
Digital Pre-Distortion Using Deep Learning

A thesis submitted in partial fulfillment of the requirements for
the award of the degree of

B.Tech.

in

ELECTRICAL ENGINEERING

By

KEERTHI SURESH

EE15B131

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY

MADRAS-600036

MAY 2019

ABSTRACT

This project is aimed at implementing digital pre-distortion using deep learning.
Operating a power amplifier (PA) close to its peak power introduces non-linearities.
Digital pre-distortion is a method to distort the signal before it enters the PA so that the
output will be linear even when operated close to peak power. We investigate different
methods to realize this using a neural network. The neural network, once trained can be
used effectively as a pre-distorter. The architectures and meta parameters are decided
and performance analyzed for different kinds of non-linearities and for two sets of real
world data. We have used keras to implement the algorithm.

i

ACKNOWLEDGEMENT

I would like to thank the following people for their support and guidance without whom

the completion of this project in fruition would not be possible. Dr. Devendra Jalihal,

my project guide, for helping me and guiding me in the course of this project. Mr. Kr-

ishna Kumar’s insights were very helpful to get a handle on the problem statement. I

would also like to thank my family and friends for their constant support.

ii

TABLE OF CONTENTS

Title Page No.

ABSTRACT . i

ACKNOWLEDGEMENT . ii

TABLE OF CONTENTS . iii

LIST OF FIGURES . vi

1 Introduction . 1

2 Background . 3

2.1 Signal Flow . 3

2.2 Role of Power Amplifier . 3

2.3 Machine Learning and Neural Networks 5

2.4 Choosing a Platform: Keras . 6

3 Preliminary Model . 7

3.1 Dataset Specifications . 7

3.2 Modelling the non-linearity . 7

3.3 Program Set-up . 7

3.4 Neural Network Metaparameters . 9

3.5 Performance . 9

4 DPD for Two Dimensional Constellations 10

4.1 Usage of Complex Numbers . 10

iii

4.2 Spectral Representation . 10

4.3 Regarding DPD for Non-Invertible PA Models 11

4.4 Approach 1: Using only 1 Neural Network as Pre-Distorter 12

4.5 Approach 2: Using 2 Neural Networks as PA and DPD 13

4.5.1 Simplified Method . 13

4.6 Nature Of QPSK Data . 14

5 Memoryless Model . 15

5.1 Nature of Function used . 15

5.2 Third order Non-linearity . 15

5.2.1 Approach 1 . 16

5.2.2 Approach 2 . 17

5.3 Fifth order Non-linearity . 19

5.3.1 Approach 1 . 19

5.3.2 Approach 2 . 20

5.4 Conclusions . 22

6 Quasi-Memoryless Model . 23

6.1 Nature of Function used . 23

6.2 Approach 1 . 23

6.2.1 Network MetaParameters . 23

6.2.2 Performance . 24

6.3 Approach 2 . 25

6.3.1 Program Flow . 25

6.3.2 Network MetaParameters . 25

6.3.3 Performance . 26

6.4 Conclusions . 28

7 Real World Model . 29

7.1 Data Specifications . 29

7.2 Approach 1 - Modified . 29

iv

7.2.1 Network Metaparameters . 30

7.2.2 Performance . 31

7.3 Approach 2 . 32

7.3.1 Network Metaparameters . 32

7.3.2 Performance . 33

8 Conclusions And Future Scope . 35

References . 36

Appendices . 37

A Code Attachments . 38

v

List of Figures

2.1 Signal Flow Diagram . 4

2.2 System-Level Representation of DPD 4

2.3 Artificial Neuron, implements f(
∑n

1 xiwi) 5

2.4 A Deep Neural Network with 2 hidden layers 6

3.1 Schematic for preliminary model . 8

3.2 AM-AM Plot for Preliminary model 9

4.1 PA Model Characteristics [5] . 12

4.2 Schematic for Approach 2 . 13

4.3 Simplified Schematic for approach 2 14

4.4 QPSK Signal Specifications . 14

5.1 3rd Order Non-Linearity . 15

5.2 3rd Order memoryless DPD Results for approach 1 16

5.3 Spectral Plot for 3rd Order memoryless DPD Results for approach 1 . . 17

5.4 3rd Order memoryless DPD Results for Approach 2 18

5.5 Spectral Plot for 3rd Order memoryless DPD Results for approach 1 . . 18

5.6 5th Order Non-Linearity . 19

5.7 5th Order memoryless DPD Results for approach 1 20

5.8 Spectral Plot for 5th Order memoryless DPD Results for approach 1 . . 20

5.9 5th Order memoryless DPD Results for approach 2 21

5.10 Spectral Plot for 5th Order memoryless DPD Results for approach 2 . . 22

6.1 Response of Quasi Memoryless PA . 23

6.2 DPD Performance of Quasi Memoryless PA 24

vi

6.3 Spectral plot of DPD Performance of Quasi Memoryless PA 24

6.4 NN1 Performance of Quasi Memoryless PA 26

6.5 Spectral plot of NN1 Performance of Quasi Memoryless PA 27

6.6 NN2 Performance of Quasi Memoryless PA 27

6.7 Spectral plot of NN2 Performance of Quasi Memoryless PA 28

7.1 Schematic for Approach 1 for Real World PA Model 30

7.2 Performance of DPD with Real World data set 1: Approach1 31

7.3 Performance of DPD with Real World data set 2: Approach1 31

7.4 Performance of DPD with Real World data set 1: Approach2 33

7.5 Performance of DPD with Real World data set 2: Approach2 33

vii

Chapter 1

Introduction

An important element in a wireless communication transmitter is the power amplifer

(PA). For good efficiency, the PA should be operated close to its peak power. How-

ever, this could drive the device to the non-linear region of operation. Non-linearity

introduces spectral re-growth outside the allocated bandwidth thus violating the spec-

tral mask. Further, in the case of linear modulations, in-band distortion introduced by

the non-linear behaviour of the PA causes increased error vector magnitude (EVM) at

the transmitted output. To achieve linearity and efficiency simultaneously, linearisation

techniques are employed. For wideband waveforms with symbol periods comparable

to the device memory, the non-linearity exhibits memory effects and the compensation

is challenging. PA linearisation can be implemented either in the analog domain or in

the digital domain. The latter is often preferred due to the flexibility of design and ver-

satility and repeatability of implementation. Digital Pre-Distortion (DPD) is a popular

linearisation technique that uses baseband digital signal processing to pre-distort the en-

velope such that the distortion introduced by the PA can recover the original envelope.

The idea is motivated by the fact that behaviour of the PA, and hence its inverse (the

pre-distorter), can be represented using baseband equivalent discrete-time models.

Deep Neural Networks (DNN) have recently gained a lot of attention in signal process-

ing community, particularly in image and speech processing. Application of DNNs to

communication problems is a recent development. We investigate the possibility of us-

ing a DNN to realize a DPD. An important aspect of the problem is that the inputs and

outputs are (complex-valued) samples. Neural networks typically deal only with real

1

values.

Objective

This project is about investigating the effectiveness of deep learning for DPD. Two

different neural network architectures are proposed. Their pros and cones are analyzed.

The range of operation of the PA for which the DPD works is also investigated. First,

BPSK data (string of -1s and 1s) are checked for better understanding of the system.

Then we increase the complexity to memoryless and quasi-memoryless models. Finally

we setup the neural network for real world data obtained from PA.

2

Chapter 2

Background

An understanding of a communication system and the nature of the PA is crucial in order

to understand the problem. A background on data flow in wireless communication and

deep learning is provided herewith.

2.1 Signal Flow

The bits generated are mapped into the respective constellations followed by spectral

shaping (for example, using a Square Root Raised Cosine pulse) and oversampling.

This is passed to the Power Amplifier which, ideally gives a large gain G. The gain

should be large enough to make the signal detectable at the receiver side, i.e, the SNR

should be high enough for good reception. The signal flow has been illustrated in fig-

ure 2.1.

2.2 Role of Power Amplifier

Ideally, the PA output y should be a scaled version of its input x, i.e., y = gx, where g

is the gain of the amplifer. In practice, non-linearity and memory effects too need to

be taken into account; hence the PA is modelled as a non-linear operator with memory,

denoted as G such that y = Gx. The objective of the DPD is to identify a (scaled) non-

linear pre-inverse H for G such that GH = gI where I is the identity operator. Unlike

linear systems, the non-linear inverse may not be well defined or unique. Figure 2.2 has

a system-level representation of a typical Digital Pre-distorter.

3

Figure 2.1: Signal Flow Diagram

Figure 2.2: System-Level Representation of DPD

4

Figure 2.3: Artificial Neuron, implements f(
∑n

1 xiwi)

2.3 Machine Learning and Neural Networks

An artificial neuron is a mathematical function which operates on a set of inputs to give

a single output, as shown in figure 2.3. Each input goes into a small unit called node and

is multiplied with a real number called weight. These weighted values are then summed

up and a function (called activation function) operates on it. This value is the output of

the function. Various such neurons arranged as a network can be configured to mimic

any function. When a neural network has one or more ”hidden layers” (a layer other

than input and output layer), it is called a Deep Neural Network (DNN) and the machine

learning associated with it is deep learning. An illustration of deep neural network is in

figure 2.4.

We start with a fixed number of nodes and layers. We initialize the weights ran-

domly and provide the neural network with some training data x train and y train. We

specify the cost function, for example, Mean Square Error(MSE). The training data is

divided into batches and goes through the network. After each iteration, the error is

calculated and weights are updated in the direction of decreasing error using an opti-

mizer. When this is done once for all the data points, one epoch is completed. Repeated

training for more epochs reduces the error further. After training, the neural network

5

Figure 2.4: A Deep Neural Network with 2 hidden layers

can be used to predict y values for x values given as inputs.

2.4 Choosing a Platform: Keras

Keras is a high level API for building deep learning models. It has gained favor for its

ease of use and syntactic simplicity facilitating fast development. Keras was chosen for

the following reasons:

1. Focus on user experience

2. Research Community

3. Fast prototyping

4. Simple to get started

5. Easy production of models

6

Chapter 3

Preliminary Model

3.1 Dataset Specifications

A random array of 1s and -1s is created. The training data is 80% of the data generated

and the test data is the remaining 20%.

3.2 Modelling the non-linearity

The PA model in the problem statement operates on complex values. These values are

the complex baseband equivalent (s(t) = acos(ωt) + bsin(ωt)) of real samples. After

passing through the PA, a bandpass filter cenetered at the centre frequency and with

width slightly more than twice the bandwidth is applied on the signal. Even order non-

linearities will give spectral components close to DC or at 2fc, 4fc etc. These will get

filtered out in the later stage and hence will not contribute to the spectral regrowth. Only

the odd order non-linearities get affected, and a function like f1(x) = x+ α1x
3 + α2x

5

will be equivalent to f2(x) = x+ α1x | x |2 +α2x | x |4 in the passband [3].Hence, we

chose a function f2(x) = x+ α1x | x |2. We set alpha = 0.1, i.e around 10% error.

3.3 Program Set-up

First data is generated, then partitioned into training and test sets. After this training is

done. Finally, the test set is used to analyze the performance of the neural network. The

set-up is illustrated in figure 3.1.

7

Figure 3.1: Schematic for preliminary model

8

Figure 3.2: AM-AM Plot for Preliminary model

3.4 Neural Network Metaparameters

model = Sequential()
model.add(Dense(units=2000, input_dim=1))
model.add(Activation(’relu’))
model.add(Dense(units=100))
model.add(Activation(’tanh’))
model.add(Dense(units=10))
model.add(Activation(’linear’))
model.add(Dense(units=1))

model.compile(loss=’mean_squared_error’,
optimizer=’adam’)

model.fit(y_train, x_train, epochs=75, batch_size=100,
verbose=1)

3.5 Performance

The Mean Squared Error(MSE) is 0.401 in the first epoch. It goes down to 10−11 by

the 75th epoch. Plotting x,y and w on the same graph shows that w is much linearized

compared to y in figure 3.2. Note:For every AM-AM plot hereafter, the x-axis is the

input.

9

Chapter 4

DPD for Two Dimensional
Constellations

4.1 Usage of Complex Numbers

Most platforms for machine learning (like keras, tensorflow, PyTorch etc) operate only

on real numbers. This means that input, output and weights are all real numbers. Pass-

ing the complex values as-is can result in the imaginary parts being discarded. Hence

we devise a way to convert these complex values to features that can still preserve the

phase dependence. By converting each complex sample to a 1X2 vector, we bypass this

issue [4].

4.2 Spectral Representation

Plotting a magnitude spectrum is a better way to compare the input and output since

time domain comparison may not reflect small non-linearities. Matplotlib has functions

to plot magnitude spectrum. Here we have used welch method with fft size and hanning

window of size 2048 or length of input, whichever is smaller [2].

Note:For every Spectral plot, the x-axis is the frequency and y-axis is the spectral mag-

nitude in dB.

def plot_spec(spec_input):

Spectral analyses of PA input and PA output
Fs = 15e6
N = np.min(np.array([1024,len(spec_input)]));
pwin = hann(N);
f_axis,spec_input_ps = welch(spec_input, Fs, window=pwin,

10

nfft=N, return_onesided=False,scaling =
’spectrum’,detrend=False)

spec_input_ps_dB = [10*math.log10(abs(spec_input_ps[i]))
for i in range(len(spec_input_ps))];

Plots
f_axis = [f_axis[i]/1000000 for i in range(len(f_axis))]
plt.plot(f_axis,spec_input_ps_dB,label = plot_label)

4.3 Regarding DPD for Non-Invertible PA Models

As mentioned in [5], in section 2.2.2 - Comments on Invertibility. A typical PA charac-

teristic is shown in figure 4.1. Ideal predistortion is done only upto the saturation point

Asat letting the PD response be arbitrarily defined for inputs beyond such level. This is

basically due to the limitation found in evaluating the theoretical AM/AM inverse.

The nonlinear distortion introduced by a PA can be divided into two significant cate-

gories:

- Distortions originated by the AM/AM and AM/PM nonlinear behaviour of the PA for

input signal values within the ‘valid’ (under-saturation) input range [0,Asat].

-Distortions due to the saturation imposed by the AM/AM characteristic over the input

signal when its amplitude exceeds Asat.

Where the former type corresponds to the portion of nonlinear effect that can be

effectively counteracted by pre-distorting the input signal through the correct inverse

AM/AM and AM/PM curves, while the second type refers to degradations that cannot

be compensated by any efficient mean. In practice, the linearization of PAs achievable

with a digital pre-distorter can be defined only within the valid input range that goes

from the zero input amplitude to the saturation point.

Clearly, the PA can be operated only within its invertible range.

11

Figure 4.1: PA Model Characteristics [5]

4.4 Approach 1: Using only 1 Neural Network as Pre-
Distorter

This approach is simple and intuitive. It does not take much time to train since only one

neural network is involved. This works on the assumption that the post-inverse will also

work as the pre-inverse. This may not be always true for complicated PA models. But

provided we have enough data it is possible to get good spectral suppression as shown

in the following chapters. The schematic is same as shown in figure 3.1

12

Figure 4.2: Schematic for Approach 2

4.5 Approach 2: Using 2 Neural Networks as PA and
DPD

This is more difficult and time-taking to train. The error in neural network 1 limits the

accuracy of the pre-distorter network (Neural Network 2). But this works for various

non-linear models of PA which may not work for approach 1.

4.5.1 Simplified Method

For testing purposes when the PA function is known directly, we can remove Neural

Network 1 and insert a custom layer that implements the function of the PA, as shown

in figure 4.3. We shall use this for cases where the PA function is known and the

function is represent-able using Lambda function, i.e in the memoryless case. For quasi-

memoryless, since the coefficients of the function are imaginary, keras discards the

imaginary part and hence the simplified method cannot be used.

13

Figure 4.3: Simplified Schematic for approach 2

In the following chapters, we shall check the performance of these two approaches

and the set-ups shall be referred-to as Approach 1 and Approach 2 respectively.

4.6 Nature Of QPSK Data

For the following chapters 5 and 6, we use a set of QPSK data with the specifications

as in figure 4.4.

Figure 4.4: QPSK Signal Specifications

14

Chapter 5

Memoryless Model

5.1 Nature of Function used

We need to use a function that is invertible in the range of the data used. Hence we scale

the QPSK data to the range -1 to 1.

5.2 Third order Non-linearity

The function chosen is

f(x) = x− 0.1x | x |2 (5.1)

Figure 5.1: 3rd Order Non-Linearity

15

5.2.1 Approach 1

Network Meta Parameters

Training Data: uniformly distributed random complex numbers between -1.05 to 1.05.

The inflection point (at which the slope starts to change sign) is around±1.16, hence we

chose ±1.05 as the extreme values. The range of input is taken randomly because the

qpsk values are not of a reasonable enough distribution to ensure correct representation

of the PA non-linearity.

Test Data: QPSK Values as explained in section 4.4.

model = Sequential()
model.add(Dense(units=2000, input_dim=2))
model.add(Activation(’relu’))
model.add(Dense(units=100))
model.add(Activation(’tanh’))
model.add(Dense(units=10))
model.add(Activation(’linear’))
model.add(Dense(units=2))

model.compile(loss=’mean_squared_error’,
optimizer=’adam’)

model.fit(y_train, x_train, epochs=75, batch_size=100,
verbose=1)

Performance

(a) AM-AM plot (b) AM-PM plot

Figure 5.2: 3rd Order memoryless DPD Results for approach 1

16

Figure 5.3: Spectral Plot for 3rd Order memoryless DPD Results for approach 1

5.2.2 Approach 2

Network Meta Parameters

Training Data: uniformly distributed random complex numbers between -1.05 to 1.05.

Test Data: QPSK Values as explained in section 4.4.

model = Sequential()
model.add(Dense(units=2000, input_dim=2))
model.add(Activation(’relu’))
model.add(Dense(units=100))
model.add(Activation(’tanh’))
model.add(Dense(units=10))
model.add(Activation(’linear’))
model.add(Dense(units=2))

model.add(Lambda(lambda x: x - 0.1*K.sum(x*x,axis =
1,keepdims=True)*x))

model.compile(loss=’mean_squared_error’, optimizer=’adagrad’,
metrics=[’mse’])

model.compile(loss=’mean_squared_error’,
optimizer=’adam’)

model.fit(x_train, x_train, epochs=75, batch_size=100,
verbose=1)

model2 = Sequential()

17

for layer in model.layers[:-1]:
model2.add(layer)

classes = model2.predict(x_test, batch_size=100)

Performance

(a) AM-AM plot
(b) AM-PM plot

Figure 5.4: 3rd Order memoryless DPD Results for Approach 2

Figure 5.5: Spectral Plot for 3rd Order memoryless DPD Results for approach 1

18

5.3 Fifth order Non-linearity

The function chosen is

f(x) = x− 0.1x | x |2 +0.005x | x |4 (5.2)

Figure 5.6: 5th Order Non-Linearity

5.3.1 Approach 1

Network Meta Parameters

Same as that of section 5.2.1.

19

Performance

(a) AM-AM plot (b) AM-PM plot

Figure 5.7: 5th Order memoryless DPD Results for approach 1

Figure 5.8: Spectral Plot for 5th Order memoryless DPD Results for approach 1

5.3.2 Approach 2

Network Meta Parameters

Training Data: uniformly distributed random complex numbers between -1.05 to 1.05.

Test Data: QPSK Values as explained in section 4.4.

x_train,y_train,x_test,y_test = Generate_Data()

20

model = Sequential()
model.add(Dense(units=2000, input_dim=2))
model.add(Activation(’relu’))
model.add(Dense(units=100))
model.add(Activation(’tanh’))
model.add(Dense(units=10))
model.add(Activation(’linear’))
model.add(Dense(units=2))

model.add(Lambda(lambda x: x - 0.1*K.sum(x*x,axis =
1,keepdims=True)*x+0.005*tf.multiply(K.sum(x*x,axis =
1,keepdims=True),K.sum(x*x,axis = 1,keepdims=True))*x))

model.compile(loss=’mean_squared_error’, optimizer=’adagrad’,
metrics=[’mse’])

model.compile(loss=’mean_squared_error’,
optimizer=’adam’)

model.fit(x_train, x_train, epochs=75, batch_size=100,
verbose=1)

model2 = Sequential()
for layer in model.layers[:-1]:

model2.add(layer)

classes = model2.predict(x_test, batch_size=100)

Performance

(a) AM-AM plot (b) AM-PM plot

Figure 5.9: 5th Order memoryless DPD Results for approach 2

21

Figure 5.10: Spectral Plot for 5th Order memoryless DPD Results for approach 2

5.4 Conclusions

Both the approaches work well for both third order and fifth order non-linearities. The

AM-AM plot shows that the magnitude of the compensated output perfectly matches

that of the input. The AM-PM plot is between input power and output phase difference.

Since the memoryless model does not introduce any phase mixing, the AM-PM plot for

the PA output is a straight line at zero. The same plot for the compensated output is also

very close to zero, the irregularities are due to numerical error.

Approach 1 works better for both and is more practical as well. There is a suppression

of 20-40dB in the spectral regrowth. The noise floor is of around -95dB which is likely

to be due to numerical error. The reason that approach 1 works better for this case might

be that for these simple cases it is easier for the network to learn the post-inverse rather

than the pre-inverse. If given more training data and trained for more epochs, approach

2 can also give as good a result as approach 1. But for the sake of comparability between

the different models and approaches, we have used the same amount of training data and

epochs for all the four cases investigated in this chapter.

22

Chapter 6

Quasi-Memoryless Model

6.1 Nature of Function used

Quasi memoryless PAs have complex numbers as coefficients. This introduces a phase

mixing. Quasi memoryless models are more difficult to linearize than memoryless ones.

The function chosen is

f(x) = x− 0.1ejπ0.05/4|x|2x+ 0.005ej0.15π/4|x|4x (6.1)

The magnitude and phase response considered together, is unique for the range consid-

ered (-1,1). Hence the DPD will be effective.

(a) Magnitude plot (b) Phase plot

Figure 6.1: Response of Quasi Memoryless PA

6.2 Approach 1

6.2.1 Network MetaParameters

As explained in section 5.2.1.

23

6.2.2 Performance

(a) AM-AM plot (b) AM-PM Plot

Figure 6.2: DPD Performance of Quasi Memoryless PA

Figure 6.3: Spectral plot of DPD Performance of Quasi Memoryless PA

The AM-AM, AM-PM and spectral plots show considerable suppression of side bands.

24

6.3 Approach 2

6.3.1 Program Flow

We use approach 2 as explained in section 4.5. The first neural network(designed to

mimic the PA) is labelled NN1. The second neural network is labelled NN2. First NN1

is trained and the performance is checked in figure 6.4. Then NN1(with the weights

fixed) and NN2 are cascaded together in a neural network and trained. Finally, the

trained layers of NN2 are taken separately. These layers are have the DPD functionality.

The test data is passed through the DPD layers and then through the PA. Then we check

how much suppression has occurred in figure 6.6.

6.3.2 Network MetaParameters

Training Data: uniformly distributed random complex numbers between -1.05 to 1.05.

Test Data: QPSK Values as explained in section 4.4.

#NN1
model = Sequential()
model.add(Dense(units=2000, input_dim=2))
model.add(Activation(’relu’))
model.add(Dense(units=100))
model.add(Activation(’tanh’))
model.add(Dense(units=10))
model.add(Activation(’linear’))
model.add(Dense(units=2))

model.compile(loss=’mean_squared_error’,
optimizer=’adam’)

model.fit(x_train, y_train, epochs=75, batch_size=100,
verbose=1)

Creating a cascade of NN2 and NN1
model2 = Sequential()
model2.add(Dense(units=2000, input_dim=2))
model2.add(Activation(’relu’))
model2.add(Dense(units=100))
model2.add(Activation(’tanh’))
model2.add(Dense(units=10))
model2.add(Activation(’linear’))
model2.add(Dense(units=2))

for layer in model.layers[:]:

25

layer.trainable = False
model2.add(layer)

model2.compile(loss=’mean_squared_error’,
optimizer=’adam’)

model2.fit(x_train, x_train, epochs=75, batch_size=100,
verbose=1)

#NN2 Alone functions as DPD
dpd = Sequential()
for layer in model2.layers[:-7]:

dpd.add(layer)

6.3.3 Performance

(a) AM-AM Plot (b) AM-PM Plot

Figure 6.4: NN1 Performance of Quasi Memoryless PA

26

Figure 6.5: Spectral plot of NN1 Performance of Quasi Memoryless PA

NN1 is able to replicate the PA non-linearity effectively(The error at the end of 75

epochs for training data is 10−5). In the AM-AM and spectral plots, the NN output

follows the PA output.

(a) AM-AM Plot (b) AM-PM Plot

Figure 6.6: NN2 Performance of Quasi Memoryless PA

27

Figure 6.7: Spectral plot of NN2 Performance of Quasi Memoryless PA

The DPD network is able to supress the spectral regrowth by a little more than 20dB.

6.4 Conclusions

The AM-PM plots differ from that of memoryless case. Due to the phase mixing, AM-

PM plot for the PA output is not zero. Nevertheless, the network is able to compensate

this and the compensated output tends to zero in figures 6.2b and 6.6b. In figure 6.4b,

the graph follows the PA Output phase curve, which shows that the network is able to

replicate the phase mixing property of the PA.

For approach 1 and approach 2, the spectral suppression is 20dB.There is a noise

floor of -100dB. The working of proposed set-ups for linearising quasi-memoryless PAs

is verified.

28

Chapter 7

Real World Model

The testing so far was done on PAs modelled as mathematical functions. Now we use

input and output data procured for 2 different real world PAs and check how the network

performs for this. There are two main limitations for this exercise:

-The test data and train data, both come from the same pool of transmit data. It may not

have a reasonable enough distribution to represent all the non-linearities of the PA.

-For testing in both the approaches, we need a PA model. The neural network output

after passing through the PA is what we check for spectral suppression. To overcome

the unavailability of a real world PA for the same, we use another neural network trained

to mimic the PA.

7.1 Data Specifications

This data was obtained from a real world PA. The bandwidth of the signal is 15MHz

and the sampling rate is 50MS/s. The input and output are scaled so that the magnitude

is in the range [-1,1].

7.2 Approach 1 - Modified

Since the PA model is not available, we use a modified form of Approach 1, as illus-

trated in figure 7.1. We train a neural network separately to represent the the PA model.

Its performance is shown in figure 7.2a. We use this to check if the output of predistorter

network supresses the PA spectral regrowth.

29

Figure 7.1: Schematic for Approach 1 for Real World PA Model

7.2.1 Network Metaparameters

Training data: 20,000 samples of the PA input and output data

Test data: PA input and output data. We use the whole set of data available for testing

so that the spectral plot is smooth and does not have any jagged lines.

#NN1
model = Sequential()
model.add(Dense(units=2000, input_dim=2))
model.add(Activation(’relu’))
model.add(Dense(units=100))
model.add(Activation(’tanh’))
model.add(Dense(units=10))
model.add(Activation(’linear’))
model.add(Dense(units=2))

model.compile(loss=’mean_squared_error’,
optimizer=’rmsprop’)

model.fit(x_train, y_train, epochs=75, batch_size=100,
verbose=1)

#NN2
model2 = Sequential()
model2.add(Dense(units=2000, input_dim=2))
model2.add(Activation(’relu’))
model2.add(Dense(units=100))
model2.add(Activation(’tanh’))
model2.add(Dense(units=10))

30

model2.add(Activation(’linear’))
model2.add(Dense(units=2))

model2.compile(loss=’mean_squared_error’,
optimizer=’adam’)

model2.fit(y_train, x_train, epochs=75, batch_size=100,
verbose=1)

classes = model2.predict(x_test, batch_size=100)#output of DPD
network

classes = model.predict(classes, batch_size=100)#Compensated
output

7.2.2 Performance

Data Set - 1

(a) Spectral Plot of NN1: PA (b) Spectral Plot of NN2: DPD

Figure 7.2: Performance of DPD with Real World data set 1: Approach1

Data Set - 2

(a) Spectral Plot of NN1: PA (b) Spectral Plot of NN2: DPD

Figure 7.3: Performance of DPD with Real World data set 2: Approach1

31

In figures 7.2a and 7.3a we see that the NN1 output closely matches the PA output data.

In figure 7.2b and 7.3b, the compensate output shows that the spectral regrowth has

been suppressed by around 8-10 dB.

7.3 Approach 2

The program flow is same as that in section 6.3.1. The single change is that since the

PA model is not available, during the performance evaluation we pass the DPD output

to NN1 to generate the compensated output.

7.3.1 Network Metaparameters

Training data: 20,000 samples of the PA input and output data

Test data: PA input and output data.

#NN1
model = Sequential()
model.add(Dense(units=2000, input_dim=2))
model.add(Activation(’relu’))
model.add(Dense(units=100))
model.add(Activation(’tanh’))
model.add(Dense(units=10))
model.add(Activation(’linear’))
model.add(Dense(units=2))

model.compile(loss=’mean_squared_error’,
optimizer=’adam’)

#Creating a cascade of NN2 and NN1
model.fit(x_train, y_train, epochs=75, batch_size=100,

verbose=1)
model2 = Sequential()
model2.add(Dense(units=2000, input_dim=2))
model2.add(Activation(’relu’))
model2.add(Dense(units=100))
model2.add(Activation(’tanh’))
model2.add(Dense(units=10))
model2.add(Activation(’linear’))
model2.add(Dense(units=2))

for layer in model.layers[:]:
layer.trainable = False
model2.add(layer)

model2.compile(loss=’mean_squared_error’,

32

optimizer=’adam’)

model2.fit(x_train, x_train, epochs=75, batch_size=100,
verbose=1)

#NN2 alone functions as dpd
dpd = Sequential()
for layer in model2.layers[:-7]:

dpd.add(layer)

7.3.2 Performance

Data Set - 1

(a) Spectral Plot of NN1: PA (b) Spectral Plot of NN2: DPD

Figure 7.4: Performance of DPD with Real World data set 1: Approach2

Data Set - 2

(a) Spectral Plot of NN1: PA (b) Spectral Plot of NN2: DPD

Figure 7.5: Performance of DPD with Real World data set 2: Approach2

In figures 7.4a and 7.5a, we see that the NN1 output closely matches the PA output

data. In figures 7.4b and 7.5b, the compensate output shows that the spectral regrowth

33

has been suppressed by around 10 dB for data set-1 and 5 dB for data set-2.

34

Chapter 8

Conclusions And Future Scope

In this project, we have examined how to use deep learning for digital pre-distortion of

Power Amplifiers. We came up with two different approaches to do the same. First we

try this on a preliminary BPSK data and a simple function as a PA model. Then we

upgrade to real world QPSK data. The conditions for invertibility of the PA model is

also examined. Memoryless and Quasi memoryless PA models are simulated and the

spectral suppression is verified. Then we tried using input and output data from a real

world PA and saw that the trained neural network is able to regenerate the spectrum (as

much as 20dB suppression). Both the approaches work well and can be an effective

alternative for conventional DPDs.

To take this project further, we can try implementing this on a real world communica-

tion system. The neural network will have to be coded into the transmit chain just before

the PA. First, we train the neural network with some random data. After the weights are

fixed, we can use the network for DPD by connecting it as a block just before the PA.

Also, we are yet to explore how to compensate the memory effect of PAs.

35

Bibliography

[1] L. Guan and A. Zhu, ”Green Communications: Digital Predistortion for

Wideband RF Power Amplifiers,” in IEEE Microwave Magazine, vol. 15, no. 7,

pp. 84-99, Nov.-Dec. 2014.

[2] Scipy - Welch Method:

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html

[3] S. Benedetto and E. Biglieri, Principles of Digital Transmission With Wireless

Applications. New York: Kluwer, 1999.

[4] How does Keras handle complex numbers?:

https://groups.google.com/forum/!msg/keras-users/Aauby6jMy2I/n341zZ3bFwAJ

[5] Non-linear Models for High Power Amplifiers:

https://upcommons.upc.edu/bitstream/handle/2117/94197/03Hidw03de10.pdf?sequence=3

&isAllowed=y

[6] Code and data:

https://drive.google.com/open?id=1F nqzDuiu3iRHH9dLR8KMhp4RFm fkR9

[7] Installing Jupyter Notebook:

https://jupyter.readthedocs.io/en/latest/install.html

36

Appendices

37

Appendix A

Code Attachments

Links to the code of each simulation alongwith the data used is linked in [6]

For running the code, it is highly recommended to install Jupyter Notebook, refer

here for simple instructions to install the same [7]

38

