matrix R, is included to add damping into the system. This is achieved via
damping injection step which gives a negative feedback of the passive output[9],
GTV,H,. Hence

ug = —K,G"V,Hy, (3.13)

Substituting this expression for ug in the matching equation (3.14) explains the

choice of the chosen for R, in equation (3.7).

3. Usually, the mass matrix M is totally determined by the position coordinate, q.
For a fully-actuated system, M(q) is a fixed function of ¢ for the system. Hence
energy shaping can only shape the potential energy of the system satisfying the
minima criterion of equation (3.9). However, for an under-actuated system, the
closed loop mass matrix My can be different from the open-loop mass matrix M of
the system. Energy shaping can shape both the kinetic and potential energy terms
through the Kinetic PDE and the potential PDE constraints as discussed later in
equations (3.19) and (3.20).

4. The skew-symmetric matrix Jo and some of the elements of My can be used as free

parameters in order to achieve kinetic energy shaping.

Equations (3.3) and (3.5) are dynamics of the same system in closed loop and hence can

be equated. The damping terms cancel out in this equation. We obtain

0 I,| |V.H 0 0 M~'M,| |V H,
+ Ues = (314)
-1, 0| |V,H G —M MY Jy(q,p) | |V,Ha

This equation is also called the matching equation in the context of IDAPBC. The
success of IDAPBC relies upon the ease of coming up with a solution for the closed
loop variable H;, and in turn My and V, from this matching equation. The first row
component of the vector equation (3.14) is clearly satisfied. The second row of equations

can be expressed as
Gues =V H — MgM ™'V ;Hy + J,M;'p (3.15)
This gives us the following expression for .,
Ues = (GTG)'GT(V,H — MygM ™'V Hy + JoM; ' p) (3.16)

8



subject to the corresponding constraint in the null space of G,
GH{V,H — MM 'V, Hy+ JoM;'p} =0 (3.17)

where G+G = 0. Substituting equations(3.16) and (3.13) into equation (3.11) gives the
IDAPBC control law as

u=(GTG)'G"(V,H — MygM 'V Hy + J,M;'p) — K,G"V ,Hy (3.18)

Grouping the terms in the constraint PDE (3.17) by powers of p, the PDEs can be split
into the terms corresponding to the kinetic and potential energies, respectively. This leads

to

1
KE-PDE : GL{i[vq(pTMflp) — MgM 'V, (p" M 'p)] + JoM;'p} =0 (3.19)

PE-PDE : G*{V,V - My;M~'V,V;} =0 (3.20)

The idea is to choose the free parameter J; in such a way that the PDE (3.19) admits,
for all p, a solution with M, symmetric and positive definite. This matrix My is then
replaced into equation (3.20), which is a PDE involving only q, and solved for a V; which
satisfies equation (3.9). The next section gives the illustration of IDAPBC on the two
systems of interest - TRMS and the Pendulum on a Cart. It is to be noted that the
KEPDE is trivially satisfied for a fully-actuated system and the solving process is easy.
However, for an under-actuated Pendulum on a Cart system, the constraint equations
do not vanish and the solution process is not straightforward. To get an illustration
of this entire solving process, the readers are encouraged to go through [!] which has
methodically solved the IDAPBC problem for the Pendulum-on-a-cart system. One way
of getting ready to solve these PDE constraints is to simplify them into system-specific
ODE constraints, if possible, as shown in [9] and then come up solutions for these ODEs.

We will follow the simplification approach in the following sections.

3.2 IDAPBC for Pendulum on a Cart system

The Pendulum on a Cart system has two degrees of freedom - Position of the cart on
the track(q;) and Pendulum angle(qs), out of which only ¢ is actuated as explained in

figure(3.1). On the lines of equation(3.2), assuming no natural damping in the system,



q:

© ©

4

Figure 3.1: Position coordinates in Pendulum on Cart system [9]

the port-Hamiltonian model for the Pendulum on a Cart system can be written as

0
T = [J — R] V.H + U
G
(3.21)
] 0 I V,H 0
/I = ? ! + U ¢,p ER* ueR
P -, 0| |V,H G
qg =< q1,q> > are the position of the cart on the track and the pendulum angle respec-
tively. p =< pi1,ps > are the corresponding momenta associated with the motion in

g-coordinates. The system interconnection matrix(.J), the damping matrix(R) and the G

matrix being

(0 0 0 1] (0 0 0 0 0]
0 0 -1 0 0000 0
J = s R= ;G =
0O 1 0 O 0000 1
-1 0 0 0] 00 0 0] 0]
and the total energy of the system
1
H= 5pTJ\rlp +V(q) (3.22)
with
a Ccos
M(q) = 1 and V(q) = —mgl cos ¢o (3.23)
C COS b

a=ml?>,b=m+ M and ¢ = ml. m denotes the mass of the pendulum, M the mass of
the cart and 1, the length of the pendulum. Note that for the pendulum on a cart system,
IDA-PBC can only stabilize the system if q¢o € (5, 5). Refer to [9] or [I] for details on

such a restriction.

As already stated, in this thesis, we try to simplify the PDEs to system-specific ODEs
and then find the solutions of the ODEs. For simplifying the KE-PDE (3.19) for the

Pendulum on a Cart system, the following results from [9] are used.

10



e The closed loop mass matrix M, is a function of the coordinate ¢o alone. It is also

clear that M is also a function of ¢, only from equation(3.23).
VM = eV, M and V My = eV, My (3.24)

VM= MYV, ,M)M™" and V,,M;' = —M; (V,,Mz)M;* (3.25)

Additionally, the following form for J; is taken from [!]

T r—1 a1 0 1
Jo = p' M oW where oo = and W = (3.26)
(6] -1 0

1
Also since G = , Gt takes the form G+ = el = [0 1}. This makes G+ = el. Also,
0

it is to be recalled that if 27 Az = 0 V non-zero z, then A can be a zero matrix or a

skew-symmetric matrix.

Starting from the KE-PDE,
GHV,(p" M~ 'p) — MMV, (p" M 'p) + 2o M 'p} = 0
GV, (p" M~ p) — GEMyM ™ eaV o, (p" My p) + 2(p" M a)GEW M 'p =0
= pl[GreaV M — G MM eV o Mt + 2M 'aG* WM p =0 (3.27)
= p'les eV, M — el MyM ™ 'eaV oM + 2M e WM Hp = 0
= Pl [V M~ — [MgM ™YoV o M+ 2M L ael WM p =0

AL A
Denoting A = | | = MM [MgM~1)55 can be replaced with \y. In the last step,
A3 Mg

the term in the square brackets factorized by p’|[ ]p is either a zero or a skew-symmetric
matrix. Since the first and second matrix terms inside these brackets are symmetric, the

sum of these three matrix terms cannot be skew-symmetric. Hence
VoM™t = MV oM 4+ 2M  ael WM =0
This can be further simplified as follows
[—M 7'V (M)M ™ + A M ;' o MgM ;' + 2M  aes WM =0
Pre-multiplying by —M,; and Post-multiplying by Mg,
[MgM ™'V, (MYM ™ My — A4V oMy — 20es W] = 0

11



Or,
[~ AV g (M)AT + X4V o (M) + 20e3 W] =0 (3.28)

The third term in equation(3.28) can be split into symmetric and skew-symmetric part

as
« 0 1
20es W =2 ' [0 1}
(67) -1 0
a; 0 —20q1 —« 0 «
20es W = —2 ' = ' | + ?
(0%) 0 — Q9 0 — Q9 0

Since the skew-symmetric component of 2ael W cannot contribute to equation (3.28), we

have

—20q1 —«
AV, (M)AT + AV o (My) + S

—Q9 0

Substituting for M from equation (3.23), the above matrix equation can be broken down

into 3 element-wise equations as follows,
) d
2A1 Aocsin(qo) + ME(/\IG + Aoccos(qe)) —2a1 =0
2
d
()\1)\4 + )\2/\3)0 SiH<QQ) + )\4@()\16 COS(QQ) + )\Qb) — Qg = 0 (329)
2
d
2)\3)\40 Sin(QQ) + )\4@()\30 COS(QQ) + )\4()) =0
2
The PE-PDE (3.20) can be simplified using V' = mgl cos(g2) as follows
G*v,V = G-MM ™V, V,
oV, oV, (3.30)

= —ngl sin(q2) = )\g,a—q1 + )\46—q2

This section stops with this simplification process and does not attempt to solve the
M, and Vj satisfying the simplified PDEs in equation(3.29) and equation(3.30) and the
equation(3.9) since the process is complex. These equations are later used in Chapter 5

where it is shown how RL can be used to learn the solutions of these equations.

3.3 IDAPBC for Twin Rotor MIMO system

The Twin Rotor MIMO System is a fully-actuated system with two degrees of freedom
- Pitch angle(q,) and Yaw angle(g,). The control objective in this system is to regulate

12



the angular positions to a desired point, ¢*. The corresponding control inputs u, and
up, do not directly provide the thrust force in the pitch and yaw direction. The control
inputs affect the speeds of the dc¢ motors mounted on each rotor, which then provide
the required thrust in the pitch and yaw direction. This mechanism of producing the
thrust forces necessarily includes the rotor speeds - Speed of the main/yaw rotor(w,,)
and Speed of the tail rotor/pitch rotor(w;) as the state variables of the system. The
resulting system has 6 state variables < q,, qn, Go, Gh, Wm,w; >,' out of which w,, and w,
are not generalized state variables. IDA-PBC does not hold valid for systems which do
not have generalized state variables. To observe the effect of IDAPBC on this system, one
reasonable assumption to make is that the control inputs are directly the thrust forces in
the pitch and yaw direction. This assumption truncates the original system dynamics of

Wy, and wy and gives a system on which IDA-PBC can be applied.

Following this assumption, the system dynamics of the TRMS is written on the lines of
equation (3.2) as
i= |1 = [7- B veti(@) + Gu (3.31)
p
q =< qu,qp > are the pitch and the yaw angles. p =< p,,pr > are the corresponding

momenta with the system interconnection matrix, damping matrix and the G matrix

being i i i i i i
0 0 0 1 00 0 O 00
0 0 -1 0 00 0 O 0 0
J = ;R = ;G = (3.32)
0 1 0 O 0 0 b O 1 0
_—1 0 O O_ _O 0 0 bh_ _0 1_

b, and b, are the damping coefficients with b,,b, > 0. The Hamiltonian function H for
the system is defined
1 _
H(q,p) = V() + 50" M~ (gu)p where

V(gqw) = 0y cos(qu) + 0p sin(gy) and (3.33)

ai ag COS<QU) —as Sin(qv)

M=
as cos(q,) — azsin(gy) as + a4 cos®(q,)

The a;’s and §;’s are system constants dependent on the mass and the geometry of the

system as defined in Chapter 2 of [5]. Since the system is fully-actuated, the closed-

loop mass matrix(My) has to be same as the open-loop mass matrix(M) and only the

IRefer to [5] for detailed derivation of the complete system dynamics

13



closed-loop potential energy(V;) can be shaped. Hence we have J; = J, Ry = R and

1 5 1

1 _
Hy(q,p) = (5%%2 +5mdn) + EPTM Y(qu)p (3.34)

such that v,, 7 > 0 and ¢, = ¢, — ¢, and ¢, = ¢, — ¢;. It is to be noted that the
parametrization for V; in equation3.34 satisfies the minima condition in equation(3.9) for
positive 7,,7,. Solving the IDA-PBC control law from the matching equation for the

system gives the following expression

u= (G (s R) St — (- RO

i (3.35)

— Yoy — 0y 8in(q,) + O cos(qy)

u =

Note that the KE-PDE constraints that came up for the under-actuated, Pendulum on
a Cart system in the previous section are trivially satisfied for this fully-actuated system
and the control law is easily solved in equation(3.35). Also, the IDA-PBC control law
works for any 7, > 0 and 7, > 0. Instead of making this choice arbitrary, this result is

used in Chapter 5 to learn the optimal values of ~, and .

3.4 State-modulated damping with IDA-PBC

State-modulated damping provides a damping control as a function of the state. In-
tuitively, the idea of using this state-dependent damping control is to provide higher
damping when the system is closer to the desired state and lesser damping when the
system is farther from the desired state. A circuit element called memristor is used to

provide state-modulated damping as in [4].

As a circuit element?, a memristor can be seen as a variable resistance dependent on
the charge ¢, which is the state of the system. The current ¢ and the voltage across its

terminals v are the output and input of the system respectively.

v=ryn(q)i (3.36)

Outside Circuit theory, in a more general setup, a memristor can be given by a similar
expression using corresponding input, output and state variables. It is to be noted that

a memristor is a passive element and its dynamics can be written in a port-Hamiltonian

2A memristor is a hypothetical circuit element that is modeled only in simulations
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form as follows 3

(3.37)

where M (zpr) denotes the memristor as a function of the state. Notice the similarity be-
tween equations (3.37) and (3.36). Consider a passive, port-Hamiltonian system denoted
by >°. Connecting an IDA-PBC controller in feedback to this system gives a passive,
port-Hamiltonian system ), in closed loop. If ) is again connected in feedback to a
passive, port-Hamiltonian memristor element, it gives an other port-Hamiltonian, passive
system ) ,,. Connecting a memristor in this way adds an extra state-modulated damp-
ing term to the original IDA-PBC control law. This damping can clip the unnecessary
overshoots or reduce the rising time in the system response of a simple IDA-PBC control.

The overall control law takes the following form

— H H
u=(GTG)*G"(J; — Ry — GMGT)% —(J — R)aa_x (3.38)

Equation (3.38) has an extra damping term compared to the original IDA-PBC control
given in equation (3.35). If the IDA-PBC control could be called u., then the above

equation can be simplified to

~ H
U= U, — MGT&
ox
U= U, — MM_lp (3.39)
U= U — ]T/[/q

In particular, for the TRMS with two actuated states, the desired memristance M takes

the form of a 2 X 2 matrix

0 fulan)

However, choosing the functional form for the elements of M is a design question since
different functions produce different system responses. [1] uses pre-defined bell-shaped
curves for M which have to be carefully chosen for the system and the design requirements
at hand. Instead of using these pre-defined functional forms, it makes the design more
easier by learning these functions online in an RL framework. Accordingly, the memristor
is connected in feedback with a closed-loop IDA-PBC system and the functional form for
the elements of the M matrix, f, and f,, are learned. The details of this experiment

conducted for the TRMS are in Chapter 5.

3Refer [1] for a more general expression
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Chapter 4

Reinforcement Learning

The basic idea in reinforcement learning is to build a controller to solve a sequential
decision making problem. The controller takes a series of actions in order to maximise
the total evaluative feedback at a future time step. The evaluative feedback, also called as
the reward, is designed to be indicative of what task is to be achieved. For a racer bot, it
could be a 'pat on the back’ after winning the race or a hard punch on losing it. The RL
controller is called the agent and the system to be controlled is called the environment.
RL tries to fit the decision making task into a framework of an agent interacting with an
environment to achieve a goal, under the guidance of a reward which is given to the agent
by the environment. Therefore, the implicit assumption is that the rewards are provided
to the agent in such a way that maximizing them achieves the goal for us. RL also assumes
that the system/environment with which the learning agent interacts follows markovian
dynamics. Most tasks encountered in real world follow this property. In particular, the

system dynamics of mechanical control systems discussed in this thesis are markov.

The agent and the environment interact at each of a discrete sequence of time steps
t=0,1,2,3.. At time t, the agent sees the environment at state S; and selects action A;.
The environment responds to the action A; and transitions to a new state Sy, ;. In addition
to the next state information, the agent also gets a numerical reward signal R;.; from
the environment as a consequence of taking action A; in state S; and reaching state Sy ;.
Here, the state S; belongs to the set of possible states S, the action A; belongs to the set

of possible actions A and the reward R;;; belongs to the set of real numbers R.

To take an action at each time step t, the agent maintains a mapping from the states in

S to the probabilities of selecting each possible action in A. This mapping is called the
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Figure 4.1: Reinforcement Learning happens in the course of a series of interactions

L J

of the agent with the system under the guidance of an evaluative signal, called reward

[11].

agent’s policy m;(a|s)'. This policy is the probability of taking action a in state s.

One of the main challenges of solving this sequential decision task under the guidance of a
scalar reward signal obtained at each step is the temporal credit assignment problem. In
the racer bot example, the agent takes actions (here the actions could be the changes in
the speed of running or the adjustments in the stride length) at every state of the system
in a trial-and-error fashion and gradually learns the mapping between the actions that
could be taken and the state of the system using the reward. But the reward signal could
be delayed. The bot gets the pat or the punch only at the end of the race. Because of
this, it is important to find out which of the actions taken at what instant during the race
actually led to winning or losing the race. And the good news is RL algorithms solve it.
Another main challenge is the exploration-exploitation dilemma faced by the agent. The
readers are encouraged to follow the online NPTEL course on Reinforcement Learning or

read the book [I 1] for deeper technical understanding.

4.1 Basic definitions in RL

The agent’s goal, as already said, is to maximise the cumulative reward it receives over
the long run. To formally define how rewards can be cumulated, we have the notion of
return in an RL task. Generally tasks in RL fall into two main categories - Episodic and
Continuing. Episodic tasks are where the agent-environment interaction breaks naturally
into intervals of finite time steps, such as the plays of a game or the trips through a maze.
In these cases, the agent momentarily stops learning in finite time steps when the game

is won/lost or when the agent successfully comes out of the maze for example. Learning

IThe policy 7 is synonymous with the control law u in a feedback control system
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is resumed by placing the agent in some starting state and a new episode starts. The

cumulative reward or the return at time t can be calculated as
Gt = Rt+1 -+ Rt+2 -+ Rt+3 + ...+ RT (41)

On the other hand, tasks where the agent-environment interaction does not break natu-
rally into identifiable episodes, but goes on continually without limit are called continuing
tasks. This would be the natural way to formulate the return for a continual process con-
trol task, or an application to a robot with a long life span or for maintenance tasks like
stabilising an inverted pendulum at the inverted upright position. Ideally, we would want
such tasks to extend their learning episodes forever without failing, making 7" — oo. The
continuing return is

Gt = Rt+1 + ’}/RtJrQ + ’}/2Rt+3 + ... (42)

where the parameter v is such that 0 <+ < 1 is called the discounting factor. The task

of the RL agent is thus to take actions that maximizes the return.

The return can be more compactly written as

T

Gy = Z VthHcH (4-3)

k=0

including the possibility of T being oo or v being 1 but not both.

In its endeavor to maximize the return, the agent keeps the following functions in record

and updates them at each time step t and bases its actions on these functions

e Policy m(als), which is the agent’s control behaviour. It is a mapping from the set

of states to the set of actions.

e Value function or Action-value function, denoted by V(s) or Q(s,a) respectively.
This is the agent’s internal evaluation of the goodness of each state or the goodness

of taking action ’a’ in state ’s’.
e The agent can also optionally have a model, which is the agent’s representation of

the environment’s behaviour.

Value functions, as already mentioned are a measure of goodness of the state s or the
state-action pair (s,a). The notion of how good’ is defined in terms of future rewards that

can be expected, or the expected return. Since the rewards received by the agent depend
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on the actions it will take, the value functions are defined with respect to the policy being

followed by the agent and denoted by v,(s). v.(s) can be formally defined as
U (8) = Ex[G]S; = §] (4.4)

where [E, denotes the expected value of a random variable given that the agent follows

policy m. This can also be written as

Ur(s) = Eq [Z ’Yth+k+1|St = ] (4.5)
k=0

The first step in a learning algorithm usually involves evaluating the value function for the
current policy of the agent, also called the prediction/evaluation step. For convenience,
we will denote v,(s) simply as v(s). One way of obtaining an estimate of v(s) in terms of

the value of other states is to expand the right-hand side equation (4.5) as
Ux(8) = Ex[Ret1 + yvr(se41)|S: = ] (4.6)

and take the sample return from this equation as an estimate for v(s). In fact, the
quantity Ryyq + yv(Si1) — v(S;), also called the temporal difference error ¢; can be seen
as a measure of the error in the current value function v(S;). This temporal difference
error can be used to update the value function. In actor-critic learning algorithm it also

plays a role in policy updation as discussed in the next section.

4.2 Actor-Critic RL

In Actor-Critic learning, the agent maintains a policy m(a|s, #), also known as an actor as
well as a value function v(s,w), known as the critic. Here 6 and w are the parameters of
the policy and value function respectively. The critic is so called because it criticizes the
actions of the actor through the temporal difference error. The diagram in figure (4.2)
illustrates the steps in an actor-critic algorithm. At time t+1, given the state s;, the

action a;, the reward r;,1 and the state s;,1, the algorithm performs the following steps
1. Temporal Difference error :
O = Tep1 + YU(Spp1, we) — v(se, wy) (4.7)

2. Critic updation : This step evaluates the current policy by updating the critic
or the value function by gradient descent with the loss function taking the form of

the squared TD error and w as the parameter that is being updated.
Wiyl < Wy + B5tvwv(st, wt) (48)
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Figure 4.2: Actor-Critic architecture [11]

3. Actor updation : With the expected return as the performance measure, the
actor’s parameter ¢ is updated in the direction of performance improvement by

gradient ascent.
Vom(aist, 0r)

0 0 )
tr1 < 0y + oy *(silac, )

(4.9)

4. Control : The RL agent takes the action sampled from 7(a|s;i1, 0:4+1).

v is the discount factor, « is the actor learning rate and [ is the critic learning rate.
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Chapter 5

Experiments

5.1 Model-free Actor Critic

In this part, the Pendulum on a Cart has been used to demonstrate learning. The learning

algorithm is plain actor-critic with a suitable rewarding mechanism and a valid policy

parametrization. For the task of stabilizing the pendulum on a cart system at the inverted

position, the learning is restricted to the linearized region around the inverted position as

shown in figure (5.1) The experiment is started from inverted position of the pendulum

x=-04m

©=0rad

RL is active in

Ll  18|<02rad

' T

imi
'-Il
1

1

x=04m
=

[

A swing-up controller takes
the pendulum into the
region, |6 <0.2 rad

x=0,0=rmnrad

Figure 5.1: The state space for the Pendulum on a Cart

and left to learn to stabilize. Every time the pendulum falls out of the linearized region,

a failure happens and a negative reward is given to the RL agent. The goal is to keep the

pendulum inside the linearized region as long as possible.

Choosing the state space, the action space and the rewarding mechanism is the starting
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point of solving an RL task. If x is the position of the cart on the track and 6 is the

pendulum angle,

1. State Space : The state is described as a tuple by s =< x,,6,0 > such that
—0.4m < x < 0.4m and —0.2rad < 6 < 0.2rad.

2. Actions : +1 N force or -1 N force (+1 N or -1 N force is equivalent to +M volts or
-M volts in the experimental Digital Pendulum control system shown in Chapter 2.

M is the proportionality constant between the control voltage and the force.)

3. Reward : -1 , upon failure ie when = ¢ (—0.4m,0.4m);0 ¢ (—0.2rad,0.2rad) and 0

otherwise.

Also every time a failure occurs, the system is taken back to # = 0 position and left
to stabilize. This is easy to implement in simulation. However, in the real-time imple-
mentation, a separate swing-up controller has been used to bring the system back to the

linearized region so that the RL agent can take up the control from there.

The state is discretized in the < z, ., 6,60 > space. This means that the continuous state
space is boxed into finite number of discrete states. This enables the value function and
the policy parameter to be stored in finite-sized tables. The policy is the probability of
taking action +1. This probability is parametrized by

1
m(a=+1/s, Qp) - 1 + exp(—max(—50, min<9p(3>’ 50)))

as suggested in [10]. This parametrization for the policy is a morphed sigmoid that is a
sigmoid in the (-50,50) interval and are continuous constant lines outside this interval.

Also, a major part of the implementation code in this section is based on [10].

Simulation Results for Model-free Actor-Critic on Pendulum-on-
a-Cart

The results are shown in Figure (5.2) and Figure(5.3). These are graphs of the state of
the system showing < x,6 > in units of metre and radian respectively vs. the simulation

time in seconds.
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Figure 5.2: Simulation results of Model-free Actor-Critic on a Pendulum on a Cart sys-
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Figure 5.3: Zoomed version of the Figure 5.2 to show the initial failures clearly
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5.2 Actor Critic for IDA-PBC

In this part, the Actor-Critic algorithm(1) learns the parameters of the IDA-PBC control
law. These parameters are the closed loop mass matrix M, the closed loop potential

energy function V; and the damping coefficient matrix K.

Learning IDA-PBC parameters for Pendulum on a Cart

The notation for the position of the cart and the pendulum angle are ¢; and ¢, as in 3.1 of
Chapter 3. Relabelling the simplified PDE constraints from equations (3.29) and (3.30)
of Chapter 3,

C1 : 2\ \gesin(ge) + /\4di(/\1a + Aoccos(ge)) —2a7 =0
q2

d
C2 : (Mg + AA3)esin(qe) + A4E()\1c cos(q2) + A2b) —ap =0
2

d
C3 : 2)\3)\ycsin(go) + )\45()\30 cos(q2) + A4b) =0
2

) oVy OVa
C4: —mgl =Ag— + Ny—
= —mglsin(gs) 38(]1 + 4@qg

where A = MyM~"! and a, b, ¢ are system constants. The constraint equations labelled
C1, C2, C3, C4 have to be satisfied along with the minima condition of Vj; at the desired

position ¢* and M, being symmetric and positive-definite.

The following points lead the way to solving this problem using RL

al + a3 azaz

Since M, has to be symmetric, positive definite, it is taken to be of the form )
203 as

b —ccos(qz)

where ay and a3 are non-zero numbers. Also M~ = is ob-
—ccos(q2) a

tained from the expression for M in Chapter 3.

e Substituting for ) in terms of My and M ! in both C3 and C4 gives new equations in

terms of unknown variables as, as and V.

e The equations C1 and C2 can be trivially satisfied using the free parameters a; and

ay. Substitute for A = My;M " in C1 and C2 to find oy and as.

e The closed loop potential function Vj is necessarily a function of both ¢; and ¢y if

the final position of stabilization is ¢; = 0 and ¢5 = 0. In such a case, equation
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C4 is still a difficult PDE to solve. However, if we relax our requirements to only
stabilize the pendulum in the inverted position anywhere within the track, ie g5 = 0

and ¢} € (—0.4,0.4), V; could be a simple function of ¢o alone, say

K
V= — 5.1
T cos?(q) &)
This function approximation for Vj also satisfies the minima condition for V; at ¢o = 0
(The domain of stabilization for IDA-PBC is the upper half plane containing ¢» = 0.

¢» = 7 is also a minima for 5.1 but is outside its stabilization domain)

e (4 could now be simplified easily. And C4 and C3 are two ordinary differential equations
with two unknowns ay and az which could be deterministically solved at every time step

in the learning process.

e @, is an unknown quantity and could take any real value. Another unknown variable in
the control law is the damping coefficient K, which should take a positive value. From
5.1, Vy also has to be learnt. The unknown variables V,;, K, and a; are then learnt

using actor-critic RL as given in algorithm 1.

The state space, action space and the rewarding mechanism are chosen as follows. If ¢;

is the position of the cart on the track and ¢s is the pendulum angle,

1. State Space : The state is described as a tuple by s =< ¢, ¢1, g2, go > such that

—0.4m < ¢1 < 0.4m and —1rad < g2 < lrad.

2. Actions : Since the control law is IDA-PBC, the actions are continuous, real valued

capped by control input saturation beyond 2.5V or below -2.5V.

3. Reward :

ﬂ
I
b

(cos(qz) — 1) — 100¢,* — 100¢,* — 50, upon failure

|
DO

(cos(gqz) — 1) — 100¢,* — 100>, else

Failure occurs when either ¢; ¢ (—0.4,0.4) or g2 ¢ (—1,1)radians. Also every time a
failure occurs, the system is taken back to ¢o = 0 position and left to stabilize. It is to
be remembered IDA-PBC is a nonlinear control algorithm and its domain of stabilization

for the Pendulum on a Cart is the half interval (-7, 7) around the inverted position.
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Input: PH model of the system in open loop, A, 7, a, for each actor, a, for the critic.
Initialise critic weights, critic eligibility traces and actor weights to 0.

while 1 do
Draw Auy ~ N(0,1). Calculate action uy = C(m(k, (Ga1)ks (Gvad)rs (Oko)r) + Aug).

Aty = up — (2, (Ga1)ks (Ova) ks (Oko)r)-

Observe next state zx,1 and calculate reward ry 1 = p(xgr1, ur)

Critic: Temporal Difference 041 = 7541 + YV (Tgs1, Ok) — V(2k, Ok)

Eligibility trace: exi1 = yAeg + VoV (g, Oy)

Critic Update: (0.)ks1 = (0c)k + @elpr1€ri1

Actor Updates:

My(,0a1) = (Oa1)kr1 = (Oar)r + Qa10k 18UV g, C(T (ks (0a1) ks (Oud) k> (Oro)r) + Auy,)
Va(x, 0pa) : (Ova)ks1 = (Ovd)k + Qwdbr1 AW Vo, ,C(T(Tk, (Oa1)k, (Gva)k), (Oro)r) + Aug)
Ko(2,010) 1 (Oko)rrr = (Oro)r + o0k 1 AUV g, C(T (21, (0a1 ks (Oud)k), (Oro)r) + Aug)

end
Algorithm 1: Energy-based Actor-Critic for learning IDA-PBC parameters[3]. The ¢

around the control action wu; incorporates control input saturation

Simulation results for IDA-PBC on Pendulum-on-a-Cart system
Figure(5.4) shows how the system learns to balance the pendulum at the inverted position
by learning the parameters of IDA-PBC using the algorithm(1). Since we assumed Vj to
be a function of the pendulum angle, ¢o alone, the system initially learns to balance
the pendulum as if the track length is infinite. However, once it learns to stabilize at
g2 = 0, it is now exposed to the reality of limited track length. The IDA-PBC control has
been learnt the moment g stabilizes at 0 at around t=550s in the graph. After this, an
additional control term dependent on the track position ¢ is learnt. This control term
tries to avoid the track edges. This learning is also evident from the result since the cart

slowly learns to take U-turns to avoid the edges.
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Figure 5.4: Simulation results of learning IDA-PBC parameters for Pendulum-on-a-Cart

system: 1-Position of the Cart on the track, 2-Pendulum angle and 3-control applied
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Figure 5.5: The graph of u in figure(5.4) magnified at the interval 1. t = 0 - 10s, 2. t =
1000 to 1010s
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Learning IDA-PBC parameters for Twin-Rotor MIMO system
The Twin-Rotor MIMO System (TRMS) is a fully-actuated system. Hence, the closed
loop Mass matrix is the same as the open loop mass matrix, Md = M. Also, the damping
coefficients b, and by, appearing in the damping matrix R; do not affect the control output,
u in equation (3.35). Only the potential energy function V; needs to be learnt. As
discussed in equation(3.34) of Chapter 3, Vj is of the form

1 5 1 _,

Vi= %o + 5 5.2
4= 5% + 57mh (5.2)

With this function approximation for V;, the coefficients v, and 7, are learnt using the

algorithm(1).

Simulation results for IDA-PBC on Twin-Rotor MIMO System

The desired final position of the system is < ¢,, ¢, >=< 0,0 >

* \ \ \

Simulation time in seconds

Figure 5.6: Simulation results of learning IDA-PBC parameters for Twin-Rotor MIMO
System: 1 - Pitch angle(q,), 2-Yaw angle(qy), 3-Pitch control(u,) and 4-Yaw control(uy,)
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5.3 Actor-Critic for State-modulated damping with
IDA-PBC

For this part, the Twin-Rotor MIMO System is the system of interest. The control action
of IDA-PBC typically gives multiple overshoots in the system response before reaching
the desired position < ¢}, q; >. This can be taken care of by adding a state-modulated
damping term to the IDA-PBC control law. For this, the elements f(g,) and f(gn) of
the memristor matrix M needs to be learnt as in equation (3.40). Once, the IDA-PBC
parameters are learnt, they are kept fixed and the matrix M is learnt using the same

algorithm(1).

Simulation results for State-modulated damping with IDA-PBC
on Twin-Rotor MIMO System

Figure(5.7 shows the results of having learnt a state-modulated damping term over and
above the IDA-PBC control. Learning is explicitly divided into episodes of length 50
seconds. At the beginning of each episode, the system starts at a fixed starting position
< Qu,qn > = < 0.8, —1.0 >. In the initial few episodes, the system overshoots once or
many times before reaching < ¢, q; > = < 0,0 >. As the damping term is learnt over
the episodes, the system smoothly transitions into the final desired state without any

overshoots. This can be seen in Figure(5.7).

The learnt functions f, and f,, which are the elements of the memristor matrixM are
shown in Figure(5.8). The function approximations used for f, and f; are fourier series

of 3rd order with f, being dependent only on ¢, and f; being dependent only on gj.

fo(@w) = vo + v1 co8(qy) + va cos(2q,) + v3 cos(3qy)
fn(@n) = ho + hi cos(qn) + ha cos(2qr) + hs cos(3qs) (5.3)

G = Q@ — ¢, qn = qn — ¢; and v; and h; are actor coefficients that are updated while
learning. The results in figure(5.8) are in tune with the intuition that the damping

coefficient is higher near the desired state and lower in the states farther away.

29



e

Simulation time in seconds

Figure 5.7: Simulation results of learning State-modulated damping term for Twin-

Rotor MIMO System: 1 - Pitch angle, 2 - Yaw angle, 3 - Pitch control, 4 - Yaw control

. The elements of the Memristor matrix learnt from Actor-Critic RL
<] { === { [

— ~

1 1 1 1 1 1
3 2 A 0 1 2 3
Angle in radians

Figure 5.8: The learnt functions for the elements of M - f» and fj,.
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Chapter 6

Conclusion

This thesis has explored the application of reinforcement learning for stabilization tasks
which are usually handled by hard-core control theory. Firstly, a direct RL controller was
learnt to stabilize the Pendulum-on-a-Cart system in the inverted position. Following this,
an IDA-PBC controller was designed by learning the parameters of the IDA-PBC control
law using RL. This learnt IDA-PBC controller was implemented in simulation experiments
on the fully-actuated Twin-Rotor and the more difficult under-actuated Pendulum-on-a-
Cart system. Since IDA-PBC on under-actuated systems requires solving partial differen-
tial equations for the closed loop mass matrix subject to it being symmetric and positive
definite, the mass matrix was by default given a symmetric, positive-definite form. The
parameters of this form of the matrix are then learnt. A more challenging and generalized
way of handling these constraints on the mass matrix would be to design an actor-critic
update that respects these constraints during learning. Finally, using the concept of state-
modulated damping control to improve system response in terms of overshoot, settling
time etc., an additional damping control term was learnt for the closed-loop IDA-PBC

system.
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