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ABSTRACT

KEYWORDS: Reliability, Formal Specifications, Assertions,Constraint sat-

isfaction Problems, Resource Estimation, Safety-Critical Sys-

tems

Current usage of Formal specifications is limited to describing the correctness

and timing related attributes of a system to aid its design and verification. Recent

advancement paved ways to express other important design attributes such as

power and reliability, using the formal specifications. Still there are other areas

where the formal specifications can be used to abstract the attributes of the system.

Previous research works [Hazra et al., 2016] shows the extension of specification

formalism to incorporate reliability behaviour of a design, using the temporal as

well as spatial redundancy artifacts, into formal specifications. Since reliability is

ensured by temporal or spatial replication of actions, the resource requirement of

reliable systems render higher design and production cost. The design is devel-

oped from the requirements abstracted by the formal specifications, so it becomes

imperative to study the resource requirements at an early stage leveraging the

redundancy provisions from these reliability specifications. This project is an en-

abler for this and tries to study the relationship between the reliability requirements

(specified upfront) and the number of processing resources (cores) required for the

development of the safety critical system due to physical or temporal replication

implied by spatial or temporal redundancy in the specified properties.
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In this work, we address the question of finding optimum number of processing

resources required to meet all the formal reliability specifications with sufficient

reliability implied by introduction of appropriate redundancy artifacts. We model

this problem as aConstraint Satisfaction Problem (CSP) so as to efficiently find the

minimum possible number of resources. The timing restrictions binding the event

sequences implied by the given set of reliability specifications in conjunction with

associated correctness specifications as well as the resource restriction imposed on

the design are modelled as a Constraint Satisfaction Problem (CSP) or a Constraint

Optimization Problem (COP) and constraint solvers like Satisfiability Modulo The-

ories (SMT) solvers or Integer Linear Programming (ILP) solvers are invoked to

estimate the number of processor-cores required to ensure specific reliability tar-

gets in the design. The practical application of this approach in estimating the

number of design units required in safety critical designs with specific reliability

targets is also addressed in this work.
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CHAPTER 1

INTRODUCTION

This chapter introduces the resource estimation problem formally. The motivation for

selecting this work as well as the contributions made are highlighted.

This chapter introduces the formal estimation of resources in embedded CPS

system from reliability specifications. The schematic representation of the pro-

posed framework is explained highlighting the contributions made. The mo-

tivation for choosing the topic as well as the applicability of this approach in

Safety-Critical systems are also briefly stated.

1.1 Overview and Proposed Framework

Formal specifications express the system at a higher level of abstraction, completely

characterizing the system requirements using formal semantics. All the properties

that should be satisfied by a system is congregated into formal specifications. A

given set of formal specifications can be satisfied by designing the system in differ-

ent ways. The variability of the designs satisfying the same formal specifications

confirms the universal behaviour of the formal approach to specify system require-

ments. Formal specifications could be used for unambiguous description of these

systems, and also to establish that their implementations exhibit the expected func-

tionality. Early analysis of the system as well as prediction of expected behaviour

of the system is thus possible using formal specifications. Timing analysis of the



system using formal specifications was widely studied in the past [Alur and Dill,

1994; Alur et al., 1992; Dixit et al., 2010, 2014; Maler, 2014]. Estimation of other

artifacts like power and reliability were also attempted recently. In recent works,

formal assessment of reliability requirements of Cyber-Physical System (CPS) is

achieved [Hazra et al., 2016].

In [Hazra et al., 2016], the use of spatial (physical duplication of components)

and temporal redundancies (repetitions in control actions such as re-execution of

some control component) in embedded CPS framework has been studied. The

formalism for reliability specifications proposed in this work provides methods

to formally assess the adequacy of the redundancy provisions to meet desired

reliability goals for the system functionalities at an early stage of design. The

reliability metric defined by different time binded event sequences representing a

functional reliability specification, extracted in-accordance with its corresponding

functional correctness specification is calculated by the framework proposed in

this paper. The action-event sequences ensuring specific reliability targets can

thus be extracted using the algorithm proposed in this work [Hazra et al., 2016]

and these sequences forms the primary input to the Resource Estimation Algorithm

proposed in this work.

Figure 1.1 is the schematic representation of the embedded CPS framework. It

consist of three modules namely Sensor, Controller and Actuator. The sensor senses

input scenarios, the controller performs the control decision based on the sensed

input and the actuator delivers actuation signals. The sensed input scenarios or

sensing inputs are termed as sensed-events (εI), consequent actions are termed as

action-events (εA) and resulting outcome activities are termed as outcome-events

(εO). The controller receives the sensed-events, interacts with the plant model
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with appropriate actions to produce the desired outcome-events. The outcome

of an action may take place after many control cycles and may also be durable

over a period of time. The correctness specifications relate the sense-events (εI)

with the outcome-events (εO) where as reliability specifications relate them to

the action-events (εA). The probability that an outcome-event happens given the

action-event responsible for the same occurs helps in calculating the respective

reliabilities associated with different timing schemes of action-events (termed as

action strategies). Specific reliability targets are imposed on these action strategies

so as to ensure end-to-end system reliability in safety critical systems. The reliable

set of strategies are to be evaluated to estimate the minimum number of processing

resources required in the design.

Plant (M)

Action
Strategy

Controller (C)

Action

Sense Outcome

Figure 1.1: Schematic Representation of the Embedded CPS Framework

In this project, the estimation of required design resources is targeted by mathe-

matical analysis of action sequences extracted from formal reliability specifications

ensuring specific reliability targets. This project aims at developing an optimal al-

gorithm to find the minimum number of resources required to meet the reliability

requirements of a given set of formal reliability specifications and corresponding

correctness specifications. Since simultaneous assertion of antecedent sequence

comprising of sense-events (εI) in the specifications leads to finitely many possibil-

ities in which the requirements can be met, the combinatorial method of searching

through all possible combinations for satisfiability can explode in time. SMT
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solvers which uses DPLL involving backtracking-based search procedures for de-

ciding the satisfiability, has enhanced performance and is hence a better approach

to solve the constraint optimization problems of this sort. A technique called

Linear programming is also applicable when the problem is expressed in terms

of conjunction of linear inequalities. Both these possibilities are explored with

specific solvers chosen in each domain to estimate the number of processor cores

required in the design so as to ensure specific reliability targets on formal reliability

and correctness specifications.

Figure 1.2 gives the schematic representation of the proposed algorithm using

SMT/ILP solvers. The approach used to solve this problem is by modeling the

requirement specifications into timing constraints which relates the time of each

outcome activity with respect to previous activity or absolute time. This prob-

lem can be modelled as a constraint satisfaction problem, where we have timing

constraints extracted from the requirement specifications (SVA properties). The

pre-conditions of all specifications are assumed to be asserted at time zero, so that

the core requirement is most stringent. The task vs time relationships are extracted

from the specifications. Task timing variables are created, declared and the rela-

tionship between them are specified with semantics of Z3 SMT solver/CPLEX ILP

solver. The constraints are termed as assertion in SMT/ILP solvers. The resource

bound is given as an optional input, using iterative bisection of this bound the op-

timum number of resources can be found iteratively by the SMT/ILP solver. This

work aims in finding a possible scheduling of action-events responsible to cause

desired outcome-events meeting specific reliability targets such that the resource

requirement implied by the proposed scheduling scheme is the minimum possible

one.
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Figure 1.2: Schematic Representation of the Proposed Framework

1.2 Motivation

The motivation for doing this project is primarily the interest in for-

mal specifications of CPS system and the challenges faced in ensuring reliability

through redundancy. The requirement specifications implied by the System Ver-

ilog Assertions are to be exerted by the system components. Since redundancy

can be included by physical and temporal replication of actions, multi-core CPS

systems are needed for employing redundancy to ensure reliability. Using SVA

assertions that could completely validate any system, to figure out the number of

resources needed in the design, is of great advantage. The estimation of design re-

sources from formal specifications impose great challenge, since the possible ways

in which the requirements can be met increases exponentially for combinatorial

search.

This project aims at formulating an algorithm to check the satisfiability of a

given set of formal correctness and reliability specifications for a given number of
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processor cores in a multi-core Cyber Physical System with inbuilt redundancy for

reliability. Safety-critical embedded systems are designed with specific reliability

targets, and design practices include the appropriate allocation of both spatial and

temporal redundancies in the implementation to meet such requirements [Hazra

et al., 2016]. For spatial redundancy, the system components have to be physically

replicated where as for temporal redundancy, the action-events are re-executes at

definite time intervals so as to ensure higher probability of occurrence.

1.3 Contributions of this work

From Figure 1.2 which gives the schematic representation of the proposed algo-

rithm using z3 SMT solver, the contributions of this projected are highlighted. The

steps are summarized as below.

(Step 1) From the specification of the CPS, the action-event sequences are extracted

such that all the antecedent sequences comprising of sense events are as-

sumed to be asserted at time zero. The action-event sequences should

comply with the correctness specifications. the formal assessment of the

reliability is calculated for every such sequence and a target reliability is

ensured so as to ensure specific reliability target of the system as a whole.

This simultaneous assertion of sense event impose stringent resource re-

quirements and hence ensures that our satisfiability check holds true in

the extreme conditions.

(Step 2) The task timing variables are declared and the relationship between them
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are specified as SMT/ILP solver assertions. The assertions are created with

semantics of the chosen API of Z3 SMT solver or CPLEX ILP solver. The

maximum value attainable by any of the variables is set as the simulation

time over which the algorithm is run. The resource bound is specified to

create the resource constraint. This bound is iteratively bisected and by

solving the constraints ( time as well as resource constraints) in Z3/CPLEX

to predict the satisfiability of the imposed constraints, the optimum num-

ber of resources required is estimated.

The mathematical model for the resource estimation algorithm proposed in this

work is explained with suitable examples in Chapter 3. The practical application

of this approach in estimating the number of design units required in safety critical

designs with specific reliability targets is Chapter 3 of this thesis. The implemen-

tation details and experimental results evaluating the scalability of the approach

are discussed in Chapter 4.

1.4 Organization of the thesis

The background and the theoretical framework for the problem is discussed in

Chapter 2. The modeling of the problem into Constraint Satisfaction problems

requires proofs that existing scheduling and resource allocation problems does not

fit into the scheme of allocation required by this problem. So a detailed study on

bin packing, scheduling and task allocation problems are discussed in Chapter 2.

The different solvers available for CSPs are also discussed in this chapter. The

formal problem statement and proposed algorithm is explained in Chapter 3. The
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experimental results and case study are presented in Chapter 4. The report is

concluded with future scope in Chapter 5.
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CHAPTER 2

Background and Related Work

This chapter introduces the theoretical background of the work done in this project

This chapter briefly introduces the formal reliability and correctness specifica-

tion in CPS system in an attempt to present the available inputs of the problem

presented and the required formats of the input. The brief on System Verilog As-

sertions is exempted assuming a previous knowledge of the same by the reader.

The complete syntax of the SVA can be found in the SVA manual (System Verilog

3.1a Language Reference Manual). Since the approach presented in this paper is

based on the Constraint Satisfaction Problems, similar problems like Bin Packing,

Scheduling and Task Allocations are discussed in the same perspective so as to

highlight the novelty of the proposed Resource Estimation Algorithm. There are

wide varieties of SMT/ILP solvers available to solve Constraint Satisfaction Prob-

lems (CSPs), hence the reason for choosing Z3 SMT solver and CPLEX ILP Solver

are highlighted in further sections. The architectural frameworks of both these

solvers are also discussed

2.1 Formal Assessment of Reliability Specifications

Formal specification development is an integral part of the design process espe-

cially in integrated circuits and systems. The formal assessment of Reliability

specifications [Hazra et al., 2016] defines the formal use of reliability requirements



for estimating reliability from redundancy artifacts employed. Reliability can be

ensured by using spatial [Kameyama and Higuchi, 1980; Kim and Shin, 1996;

Lorczak et al., 1989; Shin and Kim, 1994; Avizienis and Kelly, 1984; Liming and

Avizienis, 1978]or temporal redundancy [Geist et al., 1988; Krishna and Singh,

1993; Kim, 1999; Kim and Kim, 2004]. In [Hazra et al., 2016] , the reliability spec-

ifications are used to formally determine what form of behavioral redundancy is

needed at the component-level so that an end-to-end feature is implemented with

a desired level of reliability.

Figure 1.1 is the schematic representation of the embedded CPS framework.

The events that are responsible for sensing inputs are termed as sensed-events

(εI), consequent actions are termed as action-events (εA) and resulting outcome

activities are termed as outcome-events (εO). The controller receives the sensed-

events, interacts with the plant model with appropriate actions to produce the

desired outcome-events. The outcome of an action is time bounded with respect

to time of occurrence of the sense-event. The outcome of an action may take place

after many control cycles and may also be durable over a period of time.

The reliability of the CPS is governed by the fault-free execution from sensing to

the outcome activity (Figure 1.1). This means that after sensing an input scenario,

how reliably a action (actuations) can be performed after the controller decision

being undertaken properly determines the reliability. In this model, the reliability

of the outcome activities are attributed from the unreliable computational platform

(inside the plant model) where the action tasks are scheduled, computed and

applied. To meet the desired reliability of the outcome behavior, the fine-grain

control incorporates various physical redundancy attributes inside the controller.

The activities of a CPS can be visualized in terms of sequence of events. The
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early-stage specification narrates the outcome activity based on a sensed scenario

which is to be met with a specified reliability value. Such specifications describe

the correctness requirements for a CPS. In addition to this, the meta-level action-

strategy specifies the supervisory control where the redundancies in actions are

described for a sensed scenario. Such requirements are termed as the reliability

specifications for CPS. The formal definition of these specifications is as given

below.

From [Hazra et al., 2016], the correctness requirement, PS
cor, for a given subsys-

tem, S, is formally expressed as

PS
cor : (ψI → ##[a : b]ψO)

Here, the antecedent sequence, ψI, ψIεεI denotes the pre-condition and ψO,ψOεεO

the consequent sequence denotes the outcome-activity.

The reliability requirement, PS
rel for a given subsystem, S, is formally expressed

as

PS
rel : ψI → ##[a : b]ψA)

Here, the antecedent sequence, ψI, denotes the pre-condition for any event and the

consequent sequence, ψA,ψIεεA denotes the disjunction-free action.

The spatial redundancy is formally represented using a property, PS
Srel, as

PS
Srel : (EI → ##[a : b](EA[∼ n])), where EI denote a sense-event and EA denotes an

action-event. This definition is used as an optional extension to System Verilog

Assertions to represent spatial redundancy.
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The temporal redundancy is formally represented using a property, PS
Trel, as

PS
Trel : (EI → ##[a : b](EA[= n])) for nonconsecutive temporal repetitions and

PS
Trel : (EI → ##[a : b](EA[∗n])) for consecutive temporal repetitions.

Given a set of properties PS
cor, PS

rel, PS
Srel and PS

Trel of the multi-core CPS,

this project aims at checking the requirement satisfiability with the given number

of cores (resource bound) ie whether the given number of cores can assure the

satisfiability of the worst case requirements of the system when all the sense-

events in the system are asserted simultaneously and finally converging to the

optimum number of processing units required by iterative bisection of resource

bound. An example showing the correctness and reliability specifications of the

Adaptive Cruise Control System in Automobiles is given below.

Example 1. Adaptive Cruise Control (ACC) supports features to – (a) maintain a min-

imum following interval to a lead vehicle in the same lane and (b) control the vehicle

speed whenever any lead obstacle is present. Let us consider the functional requirements

of ACC, which senses the proximity of any lead vehicle and a leading obstacle by the

sense-events, lead gap and leadobs, respectively. The required action-events issued by

the ACC controller for reducing throttle by 10% and applying proper pressure in wheel-

brakes are denoted as, act1 and act2, respectively. The corresponding outcome-events are

given as, thrt adj and brk adj. Now, consider the following two functional correctness

requirements of ACC as follows:

(a) ACC C1: As soon as a lead obstacle is sensed, then within a total of 200 ms,

the throttle is adjusted (reduced by 10%) followed by the application of wheel

brakes after 50-100 ms. Formally, this property is expressed as:

ACC C1 : lead obs→ ##[1 : 2] thrt adj ##[1 : 2] brk adj

12



(b) ACC C2: Whenever a lead vehicle is sensed in a close proximity, then within

a total of 300 ms, the throttle is adjusted (reduced by 10%) followed by the

application of wheel brakes after 50-150 ms. Formally, this property is expressed

as:

ACC C2 : lead gap→ ##[1 : 3] thrt adj ##[1 : 3] brk adj

It is to be noted that a single time-unit delay is considered to be of 50 ms in all the above

mentioned functional specifications.

Suppose, the desired reliability of the given correctness requirements be 0.95 and 0.98

for ACC P1 and ACC P2, respectively. Here, the actions act1 and act2 are responsible

for producing the outcome-events thrt adj and brk adj, respectively. Suppose, the

outcome-events are unreliable and their reliability values are given as follows:

Rthrt adj = Prob(thrt adj | act1) = 0.8,

Rbrk adj = Prob(brk adj | act2) = 0.9.

Since the outcomes are unreliable, the ACC must issue the action-events with appropri-

ate redundancy in order to meet the desired reliability target, as given by the following

reliability specifications.

(a) ACC R1: As soon as a lead obstacle is sensed, then the throttle-reduction action-

event is scheduled in two processors parallelly within 50 − 100 ms, followed

by the brake-apply action-event which is also scheduled in two processors

parallelly within next 50 − 100 ms. Formally, this property is expressed as:

ACC R1 : lead obs→ ##[1 : 2] act1[∼ 2] ##[1 : 2] act2[∼ 2]

(b) ACC R2: Whenever a lead vehicle is sensed in a close proximity, then the overall

action of 10% throttle-reduction applied successively twice, followed by brake-

application in the next time-unit is re-executed twice within an overall time

13



limit of 300 ms. Formally, this property is expressed as:

ACC R2 : lead gap→ ##[1 : 3] (act1[∗2] ##1 act2)[= 2]

Now, given the reliability specifications, ACC R1 and ACC R2 and assuming that the

sense-events (lead obs and lead gap) are present in Cycle-0, the reliability for the cor-

rectness specifications, ACC P1 and ACC P2 are calculated as per the previous work [Hazra

et al., 2016] in Table 2.1 and Table 2.2, respectively, with respect to each action/control

strategy1.

The highlighted rows of Table 2.1 and Table 2.2 indicate the action-strategies that meet

the desired reliability requirements for both properties of ACC subsystem. We call all these

strategies meeting the reliability targets as the admissible action-strategies. �

Table 2.1: Possible Options of Action-Events for ACC R1

Possible Action Events (Cycle-wise) Computed
Options Cycle-1 Cycle-2 Cycle-3 Cycle-4 Reliability

(1A) act1 act2 0.9504
act1 act2

(1B) act1 act2 0.9504
act1 act2

(1C) act1 act2 0.9504
act1 act2

(1D) act1 act2 0.9504
act1 act2

Table 2.2: Possible Options of Action-Events for ACC R2
Possible Action Events (Cycle-wise) Computed
Options Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5 Cycle-6 Reliability

(2A) act1 act1 act2 0.9942
act1 act1 act2

(2B) act1 act1 act2 0.9863
act1 act1 act2

(2C) act1 act1 act2 act1 act1 act2 0.8202
(2D) act1 act1 act2 0.9942

act1 act1 act2

(2E) act1 act1 act2 0.9238
act1 act1 act2

(2F) act1 act1 act2 0.8202
act1 act1 act2

Example 1 also shows the formal assessment of the reliability specifications. The

algorithms proposed in the work [Hazra et al., 2016] is thus helpful in extracting

1The method for formal reliability assessment is presented in [Hazra et al., 2016] in details.
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the reliable action strategies from the reliability specifications. The reliability

requirements along with the correctness specifications of a system can be assessed

for synthesizing and implementing reliable designs. This could enable an early

estimation of the required resources thereby achieving a reduction in the cost of

the overall safety-critical systems.

2.2 Constraint Satisfaction Problems

Constraint-satisfaction problems are found in software and hard-

ware verification , test-case generation, scheduling, planning, and graph problems

which use logical formulas for describing states and transformations between these

states. A constraint satisfaction problem (or CSP) is defined by a set of variables,

X1, X2, . . . , Xn and a set of constraints, C1, C2, . . . , Cm. Each variable Xi has a

nonempty domain Di of possible values. Each constraint Ci involves some subset

of the variables and specifies the allowable combinations of values for that subset.

Any state of the problem is defined by an assignment of values

to some or all of the variables,
{
Xi = vi, X j = v j, . . .

}
. An assignment that does

not violate any constraints is called a consistent or legal assignment. A complete

assignment is the one in which every variable is assigned a value. A solution to

a CSP is a complete assignment that satisfies all the constraints. Some CSPs also

require a solution that maximizes an objective function.

The most well-known constraint satisfaction problem is proposi-

tional satisfiability, or SAT. SAT also known as Propositional Satisfiability is de-

fined over Boolean Expressions. A Boolean Logic formula is constructed using

Boolean variables interconnected by Boolean operators AND, NOT and OR. A
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Boolean logic formula is said to be satisfiable, if we could assign the variables with

true/false values such that the Boolean formula turns out to get a true value for

that set of variables. Thus SAT or Boolean Satisfiability problem aims in finding

true/false assignments that could make any Boolean Function true. SAT solvers are

employed to solve such problems efficiently. If we need to define satisfiability over

richer constructs like integer or real arithmetic, strings and other data structures

like arrays, sets etc. SMT or Satisfiability Modulo theories are to be used, since

SAT is defined only for Boolean logic formulas.

Some well known constraint satisfaction problems like packing, task

scheduling and task allocation are similar to this project. These problems are ex-

tensively studied and many algorithms were developed so far to handle them. The

differences and similarities between these problems and the concerned problem

are highlighted in this section.

2.2.1 Packing, Task Scheduling and Task Allocation Problems

The packing problem is a well-known constraint satisfaction problem and there

are many versions for this problem. In one of the variants of this problem, we have

a sequence of pieces P1, P2, . . . , Pn with size in (0, 1]. We have an infinite number

of bins each with capacity 1. Each piece must be assigned to a bin. Further, the

sum of the sizes of the pieces assigned to any bin may not exceed its capacity. The

goal is to minimize the number of bins used [van Stee, 2015].

Packing problem is a resource allocation and minimization problem. A possible

way to model the resource estimation problem as bin packing is to set each time

slot as the bin number and we have to place the action-events in appropriate bins

such that the height of the bins or the number of cores is not exceeded. The height

16



of all tasks is 1 here, and the user specified number of cores is the bin height. Due

to definite relationship between the timing variables corresponding to the tasks,

the placement of any task in such a bin, will automatically fix the other variables.

So the bin packing algorithms where we have freedom of choice of the bins, are

not fit for my problem.

Scheduling is the allocation of shared resources over time to competing re-

quirements. In job shop scheduling we have a set of n jobs {J1, J2, . . . , Jn } to be

scheduled on m Machines {M1, M2, . . . , Mm}. Each job will be having n different

tasks which need to be scheduled on one of the m Machines. The scheduling

should be such that the make span or the total time required to complete all the n

jobs is minimum. Each machine can process only one task at a time, and once a

task is processed in a machine, it should not be interrupted [De Moura and Bjørner,

2011].

Task Scheduling problems are different from the resource estimation problem

where we have a set of n properties each with some number of action-events to be

executed in a particular sequence. The time to start any action-event is specified

and the action-events inside a property also have definite timing relationships

with any other action-event within the same property. The action-events can be

executed on any of the m machines. Any action-event that falls in the same time

slot can be shared if both are matching. The problem is to find out whether we can

meet all the properties with the alloted number of resources. Since action-event

sharing is not considered in task scheduling algorithms, they are not efficient in

solving this problem.

In the task allocation problem, we have a task T consisting of m modules

{t1, t2, . . . , tm}and a distributed computer system with n processors
{
p1, p2, . . . , pn

}
.
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Each of the modules comprising a task will execute on one of the processors and

communicate with some other modules of the task. The problem is to allocate each

of the m modules to one of the n processors such that an objective cost function is

minimized subject to certain resource limitations and constraints imposed by the

application or environment [Shatz et al., 1992].

The task allocation problem is different from project problem in action-event

sharing. Since property requirements can be met by action-event sharing, consid-

erable reduction in resources can be achieved. In task allocation algorithms task

sharing is not considered and so they are not suitable for the project discussed.

The key to the resource estimation problem is sharing of action-events resulting in

Resource Reduction. The timing of action-events bear a definite relationship with

the time at which the sense-event happens which makes the resource estimation

problem a constraint satisfaction problem. The proper allocation of time window

can result in event sharing between reliability specifications resulting in reduction

in the number of cores required. So satisfiability of all the specifications of a system

can be achieved by a minimum number of resources. Example 2 shows how the

sharing of action events can result in reduction in number of resources required.

2.3 Solvers for Constraint Satisfaction/Optimization

Problems

SMT is also known as predicate satisfiability problem. The propositional satisfia-

bility problem or SAT is a special case of the predicate satisfiability problem. SMT

generalizes SAT by equality reasoning, arithmetic, fixed-size bit-vectors, arrays,

quantifiers and other useful first-order theories. An SMT solver is a tool for de-
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ciding the satisfiability of formulas in these theories. Z3 is an SMT solver from

Microsoft Research. Other well known SMT solvers are VeriT, CVC4, MathSAT

and Yices.

The earlier SMT solvers converted instances to Boolean SAT instances and this

approach was known as the eager approach. It was complex due to difficulty in

representation, but had the merit of using existing efficient SAT solvers for solv-

ing [Barrett et al., 2009] Eventually the difficulties incurred led to the development

of DPLL (Davis-Putman-Logemann-Loveland) style search with theory specific

solvers that could solve predicates of concerned theories in conjunction. DPLL is

a backtracking based search algorithm for deciding satisfiability of Boolean logic

formulas in conjunctive normal form (AND of ORs). The Z3 SMT solver developed

by Microsoft Research is used for this project.

An integer programming problem is a mathematical optimization/feasibility

program with integer variables. In ILP the objective function and the constraints

are linear. Integer programming is an NP-hard problem. A special case, 0-1 inte-

ger linear programming, in which the unknowns are binary is similar to the SAT

problem. Similar to SMT, ILP is also used in solving different constraint optimiza-

tion problems like capital budgeting and scheduling. SMT is more versatile in the

sense that the type of variables is not limited to integers. Mixed Integer Linear

Programming problems cover the floating point assertions based problems. ILP

problem is very much similar to CSP, since ILP is a problem of finding a solution

to a set of constraints (linear) that impose conditions that the variables (integers)

must satisfy.

There are many open-source and commercial ILP solvers available. The widely
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used ILP solvers are LP SOLVE, CLP, SCIP, GUROBI, CPLEX and XPRESS. The

CPLEX ILP solver is proved to be the best according to the studies [Meindl and

Templ, 2012]. The IBM ILOG CPLEX Optimization Studio [IBM, 2012] is a com-

mercial solver designed to tackle large scale mixed or integer linear problems. This

software features several APIs and interfaces so that it is possible to connect the

solver to different program languages and programs. A stand-alone executable is

provided where an optimizer is also accessible through modeling systems.

2.3.1 Z3 Architecture

Z3 is a high-performance theorem prover being developed at Microsoft Research.

Z3 combines several theory solvers into a combined framework and can be used

to prove theorems and find counter-examples for non-theorems. Z3 integrates

a modern DPLL based SAT solver, a core theory solver that handles inequalities

and uninterpreted functions, satellite solvers for arithmetic, arrays, etc. and an

E-matching abstract machine for quantifiers. Z3 is implemented in C++ and is

modular in structure and hence new theories can be added without modifying the

core [Moura and Bjørner, 2008].

The simplifier reduces the constraints using standard reduction rules. Com-

piler converts it into a data structure comprising of clauses and closure-nodes. The

congruence closure core receives the truth assignments and equalities and inequal-

ities thus created are propagated using E-graphs. Theory combination involves

creation of implied equalities. The SAT solver effectively prunes all the boolean

equalities. For quantifier reasoning z3 uses an approach that works over an E-

graph to instantiate quantified variables. Z3 uses new algorithms that identify
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Figure 2.1: Z3 Architecture

matches on E-graphs. Theory Solvers in Z3 uses a linear arithmetic solver. Z3 has

the ability to produce models as part of the output. Models assign values to the

variables in the input.

2.3.2 CPLEX Architecture

The CPLEX Optimizer is implemented in the C programming language. It supports

different types of mathematical optimization and offers interfaces other than C. The

IBM ILOG CPLEX Optimizer solves integer programming problems using either

primal or dual variants of the simplex method or the barrier interior point method.

It can also solve convex and non-convex quadratic programming problems and

convex quadratically constrained problems. The CPLEX Optimizer has a modeling

layer called Concert that provides interfaces to the C++, C#, and Java languages.
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There is a Python language interface based on the C interface. In addition to these

interfaces, connectors to Microsoft Excel and MATLAB are also provided. The IBM

ILOG CPLEX Optimization Studio comprises of the CPLEX Optimizer (mathemat-

ical programming), the IBM ILOG CPLEX Optimizer (constraint programming),

an Optimization Programming Language (OPL) and a tightly integrated IDE (In-

tegrated Development Environment).

An additional feature known as concurrent optimization is present in CPLEX

making it faster. Concurrent optimization allows CPLEX to reach the solution in

parallel since different solvers can be used simultaneously [Lima and Grossmann,

2011]. The different methods available to solve LP problems include Simplex

method, primal Simplex method and Barrier method. The simplex method was

the very first method designed for solving Linear Programs (LPs). This method

is most widely used today and there are efficient implementations of the primal

and dual simplex methods available in the Optimizer. The feasible region is the

solution space of a set of constraints as per the nomenclature of Mathematical

Programming. Each value possible for the objective function of an LP constitutes

a hyper plane/a level set. A fundamental theory of simplex algorithm theory is

that the optimal value of the LP objective function will occur when the level set

meets the boundary of the feasible region. The optimal level set either intersects

a single point of the feasible region, then the solution is unique. If optimal level

set intersects a boundary set of the feasible region, we have an infinite set of

solutions. The barrier method search for solutions not strictly on the boundary of

the feasible region, so it could only reach an approximation of an optimal solution.

The number of barrier iterations required to complete a problem depend on the

required proximity to the optimal solution than the number of decision variables

in the problem. Unlike the simplex method the barrier method completes any
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problem in almost same number of iterations despite the size of the problem.

With concurrent optimization different threads uses different methods to solve the

problem. The barrier solver when applied to large problems may be faster than the

simplex based solvers. The simplex may be superior if started from an advanced

basis. So concurrent Optimization in CPLEX makes it faster due to the multiple

threads executed parallelly using different solver techniques

2.3.3 Comparison of Constraint Solvers

The SMT solver is a constraint satisfaction solver, but not a constraint optimization

solver where as ILP is a constraint optimization as well as a feasibility solver.

Constraint satisfaction problems (CSPs) is the problem defined over a set of objects

whose state must satisfy a number of constraints or limitations. the satisfiability

of a set of constraints is targeted in CSPs. A Constraint Optimization Problem

(COP) is the problem of finding a possible assignment to all variables that satisfies

all hard constraints (constraints that must be satisfied) optimizing the global cost

function. COP is a CSP with a objective function that is to be optimized. But every

CSP can be viewed as a COP when not all constraints are satisfiable, that is finding

an assignment that maximizes the number of satisfied constraints.

When modelling the Resource Estimation Problem as a CSP or a COP, there are

two types of constraints to be considered. The first type is he timing constraints

that define definite timing relationship between the action-events constituting the

feasible action-event strategies meeting specific reliability targets. The second type

is the resource constraint, this restraint is to be kept on all viable time value or the

maximum depth of time over which the action strategy can exist assuming the

sense-event corresponding to the reliability specifications happens at time zero.
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Both the solvers, Z3 is a CSP solver and ILP is a COP solver will share the

same timing and resource constraints. But since ILP requires an objective function,

in addition to the constraints presented to Z3, a cost function is to be provided.

The objective function is either a cost function or energy function which is to be

minimized, or a reward function or utility function, which is to be maximized.

Since Z3 could give the satisfiability we can check the satisfiability of the given

set of reliability specifications with respect to any specific number of cores. In

CPLEX, if the number of time cycles where the resource constraint is met is added

up and the resulting sum is defined as the objective function, maximization of the

same can result in the optimum solution of the problem resulting in a satisfiable

solution. Hence we are finding an assignment that maximizes the number of

satisfied resource constraints in ILP to model the problem as a CSP.
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CHAPTER 3

Resource Estimation Algorithm

This chapter describes the mathematical framework of the proposed Resource Estimation

Algorithm

In this chapter, the formal statement of the problem is derived and also the

resource estimation framework is described with suitable examples. The inputs,

assumptions and desired output for the problem are defined and a block diagram

of the proposed framework in also included to illustrate the proposed framework.

The specification parsing and constraint creation are expressed with mathematical

notations and suitable examples are augmented for better understanding.

3.1 Formal Problem Statement

The problem of finding the optimal number of computing resources (processors)

considering the simultaneous occurrences of a set of sense-events is formally de-

fined on:

Inputs:

(i) A set of formal correctness and reliability properties of the system.

(ii) The reliability of each outcome-event with respect to the action-event corre-

sponding to it.

(iii) The reliability target of reliability specifications with respect to each correct-

ness specification.



(iv) A set of sense-events that may occur simultaneously.

(v) A set of admissible action-strategies (sequence of action-events) correspond-

ing to every sense-event derived from the corresponding reliability properties

of the system.

(vi) A pessimistic resource bound (T ).

Aim: Determine the appropriate choice of time binding for every action-strategy

with respect to every sense-event so that the overall resource/processor require-

ment is minimized.

Assumptions:

(i) Same actions participating under two different action-strategies correspond-

ing to different sense-events can be executed together in the same processor.

(ii) Execution of every action takes unit time (one cycle) in the processor.

(iii) Within one action-strategy, the participating actions appear as disjunction-

free.

Table 3.1: Possible Executions of Action-Events and Required Resources for ACC
Subsystem

Strategy Possible Executions of Action-Events (Cycle-wise) Resource
Combinations Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5 Requirement

1A+2A 〈act1, act1〉 〈act1, act1, act2, act2〉 〈act1, act2〉 〈act2〉 4
1A+2B 〈act1, act1〉 〈act1, act2, act2〉 〈act1, act2〉 〈act1〉 〈act2〉 3
1A+2D 〈act1, act1〉 〈act1, act2, act2〉 〈act1, act1〉 〈act1, act2〉 〈act2〉 3
1B+2A 〈act1, act1〉 〈act1, act1〉 〈act1, act2, act2〉 〈act2〉 3
1B+2B 〈act1, act1〉 〈act1〉 〈act1, act2, act2〉 〈act1〉 〈act2〉 3
1B+2D 〈act1, act1〉 〈act1〉 〈act1, act1, act2, act2〉 〈act1, act2〉 〈act2〉 4
1C+2A 〈act1〉 〈act1, act1〉 〈act1, act2, act2〉 〈act2〉 3
1C+2B 〈act1〉 〈act1, act1〉 〈act1, act2, act2〉 〈act1〉 〈act2〉 3
1C+2D 〈act1, act1〉 〈act1, act1, act2, act2〉 〈act1, act2〉 〈act2〉 4
1D+2A 〈act1〉 〈act1, act1〉 〈act1, act2〉 〈act2, act2〉 2
1D+2B 〈act1〉 〈act1, act1〉 〈act1, act2〉 〈act1, act2, act2〉 〈act2〉 3
1D+2D 〈act1, act1〉 〈act1, act1〉 〈act1, act2, act2〉 〈act2〉 3

Example 2. Let us revisit Example 1 where we derive the admissible action-strategies for

the two specifications of ACC subsystem in the highlighted rows of Table 2.1 and Table 2.2.
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Suppose, the sense-events, lead obs and lead gap, occur simultaneously at Cycle-0.

Then, Table 3.1 denotes possible execution options for the action-events combining the both

the strategies. For example, if we try to ascertain Options (1A) with (2A), then we need

two processors in Cycle-1 to execute two parallel act1 events among which one act1

event of Option (1A) is shared/paired with the act1 from Option (2A).

Such task sharing helps us to reduce the number of processor requirements. We find

that (1A+2A) combination requires 4 processors to execute the action strategies. Table 3.1

presents all the possible combinations and the required resources while executing each of

these combinations of action strategies. It may be noted that, the minimum number of

resources (2) is required when we perform the actions as per the Options (1D) and (2A)

for both the properties. Hence, the next challenge is to bind the action-events with respect

to Cycles so that the required resources are minimized. �

3.2 Resource Estimation Framework

The required number of resources can be computed from a set of admissible action-

strategies (corresponding to sense-events) derived from the reliability properties

of a system, assuming that the corresponding set of sense-events occur simultane-

ously. The minimum count of execution units depends on the optimal allocation

of the actions to appropriate processor cores in every execution time/cycle so as to

maximize the sharing of action executions. The entire problem can be modeled as

a Constraint Satisfaction Problem (CSP) which can be solved invoking an SMT or

as a Constraint Optimization Problem (COP) which can be solved invoking an ILP

solver.

Figure 3.1 illustrates the primary steps in this framework. The steps that are

involved here are primarily categorized in two broad parts, namely, [1] Parsing and

Action Representation and [2] Constraint Generation.
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Figure 3.1: Resource Estimation Framework

3.2.1 Parsing and Action Representation

From the reliability properties and the derived action-strategies, the first step is

to identify relevant information of the action-event occurrences, their timing and

redundancy related information so that the required constraints can be derived

later. We present various stages of parsing and action representation as follows.

(a) Action Identification: This step identifies the set of action-events from the re-

liability specifications. For reliability specifications having redundant actions,

duplicates of the action-events are created.

(b) Time Prefix Determination: The time prefix of an action-event, extracted from the

reliability specification, is typically given as either ##t0 (fixed-time) or ##[t1 : t2]

(time-range) where t0, t1, t2 ∈ N, the set of all non-negative integers. The lower

and upper bound of the time prefixes are represented using a doublet, 〈t0, t0〉,

for the fixed time prefix and a doublet, 〈t1, t2〉, for representing the variable

time prefix. The redundancies are treated as follows:

• In case of spatial redundancy (m-times), all replicated actions (from 2nd to

mth occurrences) have 〈0, 0〉 as the time-prefix.
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• In case of consecutive temporal redundancy (n-times), let the time prefix

for the last action in the ith execution is extracted as 〈t1, t2〉. Then, the first

action of (i + 1)th (i + 1 ∈ [2,n]) re-executed sequence starts at (t1 + 1). The

time prefix of all other actions other than the first one is retained as such.

• In case of non-consecutive temporal redundancy (k-times), let the time

prefix for the first action in the first execution is extracted as 〈t1, t2〉. Then,

the first action of ith (i ∈ [1, k]) re-executed sequence can start earliest at

(t1 + i) and latest by ∆1 – thereby having 〈(t1 + i),∆〉 as the time-prefix. The

time prefixes of the other actions are extracted from the specification and

remain same across all their re-executions.

(c) Spatial Redundancy Factor Extraction: Action-events with spatial redundancy

of m are represented by associating each replication with a spatial redundancy

factor from 1 to m. A default spatial redundancy factor of 1 is assigned to

action-events having no spatial redundancy.

(d) Timing Variable Creation: For every action-event identified from the reliability

properties, unique timing variables are created for each occurrence (replicated

or re-executed) of that action, which will be used to derive the constraints

relating to the time of execution of these action-events.

(e) Linking Action-Events: For every action-event appearing in the reliability

specification, the timing-related constraints will be generated either from the

absolute time of its occurrence or in relative to the timing of its preceding

event. Hence, we need to map each timing variable (corresponding to an

action-event) to the timing variable of its preceding action – thereby aiding to

the generation of timing constraints for action-event sequences with respect to

an action-strategy. The first action-event in the reliability specification is not

linked to any other events, since it is depended only on the time of occurrence

1∆ is computed from the reliability specification considering the given reliability target of the
corresponding correctness property. Intuitively, this upper bound in time comes from the fact
that delaying the start (beyond ∆) in re-executing the same sequence reduces the number of
possible satisfaction of the correctness property and hence the specified reliability remains unmet
(Literature Hazra et al. [2016] provides more details).
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of sense-event. Hence the timing variable corresponding to the first action-

event has its linked variable as φ. For redundancies, the action-event links are

done as follows:

• In case of spatial redundancy (m-times), all replicated actions (from 2nd to

mth occurrences) are linked with the first occurrence of that action.

• In case of consecutive temporal redundancy (k-times), the first action in

the ith re-execution (i ∈ [1, k]) is linked with the last action in the (i − 1)th

re-execution.

• In case of non-consecutive temporal redundancy (k-times), the first action

in the ith re-execution (i ∈ [1, k]) is linked with the first action in the (i−1)th

re-execution.

These stages of parsing and action representation are illustrated in details the

the following Example 3.

Example 3. Consider the reliability specifications, ACC R1 and ACC R2, with their corre-

sponding correctness specifications, ACC C1 and ACC C2, as given in Example 1. Table 3.2

and Table 3.3 show the information extracted for these properties after parsing and action

representation stage, assuming that the sense-events, lead obs and lead gap, for the

properties happen together at time t = 0. �

Table 3.2: Action-event Information Extracted for ACC R1

Action Time Prefix Sp.-Red. Factor Time Var. Link Var.
act1 〈1, 2〉 1 τ11 φ
act1 〈0, 0〉 2 τ12 τ11

act2 〈1, 2〉 1 τ13 τ12

act2 〈0, 0〉 2 τ14 τ13

3.2.2 Constraint Generation

Primarily, the set of generated constraints can be of the following two types –

(i) timing-related constraints, and (ii) resource-related constraints. However, the

30



Table 3.3: Action-event Information Extracted for ACC R2

Action Time Prefix Sp.-Red. Factor Time Var. Link Var.
act1 〈1, 3〉 1 τ21 φ
act1 〈1, 1〉 1 τ22 τ21

act2 〈1, 1〉 1 τ23 τ22

act1 〈1,∆†〉 1 τ24 τ21

act1 〈1, 1〉 1 τ25 τ24

act2 〈1, 1〉 1 τ26 τ25
†∆ is computed from ACC R2w.r.t. the reliability targets of ACC C2

detailed stages, needed to derive these constraints to be used by the CSP/COP

solver, are given below.

(a) Timing Constraint Generation: Given a reliability specification, Speci, let the

timing variable corresponding to an action, actj, be τix. It has the time-prefix

〈t1
x, t2

x〉 and is linked with another action, actk, having the timing variable as τiy

(y < x). Then, the timing constraints for τix are generated as,

τix ≥


t1
x, if τiy = φ

τiy + t1
x, otherwise

(3.1)

τix ≤


t2
x, if τiy = φ

τiy + t2
x, otherwise

(3.2)

If t1
x = t2

x, then the timing constraint is simplified as,

τix =


t1
x, if τiy = φ

τiy + t1
x, otherwise

(3.3)

(b) Timing Variable Grouping: Given two reliability specifications, Speci and Specj,

having a common action, actk, let the timing variable corresponding to that

action, actk, be τix and τ jy, respectively. Then, we can put τix and τ jy to-

gether forming one group, Gl, i.e., τix, τ jy ∈ Gl. It may be noted that, all the

timing variables belonging to one group, say Gl, are associated with the same

action-event, say actk, and are assigned with the same redundancy factor from
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different properties. In case of spatial redundancy (say, action acts in Speci

is replicated m-times), the timing variables, τis2 , τis3 , . . . , τism , corresponding to

every replicated action (2nd to mth occurrence) forms a singleton group, i.e.,

Gl2 = {τis2},Gl3 = {τis3}, . . . ,Glm = {τism} if there is no associated spatial redun-

dancy for the same action (acts in other properties. If the same task say, action

acts exists in another specification Specj with spatial redundancy n-times, de-

pending on the relative value of n with respect to m, the grouping varies as

given below

• If n ≤ m, the actions τ js1 , τ js2 , τ js3 , . . . , τ jsn are added to the groups Gl1 ,

Gl2 ,Gl3 , . . . ,Gln respectively.

• If n ≥ m, the actions τ js1 , τ js2 , τ js3 , . . . , τ jsm is added to respective groups

Gl1 ,Gl2 ,Gl3 , . . . ,Glm and singleton groups Glm+1 = {τ jsm+1},Glm+2 = {τ jsm+2},

Glm+3 = {τ jsm+3}, . . . ,Gln = {τ jsn}are created.

(c) Resource Constraint Generation:

Pairing of timing variables into groups helps us to generate resource constraints

such that, if τik1 , τ jk2 ∈ Gl then the corresponding actions (say, actk1 from Speci

and actk2 from Specj) are same, i.e. actk1 = actk2 . Therefore, these actions can

be executed once whenever possible – resulting in a reduction in the execution

resources (processors). Let an action-event, executing at cycle-t, is represented

using the timing variable τi j; then the required resource due to the execution

of only that action is given as,

countt(τi j) =


1, if τi j = t

0, otherwise

The number of resources required at Cycle-t by the group of timing variables

representing an action is denoted as,

countt(Gl) =


1, if ∃τi j ∈ Gl, such that τi j = t

0, otherwise
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Suppose we are given with n specifications, Spec1, Spec2, . . ., Specn. We choose

all timing variables belonging to each Speci (i ∈ [1,n]) from the group,

Gl = {τ1x1 , τ1y1 , . . . , τ2x2 , τ2y2 , . . . , τnxn , τnyn , . . .}

and create n sub-groups of Gl as,

S
i
Gl

= {τixi , τiyi , . . .}, ∀i ∈ [1,n]

Now, the required resource count for each of these sub-groups, Si
Gl

, is denoted

as,

countt(Si
Gl

) =
∑
∀τi j∈S

i
Gl

countt(τi j)

The sub-group count indicates the number of coincident action-events belong-

ing to the same specification (implied by temporal redundancy). Hence, we

indicate the total number of resources required at Cycle-t to execute the actions

from these n sub-groups of Gl as,

countt
SUB(Gl) = MAX

1≤i≤n
[countt(Si

Gl
)]

Let all the timing variables corresponding to the action-event, actk, appear in

m groups, Gl1 ,Gl2 , . . . ,Glm . Then, we define,

countt
SUP(Gl j) =

m∑
j=1

countt(Gl j), ∀ j ∈ [1,m]

A pertinent point to note here is that, for a group, Gl, if there is no temporal

redundancy involved (in the specification) for the representative action of

that group, then we find, [countt
SUB(Gl) − countt

SUP(Gl)] ≤ 0 and the required

resources at Cycle-t becomes, countt =
∑

l count
t(Gl). Hence, the generated
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resource constraint for Cycle-t is derived as follows:

countt =


∑
∀l
countt(Gl) ; if [countt

SUB(Gl) − countt
SUP(Gl)] ≤ 0∑

∀l
[countt(Gl) + {countt

SUB(Gl) − countt
SUP(Gl)}] ; otherwise

(3.4)

(d) Auxiliary Constraint Addition:

Two types of auxiliary (additional) constraints are derived to make the con-

straint generation process complete. These are discussed below.

• Admissibility Constraint: We have noticed in Section 2.1 that, among

all the action-strategies that are generated from a reliability specification

with respect to the given reliability target of its corresponding correctness

property, there is a subset of action-strategies which are admissible. Let

us assume that the last execution of an action-event can happen latest at

Cycle-T such that all action-strategies remain admissible. Then, we need

to add a constraint with respect to the timing variable, τi j, corresponding

to the last executed action as,

τi j ≤ T

• Resource Limit Constraint: We start with a pessimistic bound on the

number of resources required and gradually refine that limit. For a given

choice of maximum number of resources, Γ, these constraints are as fol-

lows:

countt
≤ Γ, ∀t ∈ [1,T ]

All these generated constraints can also be used in a constraint optimization

tool/solver (like ILP solvers). There, we need to add the additional objective

function providing the minimization or maximization requirement. Since we

are minimizing the number of resources (processors) in this case, Γ is defined

as an integer decision variable and the objective function will be:

minimize(Γ)
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Example 4. Let us revisit Table 3.2 and Table 3.3 generated in Example 3 and derive the

required set of constraints.

• Timing Constraints: The timing constraints with respect to the property, ACC R1,

are derived as:

τ11 ≥ 1 ; τ11 ≤ 2

τ13 ≥ τ12 + 1 ; τ13 ≤ τ12 + 2

τ12 = τ11 + 0 ; τ14 = τ13 + 0

Similarly, the timing constraints with respect to the property, ACC R2, are derived

as:

τ21 ≥ 1 ; τ21 ≤ 2

τ22 = τ21 + 1 ; τ23 = τ22 + 1

τ24 ≥ τ21 + 1 ; τ24 ≤ τ21 + ∆

τ25 = τ24 + 1 ; τ26 = τ25 + 1

Now, ∆ = 2 is extracted from the logical satisfaction of ACC C2 using ACC R2 subject

to specific reliability targets.

• Timing Variable Groups: The timing variables for each action-events is grouped as

follows:

G1 = {τ11, τ21, τ22, τ24, τ25} ; G2 = {τ12}

G3 = {τ13, τ23, τ26} ; G4 = {τ14}

Here, all the timing variables present in the groups G1 and G2 correspond to act1

action-event and that are present in the groups G3 and G4 correspond to act2

action-event.

• Resource Constraints: The resource constraints are derived using Table 3.4 for each

35



Cycle-t. Finally, we produce the following constraints (∀t ∈ [1, 5]):

countt =


4∑

l=1
countt(Gl) ; if [countt

SUB(Gl) − countt
SUP(Gl)] ≤ 0

4∑
l=1

[countt(Gl) + {countt
SUB(Gl) − countt

SUP(Gl)}] ; otherwise

Table 3.4: Resource Constraint Generation (for Cycle-t)

Groups countt(Gl) countt(S1
Gl

) countt(S2
Gl

) countt
SUP(Gl)

G1

(τ11 == t)∨
(τ21 == t)∨
(τ22 == t)∨
(τ24 == t)∨
(τ25 == t)

(τ11 == t)

(τ21 == t)+
(τ22 == t)+
(τ24 == t)+
(τ25 == t)

countt(G1)+
countt(G2)

G2 (τ12 == t) (τ12 == t) 0
countt(G1)+
countt(G2)

G3

(τ13 == t)∨
(τ23 == t)∨
(τ26 == t)

(τ13 == t)
(τ23 == t)∨
(τ26 == t)

countt(G3)+
countt(G4)

G4 (τ14 == t) (τ14 == t) 0
countt(G3)+
countt(G4)

• Auxiliary Constraints: The admissibility constraint, here, restricts the last action-

event, act2, to happen latest by 5th-cycle, i.e. T = 5 (Refer to Table 3.2 and Table 3.3

of Example 3 for admissible action-strategies). Hence, we add,

τ26 ≤ 5

Suppose, we set the resource limits as Γ = 2, then the added constraints are as

follows:

count1
≤ 2, count2

≤ 2, count3
≤ 2,

count4
≤ 2, and count5

≤ 2

If we fed all the respective constraints in a SMT/ILP solver, then we find the following
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satisfiable valuation of the variables:

τ11 = 2, τ12 = 2, τ13 = 4, τ14 = 4,

τ21 = 1, τ22 = 2, τ23 = 3,

τ24 = 2, τ25 = 3, τ26 = 4.

This indicates that, both act1 and act2 of ACC R1 is replicated twice in Cycle-2 and

Cycle-4, respectively. Two consecutive act1 followed by act2 of ACC R2 is executed for

the first time in Cycle-1, Cycle-2 and Cycle-3, respectively. Again, the re-execution of

the same sequence happens when two consecutive act1 followed by act2 is executed for

the second time in Cycle-2, Cycle-3 and Cycle-4, respectively. This result is also evident

from Example 3, where the choice of Options (1D) + (2A) produces this outcome as shown

in Table 3.1. �

The resource constraints, auxiliary constraints and the timing constraints are

together fed to a SMT solver to check the satisfiability or the resource and timing

constraints along with the objective function is fed to an ILP solver to minimize

the objective function. Since we defined the number of resources required as the

objective function to be minimized in ILP, the minimum number of resources can

be found in a single run. For the SMT solver, if the constraints can be satisfied,

then we conclude that the given resource limit, Γ, is sufficient for the admissible

action strategies to be scheduled. However, an unsatisfiable outcome denotes that

the resource limit needs to be increased further.

Now, to derive the optimal (minimum) number of required resources in SMT

solver, we start from a pessimistic limit and proceed on iteratively bisecting the

limit (in a similar manner as done in binary search technique) until we converge
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into finding the minimum value of the resource limit. To illustrate the procedure,

let us assume that we start with a given Γ = 4 in our example and derive the

satisfiable valuations. Then, we bisect the limit and make Γ = b (1+4)
2 c = 2 and still

we can derive satisfiable valuations as illustrated in Example 4. Next, when we

further bisect and make Γ = b (1+2)
2 c = 1, then the constraints become unsatisfiable.

Hence, we conclude that the minimum number of resources required to execute

the admissible strategies is 2.

38



CHAPTER 4

Implementation Details and Experimental Results

This chapter presents the implementation details and the experimental results

In this chapter the implementation details and Experimental results are pre-

sented. The scalability of the implemented logic was thoroughly studied. The

time response of the proposed algorithm showed exponential behaviour with in-

crease in simulation time or sequential depth of the action-strategies extracted

form reliability specifications.

4.1 Implementation Details

The C++ API of the Z3 and CPLEX solvers were used in the implementation.

Lexical Analyzer Flex is used to analyze the input patterns and Bison is used as

parser. Flex is an open source lexical analyzer for C++ Flex perform pattern-

matching on text, it generates scanners/programs which recognize lexical patterns

in text. Bison, is a parser generator. Bison reads a specification of a context-free

language, warns about any parsing ambiguities and creates a parser (C, C++ or

Java) which reads sequences of tokens and resolves whether the sequence correlates

to the syntax specified by the grammar. Since the tokens are provided by flex we

must provide the means to communicate between the parser and the lexer. The data

extraction and the resource estimation code can be added in the parser itself. The

C++ API of Z3 and CPLEX allows to instantiate appropriate objects to model the



problem as Constraint Satisfaction Problem and Constraint Optimization Problem

respectively.

An outline of object model of Z3 C++ API consist of a context. The constraints

are added to the solver defined over the context and solver status can be checked

using a check function. The set of values for the variables on which the constraints

are defined is referred to as a model as per the convention of the Z3. Whereas

the C++ API of the CPLEX solver defines an environment and a model defined

over the environment. As per CPLEX convention model defines the entirety of the

constraints and the objective function. A CPLEX object is defined and the model

is attached to the CPLEX object. This can be solved using a solve function, also the

status of the solving can be checked. If there is a feasible or optimal solution, the

values for the variables can be extracted from CPLEX object.

4.2 Experimental Results

In this section, the experimental results performed to check the scalability of this

approach on an 8-Core Intel Xeon Ivy bridge E5 − 2650v2 series processor (20M

Cache, 2.60GHz) with 4 × 8GB RAM are presented. Figure 4.1 and 4.2 shows

the 3D plots on the scalability experiments performed. We have used Z3 SMT

solver Moura and Bjørner [2008] developed by Microsoft Corporation and CPLEX

Optimizer (ILP solver) Meindl and Templ [2012] developed by IBM. The time re-

sponse of the proposed approach subject to varying sequential depth and number

of action-events were analyzed. The graphs depict exponential increase in exe-

cution time in determining the optimal resources as the sequential depth of the

specifications increase. The time response with varying number of properties and
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varying number of action-events per property are also studied. This response also

has exponential behavior as indicated in Figures 4.1 and 4.2.

In Figure 4.1 the response of Z3 and CPLEX solvers to variations in sequential

depth is shown. The Z-axis in all the graphs represents the time required to

find the minimum number of resources in Microseconds. The X-axis indicates the

sequential depth (varied upto 2000 time units) and the Y-axis indicates the Number

of Action-events in Specification (varied upto 50). For smaller sequential depth,

the variation in execution time with variation in number of action-events is rather

small, but as the sequential depth increases, the execution time varies rapidly as

number of action-events increase. The increases in sequential depth results in

increase in number of resource constraints. The increase in number of action-

events results in increase in the length and complexity of resource constraints as

well. But for same number of action events, the number of timing constraints

remain the same. The increase in number of resource constraints results in higher

rate of increase in execution time than the increase in length of resource constraints.

In Figure 4.2 the response of Z3 and CPLEX solvers to variations in number of

specifications. The Z-axis in all the graphs represents the time required to find the

minimum number of resources in Microseconds. The X-axis indicates the number

of Specifications (varied from 0 to 200/500) and the Y-axis indicates the Number

of Action-events per Specification (varied upto 80/100). For smaller number of

specifications, the variation in execution time with variation in number of action-

events is rather small, but as the number of specifications increases the execution

time varies rapidly. Here the increase along the X and Y axis results in increase in

number of timing constraints. This increase in number of timing constraints can

be attributed to increase in number of action-events and number of specifications.
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There will be variation in number of resource constraints, implied by both increase

in number of action-events and increase in number of properties, since time of

execution can vary in both these cases. Both X-axis and Y-axis has similar effects in

increasing the length and number of resource constraints. Thus the behaviour is

truly exponential in this case. The increase in timing constraints have lesser effect

on the time of execution than the increase in the length/complexity of the resource

constraints.

Comparing the performance of the Z3 solver with the CPLEX solver, the CPLEX

is significantly faster in both scenarios. The primary reason behind this behaviour

is the fact that CPLEX ILP solver is a COP solver. The search space of the ILP solver

is limited to the optimal hyper plane which maximizes the objective function and

hence the ILP solver will be faster in reaching the minimum number of resources.

The calculation of the optimal plane offsets the difference slightly, still there is an

appreciable variation in execution time between the two solvers.
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Figure 4.1: 3D Graphs for Scalability Experiments on Sequential Depth
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Figure 4.2: 3D Graphs for Scalability Experiments on Number of Specifications
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CHAPTER 5

Conclusion

In this work, an algorithm to find the optimum number of processing resources re-

quired to meet the formal reliability specifications and corresponding correctness

specifications with specific reliability target was proposed. The problem is mod-

elled as a Constraint Satisfaction Problem (CSP) or a Constraint Optimization Problem

(COP) using an SMT solver or an ILP solver respectively. Scalability experiments

were performed on the implemented logic and the results were analyzed. Early Es-

timation of required resources from formal assessment of reliability specifications

could be helpful in the reduction of the cost of the overall safety-critical system.

Only reliability specifications were considered in the proposed algorithm so far.

The power constraints of the system can be added to further extend the scope of

this work to check the satisfiability of the system requirements with reliability as

well as power constraints.
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