
SC-FDMA based Tropo-Scatter Modem Implementation

in FPGA

A Project Report

submitted by

BIBIN BASHEER

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING,

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2017

THESIS CERTIFICATE

This is to certify that the thesis titled SC-FDMA based Tropo-Scatter Modem Im-

plementation in FPGA, submitted by Bibin Basheer, to the Indian Institute of Tech-

nology, Madras, for the award of the degree of Master of Technology, is a bona fide

record of the research work done by him under my supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Dr. Nitin Chandrachoodan

Project Guide

Associate Professor

Dept. of Electrical Engineering

IIT-Madras, 600 036

Place: Chennai

Date: 22 June 2017

ACKNOWLEDGEMENTS

I thank the most benevolent and most merciful God almighty for all the blessings that

has showered upon me throughout my life. I express my reserve gratitude to Dr. Nitin

Chandrachoodan for his valuable guidance, constant support and encouragement for

completing the project. I would like to thank HOD Prof. Devendra Jalihal for his

support and IIT Madras for providing the facilities required for the completion of the

project. I thank my organization DRDO and Director of NPOL, Kochi for sponsoring

me to do M-Tech in IITM, Chennai. I would like to thank Sarnath, Janaki, Anand and

Saravanan for providing support throughout my project related activities.I thank all my

lab mates for their guidance and support.

Last, but most importantly I thank my mother, wife, daughter and my in laws for their

encouragement and motivation without which it would not have been possible for me

to finish my M-Tech Course.

i

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

LIST OF TABLES iv

LIST OF FIGURES v

ABBREVIATIONS vi

ABSTRACT viii

1 INTRODUCTION 1

1.1 Introduction . 1

1.2 Motivation . 1

1.2.1 Pros and Cons of HLS . 2

1.2.2 Design Flow Comparison between RTL and HLS 4

1.3 Organization of the Thesis . 7

2 Background 8

2.1 Introduction to Vivado HLS . 8

2.1.1 Data Types . 8

2.1.2 Interface Synthesis and Functions 9

2.1.3 Area/Resource . 9

2.1.4 Pipelining . 10

2.1.5 Loops . 10

2.1.6 Arrays . 11

2.1.7 Exporting from Vivado HLS 12

2.2 Introduction to Vivado IP Integrator 12

2.2.1 AXI Architecture . 13

2.2.2 AXI Transactions . 14

2.3 Introduction to Xilinx SDK . 14

ii

2.4 Basics of Wireless Communication System 16

3 SC-FDMA 18

3.1 System Description . 18

3.2 System Specification . 19

3.2.1 Frame Structure . 19

3.2.2 Schmidl Cox Algorithm 20

3.2.3 Channel Estimation . 22

3.2.4 FFT . 23

3.2.5 Channel Equalization . 23

3.2.6 CORDIC . 24

4 Implementation of the System 25

4.1 Transmitter . 26

4.1.1 Preamble detection . 29

4.2 Receiver . 31

4.2.1 Channel Estimation . 34

4.2.2 FFT . 35

4.2.3 Channel Equalization . 38

4.2.4 Phase Correction . 39

4.2.5 Discussion . 43

4.3 Integration using Vivado IP Integrator 43

4.4 Embedded Software using Xilinx SDK 46

5 Integration Testing and Results 50

5.1 Method of on-board testing and results 50

5.1.1 Procedure to set up integration testing 51

5.1.2 Description of events with ping on the system SC-FDMA . 52

5.1.3 Integration issues and solutions 54

6 Conclusions and Future Work 58

LIST OF TABLES

2.1 Arbitrary precision data types for C/C++ 9

2.2 Arbitrary precision fixed point data types for C++ 9

4.1 Transmitter results before and after data flow & pipeline optimizations 29

4.2 Preamble detection module before and after optimizations 31

4.3 Timing and area information of unoptimized receiver 32

4.4 Receiver results before and after dataflow pipelining 33

4.5 Channel estimation results before and after optimizations 35

4.6 Resource usage and latency for unoptimized design 37

4.7 Resource usage and latency after Pipelining Loops 37

4.8 Resource usage and latency after dependence Removal 38

4.9 Channel equalization results before and after optimizations 40

4.10 Phase correction results before and after optimizations 40

4.11 CORDIC results before and after optimizations 43

5.1 Timing & area information for transmitter and receiver 51

5.2 Post implementation result of SC-FDMA on DEAL FPGA board . . 51

5.3 Configuration settings for AD9364 RF Transceiver 51

iv

LIST OF FIGURES

1.1 RTL Design Flow . 4

1.2 HLS Design Flow . 5

2.1 AXI4 write channel architecture 13

2.2 AXI4 read channel architecture . 14

2.3 Basic block diagram of a wireless transceiver 16

3.1 Block diagram of a SC-FDMA transceiver system 18

3.2 Frame Structure of SC-FDMA . 19

3.3 QPSK signal constellation mapping 21

4.1 Transmitter after dataflow pipelining 28

4.2 Receiver after dataflow pipelining 33

4.3 Block Diagram of Channel Equalization 40

4.4 Integration of SC-FDMA transmitter system on Vivado IP Integrator 44

4.5 Integration of SC-FDMA receiver system on Vivado IP Integrator . 45

4.6 Integration of SC-FDMA system on Vivado IP Integrator 45

4.7 Flow chart of SCFDMA embedded software initialization routine . . 47

4.8 Flow chart of SCFDMA embedded software transmitter routine . . . 47

4.9 Flow chart of SCFDMA embedded software transmitter routine . . . 48

5.1 Diagram showing the testing of SC-FDMA system on actual hardware 52

v

ABBREVIATIONS

RTL Register Transfer Level

HLS High Level Synthesis

SC-FDMA Single Carrier Frequency Division Multiple Access

OS Operating System

DEAL Defence Electronics Application Laboratory

DRDO Defence Research and Development Organization

IP Intellectual Property

RF Radio Frequency

LwIP Light Weight Internet Protocol

FPGA Field Programmable Gate Array

EDA Electronic Design Automation

HDL Hardware Description Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

SDK Software Development Kit

GNU GNU’s Not Unix

GCC GNU Compiler Collection

JTAG Joint Test Action Group

BSP Board Support Package

IDE Integrated Development Environment

FIFO First In First Out

FSM Finite State Machine

XPS Xilinx Platform Studio

FFT Fast Fourier Transform

CORDIC COordinate Rotation DIgital Computer

RAM Random Access Memory

API Application Programming Interface

AXI Advanced eXtensible Interface

vi

HDF Hardware Description File

XML eXtensible Markup Language

POSIX Portable Operating System Interface

QPSK Quadrature Phase Shift Keying

FSK Frequency Shift Keying

FDMA Frequency Division Multiple Access

MCM Multi Carrier Modulation

PAPR Peak to Average Power Ratio

OFDM Orthogonal Frequency Division Multiplexing

IFFT Inverse Fast Fourier Transform

ICI Inter Carrier Interference

ISI Inter Symbol Interference

CP Cyclic Prefix

IBI Inter Block Interference

LDPC Low Density Parity Check Code

FIR Finite Impulse Response

BPSK Binary Phase Shift Keying

DFT Discrete Fourier Transform

ISR Interrupt Service Routine

DMA Direct Memory Access

SG Scatter Gather

MAC Media Access Control

TEMAC Tri-mode Ethernet Media Access Control

SGMII Serial Gigabit Media Independent Interface

PHY Physical Layer

CFO Carrier Frequency Offset

TCP/IP Transmission Control Protocol / Internet Protocol

UDP User Datagram Protocol

MTU Maximum Transmission Unit

DAC Digital to Analog Converter

ADC Analog to Digital Converter

BRAM Block RAM

vii

ABSTRACT

KEYWORDS: SC-FDMA, Vivado HLS, Vivado IP Integrator, Xilinx SDK

The current trend in digital design is to accelerate the design and developmental cycles

without compromising on verification. One of the key factor underlying the concept

is to raise the abstraction layer from the traditional RTL level which are time consum-

ing,error prone and difficult to debug. HLS tools are an attractive proposition for the

rapid prototyping of the systems and bridges the gap between development times and

time to market. HLS tools automatically transforms the algorithms written in C, C++,

System C to RTL implementations.

In this thesis I am presenting a case study of using Vivado HLS tool and Xilinx Design

Suites including Vivado IP Integrator and Xilinx SDK for the design and implemen-

tation of a wireless base band cum band pass SC-FDMA transmitter and receiver. In

order to improve the performance of the hardware various optimization’s like data flow

pipelining, loop pipelining, array partitioning are used to convert the C code to RTL

implementations. The challenge was to achieve the required performance through min-

imized iteration interval with less additional hardware overhead.

The transmitter and receiver IPs developed using Vivado HLS tools were tested stan-

dalone using the HLS tools and the IPs were exported to Vivado IP integrator where the

full system including interfaces for RF transceiver’s, Ethernet etc were built along with

Microblaze softcore processor. The integrated system was tested using an application

running on standalone OS in Microblaze softcore processor taking LwIP echo server as

basis.

The hardware generated are successfully tested in VC707 evaluation board and fi-

nally integrated and tested successfully with customized board based on Vertex 7 series

FPGA (XC7V585T-FFG1761-1) from DEAL, DRDO, Deharadun.

viii

CHAPTER 1

INTRODUCTION

1.1 Introduction

The move to take new products, which are characterized by highly complex designs,

to market as fast as possible made the EDA community to device strategies that re-

duces the design and development cycles without compromising on verification. The

strategies adopted for design acceleration are (i) design reuse and (ii) making higher

abstraction level of the design.The strategies to reduce design and development cycles

in turn implies reduction in developmental costs.

Xilinx Vivado HLS is a tool for synthesizing digital hardware directly from a descrip-

tion of the system either in C/C++ or SystemC.This eliminates the need of designing

the hardware in HDL languages like VHDL/Verilog. This high level design doesn’t fix

the hardware architecture as is done by HDL languages. The most important feature of

the HLS tools are the designed functionality and its hardware implementations are kept

separate and this provides great flexibility to the design community as various architec-

tures can be explored and arrived at an optimum design.

Xilinx SDK is a part of Vivado IDE which provides a platform for creating fully func-

tional software applications. The SDK includes GNU based compiler tool chain (GCC

compiler, GDB debugger), JTAG debugger, flash programmer, drivers for Xilinx IPs

and standalone BSPs and libraries for application specific functions. All of these fea-

tures are accessible from within the Eclipse based IDE.

1.2 Motivation

Current research in the field of wireless communication is tending towards increasing

the data rates with increased spectral usage efficiency. This is often accompanied by

trying out various algorithms and optimization of these algorithms which the situation

demands. Sometimes the demand is to build customized communication systems which

put forth specific requirements of the usage of specific algorithms.

The present case is to build a customized communication system for a defence ap-

plication by DEAL, DRDO, Dehradun. The constraints in terms of the hardware and

data rate requirements are defined by the user. The thesis presents the implementation

of the specific algorithms which makes up the system on the hardware.

1.2.1 Pros and Cons of HLS

There are a wide range of HLS tools available which are differ by their ease of use and

quality of the hardware derived.Some of the challenges that HLS tools must overcome

(Donald.G.Bailey (2015)) are listed below.

• Software algorithms are sequential in nature whereas hardware operates concur-

rently. HLS must map the sequential algorithm onto concurrent hardware.

• Due to the sequential nature of software execution timing is implicit whereas

hardware deals with timing constraints by controlling and synchronizing opera-

tions at the clock cycle level.

• Software supports fixed word lengths say 8,16,32 or 64 whereas hardware sup-

ports arbitrary precision data types like 5,11,15 etc depends on the computation

being performed.

• Software supports dynamic memory allocation whereas hardware doesn’t sup-

port, as local variables are stored in registers with distributed address spaces.

• Data transfer between various modules is through shared memory in case of soft-

ware’s whereas hardware depends upon the use of FIFO’s , stream interfaces and

associated handshaking signals for flow control.

Synthesis of an algorithm using HLS tools generally perform the following steps:

data-flow analysis is being carried out as part of its algorithm synthesis to determine the

type of operations that need to be performed; then resource allocation is done to deter-

mine how the resources on the hardware can be made use of in building the hardware

followed by resource binding to determine the type of operations to be done by which

hardware resource and finally scheduling which determines at what instant of time each

operations will be performed to obtain the desired functionality.

2

Some of the key benefits in using HLS are listed below:

• Portability of the source code to any hardware which rarely involves restructuring

of the code.

• HLS tools during its algorithm synthesis will analyze the structure of the code

(loops, branches etc) to automatically extract and build the control path (FSM)

whereas traditional RTL design requires explicit coding of the control path, which

for complex designs it will be a herculean task.

• Data dependencies and the sequence of operation are analyzed by HLS tools to

exploit parallelism which can be pipelined further to achieve the desired timing

constraints.

• A pipelined architecture can be inferred from loops which involves less data de-

pendencies between successive iterations.

• Iterations in a loop can be made parallel by loop unrolling which divides the loops

to multiple hardware.

Design space exploration is accomplished through a combination of source code

optimization and synthesis directives. Finding out the optimum design is generally a

trade off between the speed and resources. Software profiling tools in HLS helps to

identify processing bottlenecks, which enables to put more efforts on areas where it

can potentially achieve the greatest gains. Design explorations at early stage can be

achieved through HLS tools as it provides reasonably accurate estimate of resources

without going for synthesizing the resulting RTL. In contrast,design exploration at RTL

coding level will generally require considerable amount of time as it involves re-coding

to change both the data and control paths and its error prone too. In HLS as the verifica-

tion takes place at a higher level, simulations or verification’s required for the generated

designs are faster. But there is a necessity to validate the final design at the RTL level to

ensure that the algorithm transformations are correct and HLS automatically generates

RTL test benches from high level verification test benches.

Some of the key limitations in using HLS are listed below:

• Code restructuring is a must in realizing the hardware in order to improve perfor-

mance.

• Treating HDL like a software leads to inefficient use of resources.

• Algorithms are based on pointers, whereas hardware implementations rely on ar-

rays and array references which makes HLS finding it difficult to map to hardware

and hence at many times a restructuring of the code is required.

• Recursive algorithms are very difficult to translate to hardware using HLS.

3

• Verification failure at the RTL level will be very difficult to analyze as the RTL

code generated through HLS lacks human readability.

• Best algorithms for software realizations are not preferably the best suited for

hardware implementations.

1.2.2 Design Flow Comparison between RTL and HLS

Physical Synthesis

HDL

Netlist

Implementation

Bitfile

Mapping

Placement

Routing

Figure 1.1: RTL Design Flow

The traditional RTL design flow is shown in Figure 1.1. The design entry comprises

of files written in the HDL such as Verilog or VHDL. The design is described by RTL

because any synchronous digital hardware circuit can be represented using Huffman

model representation of an FSM wherein the data flows between hardware registers and

the combinational circuits does the operation on these data.The functionality written in

HDL’s are verified by using test benches which are also written in HDL. The test bench

provides inputs to the design and also receives outputs from the design. This process

is called Behavioural Simulation where the functionality of the design is verified. The

physical synthesis converts this description in hardware language into netlist which has

gates, registers and wires. The physical synthesis which consist of technology mapping,

placement and routing adds information’s such as gate delays, wire length, location of

gates to produce the final bit file. The bit file can be used to program the FPGA to

perform required digital functionality.

4

HDL level description of a hardware consumes a major chunk of the time as it

is written at a lower level of abstraction than algorithmic level. RTL’s are written at

a level of multiplexers,flip-flops etc.. In addition HDL is a concurrent programming

language which makes them difficult to understand and code. HLS takes advantage of

the situation through ease of programming thereby increasing productivity and ease of

understanding.

Physical Synthesis

HDL

Netlist

Implementation

Bitfile

Mapping

Placement

Routing

High Level Synthesis

C /

C++ /

SystemC

Evaluate Implementation

Directives / Constraints

Iterations

Figure 1.2: HLS Design Flow

HLS based design flow is shown in Figure 1.2. The design entry is in C/C++ or

SystemC which allows the designer to describe an algorithm in a sequential manner.

The algorithm written in high level languages are verified through a test bench which

is also written in the same language and the process of functional verification is called

C Simulation. After C Simulation produced the required result, the HLS synthesis tool

analyzes and process the C based code with user specified constraints and directives

and converts the C/C++ description into RTL which is called the C Synthesis or High

Level Synthesis – the rest of the flow is similar to the traditional RTL flow.The design

space exploration happens through the incremental changes provided by the user in the

form of directives and hence different architectures are evaluated in due course.

5

Once the equivalent RTL model is produced, it can be further verified against the

original C/C++/SystemC code via the process of C/RTL Co-Simulation.This process

re-uses the original, C-based testbench to supply inputs to the RTL version generated

by HLS, and check the outputs it produces against expected values.Importantly, this

saves the effort of generating a new RTL test bench. The advantages of this flow are

higher productivity, flexibility of design and architectural exploration which also helps

to identify performance bottlenecks and area requirements at an early stage of design.

The simulation at HLS based flow is much faster compared to the RTL level as the for-

mer allows to do so in C/C++ level. Error correction and design re-use at HLS based

design is more easier and hence cost effective than RTL based design.

Once the design has been validated, and the implementation iterated to the point of

achieving the intended design goals, it will be intended for integration into a larger sys-

tem. This can be achieved directly through the use of packaging the outputs produced

by Vivado HLS by means of Export RTL. Packaging to an IP helps to introduce HLS

designs easily into other Xilinx tools, namely IP Integrator within Vivado IDE, XPS

(for the ISE design flow), and System Generator.

Once the design has been integrated and implemented with HLS generated IPs and spe-

cific IPs provided by Xilinx like softcore processors and other peripherals, the whole

hardware system can be controlled through application specific software’s written on

top of it through Xilinx SDK. The application in the form of elf (executable and link-

able format) can be made to run on softcore processors and the system can be made to

interface with external world.

Keeping this background in mind, the motivation for the present work is to use HLS,

Vivado IP integrator and Xilinx SDK for the implementation of a specific wireless sys-

tem.

6

1.3 Organization of the Thesis

The organization of the thesis will be as follows

Chapter 2 - describes the features of Vivado HLS, Vivado IP Integrator and Xilinx SDK

that are being utilized for the development of modules for implementing the wireless

communication system.

Chapter 3 - describes the basic concepts of a wireless communication specific emphasis

on the SC-FDMA system.

Chapter 4 - mentions the algorithms that made up the whole system like FFT, Schmidl-

Cox, CORDIC etc.

Chapter 5 - presents the results of implementation of the SC-FDMA system.

Chapter 6 - deals with the conclusions and future work.

7

CHAPTER 2

Background

The details present in this chapter contains information that are part of Xilinx (2016a) ,

Xilinx (2016b) and Xilinx (2017). But are reproduced here for easy reference.

2.1 Introduction to Vivado HLS

This section will cover topics including the specification of data types and its implica-

tions for synthesis, the creation of port and block-level interfaces, aspects of algorithm

synthesis and the use of directives and constraints to influence the solutions produced

by HLS.

2.1.1 Data Types

The specification of data type affects the resource utilization, timing performance, and

power consumption. Under-specifying the word length compromises accuracy, while

over-specifying leads to increased resources, inflated power consumption, and a sub-

optimal maximum clock frequency. Vivado HLS supports both the native C/C++ data

types plus the arbitrary precision data types for integer (for C/C++) and fixed point

(for C++ only). It also supports the complex data type by including the header file

"complex.h".

For the arbitrary precision fixed point data type W denotes the width of the word

length and I denotes the bits specified for integer portion. So W − I decides the bits

for fractional representation. Q is a string which specifies the quantization mode and O

gives the overflow mode. N specifies the number of bits in overflow wrap mode. The

strings Q, O and N are optional. Vivado HLS also supports floating point data types and

operations, as long as these maps to available Xilinx technology core libraries.

Language Data Type Description Header

C intN N bit precision include

signed integer "ap_cint.h"

uintN N bit precision

unsigned integer

C++ ap_int<N> N bit precision include

signed integer "ap_int.h"

ap_uint<N> N bit precision

unsigned integer

Table 2.1: Arbitrary precision data types for C/C++

Language Data Type Description Header

C++ ap_fixed<W,I,Q,O,N> signed fixed point include

number of I "ap_fixed.h"

integer bits and

W-I fractional bits

ap_ufixed<W,I,Q,O,N> unsigned fixed point

number of I

integer bits and

W-I fractional bits

Table 2.2: Arbitrary precision fixed point data types for C++

2.1.2 Interface Synthesis and Functions

The input arguments and return value of the designed top-level C/C++ function are

synthesized into RTL data ports, each with an associated protocol. The RTL data ports

can be either input, output or in-out bidirectional ports depending on whether data is

read, write or both read and write into the ports respectively. Array arguments in top

functions will translate to off chip RAMs . Arrays can be partitioned to increase the

speed of access and by default are mapped to single port RAMs. The ports and protocol

form a port interface. Port interfaces are used to communicate with other subsystems

like the processor in the system. In addition to the port interfaces , block-level protocols

and associated ports are used to coordinate the exchanges of data between subsystems.

2.1.3 Area/Resource

By default, Vivado HLS minimizes area, which implies time-sharing of hardware. This

generally leads to increased latency and reduced throughput. Latency is defined as the

number of clock cycles between applying an input, and achieving the corresponding

output. Latency can be viewed at different levels of hierarchy and in the context of

9

loops, latency refers to the completion of all iterations of the loop and the term itera-

tion latency is used when referring to a single iteration. The total latency is equal to

the iteration latency, multiplied by the number of iterations of the loop (known as trip

count). Latency can also be specified as a design constraint by the user, and the Vivado

HLS tool optimizes the design wherever possible to meet the requirement.The Iteration

Interval (II) is the number of clock cycles that separate the acceptance of inputs to the

Vivado HLS design. Without applying directives, the initiation interval will be one cy-

cle more than the latency, because the default behaviour of Vivado HLS is to optimize

for area, resulting in a serial design. However the use of pipeline directive can reduce

the iteration interval to much less than the latency of the design. This results in an

increase in the area of the design, so there is a trade-off involved. Initiation interval

corresponds directly to throughput. Throughput expresses the rate at which data can be

passed through the system. The best possible initiation interval is 1, meaning that new

input samples can be accepted on every clock cycle, in which case the throughput is

equivalent to the clock rate. Higher levels of throughput can be achieved through use of

partial loop unrolling, or by replicating a synthesized function.

2.1.4 Pipelining

In HLS, pipelining refers to the partitioning into sub stages of an arbitrary set of de-

pendent operations. The objective for pipelining is to enable parallel processing, and

thereby increase the throughput supported by the design. Pipelining can be applied as a

directive in Vivado HLS, at the level of functions and loops.

2.1.5 Loops

Loops are basic constructs of any algorithm and expresses operations that are repetitive

in nature. Several loop optimization’s can be made using directives, enabling archi-

tectural variation exploration with almost no change required in the software code.The

various optimization’s performed in loops are

Loop Unrolling

It means that the hardware inferred from the loop body is created N times. Practically

it can be less than N, depending on whether data dependency or memory operations are

10

present in the design. Advantage is throughput increase and disadvantage is the increase

in hardware resource.

Partially Unrolled

This generally is a trade-off between rolled and unrolled architecture.

Merging of Loops

This directive can be applied to loops which are occurring one after the other in code

and are having the same trip count. Advantages adds in creating the control path of the

design as it reduces the number of states in the FSM derived.

Loop Flattening

It applies to nested loops where the overhead in additional clock cycles associated with

entering and exiting the inner loops can be avoided which results in improved latency

and throughput.

2.1.6 Arrays

As arrays represent storage they are synthesized into memories. The memories inferred

are mapped to physical resources on the FPGA as Block RAM, or distributed RAM.

Various directives are used to map these memories to physical memory resources. Some

of the optimization’s on arrays are discussed below.

Resource

It maps an array to a specific memory resource.

Array Map

It maps several small arrays to be combined into a single, larger array. Mapping can

be either horizontal (arrays are concatenated to form an array with more elements), or

vertical (array elements are combined, resulting in an array with longer words).

Array Partition

It maps the subdivision of a large array into a set of smaller ones. It increase the rate at

which memory transactions can take place. In the extreme case, array partitioning will

subdivide an array into individual register elements.

Array Reshape

This allows an array with many elements, each with short words, to be reshaped into an

array with fewer, longer words.This directive reduces the number of required memory

accesses.

11

Stream

If the array element access is sequential not random, then this directive can be made use

of. It reduces the number of ports generated.

2.1.7 Exporting from Vivado HLS

Designs can be exported from Vivado HLS to permit easy integration of Vivado HLS

IP with other development tools. IPs are exported from HLS to the IP-XACT format,

which allows the module to be integrated into a Vivado IP Integrator design. This results

in a zip folder residing in the ip sub-folder under impl folder of the respective solution,

and represents the IP catalogue package. It also contains API’s required to use the IP in

Xilinx SDK environment. This format allows easy sharing and distribution of IP across

all platforms.

2.2 Introduction to Vivado IP Integrator

The Vivado IP integrator tool allows to create complex subsystem designs by instanti-

ating and interconnecting IP cores from the Vivado IP Catalogue which contains Xilinx

IP’s , third party IP’s and user IP’s. Using the repository manager provided by the tool,

we can add user developed IP’s especially in Vivado HLS to the current project or can

be added permanently to the user IP portion of the Vivado IP catalogue. Various design

flows of the FPGA are provided as separate functions on the Vivado IP integrator tool.

Even the RTL level designs can also be packaged to an IP using the tool and it will

provide an easy and straight forward approach to the incremental building of a complex

design. The tool provides different options to optimize the foot prints of the IP’s imple-

mentation on FPGA which improves operating frequency, performance, or area and can

be specified such that a suitable balance between these three metrics is achieved. This

is done very easily in Vivado using a configuration wizard.

In a processor integrated system, the IP’s are interfaced with each other generally on an

AXI bus which are connected through an AXI interconnect. AXI interconnect can be

considered as a switch in computer networks. Currently the standard is AXI4 and there

are three variants of bus protocols namely

AXI4

12

It is provided for memory-mapped IP’s, and having the highest performance with an ad-

dress is supplied followed by a data burst transfer of up to 256 data words. AXI4-Lite

It is a simplified link supporting only single data transfer per connection (no bursts). It

is also memory-mapped. In this case an address and a single data word are transferred.

AXI4-Stream

This data streaming is provided for non memory mapped IP’s and supports high-speed

streaming data with burst transfers of unrestricted size.

2.2.1 AXI Architecture

The AXI protocol supports burst based transactions, with each containing address and

control information on the address channel. Several AXI masters can be connected

to several AXI slaves through an AXI interconnect. An AXI master transfers data to

an AXI slave through the AXI interconnect using a write data channel (or a read data

channel from slave to master). The write transactions in particular have an additional

write response channel, as all data flows from master to slave and as such this is used for

the slave to signal completion of a write transaction. The following figures demonstrate

communication between AXI master and slave. The Figure 2.1 shows the write channel

Address /

Control

Write

Data

Write

Data

Write

Response

Write Address Channel

Write Data Channel

Write Response Channel

Master Slave

Figure 2.1: AXI4 write channel architecture

architecture where address and control data is passed from master to slave before a

burst of data is transmitted, and a write response signalled following completion.The

Figure 2.2 shows a read transaction, with address and control data transmitted to the

slave before a burst of read data is transmitted to the master.

13

A��ress /

Control

Rea�

Data

Rea�

Data

Rea� A��ress Channel

Rea� Data Channel

�aster Slave

Figure 2.2: AXI4 read channel architecture

2.2.2 AXI Transactions

Write-Burst Transaction

Suppose we need to write burst of data to an address A. The master drives the slave and

transaction begins with the sending of address and control information via the signal

AWADDR. Following confirmation of a valid address with AWVALID, a signal is sent

to confirm that the system is ready for the transaction on AWREADY. The master then

sends the data blocks in the burst of data to the slave on the WDATA signal, with the

final data item being indicated through the WLAST signal going high and confirming

the completion of the transaction. The master also sends various control signals regard-

ing data bursts.

Read-Burst Transaction

In case of a read-burst transaction using AXI4 for data being read from an address A,

the slave is driven by the master through transmission of address and control informa-

tion in signal ARADDR. ARVALID goes high signalling a valid address and the system

is confirmed ready for transmission with the signal ARREADY. Data blocks are read

from address A via the signal RDATA, and as before the final data block is indicated via

signal RLAST. The RVALID signal kept low by the slave until read data is available.

2.3 Introduction to Xilinx SDK

Xilinx SDK provides an environment for creating software platforms and applications

for Xilinx processor cores.It works with hardware designs generated with Vivado.

14

SDK is provided with

1. Reference Software Applications

Applications like lwip echo server which we made use of for building this project.

2. XMD

Xilinx Microprocessor Debugger is debug agent used to communicate with Xilinx

embedded processors.

3. XSDB

Xilinx System Debugger is a command-line interface to debug the Xilinx hw_server.

4. FPGA programmer

Used to program the Xilinx FPGA with the bitstream.

5. Flash programmer

Used for burning bitstream and software application images into external parallel

NOR Flash devices.

6. Bootloader generator

Used for automatically bootloading your embedded software applications from

parallel Flash.

The two main terminologies used in Xilinx SDK are hardware platform and soft-

ware platform.The hardware platform is the embedded hardware design that is created

in Vivado and exported in the form of an HDF/XML file through the use of export

hardware wizard. Once the hardware platform is identified and imported, we create

the software platform. A software platform is a collection of libraries and drivers that

form the lowest layer of application software stack. The software applications must run

on top of a given software platform, using the provided API’s. Therefore before creat-

ing and use software applications in SDK, a software platform project must be created.

SDK includes the following two software platform types. They are

1. Standalone OS

It is a simple and single-threaded environment that provides basic features like

standard input/output and access to processor hardware features. In this project

we extensively used this software platform.

2. Xilkernel

A simple and lightweight kernel that provides POSIX-style services such as schedul-

ing, threads, synchronization, message passing, and timers.

15

2.4 Basics of Wireless Communication System

Wireless communication involves the transmission of information over a distance with-

out the help of a wired medium. It incorporates all methods of connecting and commu-

nicating between two or more devices using a wireless signal through wireless commu-

nication technologies and devices. A basic block diagram of a communication system

is shown below.

The digitized source produces the binary data to be transmitted. The data which is

Binary

Source

Channel

Encoder
�odulator

Binary

Sink
Channel

Decoder
Demodulator RF Front End

RF Front End

Figure 2.3: Basic block diagram of a wireless transceiver

transmitted through the channel suffers errors due to interference and noises and to

mitigate the effects of these, channel encoding is used which enables forward error

correction at the receiver. Generally system uses convolution encoding techniques or

linear block codes for channel encoding. The encoded data is modulated using digital

communication techniques like QPSK, FSK etc (base band signals) and is translated to

radio frequency (band pass signals) by RF front end and is transmitted to antenna.The

received RF signal suffers from addition of noise and fading due to wireless channel.

The received signal traverses multiple paths, which causes fading. The RF front end at

receiver translates band pass signals to base band and converts signal from analog to

digital form. The data is decoded and demodulated to retrieve the information back.

The path followed by transmitted signal to reach receiver are of two types.(i) Direct

Path - The transmitted signal reaches the receiver directly and the components of sig-

nal that are present are called direct path components.(ii) Multi Path - The transmitted

signal traverses through different directions undergoing different phenomenon like re-

flection, diffraction, scattering and arrive at the receiver shifted in amplitude, frequency

and phase with respect to the direct path component and such a path is called multi path

16

and the components present are called multi path components.

Multiple access schemes are used to allow multiple users to share simultaneously a fi-

nite amount of radio spectrum. There are different multiple access schemes and one

method is FDMA. In FDMA, the spectrum is divided into narrow bands and each user

is allocated with a specific channel. Hence a wide band signal which suffers distortion

as the signal bandwidth is greater than the coherent bandwidth due to frequency selec-

tive fading of the wireless channel is converted to narrow bands and hence the channel

response to these narrow band signals will be flat fading or provides no distortion as

now the coherent bandwidth is more than signal bandwidth. This forms the basic prin-

ciple behind the FDMA.

In order to mitigate the effect of fading, MCM schemes are employed. In MCM , the

high data rate signal is divided into a N low data rate signals and each one is modulated

on a separate sub-carriers. The final signal for transmission will be the algebraic sum

of theses modulated sub-carriers. This technique is employed in OFDM communica-

tion where the N sub-carriers are orthogonal to each other. The modulation of low data

rate signals on N sub-carriers is equal to taking the signal samples or symbols and per-

forming an IFFT operation on these samples. But the disadvantage of such a scheme is

the high PAPR which is directly proportional to the number of sub-carriers N.The high

PAPR in an OFDM system arises due to IFFT operations as data symbols across sub-

carriers can add up to produce a high peak value. As the power amplifiers practically

are non linear having very restricted linear region, these peak variations will result in

distortions and the orthogonality of the sub-carriers can be lost. Hence, high PAPR in

OFDM systems results in amplifier saturation leading to non linear distortion and ICI.

Inorder to tackle the issue of high PAPR another technique has been introduced known

as SC-FDMA. This technique is used in the up-link of 4G communication systems.So

an OFDM system is transformed to a SC-FDMA system by putting an N point FFT

block in front of an N point IFFT block for sub-carrier modulation. Thus the effect is

cancelled with each other and gets a single carrier modulated signal. But single carrier

modulation scheme suffers from ISI as the delay spread of the channel is more com-

pared to the symbol duration. Hence the transmitter of SC-FDMA employs an M point

FFT followed by an N point IFFT where M < N , which mitigates the effects of high

PAPR and ISI.

17

CHAPTER 3

SC-FDMA

This chapter gives information about the various algorithms that were used to imple-

ment the system using Vivado HLS. Detailed description of the algorithms and synthe-

sis of algorithms to RTL using Vivado HLS tool was described in Salaskar (2016).

3.1 System Description

The base band transceiver block diagram of the system is show in the Figure 3.1. The

T�ansmitter Chain

Pilots � P
Insertion

QPSK

�apper

Append

Preamble

Input binary data Transmitted Frame

Receiver Chain

Channel

Estimation
Preamble

Detection

Channel

Equali���ion

Received Frame Phase

Correction

G	nerate &

Decode

LLRs

O
tput �inary

data
�enerate

Decode ��Rs

SerialT�
Parallel

Figure 3.1: Block diagram of a SC-FDMA transceiver system

input binary data to be transmitted is passed through a QPSK mapper. Then the CP and

the pilots are inserted and finally appended with the Preamble to form the final trans-

mitter frame. The CP is added to avoid IBI and pilots are inserted in the data to estimate

the channel at the receiver for equalization. The frame is transmitted through channel

by converting to analog signal. The frequency translation to radio frequency and digital

to analog conversion is performed by RF transceiver modules (AD9364). The signals

are further conditioned in the RF front end where they will be further amplified and

transmitted.

The received RF signal suffers from addition of noise and fading due to wireless chan-

nel. The received signal traverses multiple paths, which causes fading. The RF transceiver

modules at the receiver translates from radio frequency to base band frequency and con-

verts signal from analog to digital form. The synchronization between the transmitter

and receiver happens in the preamble detection, where the receiver detects frame in the

coming data and tries to equalize the effect of channel using the known pilots inserted in

the transmitted data. The QPSK de-mapper converts the equalized data back to original

message data

3.2 System Specification

The system specification requirement was to achieve a throughput of 20 Mbps with

LDPC code rate of 2/3 and bandwidth of 20 MHz. But LDPC modules are not imple-

mented in the present system.

3.2.1 Frame Structure

The frame structure used in the SC-FDMA system is shown in the Figure 3.2. Each

Preamble �loc� 4

32 32 32 3�128 512 32 512 32 512 32 512

�ref��
Channel

Estimator

Channel

Estimator

�ilots
�ref��
�loc� 1

�loc� 1

�ref��
�loc� 2

�loc� 2

�ref��
�loc� 3

�loc� �

�ref��
�loc� 4

32

Figure 3.2: Frame Structure of SC-FDMA

SC-FDMA frame consists of

• Preamble of 64 samples for packet detection using Schmidl-Cox synchronization

method.

• Pilot symbols (128 pilots + 32 CP) for channel estimation and frequency offset

correction.

• 4 message blocks of which each composed of

– 480 complex QPSK symbols

– 32 pilot symbols

– 32 CP symbols

19

Hence the total frame size is 64 + (128+32) + 4 * (480+32+32) = 2400 samples.

The information bits available in each frame assuming an LDPC code rate of 2/3 is

• 4 blocks per frame

• 480 QPSK symbols per block

• 2 bits per QPSK symbol

• 2/3 LDPC code rate

Hence total number of message bits = 4 * 480 * 2 * 2/3 = 2560 bits. Therefore

assuming a sampling rate of 20 MHz for the transmit DAC’s I/Q output, this will result

in 21.33 Mbps. So if we are using a clock frequency of 20 MHz we can process the

entire frame in 2400 cycles. Tn this project we are choosing a 100 MHz clock and

hence we can spend at most 12000 cycles to process an entire frame.

CP refers to prefixing of a symbol with the data at the end. It is used instead of a guard

interval between two symbols. The addition of cyclic prefix mitigates the effects of

channel fading and ISI thereby increases the bandwidth. This repetition of end symbols

allows us to visualize the linear convolution (channel modelled as an FIR filter) as a

circular convolution. This also reduces IBI between subsequent message blocks.

Modulation is the process of facilitating the transfer of information over a medium.

QPSK is the digital modulation scheme used in this communication system. In QPSK,

the phase of the carrier is modulated in accordance with the information message bits.

Two message bits are combined which results in four combinations say 00,01,10,11

and each combination represents a certain known phase which is used to modulate the

carrier wave. The de-modulator in the receiver must determine the phase of each symbol

and map it back to the corresponding message bit. QPSK encodes two bits per symbol

and has double the data rate compared to BPSK. The constellation diagram of the QPSK

is shown in Figure 3.3.

3.2.2 Schmidl Cox Algorithm

Proper synchronization between transmitter and receiver ensures correct reception of

data which in turn means that the receiver is able to lock exactly to the beginning of the

transmitted signal. In other words, the time must be synchronized between the trans-

mitter and the receiver. This forms the block of preamble detection which uses the

20

� �������

I Channel

000�

�� �0

1

2

1

2

-

-

Figure 3.3: QPSK signal constellation mapping

Schmidl-Cox algorithm. The Schmidl-Cox algorithm is a time synchronization algo-

rithm proposed by Schmidl and Cox (1997) for use in OFDM based systems. In this

method,a specially generated preamble is prefixed to the data to be transmitted, which

is used by the receiver for synchronization. The variations in the channel often make

synchronization necessary. The Schmidl-Cox preamble has pseudo-random complex

Gaussian noise on the odd frequencies, while having zero amplitude on even frequen-

cies. This composition of the transmitted preamble ensures certain properties which are

used for synchronization. The preamble is further processed in the receiver to achieve

time synchronization.

The preamble is added in the final stage of transmitter and is detected at the first stage

of the receiver. Both in-phase and quadrature components are used in the detection

process. The preamble consists of two highly correlated sections of equal length. The

in-phase component is symmetric about its center and the quadrature component is anti-

symmetric about its center.

Detection Method The Schmidl-Cox based threshold detection method finds the points

at which the S signal crosses a predefined threshold value, first above then below. The

centre of the peak which is synchronization point is obtained by averaging these two

21

points. The S signal is defined as

S(d) =
(P (d))2

(R(d))2

where, cross-correlation value P is defined as

P (d) =
L−1∑
m=0

r∗d+mrd+m+L

auto-correlation value R is defined as

R(d) =
L−1∑
m=0

|rd+m+L|
2

3.2.3 Channel Estimation

Due to the dynamic nature of the channel owing to various factors , it is of at-most

importance to carry out channel estimation to determine the channel transfer function

H(f). The channel estimation pilots present in the frame structure are used for this

purpose. These pilots form a Zadoff-Chu (ZC) sequence (Zepernick and Finger (2013))

and are extracted after preamble detection.

Zadoff-Chu (ZC) sequence ZC sequences are complex-valued and have constant

amplitude whereby cyclically shifted versions of the sequence imposed on a signal re-

sult in zero correlation with one another at the receiver. These sequences exhibit the

useful property that cyclically shifted versions of itself are orthogonal to one another,

provided that each cyclic shift, when viewed within the time domain of the signal, is

greater than the combined propagation delay and multi-path delay-spread of that signal

between the transmitter and receiver.

The envelope of the channel impulse response is obtained by correlating the pilots in the

receiver. A DFT based method is used to estimate the channel from the envelope. As the

symbol duration is longer than the duration of channel impulse response (Kang et al.

(2007)),the estimated channel has most of the power concentrated in first few coeffi-

cients. The DFT based channel estimation reduces the noise power that exists outside

the first few coefficients. Hence most of the information about the channel impulse

response is limited to length of 20. So first 20 samples have been taken for channel

22

estimation purpose.

The algorithm used for channel estimation and equalization uses FFT.

3.2.4 FFT

The Fourier Transform converts a time domain signal x(t) to a function X(f) in fre-

quency domain:

X(f) =

∫ ∞

−∞

x(t)e−2πftdt

The discrete counter part of the Fourier transform is DFT.

X(k) =
N−1∑
0

x(n)e
−2πnk

N

The FFT algorithm reduces the complexity of computing DFT from O(N2) to

O(N log(N)). FFT algorithm can be implemented in (i) Decimation in Frequency and

(ii) Decimation in Time. Decimation in Frequency has been utilized in this work. The

algorithm starts with splitting of input data sequence into two summations of which one

involves the sum over first N/2 data points and second sum over last N/2 data points.

Then the algorithm is recursively applied to each term until each DFT’s length is 1. This

recursive deconstruction of the DFT makes the computational time of O(N log(N))

(Proakis and Manolakis (2006)). It requires N/2 log2(N) complex multiplications and

N log2 N complex additions. This algorithm computation can be performed in-place in

order to reduce the storage requirement.

3.2.5 Channel Equalization

Multi-path propagation in wireless communication results in fading and delay disper-

sion’s which leads to ISI in the transmitted signal.The effects of fading is reduced by

the implementation of channel coding in addition to the cyclic prefixes. The ISI equal-

izers are introduced in the receivers in order to improve the quality of the signal. The

equalization techniques are adopted to reverse the distortions produced by the chan-

nel. The delay dispersion corresponds to the frequency selectivity in frequency domain.

Due to presence of ISI effect the transfer function is not constant over bandwidth of

interest. The equalizers will provide an inverse effect of the channel to the transmitted

23

signal thereby nullifies the effect of channel. Mathematically it can be expressed in the

following way:

H(f)E(f) = constant

where H(f) is the transfer function of the channel, E(f) is the transfer function of the

equalizer. Ideally we should have,

E(f) =
1

H(F)

where E(f) should be exactly the inverse of the channel transfer function H(f) to ob-

tain a flat response. However, due to the inversion of H(f), infinity gains are produced

when H(f) values are close to 0, preventing the desired constant output. Zero-Forcing

is the most basic equalizer and its coefficients try to enforce a constant transfer func-

tion in frequency domain once applied to the channel. Zero-Forcing equalizer is ideal

for elimination of ISI. But, this kind of equalization produce noise enhancement in the

spectral nulls (deep fading) due to the form of the transfer function of the equalizer,

which is E(f) = 1
H(f)

. From above equation, it can be deduced that the equalizer

amplifies strongly (infinity gain) those frequencies with a small value of the channel

transfer function, enhancing the noise too.

3.2.6 CORDIC

CORDIC stands for COordinate Rotation DIgital Computer and belongs to the class of

shift and add algorithms. The CORDIC algorithm was presented by Volder (1959) as a

method of calculation of trigonometric and hyperbolic functions. Subsequently, Walther

(1971) generalized the algorithm to calculate elementary functions such as multiplica-

tion, division, trigonometric ratios, square roots, etc. The fundamental advantage of the

CORDIC algorithm is that most basic implementations only requires addition/subtrac-

tion, table look up and bit shift. This makes it particularly suitable for implementation

on FPGA’s, where the multipliers are a scarce resource. CORDIC can be either used in

(i) Rotation Mode , the rotation of an input vector by a given angle α and (ii) Vectoring

Mode to calculate inverse tangents of rotation of an input vector V .For details on the

description of the algorithm refer Salaskar (2016).

24

CHAPTER 4

Implementation of the System

The detailed description of the implementation of the components of transmitter and

receiver systems using Vivado HLS has been mentioned in Salaskar (2016). For the

implementation of the system on specific hardware (customized Virtex 7 FPGA board

from DEAL), re-synthesis of the existing HLS code has been done to ensure that the

throughput requirements and device specific constraints are met. Along with this we

briefly touch upon the results obtained after applying various types of optimization’s

that were applied to each of the components of the transmitter and receiver.

The synthesized transceiver modules are integrated with a Microblaze softcore pro-

cessor based system which provide ease of programmability, debugging and if neces-

sary portability to other FPGA hardware platforms. Xilinx provided peripheral IPs like

ethernet,UART etc are also integrated with system which provides in-situ configuration

management and ease of maintenance. In future, the implementation of a parametrized

communication system along with microblaze softcore processor and ethernet helps to

reconfigure the system depends on user requirements. It is also more easy to integrate

the RF transceiver AD9364 modules, as Analog Devices provides an API in C for con-

figuration of its registers.

The target for our implementation was to achieve an overall transceiver throughput

of 20Mbps. Given that each frame contains 2560 valid information bits, every new

frame has to be processed within 128µs, even though the initial latency of a frame

could be larger than this amount.

Based on synthesis results of the basic blocks, a target clock frequency of 100MHz

was chosen for the design. This implies that a frame of 2400 symbols would take 12,000

clock cycles (10ns per clock), and we use this figure as our target for the initiation

interval in the synthesis steps that follow.

Algorithm 1 Transmitter

1: procedure SCFDMA_TX(data, Frame_Tx)

Input: data 160 words of 16 bit each

Output: Frame_Tx of length 2400 Complex numbers

2: wimaxencoder(data,Mapped_Data)

3: Append preamble to Frame_Tx

4: AssembleLoop:

5: for i = 1→ NO_BLOCKS do

6: Append CyclicPrefix(i) to Frame_Tx

7: Insert Pilots and Mapped_Data in Symbol(i)

8: Append symbol(i) to FrameTx

9: end for

10: end procedure

4.1 Transmitter

The algorithm 1 describes the scfdma_tx function. The transmitter takes data of

length 160 of 16 bits each (2560 bits total) and produces Frame_Tx of length 2400

complex symbols with 16 bits I and Q. The wimaxencoder function performs QPSK

mapping. It takes 80 words of 16 bits and produces QPSK mapped data of length

960. The function wimaxencoder is invoked twice in order to encode 2560 bits of

data into 1920 QPSK complex values. The Frame_Tx is assembled by prepending

the preamble. The AssembleLoop affixes the cyclic prefix and inserts the pilots in

appropriate location.

The algorithm 2 performs QPSK mapping. The ReshapeLoop reorganizes the input

data data into CodeWord. The CodeWord has 16 locations of 80 bit each. 16 locations

are filled by rearranging data. The QPSKMappingLoop takes two bit of data and

maps it into complex symbol as follows

(0, 0)→ (+,+),

(0, 1)→ (+,−),

(1, 0)→ (−,+),

(1, 1)→ (−,−).

26

Algorithm 2 QPSK Mapper

1: procedure WIMAXENCODER(data,Mapped_Data)

Input: data 80 words of 16 bit each

Output: Mapped_Data of length 960 Complex numbers

2: ReshapeLoop:

3: for i = 1→ N do

4: Reshape the data to Z bits in a word CodeWord[i]

5: end for ⊲ QPSK mapping

6: QPSK(0)← (IS2, IS2)

7: QPSK(1)← (−IS2, IS2)

8: QPSK(2)← (IS2,−IS2)

9: QPSK(3)← (−IS2,−IS2)

10: index← 0

11: ap_uint < 2 > temp;

12: QPSKMappingLoop:

13: for k = 1→ N do

14: for l = 1→ BLOCK_SIZE do

15: temp[0]← CodeWord[k][l]

16: temp[1]← CodeWord[k][l + 1]

17: Mapped_Data(index)← QPSK[temp]

18: l← l + 2

19: k ← k + 1

20: index← index+ 1

21: end for

22: end for

23: end procedure

The ReshapeLoop gets synthesized as a memory which has write port which is 16

bits while the read port is 80 bits in length. The top-level function of the transmitter is

Transmitter which has function prototype of

void scfdma_tx(

ap_uint<16> data[160],

ComplexData Frame_TX[2400]);

Optimizations

Table 4.1 shows the result of converting from C to RTL using the Vivado HLS synthesis

system. Note: LUTs are the look-up tables that are the combinational building blocks

27

inside FPGAs, FFs are flip-flops, BRAM_18K are 18 Kbit block RAMs, DSP48E are

the multiplier/DSP macros in Xilinx FPGAs. TL refers to the latency of the loop, while

II refers to the iteration interval, which is the earliest time at which the next iteration

can be started (both are in number of clock cycles).

The unoptimized design uses 16 BRAMs 7 of them are used for QPSK mapper, 2

of them are used for AXI interface while another 7 are being used by the rest of the

transmitter logic. Out of 7 BRAMs used for transmitter logic the QPSK mapper output

used 2 BRAMs each for real and imaginary parts, the pilots use 1 BRAM each for real

and imaginary parts and information to store the location of pilots to be inserted uses

1 BRAM. Hence in total 16 BRAMs are used. The QPSK mapper takes 3248 clock

cycles as both TL and II . The pilot insertion logic and preamble appending logic takes

about 13750 cycles for latency and 13751 cycles for II .

We have to apply dataflow and pipeline optimization to improve the latency and

throughput of the design. The overall structure of the transmitter is well suited to the

idea of a dataflow operation where each block commences immediately on receiving

sufficient data and transfers its output to the next block in the chain. This permits

multiple hardware blocks to operate in parallel.

The Figure 4.1 shows the result of dataflow pipelining of Transmitter function.

�!ansmitter Chain

"ilots , C"

Insertion
#"S$

%apper

Append

"reamble

Input binary data �!ansmitted 'rame

Figure 4.1: Transmitter after dataflow pipelining

The transmitter is dataflow pipelined using the pragma

#pragma HLS DATAFLOW

We see that number of BRAMs increase by 4. The additional 2 BRAMs each for real

and imaginary parts of QPSK mapped data are used, which helps pilot insertion logic

to operate in parallel, which also cuts down the II to about 7250 cycles.

The AssembleLoop are pipelined using the pragma

#pragma HLS PIPELINE

28

BRAMs DSP48Es FFs LUTs TL II
Tclk

(ns)

Before

Optimizations 16 0 1146 3621 13750 13751 7.38

After Data-flow

pipelining 20 0 1195 3618 13751 7250 4.23

After all

Optimizations 20 0 1199 3618 8921 6502 7.38

Table 4.1: Transmitter results before and after data flow & pipeline optimizations

From the results after pipelining the loop we see that II has come down to 6502

cycles.

The result shows that the transmitter is able to achieve our target constraint. Since

our goal is to have an overall transmitter/receiver pair that can operate at the desired

throughput, no more efforts has been put in to further increase the transmitter through-

put. In the next section we look at the preamble detection or packet detection followed

by receiver design which is considerably more complex.

4.1.1 Preamble detection

Algorithm 3 scfdma_pktdet

1: procedure SCFDMA_PKTDET(input_data, out_data)

Input: input_data is input stream of data

Output: out_data are the data frame synchronized with packet detection

2: Initialize the SregReal and SregImag

3: PackDetectLoop:

4: for i = PKTBUFSIZE − 1→ 1 do

5: Update SregReal,SregImag and insert new inputdata

6: old_0.real()← SregReal[1]

7: old_0.imag()← SregImag[1]

8: old_32.real()← SregReal[33]

9: old_32.imag()← SregImag[33]

10: old_64.real()← SregReal[65]

11: old_64.imag()← SregImag[65]

12: (n)ewpkt=TIMESYNCbusy, old_0, old_32, old_64

13:

The algorithm 3 describes the scfdma_pktdet function. The goal of this function

is to detect the start of a new packet (using the Schmidl-Cox algorithm), and once

29

detected, to stream out data to the further blocks down the line in the receiver.

This function initializes the SregReal and busy to false. The PackDetectLoop

shifts in the new input_data and calls the T imeSync function. The T imeSync func-

tion takes the content of shift register and computes auto and cross correlation values

to find the packet location (as per the Schmidl-Cox algorithm described in the previous

chapter). The out_data streams the data based on start of packet in input_data and

newpkt variable tell if the packet is detected or not.

The T imeSync function computes the auto and cross correlation of which the de-

scription was given in the previous chapter on the Schmidl-Cox method.

These auto and cross correlation values are used in checking the condition for the

relation to cross the threshold value in comp block. It is also checked that the ratio

remains above the threshold for some values which ensures that the threshold crossing

is not due to some noise but the actual preamble is detected. The remaining frame is

received and is passed on to the memstore for extraction of preamble,pilots and data

symbols from the data stream.

Optimization

The scfdma_pktdet function has two arrays "Sreg.Real" and "Sreg.Imag". These ar-

rays are used to shift in the received data in for preamble detection. The T imeSync

function uses 0th, 32nd and 64th values of this shift register. In order to access these

values the array is partitioned completely. This is accomplished using the pragma

#pragma HLS ARRAY_PARTITION variable=Sreg.Real complete dim=1

#pragma HLS ARRAY_PARTITION variable=Sreg.Imag complete dim=1

The PackDetectLoop is also pipelined. The TimeSync function is pipelined in order to

process one sample in one clock cycle.

30

BRAMs DSP48Es FFs LUTs TL II
Tclk

(ns)

Before

Optimizations 4 20 554 456 158 159 9.78

After

Optimizations 0 20 2600 414 4 1 8.51

Table 4.2: Preamble detection module before and after optimizations

4.2 Receiver

Algorithm 4 Receiver

1: procedure SCFDMA_RX(input_data, data_out)

Input: input_data is input stream of data

Output: data_out are demodulated bits after receiving one frame it has a length of

2560

2: MEMSTORE(input_data, extracted_pilots, extracted_data)

3: CHANNEL_ESTIMATION(extracted_pilots, est_channel)

4: CHANNEL_EQUALIZATION(extracted_data, est_channel, equalized_data)

5: GENERATELLRS(equalized_data, LLR)

6: LLRLoop:

7: for i = 1→ NO_BLOCKS do

8: for j = 1→ BLOCK_LENGTH do

9: if DataLoc[m]==i then

10: LLR[k]← PhCorrectData[j][i].Real

11: k ← k + 1

12: LLR[k]← PhCorrectData[j][i].Imag

13: k ← k + 1

14: m← m+ 1

15: end if

16: end for

17: end for

18: HARDDECODELLRS(LLR,Decoded_bits)

19: SERIALTOPARALLEL(Decoded_bits, data_out)

20: end procedure=0

The algorithm 4 describes the receiver flow. The first block in the receiver chain is packet detec-

tion and is kept outside the receiver main module. The packet detection module will be always

active and once it detects the packet it will raise a high signal and then data will be stored in

memstore and is copied to subsequent modules in the receiver chain. This way receiver mod-

ules will be held in active state only when packet detection happens. The scfdma_pktdet func-

31

Module BRAMs DSP48Es FFs LUTs TL II
Tclk

(ns)

memstore 0 0 38 86 2318 2318 6.42

Channel_Estimation 28 22 1931 2181 39102 39102 8.67

Channel_Equalization 41 28 2101 3211 138238 138238 8.39

generateLLRs 1 0 65 143 4105 4105 4.10

hardDecodeLLRs 0 0 53 89 7685 7685 4.10

serialtoparallel 0 0 115 198 5,125 5,125 4.10

Receiver 91 50 4388 6096 200258 200259 8.67

Table 4.3: Timing and area information of unoptimized receiver

tion detects preamble using Schmidl-Cox algorithm in input_data and on detection it transfers

the input data to memstore which stores the incoming data and removes the cyclic prefixes,

stores the pilots in extracted_pilots and data in extracted_data. extracted_pilots has length

of 128 and extracted_data has 4 blocks with 512 symbols in each. The extracted_pilots are

fed to Channel_Estimation function which produces est_channel.

The Channel_Estimation has a length of 20, which is zero appended to make of length 512.

The Channel_Equalization function takes the est_channel and extracted_data to produce

equalized_data.

The generateLLRs function takes the equalized_data which is phase corrected and produce

LLR. The pilots inserted in the data are used for phase correction. The LLRLoop takes data

from the DataLoc and puts real and imaginary parts in LLR. The hardDecodeLLRs decode

the bits and finally serialtoparallel to data_out, the message bits.

The top-level function of the receiver is scfdmarx. The function prototype is as follows.

void scfdma_rx(

myStream <data_t> input_data,

ap_uint<16> data_out[160]);

Basic optimizations on receiver Algorithm which was implemented were synthesized by

applying basic transformations namely dataflow pipelining. The table 4.4 shows the result be-

fore and after dataflow pipelining of the receiver. Clearly this result is very far away from a

real-time implementation since the initiation interval (II) is extremely large compared to our

target of 12,000 clock cycles.

In order to analyze further we see the component wise breakup of the receiver as shown in

the table 4.3.

The main optimization objective in receiver design is to minimize the Iteration Interval (II)

which maximizes the throughput of the design. The minimizing iteration interval design strategy

32

Received

Frame
(emstore

Channel

Estimation

Channel

E)ualization

*hase

Correction

Generate

+ Decode

--Rs

Serial ./

*arallel

36tput binary

data

Figure 4.2: Receiver after dataflow pipelining

BRAMs DSP48Es FFs LUTs TL II
Tclk

(ns)

Before

dataflow 91 50 4388 6096 200258 200259 8.67

After

dataflow 132 50 4489 5871 74399 57482 8.67

Table 4.4: Receiver results before and after dataflow pipelining

(?) is to process as much as data as possible in the fewest cycles. The core idea is to apply data

flow at function level and loop pipelining to each loop. In the receiver design, the top function

is data-flow pipelined. The Figure 4.2 shows the data-flow pipelined design for receiver. After

data flow pipelining additional 41 BRAMs were used. These BRAMs were used to store the

data at intermediate stages and helps to reduce II . It can also be seen that the II is determined

largely by channel equalization and channel estimation which are having II of 57482 and 14850

respectively even though all other modules are well within the design constraint of 12000 cycles.

It is clear that a simple synthesis of the receiver will not be sufficient to meet the required

throughput constraints. We now describe each of the sub-functions in the order they are called,

and study the optimizations applied at each stage to improve the resulting architecture.

33

4.2.1 Channel Estimation

Algorithm 5 DFT based Channel estimation algorithm

1: procedure CHANNEL_ESTIMATION(extracted_pilots, est_channel)

Input: extracted_pilots are received pilots for channel estimation

Output: est_channel is the output of channel estimation algorithm used for equaliza-

tion

2: direction← true

3: FFT(extracted_pilots, pilots_CE_freq, direction)

4: EnvelopLoop:

5: for i = 1→ NO_CE_PILOTS do

6: Envelop[i]← pilots_CE_freq[i]× PilotsFreq⋆[i]

7: end for

8: MatIFFTLoop:

9: for i = 1→ CHANNEL_LENGTH do

10: for j = 1→ NO_CE_PILOTS do

11: est_channel[i]←

ChEstMat[i ∗NO_CE_PILOTS + j]× Envelop[i]

12: end for

13: end for

14: end procedure

The algorithm 5 describes the function Channel_Estimation. In order to obtain the

est_channel the received extracted_pilots are correlated with the known pilots. The cor-

relation is performed in frequency domain by using DFT. If Y (z) is the frequency response

of extracted_pilots and X(z) is the frequency response of the transmitted pilots then the esti-

mated channel is calculated as Ĥ(z) = Y (z)/X(z). In the discrete domain this is approximated

as Ĥ(n) = Y (n)/X(n). The FFT function computes 128-point FFT of the extracted_pilots.

The pilots_CE_freq is multiplied with the complex conjugate of the PilotsFreq vector to ob-

tain the Envelop. The MatIFFTLoop multiplies the Envelop with the ChEstMat, which

is an Inverse-DFT matrix to produce the est_channel. The est_channel has most of the power

concentrated in the first few coefficients as symbol period is longer than the duration of the chan-

nel impulse response (Kang et al. (2007)). The channel impulse response is limited to length of

20 as mostly noise exists outside the first few coefficients. The inverse-DFT for first 20 values

is computed using matrix multiplication.

34

BRAMs DSP48Es FFs LUTs TL II
Tclk

(ns)

Before

Optimizations 36 22 1938 2093 26656 14850 8.67

After

Optimizations 67 96 7319 5291 12348 11807 8.33

Table 4.5: Channel estimation results before and after optimizations

Optimizations

As per the iteration interval minimization strategy, loops contained in the functions are pipelined.

The vector-vector multiplication in the EnvelopLoop is pipelined. The inner MatIFFTLoop

of the matrix-vector multiplication is pipelined which is used to maximize the throughput. This

is accomplished using the pragma

#pragma HLS PIPELINE

The FFT is used both in the channel estimation as well as equalization phases. In the next

section we will see some of the optimizations that are tried out in FFT.

4.2.2 FFT

The FFT used in the system is described in Salaskar (2016) which uses the burst mode of opera-

tion of the FFT. The same set of optimizations has been tried out to check whether the hardware

synthesis results holds good with the new hardware resource constraints.

Algorithm 6 describes the standard Decimation In Frequency Fast Fourier Transform (DIF-

FFT) algorithm. This is a 2-loop iterative algorithm modified from the standard 3-loop algorithm

(Liu et al. (2009)). The outer loop counts the number of stages and inner loop count over the

number of butterfly computations. The number of stages in the N-point FFT computations is

log2N and number of butterfly computations in a stage is N
2 .

The index variable provides the index of the butterfly coefficients and bottom and top vari-

ables provide the lower and upper addresses in Xin array. The dir variable decides whether the

operation to be performed is FFT or Inverse-FFT. This algorithm performs in-place computa-

tion, so the variable Xn is read and written in a loop.

The Procedure ComputeButterfly describes the butterfly operation. The additions and

multiplications are performed on complex numbers. The dir variable chooses between forward

35

and inverse FFT (complex conjugate of the twiddle factor). The FFT/IFFT output is scaled by

2 at each stage similar to Xilinx FFT IP. The twiddle factor values are pre-computed and stored

in the ROM.

Algorithm 6 DIF-FFT algorithm

1: procedure FFT(Xin,Xk, dir)

2: for i = 1→ N do

3: Xn(i)← Xin(i) ⊲ buffer incoming data

4: end for

5: for Stages = 1→ log2(N) do ⊲ Running over number of stages

6: for Butterfly = 1→ N
2

do ⊲ Butterfly in a stage

7: index← butterflyCoefficientIndex

8: bottom← LowerAdressInXn

9: top← UpperAdressInXn

10: COMPUTEBUTTERFLY(Xn, index, top, bottom)

11: end for

12: end for

13: BITREV(Xn,Xk) ⊲ Arrange data in normal order

14: end procedure

15: procedure COMPUTEBUTTERFLY(Xn, index, top, bottom, dir)

16: if dir then

17: Xn[top]← (Xn[top] +Xn[bottom])

18: Xn[bottom]← (Xn[top]−Xn[bottom]) ⋆ Twiddle[index]

19: else

20: Xn[top]← (Xn[top] +Xn[bottom])

21: Xn[bottom]← (Xn[top]−Xn[bottom]) ⋆ Twiddle[index]⋆

22: end if

23: end procedure

24: procedure BITREV(Xn,Xk)

25: for Stages = 1→ N do

26: Xk[BitRevAddr[i]]← Xn[i]

27: end for

28: end procedure

Optimizations

A number of optimizations similar in lines with Salaskar (2016) were tried out and achieved a

good implementation of the FFT.

36

Unoptimized The estimated hardware usage of the unoptimized FFT implementation is

given in table 4.6.

BRAM_18K DSP48E FF LUT TL II Tclk

(ns)

5 6 461 668 11806 11806 8.33

Table 4.6: Resource usage and latency for unoptimized design

It is clear from the results obtained for unoptimized design that the default implementation

by Vivado HLS minimizes resource consumption and the level of parallelism. The design uses

5 BRAM_18Ks. It uses 2 BRAMs for storing sine and cosine values i.e. twiddle factors. It

uses another 2 BRAMs for storing the buffered input complex values (one each for real and

imaginary part) and one for storing the bit reverse addresses.

The design uses 5 DSP48E (Xilinx hard macro for multiply/add type operations) for com-

plex multiplications involved in butterfly computation and one for computing the index for co-

efficients, thus utilizing total of 6 DSP48E blocks.

As the iteration interval is one more than the latency we can see that no hardware paral-

lelism has been exploited in the design. The optimizations that are performed in the FFT are the

following

PipelinedLoops In order to reduce latency of the design we pipeline all the three loops. The

results after pipelining are in table 4.7. From these results, we see that, though the design uses

BRAM_18K DSP48E FF LUT TL II Tclk

(ns)

5 6 530 803 7942 7942 8.33

Table 4.7: Resource usage and latency after Pipelining Loops

same number of BRAM_18K and DSP48E as unoptimized design, the latency/interval has de-

creased and the clock period achieved has increased. The design is not pipelined in the butterfly

computation because of carried dependency. This is a dependency between operations in an

iteration of a loop and an operation in a different iteration of the same loop. The tool by default

assumes that a read cannot be performed before the write from the previous iteration is complete.

DependenceRemoval In order to remove dependency on variable Xn we specify inter it-

eration dependence removal directive. After applying this optimization, results are in Table 4.8

37

BRAM_18K DSP48E FF LUT TL II Tclk

(ns)

5 6 563 804 5640 5640 8.33

Table 4.8: Resource usage and latency after dependence Removal

From these results, we see that the design uses same number of BRAM_18K and DSP48E,

the latency/interval has decreased and the clock period achieved has decreased.

BitRev The BitRev function is shown in algorithm 25 uses pre-computed bit reversed ad-

dresses to perform the bit reverse.

The resulting FFT architecture meets the throughput requirements as well as being quite

compact. The FFT is used in multiple places in the channel equalization section of the commu-

nication system. The compact nature of the block allows us to instantiate multiple instances of

FFT.

4.2.3 Channel Equalization

The algorithm 7 describes the function Channel_Equalization. The est_channel is append-

ing with zeros to make it equal length as symbol of extracted_data. The equalization is per-

formed in frequency domain. The FFT of est_channel is computed as EstimatedChannel

Freq. The FFTLoop takes 512-point FFT for each symbol of extracted_data to convert into

frequency domain as RxDataFreq. The EqualizeLoop multiples each symbol of RxData

Freq with the complex conjugate of EstimatedChannelFreq and divides by the square mag-

nitude of the EstimatedChannelFreq. The IFFTLoop takes back the EqDataFreq data to

time domain as equalized_data.

Optimizations

Data flow pipelining has been tried in the function Channel_Equalization which allows FFT,

equalization and IFFT operations to operate in parallel. The extracted_data, RxDataFreq,

EqDataFreq and equalized_data are partitioned into 4 blocks of 512 symbols, which allows

all the FFT and IFFTs to operate in parallel. The IFFTLoop is unrolled. The EqualizeLoop

38

Algorithm 7 Frequency Domain Channel equalization

1: procedure CHANNEL_EQUALIZATION(extracted_data,est_channel,equalized_data)

Input: extracted_data received data for equalization,est_channel estimated channel

for equalization

Output: equalized_data output data after equalization

2: Append zeros to make est_channel length equal to BLOCK_LENGTH

3: direction← true ⊲ select mode as FFT

4: ⊲ FFT of estimated channel

5: FFT(est_channel, EstimatedChannelFreq, direction)

6: FFTLoop: ⊲ Data to frequency domain

7: for i = 1→ NO_BLOCKS do

8: FFT(extracted_data,RxDataFreq, direction)

9: end for

10: EqualizeLoop: ⊲ Equalize in frequency domain

11: for i = 1→ NO_BLOCKS do

12: for j = 1→ BLOCK_LENGTH do

13: EqDataFreq[i][j]← RxDataFreq[j]×
EstimatedChannelFreq∗[j]
|EstimatedChannelFreq[j]|2

14: end for

15: end for

16: direction← false ⊲ select mode as IFFT

17: IFFTLoop: ⊲ Data back to time domain

18: for i = 1→ NO_BLOCKS do

19: FFT(EqDataFreq, equalized_data, direction)

20: end for

21: end procedure

is pipelined to reduce the iteration interval. The Figure 4.3 shows the result after application of

all the optimizations.

4.2.4 Phase Correction

The algorithm 8 describes the function getCordicAndCorrect. The ExtractP ilotsLoop

nested loop extracts pilots from the symbols from the extracteddata in to the RxPilots us-

ing Mask. The AngleP ilotsLoop converts the RxPilots complex values from (x, y) to (r, θ)

using Vectoring mode of Cordic function and accumulates the angle for all the extracted pilots

in a symbol. The AvgAngle is calculated by dividing the accumulated angle by NO_PILOTS

belonging to one block of symbols. The AvgAngle with magnitude of one is converted from

(r, θ) to (x, y) using rotation mode of Cordic function to PhaseErr. The equalizeddata is

39

FF7 I997

FF7 I997

FF7 I997

FF7 I997

FF7
Estimated Channel

R: Data E;ualised Data

Figure 4.3: Block Diagram of Channel Equalization

BRAMs DSP48Es FFs LUTs TL II
Tclk

(ns)

Before

Optimizations 41 28 2101 3211 138238 138238 8.39

After

Optimizations 152 52 5259 7283 12888 12888 8.39

Table 4.9: Channel equalization results before and after optimizations

BRAMs DSP48Es FFs LUTs TL II
Tclk

(ns)

Before

Optimizations 3 12 867 1289 4293 4293 8.39

After

Optimizations 3 12 1962 5327 1322 1322 8.65

Table 4.10: Phase correction results before and after optimizations

multiplied by the complex conjugate of the PhaseErr to get PhCorrectData.

Optimizations

The unoptimized phase correction module does not use any BRAMs for pilots locations or pilot

values. After pipelining the ExtractP ilotsLoop, AngleP ilotsLoop and PhaseCorrLoop,

the pilots locations and pilots values can be stored in BRAMs. This causes decrease in number

of FFs and LUTs but increase in BRAMs and 4× decrease in the iteration interval.

The algorithm 9 describes the CORDIC algorithm. There are two modes: vectoring mode

and rotation mode. It is chosen using the Mode variable. If the mode is rotation mode then x

40

Algorithm 8 Phase Correction

1: procedure GETCORDICANDCORRECT(equalized_data, PhCorrectData)

Input: equalized_ata input data for Phase correction

Output: PhCorrectData output data after phase correction

2: ExtractPilotsLoop: ⊲ Extract pilots from symbols

3: for i = 1→ NO_BLOCKS do

4: for j = 1→ BLOCK_LENGTH do

5: if Mask[j] = PILOT then

6: RxPilots[m]← equalized_data[i][j]

7: m← m+ 1

8: end if

9: end for

10: Angle← 0

11: Mode← false ⊲ Select Vectoring mode

12: AnglePilotsLoop:

13: for i = 1→ NO_PILOTS do

14: AngleV ector ← RxPilots[i]× Pilots⋆[i]

15: CORDIC(AngleVector.Real,AngleVector.Imag,Theta,Mag,Mode)

16: Angle← Angle+ Theta ⊲ Accumulate angle over all pilots

17: end for

18: AvgAngle← Angle

NO_PILOTS

19: Mode← true ⊲ Select Rotation mode

20: CORDIC(Phase.Real,Phase.Imag,AvgAngle,Mag,Mode)

21: PhaseCorrLoop:

22: for i = 1→ NO_BLOCKS do ⊲ Apply phase correction

23: PhCorrectData← equalized_data× PhaseErr⋆

24: end for

25: end for

26: end procedure

is initialized with the constant multiplication factor, y as 0 and z to the angle to be rotated θ

as described in the section 3.2.6. Similarly in vectoring mode, (x, y) is assigned input vector

(x0, y0) and z as zero. The CORDIC iterations are performed CORDIC_TAB number of

times. In each iteration (x, y, z) tuple is updated based on vectoring or rotation mode. In

rotation mode the update is made based on value of z while in vectoring mode update is based

on y. The new value of x and y is calculated based on previous values of x and y and the iteration

count. The z is added/subtracted values from CORDIC_TAB which are pre-computed values

of tan−1.

The unoptimized CORDIC module has iteration interval of 33, while after pipelining the

41

Algorithm 9 Cordic algorithm

1: procedure CORDIC(x0, y0, θ, r,Mode)

2: if Mode = true then ⊲ Rotation Mode

3: x← CORDIC_1K, y ← 0, z ← θ ⊲ Init with scaling factor and angle to

be rotated

4: else ⊲ Vectoring Mode

5: x← x0, y ← y0, z ← 0 ⊲ Init vector

6: end if

7: for i = 1→ CORDIC_NTAB do

8: if Mode = true then ⊲ Rotation Mode

9: if z < 0 then

10: xt ← x+ y >> i

11: yt ← y − x >> i

12: zt ← z + CORDIC_TAB[i]

13: else

14: xt ← x− y >> i

15: yt ← y + x >> i

16: zt ← z − CORDIC_TAB[i]

17: end if

18: else ⊲ Vectoring Mode

19: if y < 0 then

20: xt ← x− y >> i

21: yt ← y + x >> i

22: zt ← z − CORDIC_TAB[i]

23: else

24: xt ← x+ y >> i

25: yt ← y − x >> i

26: zt ← z + CORDIC_TAB[i]

27: end if

28: end if

29: x← xt, y ← yt, z ← zt ⊲ Update

30: end for

31: x0← x, y0← y, θ ← z, r ← x× CORDIC_1K

32: end procedure

42

BRAMs DSP48Es FFs LUTs TL II
Tclk

(ns)

Before

Optimizations 0 0 286 843 33 33 8.39

After

Optimizations 0 0 574 4875 4 1 8.65

Table 4.11: CORDIC results before and after optimizations

CORDIC function, we are able to achieve iteration interval of 1 for CORDIC block. We get

about 6× increase in LUTs and 2× increase in FFs while decreasing iteration interval from 33

to 1.

4.2.5 Discussion

This chapter reveals that the complexity of the receiver structure is more than the transmitter,

and a direct C/C++ implementation results in a design which will not meet the throughput re-

quirements. A major chunk of the optimizations involve loop pipelining and loop unrolling but

in order to have full benefits of the optimizations modification in algorithm also is required. By

applying all these directives the transceiver synthesis results shows that the initiation interval is

kept below the desired.

In the next chapter we deal with the final consolidated transceiver results followed by

details of testing on the actual hardware, FPGA board (XC7V585T-FFG1761) from DEAL,

DRDO,Dehradun.

4.3 Integration using Vivado IP Integrator

The IP level block diagram of the SC-FDMA system integrated with various peripherals is

shown in the Figure 4.6,where data flow for transmitter chain and receiver chains are shown in

separate colours. We took a two way approach for achieving the objective of implementing the

hardware on customized FPGA board. First implement the hardware and software platforms in

VC707 evaluation board and then retarget the design for customized board as implementing and

evaluating the design on an evaluation board will be easier compared to the latter. The whole

block diagram is built around AD9364 RF transceiver IP’s reference design. Required modi-

fications are done on the block diagram by integrating SC-FDMA project related customized

IP’s. As the embedded software required to run on the reference design is LwIP echo server

(custom modified), then minimal hardware required for that application are added along with

43

the reference design. They are

• Processor - used is Microblaze softcore processor.

• Ethernet MAC - used is Axi-Ethernet to send and receive packets.

• Interrupt Controller - used is Axi-Intc.LwIP adapters work in interrupt mode only.Hence

the packet reception or transmission is notified to software via interrupts by the ethernet

MAC. It also connects multiple source of interrupts to the processor.

• Programmable Timer - used is Axi-Timer. LwIP required periodic interrupts to update

TCP timers.

The Figure 4.4 depicts the data flow which is shown by red colour in actual hardware during

transmission without ethernet. Microblaze also configures the AD9364 module. The Figure 4.5

depicts the data flow in actual hardware during reception without ethernet and the Figure 4.6

depicts the block design of the integrated SC-FDMA system in Vivado IP Integrator.

<=>?ma_t@_A

Dicroblaze

Erocessor

t@_bitslice_A

>F>H_A

A

X

I
IN

J
S

R

U
V
N
N

E

U
J

adY3Z[\@]^annel

3`

3`

aZ
aZ

da=_i

da=_b

egh\

t@

r@

Figure 4.4: Integration of SC-FDMA transmitter system on Vivado IP Integrator

The scfdma_tx_0 IP takes 160 words of 16 bit data as input and produces the 2400 symbols

of 16 bit each of I and Q data. The data at the output of the scfdma_tx_0 IP is 32 bit (I and Q

combined). It is fed to a Xilinx FIFO fifo_0 IP which is having the write (100MHz) and read

(20 MHz) clock cycles of different frequency. This is because the receiver IP scfdma_rx_0 is

limited to 20 MHz as its overall latency is close to 12000 cycles. Hence reading from the FIFO

will be done at a slower pace and is fed to a customized IP tx_bitslice which divides the 32

bit word into 16 bit I and Q samples. The I and Q samples is fed to DAC of RF transceiver

IP AD9364 where it is called baseband signal and is upconverted to the transmitter LO of set

frequency (configured through SDK) now called band pass signal and is combined and output

as analog differential signal on the Tx Channel.

44

Microblaze

jrocessor

lmnomapdoutbunp
r

lmnomappuvoet

pr

A

w

I
IN

T
E

R
C

O
N

N
E

C
T

ad9364

fifo_1rx_concat_0

scfdma_rx_0

Rx Channel

16

16

32

32

adc_i

adc_q

UART

tx

rx

Figure 4.5: Integration of SC-FDMA receiver system on Vivado IP Integrator

scfdma_tx_0

Microxlaze

yrocessor

scfdma_douzxuf_

0

scfdma_p{z|et

_0

tx_xitslice_0

dma

fifo_0

ethernet

A

}
~
~ N

T
E

R
C

O
N

N
E

C
T

ad9364

fifo_1rx_concat_0

scfdma_rx_0

�����

Rx Channel

Tx Channel

32

32

16

16

16

16

32

32

dac_i

dac_q

adc_i

adc_q

UART

tx

rx

Figure 4.6: Integration of SC-FDMA system on Vivado IP Integrator

45

In testing using a single board, the Tx Channel and Rx Channel are looped back externally using

a SMA cable. Hence the bandpass signal thus received through Rx Channel is down converted

using the set receiver LO set frequency (configured through SDK - for single board both these

frequencies must be same say 2.1 GHz or say 2.4 GHz) called base band signal and is converted

from analog to digital and divided into its I and Q components. It is combined into a 32 bit word

using rx_concat. RF transceiver contains 12 bit σ-δ ADC and DAC. So necessary logics has

been implemented in tx_bitslice and rx_concat without compromising on the accuracy.

The combined digital data written to the FIFO IP fifo_1 is fed to the scfdma_pktdet_0 where

the packet detection happens and the data is fed to the scfdma_rx_0 where it is decoded and

through the scfdma_doutbuf_0 it is read by the processor using an ISR through the AXI bus.

4.4 Embedded Software using Xilinx SDK

The embedded software application running on the integrated system (Microblaze processor

and customised SC-FDMA transmitter and receiver IP’s) is based on the LwIP echo server

application. A minimum requirement of 2MB space of RAM is required for the application to

run. Firstly ,a board support package (BSP) has been created which is a collection of libraries

and drivers that will form the lowest layer of the application software stack. The embedded

software application must run on top of a the software platform using the APIs that it provides.

In this project we are using standalone OS for creating BSP. When the BSP is built, it includes

standard C libraries and device drivers for all the peripherals that are used in the project.The

customised IP’s scfdma_tx_0 and scfdma_doutbuf_0 are AXI-Lite based whereas

scfdma_pktdet_0 and scfdma_rx_0 is of type ap_ctrl. IP’s which are using AXI-Lite interfaces

created its own API’s as part of Vivado-HLS implementation itself and is made available at the

SDK library through the export hardware wizard of Vivado IP Integrator.

The Figure 4.7 shows the flow chart of the initialization routines, Figure 4.8 shows the flow

chart showing the events happening during transmission and the Figure 4.9 shows the events

happening during the reception of SC-FDMA with modified LwIP echo server application which

has been used to test the integrated system. The function call associated with each event also

is given side by side to the flow chart for easy refernce. The orange colour blocks on the flow

chart shows the events that are happening on the hardware and the rest describes the events that

are driven by software.

In Xilinx SDK create a new application project using the LwIP echo server application

which uses RAW APIs with standalone OS and hardware platform exported from Vivado IP

46

Initialize l�ip

Initialize A���64

Initialize

Micro�laze

platform for

interrupts

init_platform��

do_ip_setup��

ad9361_ma����

Initialize �����A

related I�s and

re�ister handler for

interrupts

scfdma��

Figure 4.7: Flow chart of SCFDMA embedded software initialization routine

Polling for pa��et reception

Ne�

�a���t recei�ed�

Cop� pac�ets from dri��r

�uffer to ��ip �uffer

��ed the data as input to

scfdma transmitter� forms

transmitter frame and send

to ��

No

¡es

m�_axiemacif_input

¢echo_netif£

p¤lo�_le�el_input¢netif£

scfdma_send_pac�et

¢¢char ¥ £¢p¦§pa�load£�p¦§ len££

Tx Channel

Figure 4.8: Flow chart of SCFDMA embedded software transmitter routine

47

Data sampled at

A¨C

©aª«¬t ¨¬­ected®

¯tore the pac«ets

¯C°±¨²A recei³¬s the

data and decode

´¬nerated interrupt

after completion of

decodinµ

Micro¶laze recei³¬s the

data throuµh A·I on ¸¯R

No

¹es

No

¹es

Rx Channel

Copº data from »¼ip ¶uffer

to dr½³er ¶uffer and send

³ia ethernet

rx_pac«et¾ ¿

dump_and_clear_pac«e­¾ ¿

Figure 4.9: Flow chart of SCFDMA embedded software transmitter routine

48

integrator. The following changes needs to be done on the application side. Add the following

line

options |= XAE_PROMISC_OPTION;

to the function

void init_axiemac(xaxiemacif_s *xaxiemac, struct netif *netif)

in the file

bsp/sys_mb/libsrc/lwip141_v1_5/src/contrib/ports/xilinx/

netif/xaxiemacif_hw.c

and also add the following to the main.c file so that the IP can be set manually.

#undef LWIP_DHCP

#undef LWIP_ARP

The XAE_PROMISC_OPTION is set to receive all packets that are appearing on the network

interface at ethernet level. After all initialization routines and manual setting of IP’s are over the

application waits in polling mode to check if a packet is received. When a packet is received, it

is first copied from the ethernet driver buffers into the LwIP buffers using DMA in SG mode. In

order to copy the packet as fast as possible, the LwIP buffers (pbufs) should be allocated from

the pool of buffers (PBUF_POOL). When a packet has been copied, it will act as a payload

for the scfdma_tx_0 IP to take as input and form the transmitted frame and send via the RF

transceiver and free the lwip buffer. As the ADC and DAC of RF transceiver is in loop back

through physical connection using SMA cables, the packet is fed to scfdma_pktdet_0. Once

the packet is detected the data is further received by scfdma_rx_0 and the decoded data is

received by the lwip buffer and is copied to the ethernet buffer using DMA in SG mode. So the

data transfer from and into the ethernet interface is facilitated by DMA. The interface used for

connecting MAC with PHY of the ethernet chip is through SGMII.

49

CHAPTER 5

Integration Testing and Results

This chapter provides the methods used to test the design on board using software running on

the processor and debug the design using ILA. The transmitter and receiver are implemented

in hardware using the VivadoTMHLS tool from Xilinx. The VC707 evaluation board using the

Virtex 7 FPGA from Xilinx was used in the initial implementation and later used customized

FPGA (XC7V585T-FFG1761C) board from DEAL,DRDO. The table 5.1 gives the utilization

and performance estimate for the transmitter and receiver. From the table 5.1 it is clear that

Channel Estimation and Channel Equalization are the bottle-neck in order to improve the it-

eration interval of the receiver. As our timing constraint is met in terms of number of cycles

consumed it is an accepted implementation.

The table 5.2 gives the post implementation result of the integrated SC-FDMA system The

utilization of the complete integrated transceiver is well within the FPGA resources.The next

section deals with the method of testing design on board.

5.1 Method of on-board testing and results

The first step towards validating the design has been completed in the Vivado-HLS tool through

the various design flows namely C-Simulation,Synthesis,C/RTL cosimulation. However, the fi-

nal verification of the system requires actual implementation in hardware.The customized board

from DEAL has the provision to test the integrated system upto bandpass signal level. For testing

purpose two hardware boards has been connected in a criss-cross fashion means the transmitter

of one board is connected to the receiver of another board and vice-versa.The Figure 5.1 depicts

the test setup.The boards are connected to the individual PC’s through ethernet cable.The two

FPGA boards physically connected with each other using SMA cables implemented with SC-

FDMA system acts like a hub. The transmitter and receiver ports on the board are interfaced

through SMA cables with two attenuators of 10dB,50 Ohms each connected in series with a sin-

gle transmitter receiver pair. An external attenuation of 20 dB is provided inorder to bring the

transmit channel power of -17 dB (without transmitting attenuation set in SDK) well within the

lower and upper levels of input power handling capacity of -50 dB and -20 dB respectively of

RF transceiver module for faithful reception of the signal. The Table 5.3 gives the configuration

Module BRAMs DSP48Es FFs LUTs TL II
Tclk

(ns)

WimaxEncoder_Loop1 7 0 674 2303 6501 6501 7.38

WimaxEncoder_Loop2 3 0 407 1200 2419 2419 4.81

Transmitter 20 0 1199 3618 8921 6502 7.38

Pktdet 0 20 2600 414 4 1 8.51

MemStore 0 0 92 84 2322 2322 4.38

ChannelEstimation 59 96 6496 6000 5649 5641 8.33

ChannelEqualization 99 64 9408 16423 1 6153 8.75

GetCordicAndCorrect 3 12 2067 5712 1323 1323 8.65

hardDecodeLLRs 0 0 48 158 3842 3842 5.39

SerialToParallel 0 0 116 167 2562 2562 6.52

Receiver 213 160 17792 25882 8514 6153 8.75

Virtex 7 1590 1260 728400 364200

Table 5.1: Timing & area information for transmitter and receiver

Module LUT LUTRAM FF BRAM DSP

SC-FDMA 82689 7882 118230 321.5 486

FPGA 364200 111000 728400 795 1260

Table 5.2: Post implementation result of SC-FDMA on DEAL FPGA board

parameters set for the RF transceiver

Parameter Board 1 Value Board 2 Value

Tx LO Frequency 2100000000 1900000000

Rx LO Frequency 1900000000 2100000000

Tx RF Bandwidth 35000000 35000000

Rx RF Bandwidth 35000000 35000000

Sampling Frequency 20000000 20000000

Tx Attenuation 10000 10000

Rx RF Gain 35 35

Table 5.3: Configuration settings for AD9364 RF Transceiver

5.1.1 Procedure to set up integration testing

• The boards and PC’s has to be connected as shown in Figure 5.1.

• Communication between the boards should be through SMA cables with 20 dB attenua-

tors and through ethernet cable with board and PC.

• Power ON the entire system.

• Start hyperterminal application like gtkterm on both PC’s with baud rate set to 115200.

(It should be same as baud rate set for UART through IP configuration wizard in Vivado

IP integrator)

51

PC 1 ÀC 2

DEAL ÁÀÂA ÃOARÄÅÆ CONNECTED IN LOOÀ ÃACÇ

Ethernet CaÈle Ethernet CaÈle

Figure 5.1: Diagram showing the testing of SC-FDMA system on actual hardware

• Set the IP of PC 1 and PC 2 using the command’s as shown below

ifconfig eth0 192.168.1.20 netmask 255.255.255.0 mtu 1400

ifconfig eth0 192.168.1.30 netmask 255.255.255.0 mtu 1400

reason for mtu set to 1400 is explained in section Integration issues and solutions.

• Download the bit file and application elf using JTAG and Vivado tool.

• Set the Tx and Rx LO frequencies as per the Table 5.3 through the UART user interface.

• After successful completion of all the initialization routines, take terminal on both PCs

and try to ping the other PC.

• If reply for the ping command appears on the terminal, then it is sure that the whole

system is working fine.

The ping command is used for testing the system . It checks the working of LwIP echo

server application as well as SC-FDMA transmitter and receiver system. A typical message on

the hyper-terminal is as shown below where TC denotes SC-FDMA Transmit Count, RC de-

notes Receive Count of SC-FDMA and EC denotes Error Count, where packets are not received

properly.

5.1.2 Description of events with ping on the system SC-FDMA

After setting up the PCs with IPs as discussed above, when the user runs the ping command on

one PC say PC1,the command is received by the FPGA board connected to its network. The

ethernet driver buffer of the FPGA copies data to LwIP buffer which is used by the SC-FDMA

transmitter as a payload for its transmision . The SC-FDMA carrier modulated signal is received

by the receiver of the other FPGA board through the SMA cable and is decoded correctly by the

52

receiver and is copied to LwIP buffer. Finally the data is fed into the ethernet layer of the other

FPGA board and is received by the PC2.Once the PC2 sees the message that there is a ping

request from PC1 (if the message is encoded and decoded correctly by SC-FDMA) the PC2

will reply for this protocol. The ping reply goes to the transmitter of SC-FDMA of the other

FPGA and the whole process once again repeats to reach PC1 as reply to its issued ping com-

mand. This way if the ping command gets reply then we can ensure that the SC-FDMA system

is operating as intended. A typical debug prints on the hyperterminal gtkterm is as shown below.

Start PHY autonegotiation

Waiting for PHY to complete autonegotiation

Autonegotiation complete

Waiting for Link to be up; Polling for SGMII core Reg

auto-negotiated link speed: 100

Press ’1 or 0’ to configure Tx and Rx as follows

’1’ will set Tx = 2.1 GHz and Rx = 1.9 GHz

’0’ will set Tx = 1.9 GHz and Rx = 2.1 GHz+++ prod id: A

+++ registered clocks

+++ adc init

+++ init gain_tables

+++ setup complete

Set Tx LO Freq is : 1900000000

Set Rx LO Freq is : 2100000000

Press a key to continue:

Done.

Initialized TX and doutbuf

TC 2 RC 0 EC 2

TC 5 RC 3 EC 2

TC 9 RC 7 EC 2

The response to ping command is also shown below

test@test4:~$ ping 192.168.1.20

PING 192.168.1.20 (192.168.1.20) 56(84) bytes of data.

64 bytes from 192.168.1.20: icmp_seq=1 ttl=64 time=1.44 ms

64 bytes from 192.168.1.20: icmp_seq=2 ttl=64 time=1.39 ms

53

5.1.3 Integration issues and solutions

CFO variations

Checksum was introduced in the application for the purpose of ascertaining the correctness of

transmitted and received data and found that they were not matched properly indicating errors in

decoded messages. As the loop back between transmitter and receiver of the same board worked

correctly the issue was associated to drift in crystal oscillator frequencies. The same has been

revealed through the analysis using a spectrum analyzer. SC-FDMA is very sensitive to clock

variations and even should match to parts per billion(ppb). One of the probable solution was to

use an external clock source and feed to both boards. But the internal connection between the

SMA clock connector to the RF transceiver chip was intentionally left open on the FMC board

and hence could not do experiments on the VC707 board.

Similar issue was repeated in the customized FPGA board and there was a potentiometer

associated with tuning of the clock of the crystal and the issue was rectified.

MTU set to 1400

The SC-FDMA system takes input of 2560 bits at a time or 320 bytes and append 8 bytes in-

cluding a string "iitm00" and length field as its header and sends it. Similarly at the receiver

when the packet first received at the lwip buffer the 8 bytes will be stripped off before moving

it to receiver for further processing. The observation was that the packet started dropping at the

larger sizes of ping command and analysis shown that the dropping of packets was due to the

packet size growing larger than the 1486 bytes as additional 14 bytes added by ethernet makes

it to more than 1500 bytes and packets get dropped at the ethernet layer. Hence the solution was

to reduce MTU to size less than 1486 and we chose 1400.

Buffer allocation failure

The processor creates buffer for the DMA in RAM and asks the DMA to transfer data through

the ethernet by making use of these buffers. The problem observed after some time of data trans-

actions. Error message of "unable to allocate pbuf in recv_handler" was raised. Analysis shown

that the pbuf after used by the SC-FDMA transmitter was not getting released. The pbuf_free()

function was added after calling scfdma_send_packet() in scfdma.c file and the problem was

solved.

DMA failed to transfer using iperf in UDP

iperf using UDP sends a burst of data and the iperf was not showing throughput. Intuitively as-

sumed that the problem might be due to the failure of DMA in handling burst data transactions

and the read and write data bursts were increased from 16 to 256 in the configuration of DMA

using Vivado IP integrator configuration wizard.

54

Flashing of Clock synthesizer to take internal clock

The wrapper code for the block design was provided by DEAL and during integration with the

customized FPGA board on VIvado 2016.2 version it was found that the flashing of Clock Syn-

thesizer was not proper resulting in the wrong generation of clock signal for the entire system.

Checking on the clock signal test point on the board using Oscilloscope revealed that clock sig-

nal levels are not showing the CMOS voltage levels and there is a large variation in frequency

instead of 40 MHz. Hence it was decided to comment the clock synthesizer portion on the sys-

tem wrapper file and instead have a separate bit file to flash the clock synthesizer and it needs to

be done only once.Bit file name is synthAD9520_3.bit. Clock synthesizer output is coming at

J17 SMA connector on the board and always shows 40 MHz.

Flashing of clock synthesizer to take external clock source

In-order to confirm that the CFO variations causes the wrong decoding of data, there was a need

to use the external clock source as reference clock and a separate flash file for clock synthesizer

has been made for this purpose.Bit file is synthAD9520_3_tcxo.bit which can take only 10

MHz clock source as input. It should be applied through J15 SMA connector on the board and

the signal shall be 1V Sine wave of 10 MHz.

Reset not working properly

There was a reset issue with the DEAL board which will ask for a power cycle each time even

if we do some modification in SDK.The issue was identified and rectified as follows

In ad9361_main.c file, changed the value of GPIO_RESET_PIN_0 (parameters.h) from 2 to 34.

In platform.c file updated the following functions to that are mentioned below. This is required

as the GPIO pin we are using > 32.

Change the following function

void gpio_direction(uint8_t pin, uint8_t direction)

ifdef_XPARAMETERS_PS_H_

XGpioPs_SetDirectionPin(gpio_instance, pin, direction);

XGpioPs_SetOutputEnablePin(gpio_instance, pin, 1);

else

uint32_t config = 0;

uint32_t tri_reg_addr;

if (pin >= 32)

tri_reg_addr = XGPIO_TRI2_OFFSET;

pin -= 32;

else

55

tri_reg_addr = XGPIO_TRI_OFFSET;

config = Xil_In32((gpio_config->BaseAddress +

tri_reg_addr));

if(direction)

config = (1 « pin);

else

config |= (1 « pin);

Xil_Out32((gpio_config->BaseAddress + tri_reg_addr),

config);

endif

To

void gpio_data(uint8_t pin, uint8_t data)

ifdef_XPARAMETERS_PS_H_

XGpioPs_WritePin(gpio_instance, pin, data);

else

uint32_t config = 0;

uint32_t data_reg_addr;

if (pin >= 32)

data_reg_addr = XGPIO_DATA2_OFFSET;

pin -= 32;

else

data_reg_addr = XGPIO_DATA_OFFSET;

config = Xil_In32((gpio_config->BaseAddress + data_reg_addr));

if(data)

config |= (1 « pin);

else

56

config = (1 « pin);

Xil_Out32((gpio_config->BaseAddress + data_reg_addr), config);

endif

Noisy data on ADC Channel

ADC output was observed noisy for single tone frequency. The problem was identified as a

wrong connection in the block diagram design and done a connection change in block diagram

by changing the DAC and ADC ENABLE signal going to FIFOs rd_en and wr_en to corre-

sponding VALID signals.

Flashing the application to enable autoboot after poweroff or reset

Auto boot of application from flash is not able to do because it requires a windows utility to

flash the NOR flash as SDK supports only BPI flash devices.

57

CHAPTER 6

Conclusions and Future Work

A complete end-to-end implementation of a specific wireless communication system using the

Vivado-HLS, Vivado IP Integrator and Xilinx SDk tools from Xilinx has been presented. The

system was coded using C++; simulated for correctness, and then synthesized to RTL. The final

design was demonstrated to work on an FPGA platform.

Some of the observations and conclusions are as follows

• By default Vivado HLS optimise resources. It tends to have high latency and the level of

parallelism achieved is minimum.

• Higher degree of parallelism and improved throughput can be achieved by judicious use

of directives involving loop unrolling, pipelining, and memory partitioning.

• A large number of design alternatives can be explored as coding and testing through

simulation are much faster at the C++ level than at RTL.

In summary, the HLS tool provides a convenient way to explore and synthesize a highly ef-

ficient implementation of the design, but requires a fairly high amount of manual intervention to

achieve good results. In the present instance, suitable tuning of the code and directives allowed

us to achieve performance at the cost of increasing hardware.

Future Work The major objective of the work was to implement the design on the FPGA

board provided by DEAL and achieve the specified data rate. The future work can concentrate

on how to improve the data rate further by the efficient use of HLS tools.

In order to increase the data rate significantly we need to increase parallelism in the design. The

bottlenecks in the design are FFT blocks for which architectures like pipelined architectures

can be explored to reduce the iteration interval. In all these cases these is a trade off between

the hardware and iteration interval. In the present instance we have chosen a relatively simple

architecture for the FFT that allows multiple FFT units to be instantiated in parallel in order to

achieve the overall computation. In the present design we have not included the LDPC as it

takes more latency than the desired data rate requirement. The future work can concentrate on

the implementation of LDPC in the system. Another drawback of the present system is effect

of channel is not added along with the transmitted data. Practical systems has to mitigate for

channel impairements and in order to have the facility for taking the channel effects into con-

sideration LDPC or channel coding schemes has to be implemented.

The LwIP echo server application can be customised further to facilitate throughput measure-

ment using tools like iperf. In the present system, the throughput measuremt using iperf did not

show up convincing results. This can be explored further.

The transmitter and receiver modules can be further divided into unique functional blocks such

that any complex systems can be build by using a combination of these blocks in a simple plug

and play manner. Parameterized implementation in the design can be brought out to accommo-

date addition of more blocks of symbols or changing size of block to adapt for different system,

support for different modulation schemes such as QAM and others, support for MIMO etc. The

use of template types of C++ increase parameterization in the design.

59

REFERENCES

1. Donald.G.Bailey, The advantages and limitations of high level synthesis for fpga based image

processing. In International Conference on Distributed Smart Cameras. 2015.

2. Kang, Y., K. Kim, and H. Park (2007). Efficient DFT-based channel estimation for OFDM

systems on multipath channels. Communications, IET , 1(2), 197–202. ISSN 1751-8628.

3. Liu, X., X. Song, and Y. Wang, Performance evaluation on FFT software implementation. In

Proceedings of the International MultiConference of Engineers and Computer Scientists. 2009.

4. Proakis, J. G. and D. G. Manolakis, Digital Processing 4th Edition. Prentice Hall, New Jersey,

2006.

5. Salaskar, A. (2016). Implementation of a single carrier frequency domain equalization

transceiver using high level synthesis.

6. Schmidl, T. M. and D. C. Cox, Robust frequency and timing synchronization for OFDM. In

IEEE Transactions on Communications, volume 45, number 12. 1997.

7. Volder, J. E., The CORDIC trigonometric computing technique. In IRE Trans. Electron. Com-

puters, volume EC, number 8. 1959.

8. Walther, J. S., A unified algorithm for elementary functions. In Proc. 38th Spring Joint Com-

puter Conf.. 1971.

9. Xilinx, Vivado Design Suite User Guide High-Level Synthesis (UG902). Xilinx (v2016.1) User

Guide, 2016a.

10. Xilinx, Vivado Design Suite User Guide,Designing with IP (UG896). Xilinx (v2016.1) User

Guide, 2016b.

11. Xilinx, UltraFast High-Level Productivity Design Methodology Guide (UG1197). Xilinx

(v2017.1) User Guide, 2017.

12. Zepernick, H.-J. and A. Finger, Pseudo Random Signal Processing: Theory and Application.

Wiley, 2013.

60

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Introduction
	Motivation
	Pros and Cons of HLS
	Design Flow Comparison between RTL and HLS

	Organization of the Thesis

	Background
	Introduction to Vivado HLS
	Data Types
	Interface Synthesis and Functions
	Area/Resource
	Pipelining
	Loops
	Arrays
	Exporting from Vivado HLS

	Introduction to Vivado IP Integrator
	AXI Architecture
	AXI Transactions

	Introduction to Xilinx SDK
	Basics of Wireless Communication System

	SC-FDMA
	System Description
	System Specification
	Frame Structure
	Schmidl Cox Algorithm
	Channel Estimation
	FFT
	Channel Equalization
	CORDIC

	Implementation of the System
	Transmitter
	Preamble detection

	Receiver
	Channel Estimation
	FFT
	Channel Equalization
	Phase Correction
	Discussion

	Integration using Vivado IP Integrator
	Embedded Software using Xilinx SDK

	Integration Testing and Results
	Method of on-board testing and results
	Procedure to set up integration testing
	Description of events with ping on the system SC-FDMA
	Integration issues and solutions

	Conclusions and Future Work

