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ABSTRACT

KEYWORDS: Cache Coherency, Snoop Based, Uni-directional, Bi-directional

The project involves design and implementation of “Ring Based Architecture for Distributed
Shared Memory Multiprocessors”. The work involves implementing snoop based ring archi-
tecture for distributed shared memory multiprocessors using flat MOESI and Tilelink protocol
for scheduling the requests generated by processor cores during instruction execution.

An implementation of a uni-directional and bi-directional ring based architecture for distributed
shared memory extended upto ring of rings, the messages will traverse all the way through the
ring uni-directionally or bidirectionally respectively in Bluespec System Verilog which accepts
memory access request from the processor and the processor searches its private cache and
then schedules the request of the ring. The ring naturally orders requests sufficiently to enable
directory-less coherence, but not in the total order that buses provide for snooping coherence.
The process reduces the access time of fetching the data from the main memory in case of
uni-directional as well as from coherent caches in case of bi-directional implementation as the
same data might be available in one of the cores of the multi-core processor. The data from the
responder reaches the initiator in a clockwise fashion in case of uni-directional implementation,
whereas for bi-directional implementation the data can reach the initiator through dual path.

The complexity in the designing and verification of hierarchical coherence protocols has been
reduced as each tier can be verified and evaluated in isolation. As a result, bug free design with
protocol heterogeneity can be created without much difficulty. This would enable the architect
to focus on performance enhancement rather than on debugging and verifying correctness of
coherence implementation. The memory hierarchy being part of the flagship SHAKTI pro-
gram of RISE Lab, successful implementation shall contributes for developing a indigenous
Microprocessor.

This dissertation presents the implementation of a ring based topology that is simpler and more
efficient than prior ring-based topologies. Our design uses simple ring networks that modifies
the MCP based protocol for implementing snoopy based protocol by using clients of the MCP.
The implementation provides a more scalable network architecture for implementing coherency
protocols while retaining the key simplicities of ring network.
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Chapter 1

INTRODUCTION AND MOTIVATION

Multi-core processors dominate the microprocessor industry as the scaling of single core pro-
cessor performance is rapidly reaching saturation. As the cores become more numerous and
more diverse, interconnect scalability, performance and energy efficiency are the first-order
concerns in the design of future CMP’s. CMP’s are built with greater number of cores, cen-
tralised interconnects are no longer scalable.

Cache hierarchy is often used with multi-core processor design in several applications for op-
timal performance. The use of shared memory presents numerous challenges with multiple
caches sharing single memory, data traffic becomes huge and it may present a performance
bottleneck.

The challenges in designing, testing and verifying advanced hierarchical cache coherence pro-
tocols can be overcome by the use of standardized coherence communication interface that
provides protocol encapsulation. Among various interconnection networks that have been used
for multiprocessor systems, the ring networks have the advantages of:

(a) Fixed node degree (modular expandability).

(b) Data path is very simple compared to a mesh router because it consist of several MUXes
to allow data to enter and leave,one pipeline register.

(c) Simple network interface structure (fast operation speed).

(d) Low wiring complexity (fast transmission speed).

Because of these advantages several prototype and main stream commercial CMPs today most
commonly use ring-based interconnects: the Intel Larrabee, IBM Cell, and more recently, the
Intel Sandy Bridge.Onr16 Rings are a well-known network topology and the idea behind ring
topology is very simple that all cores are connected in a loop that carries network traffic. At
each core a new traffic can be injected in a ring and traffic in a ring can be removed when it
reaches its destination.

Unfortunately, rings suffer from a fundamental scaling problem because of ring’s bisection
bandwidth does not scale with number of nodes in the network. Building more rings or a wider
ring, serves as a stopgap measure but increases the cost. As commercially CMP’s continue to
increase core counts, a new network design will be needed that balances the simplicity and low
overhead of rings with the scalability of more complex topologies. Hierarchical clustered cache
design is one possible solution to this problem. Grouping cores and their caches in clusters
reduces network congestion by localizing traffic among several hierarchy levels, potentially
enabling much higher scalability.



The Ring Based Architecture for Distributed Shared Memory Multiprocessor form part of the
SoC, hence its design is critical for both Area and Performance. The project being part of
the flagship SHAKTI program of RISE Lab, successful implementation shall contributes for
developing a indigenous Microprocessor.

In summary, major contribution:

1.1

Inspired by Manager Client Pairing protocol.

Modification to use Client module to maintain MOESI coherency for snoopy based pro-
tocol.

Ring prioritizes request service to clients in clockwise direction and keep on snooping
till the time request is not generated.

In-ring buffering has been implemented and request are served in a round robin mecha-
nism.

Problem Specification

To implement a Ring Based Distributed Shared Memory multiprocessors capable of interfacing
with a MOESI protocol based private cache and last level cache of varying configurations in a
unidirectional as well as bi-directional configuration for the purpose of execution of instructions
at the processor core. The specifications are:

Implementing MOESI based cache structure for ring architecture capable of being inter-
face with the last level shared cache.

The architecture design should be capable of unidirectional as well as bi-directional ring
such that various operations never degrades the performance of ring.

Designing of coherent cache structure in order to check the functionality and performance
benchmarks respectively.

Ring is designed in such a manner that multiple request from the respective cores could
not be serviced by ring, rather request are serviced based on round robin mechanism
i.e Client’s are prioritise in the clockwise manner of their inter-connections with the
ring, hence if request of any client has been serviced then the same client will get the
service once rest of the clients request has been serviced by the ring in order to avoid
data inconsistency.

Bi-directional ring architecture, the request is to be forwarded in two direction (i.e clock-
wise and anti-clockwise)and processed simultaneously, data is serviced to client’s in a
bi-directional mechanism so there exist two paths for request/data to reach upto initiator.

Ring should facilitate the testing of logic as well as cases through itself rather than the
entire execution process to be followed.



1.2

Ring should prioritise among the request itself i.e Read/Write request is prioritised over
the Write-Back/Invalidate request. Write-Back/Invalidation are serviced using in-ring
buffering.

Organization of the Report

The remaining part of the dissertation has been divided into following chapters for ease of
understanding and coverage.

Chapter II covers background to Ring architecture and functionalities which are focal
to understanding the Ring Architecture module, cache coherency protocol specifically
focused on MOESI based protocol and the various interfaces. It also highlights rele-
vant details for implementing the design covered as part of literature survey done during
Project phase I and thereafter.

Chapter III includes the Bluespec System Verilog and related modules utilised for imple-
menting the design.

Chapter IV consists of functional description.

Chapter V encompasses system architecture and implementation approach for attaining
the objective.

Chapter VI embraces the results and cognizance drawn based on application and limita-
tions.

Chapter VII epitomize the conclusion and future scope envisaged.



Chapter 2

BACKGROUND AND REVIEW OF RELATED WORK

2.1 Background

As we move towards multi-core processors, there is an increasing need for sophisticated coher-
ence management. When cache hierarchies are used in the design, we also need to introduce
coherence management hierarchies to achieve data consistency. The hierarchical coherence
protocol based design increases the complexity in terms of the ease of designing, testing and
verification. Also, this complexity increases exponentially with the addition of more coherence
states in the protocol. This in turn, strains the interaction between the hierarchy tiers.

Ring based cache coherency protocol we discuss different classes of coherence protocols for a
ring and concentrate on its design based on Shakti Programme. Design of a uni-directional as
well as for bi-directional ring topology for cache coherency has been development and tested
with an assumption of a ring comprising of quad-core processor with each core based on RISC-
V having its own cache of the size of 32kB for data storage and a client for managing the
MOESI coherency protocol for the respective caches. The ring has been designed in a manner
that the it inherents the features of memory controller used for its request/data routing while
implementing the methodology hence reducing an area for the separate memory controller.

2.2 Cache Coherence

In a shared memory environment, the private processor caches may contain copies of data
which may be dirty with respect to main memory. Cache coherence handles the management
and distribution of data in such cases. Without coherence, the consistency model of architecture
could be violated. That is when a private processor cache commits a store which is not being
observed in the local cache of other processors, it breaks the consistency among the copies
of data stored in the private processor caches. This affects the fundamental way in which
the processors communicate with each other in a shared memory environment. The loads and
stores performed by every processor should be observed by every other processor for functional
correctness and cache coherence ensures that this behaviour is maintained.

Cache coherence in hardware is accomplished through the addition of state bits to the data in
cache, which indicates the coherence state of the data. The coherence state associated with the
data depends on the coherence protocol used. The basic coherence states are invalid, shared
and modified. Invalid state indicates whether the copy of data in cache is valid or not. Shared
state of data implies that one or more of other caches also contain the copy of the same data.
When a private processor cache commits a store, that copy of data is stored in modified state.
These provide the basic mechanisms required to maintain coherency in the caches. A processor



can read from its local cache only if the data is valid. Also, when a local copy of data is
written by the processor, all other shared copies are invalidated and the copy written is put in
modified state. The two major classes are coherence protocols are broadcast based protocols
and directory based protocols. In the directory based coherence management, the coherence
state of all the data in the local caches is maintained in a directory. Whenever a processor has
to perform read or write, the request is sent to the directory and the operation is performed if the
required permissions are granted by the directory. In a broadcast based protocol, read or write
miss is broadcast through a shared bus and every local cache is snooped to check if the requested
data is present in them. Also, when a processor performs a store on a shared copy of data in
its local cache, invalidation request is sent to other caches to invalidate the other copies of that
data. The invalidation of the shared copies in the event of a write operation by the processor
is done in invalidation based protocols. There is another variant of coherence protocol which
handles write-hit in a different manner. Instead of invalidating the shared copies, the written
value is broadcast to all the caches that share this data and they are updated with the new value.
This protocol is referred to as the update-based protocol.

The choice of a coherence protocol primarily depends on the application. Different protocols
can be best suited for different hardware implementations. In this dissertation, broadcast based
MOESI coherence protocol is used.

2.3 MOESI Protocol

As already mentioned, we will be using broadcast based MOESI protocol, which will handle
write-hit by invalidation. Initially, when the data is fetched from the memory, it is stored in
Exclusive(E) state, as it will be the only copy of that data among the caches. When this data is
read by some other cache, it is no longer an exclusive copy.So, the state is changed to Owner(O)
and the cache which read this data will store it in Shared(S) state. When the data in Shared(S)
state is read by other caches, its state does not change.

. W - Wirine

H - Read

! U1 nvaliare

H w m ..I"I

Figure 2.1: Block Diagram: State Transition beginning with data in E state

Reading of data in Owner(O) state, by other caches does not change the state of the local copy.
However, writing of data in Owner(O) state or Shared(S) state, by the processor, changes its
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state to Modified(M) and the invalidate request is sent to other shared copies. Writing of data
in Modified(M) state, will cause it to remain in modified state. When data in Exclusive(E) state
is written, its state is updated as Modified(M), but invalidate request is not sent out as there
are no shared copies to invalidate. The data in any coherence state, when invalidated, is put in
Invalid(I) state [1].

0);

W - Wruie
| B - Rewd
R 1- Invalickaie

OamO);

Figure 2.2: Block Diagram: State transition beginning with data in S state

2.4 Coherency Mechanism

The protocols are implemented in client interface connected to the ring as well as the core, the
cache is connected to the processor. The requested generated by the processor is sent over ring
via clients. For data messages, the interface examines each to determine if it should be pulled
from the ring or forwarded to the next client. Common mechanisms of ensuring coherency
have been listed below with each having its own benefits and drawbacks:

e Snoop Based Protocol: SBP is the most popular protocol because of its simplicity and
influence in desktop and server solutions, as well as in recent SoCs. It relies on broad-
casts, and snooping of those broadcasts, to ensure coherence.

e Directory Based Protocol: DBP employs a directory where information about each
cache line is stored. This way the directory has full control over which core has loaded
which cache line.

e TokenB: It is a protocol where each cache line has a number of tokens associated with it.
The number of tokens has to be at least as high as the number of cores. Any core which
possesses at least one token can read, any core that has all the tokens for the cache line
has write privileges.

e Snarfing: Snarfing directly updates local cache data without going through a centralized
memory.



2.5 Interconnect Topologies

Topology is probably a design choice that has deep impact on the interconnect performance.
A topology primarily decides the minimum number of hops that a packet makes from source
to destination. Also since the number of hops require storing and forwarding of packets, the
power consumption depends directly on the number of hops. A metric for determining the
relative merit of the topologies is firstly the number of physical links between the two nodes
and secondly the complexity to physically route the wires of the interconnect. Three basic
interconnect topologies are:

¢ Ring Interconnect: In Ring interconnect all the cores or nodes are connected in a ring
fashion, request as well as data packets are send in uni-directionally (i.e either in clock-
wise or anticlickwise direction) or bi-directionally to reach destination client. The rings
main function is to facilitate the transfer of packets, prioritising the service request among
the clients and prioritising the request itself as the case may be or between caches and
nodes.

e Mesh Interconnect: Mesh interconnect all the cores or nodes are connected in a mesh
fashion, where packets can move in all four directions to reach its destination node. The
nodes which are at the corners can move only two directions and the nodes which are at
the edges of mesh can move only in three directions.

e Ring-Mesh hybrid interconnect or Torus: The ring and mesh interconnects were the
two most basic and widely used interconnects in the commercial implementations. How-
ever, the ring interconnect latency grows linearly with the number of tiles and the number
of wires becomes extremely large in case of mesh with large number of nodes due to mul-
tiple physical links per node. Hence, we look for a different topology that combines the
benefits of both the designs. this is new topology that is a combination of the two. A ring-
mesh hybrid connects multiple nodes in a ring and multiple such rings are instantiated.
Each of the rings is further connected in a mesh superstructure.

The bi-directional ring interconnect for the cache coherency can be upgraded for Ring-Mesh
hybrid based on the Manager Client Pairing [MCP] where clients have already been connected
in a ring fashion and managers can be connected in the mesh form.

The Torus is used for multi-core processors as the resource requirement is more for the quad-
core than the performance upgradation is relatively the same. Hence we have designed unidi-
rectional ring interconnect as well as bi-directional ring interconnect as the resource area does
not increases as much in relation to uni-direction ring but the performance is relatively im-
proved on a much better scale. The MOESI protocol is implemented for the cache coherency.
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Figure 2.3: Block Diagram: Ring Interconnect

2.6 Related Work

To develop a better understanding for designing ring architecture I have gone through the re-
search paper of Michael R. Marty and Mark D. Hill (University of Wisconsin Madison) on
“Coherence Ordering for Ring-based Chip Multiprocessors” presented in proceedings of the
39th Annual IEEE/ACM Symposium on micro architecture[3], for extending the sphere of
the design and for Jesse G.Beu, Michael C. Rosier, Thomas M. Conte research on “Manager-
Client Pairing: A Framework for Implementing Coherence Hierarchie” presented in MICRO-
44 Proceedings of the 44th Annual IEEE/ACM International Symposium on Micro architec-
ture [2], for cache coherency interfacing and modification have studied from M.Tech The-
sis on “Implementing Cache Coherence through Manager-Client Pairing” submitted in year
2016 [1]. In her work the author does a detailed analysis of the architecture of MOESI based
cache and coherency implementation using a manager client pair. The work on extending the
scope for implementation of the design to multiple hierarchical level i have studied research
paper of Rachata Ausavarungnirum,Chris Fallin,Xiangyao Yu, Kevin Kai-Wei Chang,Greg
Nazario,Reetuparna Das,Gabriel H.Loh and Onur Mutlu (Carnegie Mellon University, Uni-
versity of Mechigam, Massachusets Institute of Technology, Advanced Micro Devices) on “A
case for hierarchical ring with deflection routing: An energy-efficient on-chip communication
substrate” presented in ELSEVIER journal of Parallel Computing [4].



Chapter 3

BLUESPEC SYSTEM VERILOG

Bluespec System Verilog is a Hardware Description Language (HDL), which is used for spec-
ification, synthesis, modeling and verification of ASIC and FPGA design. With a radically
different approach to highlevel synthesis, bluespec offers significantly higher productivity. It
allows designers to express intended hardware through high-level constructs, where all behav-
ior is described as a set of guarded atomic actions.

3.1 Limitation of Verilog

Verilog focusses more on simulation than logic synthesis. The source text of verilog often ex-
plicitly contains aspects of circuit that could be readily determined by the compiler, such as size
of registers, width of busses etc. This makes the design less portable. Handling concurrency in
hardware is relatively difficult in verilog as the designer should manage all the aspects of hand-
shaking between combinational circuits. Shared use of register and other memory resources
should also be elaborated. The behavioral specification of design in verilog often consumes
multiple clock cycles. Attempts to resolve this problem results in a highly unreadable code
with possible bugs. In practice,this problem is solved by separating the combinational and
sequential parts of the circuit. Due to these shortcomings, the synthesis and verification of
hardware in verilog is slowed down. This is a huge problem during the design of SOC.

3.2 Bluespec

Bluespec is based on atomic transactions, which increases the level of concurrency abstraction
above SystemC and RTL without compromising the control over hardware design. It enables
automatic synthesis of complex control logic, which is the source of many bugs. This results
in highly adaptable, reusable and reconfigurable designs. Control adaptive parametrization in
bluespec provides flexibility, where a significantly different micro-architecture can be gener-
ated by changing the parameters in the design with the associated control structures generated
automatically. Bluespec allows user defined data types and static type checking. It provides
several features of the modern high level languages and all of them can be synthesized.

In recent times, several attempts have been made to move the hardware design language to-
wards a more software like specification of the circuit behaviour. Languages like C, C++ are
used to express designs as sequential programs. However, the semantic gap between the soft-
ware model and the hardware results in suboptimal designs with unpredictable speed and area.
Bluespec System Verilog tackles this problem by building upon the traditional hardware se-
mantics. It exploits advanced concepts from software only for static elaboration and static



verification. It uses the standard hardware structure model of verilog such as modules, module
instances, hierarchy etc. For communication between modules it uses the System verilog model
of interfaces and interface instances. These added with the advanced features of the high level
languages, makes designing and verification in bluespec much faster.

3.3 Features of Bluespec

3.3.1 Modules and Interfaces

Module is the basic element of the hardware design hierarchy in bluespec. A module can be
instantiated multiple times, and also different parameters can be passed during every instan-
tiation. Unlike verilog, bluespec does not have input, output and in-out pins as interface to
modules. Methods are used to drive signals and busses in and out of modules. These meth-
ods are grouped together into interfaces. Modules contain rules, which use methods in other
modules.

method invocation
from a method

methods - - /
e ol /],4 _ [T
/ =8 T - /’ 1 _ _'_'_: —+r /
1 B, A

interfaces

rules /

| method invocation
from a rule

Figure 3.1: Block Diagram:Representation of Methods, Interfaces Rules in a module hierar-
chy

In BSYV, the interface declaration is done separately, outside the module definition. This allows
declaration of common interfaces which can be used in multiple modules,without having to
declare them repeatedly. All the modules which share the same interfaces also share same
methods and therefore share same number and type of inputs and outputs.
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3.3.2 Data Types

In verilog, all the representation is done in bits. Also, ultimately in hardware all computation is
done in bits. However, representation in terms of integers, floating point numbers, fixed point
numbers etc, makes the process of coding much easier. Different representations may be more
appropriate depending on the application environment. By separating out the type abstraction
from its bit representation, we can easily change representations without modifying or breaking
the rest of the program.

In BSV, every variable has a type and only the values of compatible types can be assigned to a
variable. The BSV compiler provides a strong, static type-checking environment. Type check-
ing is done before the program elaboration and it ensures that the object types are compatible
and the conversion functions are valid for the context. Bluespec also allows the usage of user-
defined types. BSV has a type class which can be considered as a set of types. It implements
overloading across related data types. Overloading is the ability to use a common name for a
collection of types, with the specific type for the variable being chosen by the compiler based
on the types on which it is actually used. Functions and operators are shared by all the data
types within a type class.

Some common scalar types used in Bits type class are Bit(n), Bool, Ulnt(n) and Int(n). The
values stored in registers, FIFOs and other memory elements and also the values passed by
wires, must be in the Bits type class. Other common data types include Integer, which belongs
to the Arith type class and String, which belongs to the Literal type class etc.

3.3.3 Rules

Rules manage the movement of data from one state to another, within the module.It consists of
two parts: rule conditions and rule body. Rule conditions are boolean expressions which decide
whether the rule can be fired. Rule body is a set of actions for state transitions. Rules in BSV
are atomic. The actions within the rule completely describes the state transition. The process
of determining the functional correctness of a design is greatly simplified by one-rule-at-a-
ime semantics. That is, because of the atomic property of rules, each rule can be looked at in
isolation, without considering the actions of the other rules to determine functional correctness.
Multiple rules can be executed concurrently in the hardware implementation.

The actions in a rule are executed simultaneously. This can be thought of as similar to the
execution of non-blocking statements in always blocks of verilog. Also, as the rule has atomic
property, the entire body of rule is executed and there is no partial exe- cution of a rule. When
there are several rules within a module, the execution of rules is ordered by the compiler. No
two rules can execute simultaneously. The ordering of the rules by the compiler is called
scheduling.
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3.3.4 Methods

method is a procedure which takes arguments and returns a value. It could also return a value
without taking any arguments. It becomes a bundle of wires when translated into RTL. The
method definition is written within the definition of the interface and it can be different in
different modules sharing a common interface. A method also contains implicit conditions
which are handshaking signals and logic automatically generated by the compiler. Methods are
of three types: Value Methods, Action Methods and Action Value Methods. Value methods
return a value. They do not alter any state within the module. Action methods cause actions to
occur. They create state changes within the module. Action value methods are a combination
of value methods and action methods. They cause state changes and also return values.

3.3.5 TLM Library

The TLM package includes definitions of interfaces, data structures, and module constructors
which allow users to create and modify bus-based designs in a manner that is independent of
any one specific bus protocol. Designs created using the TLM package are thus more portable
as it allows the core design to be easily applied to multiple bus protocols.

The TLM interfaces define how TLM blocks interconnect and communicate. The TLM pack-
age includes two basic interfaces: The TLMSendIFC interface and the TLMRecvIFC interface.
These interfaces use basic Get and Put sub-interfaces as the requests and responses. The TLM-
SendIFC interface generates (Get) requests and receives (Put) responses. The TLMRecvIFC
interface receives (Put) requests and generates (Get) responses. Additional TLM interfaces
are built up from these basic blocks. The TLMSendIFC interface transmits the requests and
receives the responses. The TLMRecvIFC interface receives the requests and transmits the
responses.

tx
m

tx

Figure 3.2: Block Diagram: Representation of TLMSendIFC and TLMRecvIFC

The two basic data structures defined in the TLM package are TLMRequest and TLMResponse.
By using these types in a design, the underlying bus protocol can be changed without having
to modify the interactions with the TLM objects. A TLM request contains either control in-
formation and data, or data alone. A TLMRequest is tagged as either a RequestDescriptor or
RequestData. A RequestDescriptor contains control information and data while a RequestData

12



contains only data.

3.3.6 Tile Link

Tilelink is a protocol designed to be a substrate for cache coherence transactions implementing
a particular cache coherence policy within an on-chip memory hierarchy. Its purpose is to
orthogonalize the design of the on-chip network and the implementation of the cache controllers
from the design of the coherence protocol itself. Any cache coherence protocol that conforms
to TileLinkas transaction structure can be used interchangeably with the physical networks and
cache controllers we provide.

Tilelink is roughly analogous to the data link layer in the IP network protocol stack, but exposes
some details of the physical link necessary for efficient controller implementation. It also
codifies some transaction types that are common to all protocols, particularly the transactions
servicing memory accesses made by agents.

13



Chapter 4

FUNCTIONAL DESCRIPTION

4.1 Core

Core has been designed on RISC-V architecture. Testing of ring architecture was initially done
by designing a cache-mimic and memory-mimic instead of actual cache or main memory.

4.2 Cache

The cache implemented for the coherency is a distributed I-cache and D-cache of 32kB (non-
blocking cache). It is a set associativity "4-ways". There are 512 in number cache lines. Cache
has a block size of 16bytes.

4.3 MOESI based Client Module

The coherence protocol used here is MOESI protocol. It has five states: Modified(M), Owner(O),
Exclusive(E), Shared(S) and Invalid(I). The client which has the data in the Exclusive state or
the Modified state has the only copy of that data. Although the client with data in Owner state
does not have a unique copy of the data, it is the only client among the sharers, which can
respond to a request. Also, at any point of time, only one of these states(M,O,E) can be present
among the clients of the same level. Therefore, data propagation can be easily handled by the
manager as it can directly grant data from the only client in M/O/E state to the client which
requested that data block.

Let us consider the handling of write operation in MOESI protocol. After write, the copy of
the data block which is written, becomes dirty with respect to the sharers. In order to track this
information, the Modified(M) state is used by the client. In the event of a write hit in the pro-
cessor, the client changes the state of that data to Modified(M) and sends an invalidate request
if the previous state of the data written was Owner(O) or Shared(S) state. During write-back, if
the data block is in M/E state, it is directly written in the main memory. If in Owner(O) state, in
addition to sending the data to main memory, all the other shared copies are invalidated. If the
data is in Shared(S) or Invalid(I) state, the write-back operation is not performed. Table sum-
marizes and enumerates a comprehensive list of the base functions required for communication
between processors, clients, ring and memory in MOESI protocol. These will be used as an aid
in the developing a generic protocol interface

The basic requirements that have to be satisfied by the agents involved in coherence manage-
ment are as follows. Clients should be able to respond whether or not they have the requested



data block. If the cache associated with a client encounters a read or write miss, the client
should be able to place a request to the ring. Ring should accept data requests from clients and
provide data from the appropriate location. The client should also be able to send out invalidate
request when necessary and the ring should forward it to all the other clients in the same level.
In case of write back, the clients and ring should forward the data till the main memory.

As the management of coherency is completely handled by the client, the ring need not be
aware of any internal change of coherence states. The ring only has to keep track of whether
the data is obtained from which client and to be forwarded to the initiator. This information is
used by the clients to appropriately update the coherence states.

Origin Action . . Destination .
Agent Tope Action Description Agemi Response Action
Data . R/W miss: Get data to - .
Acnisitiom e complete CPLT request o i
Invalidation Fwdlmval i U_TE e Client FwdInval
Processor shared copies
DoWrnite _'E!-locl:_replac-ﬂ_uent: Chent DoWrite
Data Supply writeback
GrantData Supply Data Clizmt GrantData
Thata GetData Requesl from progessor Manager GetData
Acquisition GetData HCapicst fremmiy s Procescor GirantDhata
change state to O
: Imvalidate copy in local ~ Zias
Dolnval cache iFhit in OS state Processor CompleteInvalidate
Luvalidation Change state to M;
FwdInval formard request 1o Manager Dolnval
Client manager if O/S state
Only when in MAOVE,
Do%Write Invalidate shared copies Managzer DoWrite: Dolnval
when O
a | GramtData Got data from processor Manager GrantData
Data Supply : :
Got data from manager;
GiranData State — E if from meni, 5 T C c-m]}let_e R
otherwise: send data to when write, send
PUOCEsSOr
Data GetData GETS. "lfﬂ"' f".‘m.' client if'it Client GetData
S i By is in MAOVE state
) ) GetData If no hit in any client MMemory GrantDhata
Invalidation DoInvwval Inwvalidate shared copies Clisnt Daolnval
Drata supply from M/OVE
MManager clients or from main
GrantData memory: indicate if data Clisnt GrantData
Drata Supply obtamed from main
Lenory
= Forward t to higher . o
Do™Write S re]g:}:i T Memory GrantWrite
GrantData Supply Data Manager GrantData
Memory | Data Supply = = e = = =
- PEY ["Grantwiite Finish write MNiA MNA

Figure 4.1: List of the base functions required for communication between processors, clients,
ring and memory in MOESI protocol

The client has four interconnections Acquire(A), Probe(P), Grant(G), Release(R). The acquire
signal is raised by the processor initiating the request to the ring. The probe is forwarded to
the clients in a sequential fashion by the ring till the time the request is served. Corresponding
to each probe client gives a response in form of release signal. Ring evaluates the release and
checks for the data requested and received. Finally the response is routed towards the initiator
on the grant signal by the ring.
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4.4 Request Generated by Client

The clients are prioritised in the sequential clockwise manner and the clients are serviced by
the ring on the priority token which defines the ring to which client it should provide service.
If the clients are idle and does not have any request to be served by the ring the priority token
is incremented automatically for the ring and hence it keeps on snooping for the request of the
clients to be served. The request are of the following nature:

e Read: The request is generated by the client as a Read request in Regular mode. It
generates an Acquire signal in one of the client which acts like an initiator and the based
on the priority token the ring serves the client whosoever is prioritise for service. The
signal is passed on to the successive client in the form of Probe. Based on which the
client searches its respective cache and then responds back to ring in the form of Release
signal. The ring introspects the response and find out weather it is a Hit/Miss and based
on response takes necessary action of forwarding request in form of Probe signal or
sends data in form of Grant signal. The Grant signal is forwarded till the time it reaches
initiator.

e Write: The request is generated by the client as a Write request in Regular mode, served
as the Write-back request by the ring. The Write request is received in the form of Release
signal by the ring. The request if received in between of any service already initiated by
ring to another client is firstly stored in the ring as Write-back request and served based
on the priority token prioritising the client raising Write request. The request is converted
into the Acquire signal, client who initiated is made as an initiator and then forwarded to
successive clients as the Probe signal. In this case the request is completed once it reach
the all the client holding the same set of data and finally the main memory. Release signal
received post Probe returns the completion of Write request by the individual clients
holding same set of data.

o Invalidate: The request is initiated by client as Write request in Controlled mode. The
Invalidate request is received as a Release signal by the ring. The request if received in
between of any service already initiated by ring to another client is firstly stored in the
ring as Invalidate request and served based on the priority token prioritising the client
raising Invalidate request. The request is converted into the Acquire signal, client who
initiated i1s made as an initiator and then forwarded to successive clients as the Probe
signal. Request is completely serviced once it reach the all the client holding same set of
data including the main memory. Release signal received post Probe returns the comple-
tion of the Invalidation by the individual clients holding same set of data.

The ring has been designed in a manner that it will prioritise the Write-back over Invalidate
request.
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Chapter 5

SYSTEM ARCHITECTURE AND IMPLEMENTATION

5.1 Ring Architecture Module

A request in a ring protocol is active immediately, does not require retries to handle contention,
and incurs minimal latency and bandwidth. The project tries to implement a class of protocols
that achieves these goals by completing requests in unidirectional as well as bi-directional ring
order.

5.1.1 Uni-directional Ring Architecture

This protocol is implemented by tokens, directly enforcing the coherence invariant by count-
ing tokens. Forward progress exploits the ring order to guarantee that initial request always
succeed. Token coherence associates a fixed number of tokens for each memory block in the
system. To perform the Read Operation (RO) in any one of the memory the init token is enabled
for the client initializing the RO request, directly forwarded to the next client in clockwise di-
rection. The ring gets the response form the client and post evaluation of response performs
the operation of checking whether the successive client need to ask for the RO request from the
previous client or not. Once the data is located it is forwarded directly to the next client and
then the ring performs the check weather this client is an initiator or not. If not then weather the
successive client need to request for the data so that it can be served to the initiator or not. In
this way, the coherence invariant is directly enforced by counting and exchanging tokens. The
key insight is that token counting allows a requester to remove tokens off the ring to complete
its request safely and potentially immediately.

To ensure starvation avoidance, requesting node must remove the incoming priority token from
the ring and hold onto it until its request completes. Other non-priority tokens, in flight due to
a write-back or exclusive request, must alesce with the priority token [3].

Tokens causes request message to move in a clockwise/anti-clockwise direction. Response
message is not strictly sent to a particular requester and can instead be used by other requesters
on the way. Response message includes a furthest destination field to indicate the furthest
relative node on the ring that desires the tokens for a coherence request. Another key advantage
is that RING-ORDER does not require any fixed synchrony in the ring or when snoop responses
generate. One suspected negative aspect of this protocol is that if the data is found in the
successive client then it has to travel along the entire ring to reach the initiator. The remedial
for the same would be to design a bi-directional ring.



5.1.2 Bi-directional Ring Architecture

This protocol is implemented by adding four one bit flags along with the tokens of Acquire,
Probe, Grant Release. The logical implementation has changed in a manner that the the initial
request has been directed bi-directionally (i.e clockwise anticlockwise) from the initiator and
the flag of prb is made high. When a response is received the rel flag is made high hence the
data moves in the ring and directed based on the flags and token. The data once received in
any of the cache is also sent in a bi-directional fashion, hence limitation of the methodology
discussed for the uni-direction has been overcome. The data as well as request could reach
upto the initiator or the requester respectively in two directions. The result for a quad-core
processor might not produce very huge range of improvement relative to unidirectional imple-
mentation, improvement in throughput has been achieved and the results are more vibrant once
the implementation crosses more than quad-core scope.

To further increase the throughput of multi-core processor the bi-directional can be enhanced
to a hybrid network inclusive of bi-directional ring for clients and mesh for the manager which
have already been implemented in MCP. The hardware will effectively increase but the trade
off need to be made based on performance and work area and a mid way could be implemented.
Hence for the quad-core we have implement bi-directional ring.

5.2 Initial Methodology for Implementation

There was an initial methodology of designing a ring module and instantiating the same with
the clients but this leads to the more number of routing and requires an ordering point and a
controller to keep maintain the data routing and to keep the track of the clients. The process
complexity arises in designing the controller/ ordering point. In case of ordering point the data
has to every-time pass thorough the node of the ordering point and then can be routed.

Interface Interface

(AGRp | Client0 |y gpp
Ring 3 VRF) (MOESI) A Ring 0

Interface
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Interface
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Client 3 Client1
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Interface Interface

(AGRP (AGRP
VRF) VRF)

S
Ring 2 Interface Client 2 Interface
(AGRP (MOES)) (AGRP
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Ring 1

Figure 5.1: Block Diagram: Ring Architecture
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5.3 Unidirectional Implementation

The ring structure will inter-connect the total number of clients instantiated in the ring fashion
using get/put interfaces. The ring takes control of routing of data/request packet inside the
ring, manages the request generation and completion based on token protocol. The request
generation by the clients can be prioritized in a sequential manner the way they are connected
with ring and the second request is served once the first is completed.

e Case I: The request is originated by “Client 0” i.e Acquire, it means the data is not
present in cache of “Client 0”. The Initiation Token of “Client 0” is made true stating
that it is the originator. The Acquireis forwarded as a Probe to “Client 1” by the ring.
“Client 17 takes Probe and searches its own cache returns Release to ring. Ring checks
Release and find that data is not found in the cache of “Client 1" i.e Miss. The ring starts
calculating that which client number has given the Miss and then makes Forward Token
of successor i.e “Client 2” true and makesForward Token of previous 1.e “Client 1 false.
Based on Forward Token true value “Client 2” ask for a “Probe” from “Client 1”.Now
“Client 2” on receiving Probe searches its own cache and returns Release. Ring checks
Release and find that data is found in the cache i.e Hit. The ring checks that which client
number has given the “Hit” forwards Release as a “Grant” to “Client3”| and makes the
Data Token of “Client 3” true. The ring checks weather “Client 3” is originator of the
request or not. The ring then makes “Client 0” Data Token true and “Client 3” Data
Token False. Based of Data Token true value “Client 0” ask for a Grant from “Client 3”
Ring again checks weather “Client 0” is originator or not once reach originator it goes
to Ideal state. Now “Client 17 can originate the request for the ring and hence, process
continues.

Client0
(MOESI)

Interface

Acquire

Interface
AGRP
Client1

(MOESI)

Probe requested

Grant forwarded

interface
AGRP

Client 2
(MOESI)

Figure 5.2: Implementation Diagram: Uni-Directional Ring Architecture

e Case II: If there is no request origination from “Client 0” it will give “Voluntary Release”
and ring will check whether there is any request from the successive client in a sequence.
The priority of the request if served based on the sequence of clients i.e in descending
order " Client0) — Clientl — Client2 — Client3" by using a priority token. Once a
request is raised then till the time the request is not served none of the clients can raise
another request.
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5.4 Bi-directional Implementation

The ring structure inter-connects the total number of clients instantiated in the ring fashion
using get/put interfaces. The ring takes control of routing of data/request packet inside the
ring, manages the request generation and completion based on tokens and flag. The request
generation by the clients can be prioritized in a sequential manner they are connected with ring
and the second request is served once the first is completed.

e Case I: The request is originated by “Client 0” i.e Acquire, it means the data is not present
in cache of “Client 0”. The Initiation Token and Acquire Flag of “Client 0” is made true
stating that it is the originator. The Acquireis forwarded as a Probe to “Client 1” “Client
3” simultaneously the Probe Flag is also made high by the ring. “Client 1”” and “Client
3” takes Probe and searches its own cache returns Release to ring and Release Flag is
made high. Ring checks Release and find that data is not found in the cache of “Client 1”
i.e Miss. The ring starts calculating that which client number has given the Miss and then
makes Forward Token of next client i.e “Client 2” true along with the Probe Flag and
makesForward Token of previous i.e “Client 1” false. Based on Forward Token being true
and Probe Flagbeing low value “Client 2” ask for a “Probe” from “Client 1”.In the mean
time the data might be found in “Client 3” i.e Hit.Now the data would be forwarded by
“Client 3” in form of Grant to its adjuscent client i.e “Client 2" and “Client 0”” makes the
Data Token true along with Grant Flag is made high.The ring checks weather “Client
0” and “Client 2” is originator of the request or not.Now “Client 2” has received Probe
as well as Grant so it first prioritise Probe over Grant and searches its own cache.The
data has already reached its initiator “Client 0”.Hence on receiving Release by ring from
“Client 2”it is killed.This particular methodology of killing Release is applicable only
for quad-core.
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Figure 5.3: Implementation Diagram: Bi-directional Ring Architecture

e Case II: If there is no request origination from “Client 0” it will give “Voluntary Release”
and ring will check whether there is any request from the successive client in a sequence.
The priority of the request if served based on the sequence of clients i.e in descending
order "Client0l — Client2 — Client3" by using a priority token. Once a request is
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raised then till the time the request is not served none of the clients can raise another
request.

5.5 Design Verification

The design of the ring interface with the request generated by the clients has been verified
based on the layout described. The design testing was performed over the ring for the routing
of packets in uni-direction as well as bi-directional architecture and running the test cases for
the calculation of latency. To test the Hit/Miss for the data found in a cache, cache mimic was
designed with a singular input of request and corresponding output of response. Similarly a
dummy main memory was designed on the same line to test the design. The ring treats main
memory in the form of an additional cache which was also designed as a dummy cache. The
difference between the dummy memory and the cache mimic is that cache mimic is connected
with the client and the processor whereas dummy memory is connected with the ring directly
in a star formation i.e whenever request have been forwarded to all clients in the ring thereafter
it would be forwarded to main memory.
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Figure 5.4: Block Diagram: Testing Layout with Interfaces
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Chapter 6

RESULTS AND DESIGN CHALLENGES

6.1 Latency Calculation

The latency calculations have been done based on theoretical assumptions as well as designed
based Bluespec compilation.Latency calculations varies based on design architecture (i.e uni-
directional / bi-directional), calculated while compiling the code in Bluespec based on execu-
tion of rules and the timing predictions.

Priority Latency = (VR x 3) = (1 x 3)

= 3 clock cycle

VOLUNTARY RELEASE

Client0
(MOESI)

<~mozmz

AGRP
Client2
(MOESI)

VOLUNTARY RELEASE

Figure 6.1: Ring Architecture Diagram: Voluntary Release

Table 6.1: Latency of Ring Architecture

Parameters Notations | TCC | BCC | UCC
Acquire AQ 2 1 1
Probe Forward PF 2 2 2
Probe Request PR 3 3 3
Search & Release S& R 2 5 5
Grant Forward GF 2 2 2
Grant Request GR 3 2 2
Voluntary Release VR 1 1 1
Memory In MI 1 1 1
Memory Out MO 1 2 2




TCC: Theoretically Calculated Clock Cycles
BCC: Bi-directional Ring Clock Cycles
UCC: Uni-directional Ring Clock Cycles

e Case I. Data in Successive Client: The latency would be minimum for uni-directional
bi-directional ring when the hit is received in the successive client as it reduces the clock
cycle of search. Whereas for bi-directional ring it comes out to be even one cycle less
than that of uni-directional.

Acquire] Client0
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] Grant requesteg

Probe forwarded

HIT
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€1ualD
Client 1
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Grant requested

Client 2
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Figure 6.2: Uni-Directional Architecture Diagram: Minimum Latency

Uni-directional Theoretical Latency = AQ + PF + GF + (GRx 2) + SR
=2+4+2+2+3X2)+2
= 14 clock cycle / 17 clock cycle

Bi-directional Theoretical Latency = AQ + PF + PR + (SRx 2) + GF
=24+2+3+2X2)+2
= 13 clock cycle / 16 clock cycle

Bi-directional Design Latency = AQ + PF + PR + SR + GF
=1+ 2(Min) + 3(Min) + 5 + 2
= 14 clock cycle

Uni-directional Design Latency = AQ + PF + GF + GR + SR
= 19 clock cycle

e (Case II. Data in Main Memory:

The latency would be maximum for the uni-directional ring when the hit is received in
the main memory. It takes the clock cycle of search and release.Whereas latency would
reduce drastically for bi-directional ring because it processed the request parallely to the
clients. Hence takes less number of clock cycle for search and release.
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Figure 6.3: Uni-Directional Architecture Diagram: Maximum Latency

Uni-directional Theoretical Latency = AQ + PF + (PR X 2) + MO + MI + (SR X 3)
=24+2+0BX2)+1+1+(2X3)
= 18 clock cycle / 21 clock cycle

Bi-directional Theoretical Latency = AQ + PF + PR + MO + MI + (SR X 2)
=2+2+34+1+14+12X2)
= 13 clock cycle / 16 clock cycle

Bi-directional Design Latency = AQ + PF + PR + MO + MI + SR + Memory to Client
=1+3Max)+7Max)+2+1+5+3
=22 clock cycle

Uni-directional Design Latency = AQ + PF + PR + MO + MI + SR
= 31 clock cycle

e Case III. Data in Last Cache: The latency comes out to be equivalent ot maximum
latency case when data is found in last cache of the uni-directional ring architecture.

Whereas its minimum for bi-directional ring architecture.
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Figure 6.4: Uni-Directional Architecture Diagram: Data in Last Cache
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Uni-directional Theoretical Latency = AQ + PF + (PR X 2) + GF + (SR X 3)
=2+2+3X2)+2+(2X3)
= 18 clock cycle / 21 clock cycle

Bi-directional Theoretical Latency = AQ + PF + PR + GF + (SR X 2)
=2+2+34+2+(12X2)
= 13 clock cycle / 16 clock cycle

Bi-directional Design Latency = AQ + PF + PR + SR + GF
=1+ 2(Min) + 3(Min) + 5 + 2
= 14 clock cycle

Uni-directional Design Latency = AQ + PF + PR + GF + SR
=30 clock cycle

Case IV. Data in Second Cache:

The latency when data is found in second cache of the ring architecture. All cases arise
once for the ring. Latency comes out to be maximum for bi-directional ring when data is
found in second cache of the ring architecture as all cases have occured.
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Figure 6.5: Uni-Directional Architecture Diagram: Data in Second Cache

Uni-directional Theoretical Latency = AQ + PF + PR + GF + GR+ (SR X 2)
=2+2+3+2+3+(2X2)
= 16 clock cycle / 19 clock cycle

Bi-directional Theoretical Latency = AQ + PF + PR + (SR X 2) + GF + GR
=2+2+3+2X2)+2+3
= 16 clock cycle / 19 clock cycle

Bi-directional Design Latency = AQ + PF + SR(Min) + PR + SR(Max) + GF + GR
=2+4+2+5Min)+3+8Max)+2+3
= 25 clock cycle

Uni-directional Design Latency = AQ + PF + PR + GF + GR+ SR
= 23 clock cycle
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To summarise the results for the afore mentioned cases it has been described in a tabular form.
These results include the number of clock cycles consumed for Search and the cycles for which
the ring waits for Release signal from the respective client for which Search signal has been
sent.

Table 6.2: Latency Test Results in Clock Cycles

Scenario | UTL BTL | UDL | BDL | Remarks
Case | 14/17 | 13/16 | 19 14 Best
Case II 18/21 | 13/16 | 31 22 Worst
Case 111 18/21|13/16 | 30 14 Random
Case IV 16/19 | 16/19 | 23 25 | All Signals

UTL: Uni-directional Theoretical Latency
BTL: Bi-directional Theoretical Latency
UDL: Uni-directional Design Latency
BDL.: Bi-directional Design Latency

6.2 Average Network Latency

The average network latency calculation were carried out for uni-directional, bi-directional and
ring of rings.

Unidirectional = (Best + Worst) / 2
Bidirectional = (B + SW) /2
Ring of Rings = (2/16) x B + (1/16) x SW + (8/16) x HB + (4/16) x HW

Table 6.3: Ring Latency in Hops & Cycles

Design Hops | Cycles | Remarks
Uni-directional (4-core) 13 5 Best
Uni-directional (4-core) 11 6 Worst
Uni-directional (4-core) 12 5.5 Average
Bi-directional (4-core) 6 4 B
Bi-directional (4-core) 8 6 SW
Bi-directional (4-core) 7 5 Average
Ring of Rings (16-core) 19 14 HB
Ring of Rings (16-core) 28 20 HW
Ring of Rings (16-core) || 17.75 | 12.875 | Average
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6.3 Synthesis Results

The Vivado Synthesis results have shown the following results for the bi-directional as well
uni-directional ring with four clients being initiated for an implementation of coherency proto-
col. The synthesis has been performed on Vertex Ultra Scale VCU 108 Evaluation Platform.
Vivado synthesis shows that the clock frequency is same for bi-directional as well as uni-
directional ring and number of LUT’s are less for uni-directional ring rather than bi-directional
ring but the relative reduction in clock cycles and hops with in the ring are more significant.

Table 6.4: Synthesis Results for Timing, Power and LUT

Parameters Bi-directional Ring | Uni-directional Ring
CLK Frequency (MHz) 204.082 204.082
CLK Period (ns) 4.9 4.9
Total on Chip Power (Watt) 1.032 0.993
Dynamic Power (Watt) 0.123 0.085
Static Power (Watt) 0.908 0.908
LUT 14539 14465
LUTRAM 7936 7936
FIFO 5217 5204
BRAM 8 8
10 73 73
BUFG 1 1

6.4 Design Challenges

The design is based on Client module of MCP. The client module deals with the ring through
four signals in order to maintain cache coherency (A, G, P, R). Few typical challenges faced
during implementation and optimisations done are as under:-

e Handling Write-back/Invalidate Request. The Write-back/Invalidate requests arrives
at the clients via Release (R) signal hence it had a probability to arrive in between of an
event or request service by the ring. However the request was handled by incorporating
in-ring buffering mechanism with in ring architecture in order to resume the process.

e Inevitable Timing Loss.This is specific to bi-directional ring architecture with the quad-
core implementation. When a request is generated and forwarded to adjacent clients. If
one of the Client’x’ has data and second Client’y’ does not have a data. There architecture
encounters an issue as 'Hit’ is always received post’ Miss’ signal has arrived as Release,
hence the Client’y’ forwards Probe signal to next Client’z’. Once Probe is forwarded
ring reads data sent by Client’x” and forwards as a Grant to the initiator in a bi-directional
format and the request has been service but the Release is pending from Client’z’. So
to overcome a limitation a mechanism was designed that once the request is serviced the
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ring would wait for all the responses pending based on request sent outward and would
Kill the unwanted Release before allowing resources for next request. This lead to time
penalty.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The underlying architecture of Ring Based Distributed Shared Memory multiprocessors is an
effort towards generating the multifaceted ring architecture for of the flagship SHAKTI pro-
gram of RISE Lab. Simulation of the output using test bench and verification by linking the
compiled code with the simulation environment has been achieved. Apart from carrying out lit-
erature survey on ring structure system which included the unidirectional and bidirectional ring
architecture, Distributed Shared Memory, theoretical latency, design latency and average net-
work latency for the architecture has been undertaken. The comparative study for the utilization
of uni-directional / bi-directional ring architecture is done in terms of increase in hardware and
reduction in latency for optimum performance based on requirement. The scope of the design
was extended to the implementation of Ring of Ring in a hierarchical manner for implementing
16-cores in a ring fashion of 4-core each ring.

7.1.1 Ring Square

Ring Square (Ring of Rings) has been implemented as a modification to MCP. The lower ring
has four clients connected and a manager to send the request to the global ring connecting the
lower rings. It has following salient features:-

e Exploits both the Manager as well as Client module of MCP.

e Modified to use only client modules for snoopy based protocol with lower ring.Utilises
manager module for snoopy based protocol with global ring.

e In-ring buffering is implemented not only for Write-Back, Invalidation request but also
for request arriving to global ring and are serviced on highest priority to avoid deadlock.

7.1.2 Bi-directional Ring

Bi-directional Ring implemented as a modification to MCP has following salient features:-
e Inspired by the Manager-Client Pairing protocol.

e Modified to use only client modules for snoopy based protocol.



Client is used to maintain the MOESI coherency protocol.

Ring controller mechanism is implicitly implemented using BSVas atomic rule struc-
tures.

Part of same SoC to maintain coherency for shared memory based Processors.

Ring prioritizes request service to clients in clockwise direction and keep on snooping
till the time request is not generated.

The Read/Write is served on priority than Write-back and Invalidation.
In-ring buffering requests are serviced in a round-robin mechanism.
User Interface is through TLMs.

VCUI108 Vivado Synthesis:
Frequency - 204MHz (4 Client)
Area - < 15K LUTSs

7.1.3 Uni-directional Ring

Uni-directional Ring implemented as modification to MCP has following salient features:-

Inspired by the Manager-Client Pairing protocol.
Modified to use only client modules for snoopy based protocol.
Client is used to maintain the MOESI coherency protocol.

Ring controller mechanism is implicitly implemented using BSVas atomic rule struc-
tures.

Part of same SoC to maintain coherency for shared memory based Processors.

Ring prioritizes request service to clients in clockwise direction and keep on snooping
till the time request is not generated.

The Read/Write is served on priority than Write-back and Invalidation.
In-ring buffering requests are serviced in a round-robin mechanism.
User Interface is through TLMs.

VCU108 Vivado Synthesis:
Frequency - 204MHz (4 Client)
Area - < 15K LUTs
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7.2 Future Work

The project might be taken as an extension towards the implementation of same for the higher
hierarchical structure keeping the same level of data encapsulation i.e Designing of MCP for
Rings, Ring of Rings, Mesh of Rings. The design methodology could be chosen based on the
application, area constrains in term of placement and routing, power consumption, throughput
etc.

7.2.1 MCP of Rings

Ring is connected with clients and a bridge network could be formed among the rings using
Manager of the MCP protocol. Manager forwards the request to other rings. The methodology
helps in implementing sixteen in number clients with each ring having 8-cores attached to it. A
comparative study for the MCP of Ring methodology and Ring of Ring methodology could be
made so as to find analogy of which methodology would serve the purpose base on requirement
specification.

Figure 7.1: MCP of Rings : Interconnect of Rings with Manager Module

7.2.2 Ring Square

Ring square is also known as Ring of Ring’s, Clients are connected via ring and ring’s are
connected via a higher level ring structure. The methodology could be beneficiary for designing
processors for server based applications, with total number of cores equal to sixteen i.e four core
on each ring. The higher level ring/global ring is connected to main memory and lower ring is
connected in a star methodology with the higher/global ring. A continuously injection of the
traffic on the higher ring is done via the lower rings Ring0, Ringl, Ring2, Ring3. The critical
issue arises when lower Ring0 and Ring3 injects the traffic to higher level and data of Ring0
is available at Ring3 so it might lead to live-lock deadlock situation. Hence to eliminate these
issues we connect lower order ring in a star methodology with the higher/global ring.
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Ring of Rings

(16 Cores)

Figure 7.2: Ring of Ring Diagram: Implementation of R2

7.2.3 Mesh of Rings

This methodology can be implemented for processors more than 32 in number. The rings are
connected in form of mesh structure, each mesh node is connected in form of ring with clients.
The methodology preferred for higher throughput is priority and time delay is trade off.

Figure 7.3: Mesh of Ring Diagram: Implementation of Hybrid
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