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ABSTRACT

KEYWORDS: Encoder-Decoder models, Multi-hop Question Generation,

Coverage Mechanism, Graph Convolutional Networks, Hi-

erarchical Encoder

Existing Question-Generation systems often lack the ability to link multiple

concepts in relation to a concept, in this case the expected answer. Conven-

tional Encoder-Decoder modules, which often form a basis for question-generation

frameworks, process information sequentially, and hence fail to understand com-

mon links between disjoint, yet related sequences. Methods to incorporate depen-

dencies between common or related entities across sequences have been studied

and implemented through the course of this project have been an endeavour in

modelling the current shortcomings.

The two notable techniques that have been ideated and incorporated are: (1)

Sentence-level coverage mechanism (2) Graph Convolutional Networks. Incor-

porating sentence-level coverage mechanism is a novel idea to ensure that the

encoder-decoder model has sufficiently attended to all the sentences in the sup-

porting passage while generating the question. The results of this intuition have

been largely favourable. The results upon incorporating Graph Convolutional

Networks have been unconvincing, however. The shortcomings in training of

Graph Convolutional Networks, owing to the structural complexities, have been

analysed and the current performance has been adequately justified.
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CHAPTER 1

INTRODUCTION

Recent research in natural language sequence generation problems have been

greatly dominated by sequence-to-sequence (seq-to-seq) models ( Sutskever et al.

[2014] ). A sequence of recursive units at the Encoder end encodes the input se-

quence. The encoded version is fed to the decoder, which generates the output

sequence step-by-step. The elegance in the End-to-End trainability and model flex-

ibility (in terms of there being minimum constraints on input sequence length and

output sequence length) of sequence-to-sequence models initially led to their use

for a plethora of downstream tasks, for example, Machine Translation, Question

Generation, Speech Recognition and Video Captioning. The task that we focus on

in this project is that of Question Generation. Enhancements have been made to the

Vanilla seq-to-seq model which have led to landmark performance boosts, which

have enabled sequence-to-sequence models to achieve competitive and even im-

proved performance over conventional NLP pipelines on a much wider range of

tasks than traditional methods.

One of the milestone additions to seq-to-seq models is the attention mecha-

nism ( Bahdanau et al. [2014] ). To overcome the bottleneck of seq-to-seq models

in terms of having to express a large input sequence in terms of a single feature

vector, this approach proposes to soft-search the input sequence, at every decoder

time-step, for relevant tokens to generate the current output token. An additional

improvement over the attention mechanism is the coverage mechanism ( See et al.

[2017] ). When the output probability distribution at a decoder time-step doesn’t



clearly indicate any vocabulary word, an unknown token is predicted. The cov-

erage mechanism fills in the unknown values by replacing them with the highest

attended-to input token at the corresponding decoder time-step. The mentioned

mechanisms have enabled the model to achieve improved performance with a

significantly smaller vocabulary size (160,000 words to 30,000 words) and have

thus reduced the model complexity greatly.

Recent observations have shown that seq-to-seq models have the ability to learn

to recognize syntactic patterns. General semantic information is introduced into

seq-to-seq models through input word embeddings ( Pennington et al. [2014] ).

Words which share similar context have closer word embeddings in the embed-

ding space. Through this project, we attempt to introduce input-specific semantic

information into seq-to-seq models and study the results.

An ideal problem statement to evaluate our endeavours has been through the

task of Multi-hop Question Generation. In the context of the tasks Question Gen-

eration and Question Answering, most existing datasets often have the limitation

of testing the ability of reasoning within a single paragraph or document, or single-

hop reasoning. A good way of testing the model’s ability to capture input semantics

is through multi-hop reasoning tasks, where the system has to reason with informa-

tion taken from more than one document to arrive at the answer. The HotpotQA

dataset is used for evaluation of Multi-hop Question Generation.

Two primary approaches were tried to improve the performance of existing

models on the given task.

1. Sentence-level coverage mechanism and loss is introduced to enforce the
model to attend to all input sentences adequately. We expect that on attending
to all input sentences, the model should be able to find semantic links between
common entities across sentences better.

2. Graph Convolutional Networks for explicitly providing the model with input

2



semantic information in the form of entity-linked graphs.

The results of the above approaches are discussed in the report, and their

success or failure is accordingly evaluated.
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CHAPTER 2

BACKGROUND WORK

Question generation (QG) aims to create natural-sounding questions from a given

support paragraph. Question Generation finds significant downstream applica-

tions: in the field of education, chatbots, and creating synthetic Question Genera-

tion/Question Answering datasets for NLP research.

Classical Question-Generation methods focused on the objective of transform-

ing declarative sentences in the support passage to interrogative ones through rule-

based approaches. ( Heilman and Smith [2010] ) These methods typically involved

sophisticated Natural Language Processing (NLP) pipelines for text-parsing and

feature-extraction and the model’s performance depends critically on the con-

structed rules. Most importantly, these methods fall short on the fluency-front at

generating natural-sounding questions. Natural-sounding questions are mostly

abstractive in nature and abstraction cannot be trivially incorporated through rule-

based approaches. This is because rule-based models typically exploit the syntactic

role of words rather than their semantic roles.

Inspired by the breakthrough results of neural Machine Translation ( Sutskever

et al. [2014], Bahdanau et al. [2014] ) , modern approaches to Question Generation

(QG) typically frame QG as a sequence-to-sequence learning problem ( Du et al.

[2017] ). This approach is a step forward in abstractive question generation as it

better models the semantic role of words.

In Sequence-to-sequence models, the encoder iterates over input sequences

using recursive units, such as Recurrent Neural Network (RNN) or Long Short



Table 2.1: Examples of transformative and abstractive questions

Passage: Oxygen is used in cellular respiration and released by photosynthesis,
which uses the energy of sunlight to produce oxygen from water.

Abstractive question: What life process produces oxygen in the presence of light?

Transformative question: Which uses the energy of sunlight to produce oxygen from water?

term Memory (LSTM) cells ( Hochreiter and Schmidhuber [1997] ). The decoder

generates the output sequence step-by-step.

Figure 2.1: Left: An RNN cell, Right: A sequence-to-sequence framework
Image Source: Prof. Mitesh Khapra’s slides

RNN Cell – Recursive unit of a Sequence-to-Sequence model

si = σ(Uxi + Wsi−1 + b)

yi = σ(Vsi + c)

5



Sequence-to-Sequence model

Encoder

hi = RNN(hi−1, xi)

Decoder

s0 = hT (T is the length of the input)

st = RNN(st−1, e(ŷt−1))

p(yt|yt−1
i , x) = so f tmax(Vst + b)

Typically, the recursive unit used in a Sequence-to-sequence model is an LSTM

cell, which is a more advanced and gated version of the RNN cell. In our method,

we have used the Bidirectional LSTM cell, which runs two LSTM sequences – one

forward and one backward to incorporate bidirectional context.

Figure 2.2: An LSTM cell
Image Source: Google Images

The semantics of words is initially captured through pre-trained word em-

beddings ( Pennington et al. [2014] ). Words which appear in similar context are

spatially closer to one-another in the embedding-space. These embeddings are

further trained in the context specific to the given dataset, owing to sequential

6



iteration over multiple input sequences.

2.3 ATTENTION MECHANISM

The primary shortcoming of the described sequence-to-sequence model is that, at

each decoder time-step, a representation of the entire input sequence is presented

to the decoder cell as input. However, focusing on a certain portion of the in-

put sequence while generating the output token at a particular time-step would

definitely be more optimal.

For example, in an instance of Machine Translation,

To translate from a language that follows a Subject-Verb-Object order, say English,

to a language which follows a Subject-Object-Verb order, say Hindi,

Table 2.2: Attention mechanism for Translation

Main aam khaata hoon
I eat a mango.

In the second decoder time-step, while generating the output token ’aam’,

we need to pay attention to the fourth word in the encoder sequence, ’mango’.

Similarly, for every output token in a sequence-generation task, there is usually

a particular input token that needs to be attended to more. Thus, attending

selectively to different parts of the input sequence at different decoder time-steps

is more beneficial than feeding a representation of the entire input sequence at all

decoder time-steps.

The attention mechanism ( Bahdanau et al. [2014] ) is implemented as:

7



Figure 2.3: Attention Mechanism
Image Source: Prof. Mitesh Khapra’s slides

α = so f tmax(VT
attntanh(Uattnst−1 + Wattnhj) (2.3.1)

where, α - vector of attention weights, h - vector of encoder states, s - vector of

decoder states.

The attention weights are calculated at each decoder time-step. The encoder

states are weighted by the attention weights calculated at the present time-step

and fed to the decoder cell.

8



2.4 METRICS

The metrics that have been used for evaluating the performance of the models are

as follows:

1. BLEU - Bilingual Evaluation Understudy score ( Papineni et al. [2002] )
This score was first used to evaluate the quality of translated texts, hence
the term ’bilingual’. However, it is a universal metric for text generation
which compares the quality of the generated text with a given reference text.
The BLEU-n score reports a precision values for the matching n-gram counts
between the candidate and the reference text, adjusted for the number of
words being different in the above-mentioned documents.

2. ROUGE-L ( Lin [2004] )
ROUGE-L score reflects Longest Common Subsequence-based statistics. The
Longest Common Subsequence is between the candidate text and the refer-
ence text.

2.5 BASELINE MODEL FOR QUESTION GENERA-

TION

The seminal work that forms the baseline for neural Question Generation is Du

et al. [2017] . This is the first work that uses the end-to-end sequence-to-sequence

models for this task rather than a pipeline of classical NLP techniques. Three

levels of hierarchies at the encoder stage is presented: word-level, sentence-level

and paragraph-level. Bidirectional LSTMs are used as the recursive units of the

Encoder and the Decoder. Pre-trained GloVe embeddings (( Pennington et al.

[2014] ) for words have been used. Attention mechanism is used at word-level.

The highest BLEU-4 score of 12.28 is obtained when sentence-level encoding is

used. Supplementing with paragraph-level encoding diminishes the BLEU-4 score

slightly.

9



Table 2.3: Baseline model scores

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGEL

Vanilla seq-to-seq without
attention

31.34 13.79 7.36 4.26 29.75

Baseline with sentence-
level encoding

43.09 25.96 17.50 12.28 39.75

Baseline with paragraph-
level encoding

42.54 25.33 16.98 11.86 39.37

2.6 DATASET

The specific type of Question-Generation that has been targeted in this project is

Multi-hop Question Generation. The task of Multi-hop Question Generation aims

at generating questions which require finding a common concept and reasoning

over multiple supporting documents. This task is quite apt on the HotpotQA

dataset ( Yang et al. [2018] ), which presents a diverse set of questions not con-

strained to any pre-existing knowledge base. Although the intended use of the

dataset is for Question-Answering tasks, we have structured the inputs appropri-

ately and used the same for the task of Question Generation.

The questions presented by the HotpotQA dataset can be primarily classified

into two types:

1. Bridge Questions
These questions are framed connecting the descriptors of a common entity
across two distinct supporting documents.

2. Comparison Questions
These questions are framed comparing instances based on a common entity
across two distinct supporting documents.

Each datapoint in the dataset has four components: 1. Answer 2. Question 3.

Context Documents 4. Selected sentences from all the context documents which

10



form the principal supporting facts for the Question Answering/ (in our case)

Question Generation task.

In training our model, we have used supporting facts as the context passage

for running and analyzing most of the experiments.

We have tried certain approaches to improve upon the baseline scores for

Question Generation in our model. The following section reviews the literature

and details the intuition and implementation of these cornerstone methods.

2.7 ADDITIONAL APPROACHES FOR IMPROVE-

MENT

2.7.1 Gated Self-Attention Zhao et al. [2018]

Long text has posed challenges for sequence to sequence neural models in question

generation. In reality, however, it often requires the whole paragraph as context in

order to generate high quality questions.

Specifically to the task of Multi-hop question generation, this approach is useful

because gated self-attention is a step forward in embedding intra-passage depen-

dency. Thus, now the encoder representation of entities which are common across

supporting documents will carry contextual information from all the supporting

documents.

Gated self-attention is implemented in two steps:

1. Self-representation

as
t = so f tmax(UTWsut)

11



st = Uas
t

where,
U - n x d matrix of all the word embeddings, n - number of words, d - dimen-
sionality of embeddings
Ws - trainable weight matrix
st - weighted sum of all words encoded representation in passage based on
their corresponding matching strength to current word at t.
s = st

M
t=1 - final self matching representation

2. Gating

ft = tanh(Wf[ut, st])
gt = tanh(Wg[ut, st])
ût = gt

⊙
ft + (1 − gt)

⊙
ut

where,

The self matching representation st is combined with original passage-answer
representation ut as the new self matching enhanced representation ft. A
learnable gate vector gt, chooses the information between the original passage-
answer representation and the new self matching enhanced representation
to form the final encoded passage-answer representation ût.

For example,

Table 2.4: Gated self-attention

Passage: Scott Derrickson: Scott Derrickson is an American director, screenwriter and
producer. Ed Wood: Edward Davis Wood Jr. was an American filmmaker,
actor, writer, producer, and director.

Question: Were Scott Derrickson and Ed Wood of the same nationality?

Gated self-attention enables the encoder representations to link the word Ameri-

can to its two distinct contexts, Scott Derrickson and Ed Wood, thus enables the model

to generate the right question.

12



Figure 2.4: Encoder structure for Gated Self-attention

Figure 2.5: Gated Self-attention example
Image Source: Zhao et al. [2018]
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2.7.2 Co-attention Seo et al. [2016]

This method is used to compute answer-aware representations of passage words.

These answer-aware representations are passed on to the Encoder LSTMs and

attended over in the conventional fashion.

The answer-aware representations of passage words are freshly computed at

every time-step to prevent early summarization.

The computation of representations do not depend on the previous decoder

state and hence, are memoryless. The attention weights computed by the Encoder

LSTMs over these answer-aware representations of passage words depend on the

previous decoder state. This simplification leads to the division of labor between

the answer-passage co-attention layer and the Encoder attention layer.

α(h,u) = wT
(s)[h; u; h ◦ u]

where,

h - passage word representation

u - encoder answer-phrase state representation

w(s) - trainable weight matrix

α(h,u) - answer-aware passage word representation

2.7.3 Word-level Coverage Mechanism See et al. [2017]

Repetition of output tokens is commonly observed in sequence-to-sequence mod-

els. We adapt the coverage model to solve this problem. We maintain a coverage

14



vector ct, which is the sum of attention distributions over all previous decoder

time-steps.

ct = Σt−1
t′=0at

′

Intuitively, ct is a (unnormalized) distribution over the source document words

that represents the degree of coverage that those words have received from the

attention mechanism so far. The coverage vector is used as extra input to the

attention mechanism. Thus, the coverage term is added to the attention mechanism

described in Section 2.3, Equation 2.3.1.

α = so f tmax(VT
attntanh(Uattnst−1 + Wattnhj + Cattnct) (2.7.1)

A coverage loss is additionally defined to penalize attending to the same input

tokens repeatedly.

covlosst = Σimin(at
i , c

t
i) (2.7.2)

The coverage loss is bounded; covlosst ≤ Σiat
i = 1. The loss intuitively minimises

the attention over maximally covered locations.

2.7.4 Pointer-Generator Copy Mechanism See et al. [2017]

This mechanism is an elegant way of handling Out-of-Vocabulary (OOV) tokens

generated at the decoder end. When an OOV token is generated by the decoder,

it is replaced by the input token with the highest attention weight assigned at that

decoder time-step.

This enables reducing the vocabulary size at both source and target end. We

15



have used a vocabulary size of 30K at both source and target end, while conven-

tionally vocabulary sizes of around 150K at source end and 60K at target end are

used in the absence of Copy mechanism Nallapati et al. [2016].

2.7.5 Hierarchical Encoder with Sentence-level and word-level

attention Nallapati et al. [2016]

In the context of multi-hop question generation, in addition to paying attention to

key words at every decoder time-step, it is also important to identify key sentences

which detail the properties in relation with the bridging or comparison entity in

the HotpotQA dataset.

The difference between the approach detailed in this paper and the Baseline

sentence-level hierarchical model is that this model incorporates both sentence-

level attention and word-level attention in conjugation, whereas the baseline model

incorporates only word-level attention.

In this approach, the word-level attention weights are re-weighted by the

sentence-level attention weights.

α( j) =
αw( j)αs(s( j))

ΣNd
k=1αw(k)αs(s(k))

(2.7.3)

where,

s( j) denotes the sentence to which the word j belongs.

αw denotes initial word-level attention weights.

αs denotes sentence-level attention weights.

α denoted weighted word-level attention weights.

16



Figure 2.6: Hierarchical Encoder with both word-level and sentence-level attention
Image source: Nallapati et al. [2016]

The Basic sequence-to-sequence model supplemented by word-level attention

+ word-level coverage + co-attention + gated self-attention + copy mechanism

shall be referred to as Primary model in future references.

17



CHAPTER 3

RELATED WORK

Graph Convolutional Networks (GCNs) have been used to incorporate non-sequential

relations between context passage words/entities. The intuition behind using

GCNs for Multihop Question Generation is that the properties that describe the

entities and therefore expected to form the question are often non-linearly linked

to the entity. The objective of using GCNs is to make these non-linear connections

explicit to obtain more useful input entity representations.

This section aims to convey of the general overview about the functioning of

GCNs.

3.3.1 Graph Convolutional Networks Kipf and Welling [2016]

GCNs devise a way to generalize neural networks to work on arbitrarily structured

graphs. GCNs have primarily been used so far in node-classification tasks in

complex graphs: for example, classifying Technology and Fashion pages on social

media platforms, such as Facebook, classifying documents into different areas of

research on citation networks.

A GCN takes as input:

1. Input feature matrix X: N x D, N nodes and D-dimensional node embeddings

2. A matrix representation of the graph - typically the adjacency matrix, A

For our task of Question Generation, we have used two kinds of adjacency

matrices.



1. Dependency parses

2. Capitalized entity linking

Thus, for our task, the adjacency matrix changes for each input point. This

makes our task significantly more complex than page-classification in social media

networks or document-classification in citation networks, since for those tasks the

adjacency matrix remains fixed across datapoints.

Every GCN layer can be written as a non-linear function:

H(l+1) = f (H(l),A) (3.3.1)

where,

H(l) - layer-wise outputs of the GCN

H(0) = X

The non-linear function f (.) is typically modelled as:

f (H(l),A) = σ(AH(l)W(l)) (3.3.2)

where,

W(l) is a trainable weight matrix. Each row and column of the adjacency matrix,

A is typically normalized by the node degree, to ensure that GCNs don’t change

the scale of the input feature vectors. Also, multiplication with A means that, for

every node, we sum up all the feature vectors of all neighboring nodes but not the

node itself. We can ”fix” this by enforcing self-loops in the graph: we simply add

the identity matrix to A.

19



Thus, the final expression for the non-linearity function looks like:

f (H(l),A) = σ(D̂−
1
2 ÂD̂−

1
2 H(l)W(l)) (3.3.3)

where,

Â = A + I

D̂ = diagonal degree matrix of Â

Intuitively GCNs can be visualised as a generalization of our known and loved

Convolutional Networks.

A fully-connected neural network requires all input nodes to be connected to all

output nodes.

Figure 3.1: Fully connected Network

For data where there is a notion of spatial proximity and spatially distant con-

nections do not yield much information, typically image datasets, Convolutional

Neural Networks (CNNs) are used. The spatially distant connections are elimi-

nated and weights are shared among spatially local filters.

Figure 2.3 depicts one layer of a Convolutional Neural Network. The first layer

of the CNN identifies primary features (say edges), the second layer identifies

secondary features which are an aggregation of the primary features (say shapes)

20



Figure 3.2: Convolutional Neural Network layer

and so on.

For data consisting of arbitrary graphs, where there is no notion of spatial

proximity, yet there is a notion of neighbours and possible-communities, GCNs

are used.

Figure 2.4 depicts one partial layer of a Graph Convolutional Network. Only

two sets of neighbours have been shown to ease the visual complexity of the figure.

Figure 3.3: Graph Convolutional Network layer

Graph Convolutional Networks are a generalization over CNNs in the follow-

ing ways:

1. There is no spatial ordering of nodes.

2. Each node may have a different number of neighbours (thus, weight sharing
is not possible)

GCNs also perform layer-wise feature-abstraction. The proof of this is through

fundamentals of spectral graph theory as detailed here Defferrard et al. [2016].
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GCNs can identify community structures in a graph even with untrained

weights by exploiting the loops in a given graph.
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CHAPTER 4

CURRENT APPROACH

Through this project, I have come up certain ideas to supplement the primary

model with principal objective of improving performance on the task of Multi-hop

Question Generation. The intuition behind these ideas and their implementation

have been detailed in the current section. The performance and analysis of the

same has been presented in latter sections.

Three primary approaches have been tried:

1. Sentence-level coverage mechanism

2. GCNs for supplementing input embeddings, trained with the adjacency ma-
trices:
(a) Dependency parses

(b) Linking capitalized entities

3. GCNs for supplementing primary model with sentence-level coverage mech-
anism

4.5 Sentence-level coverage mechanism

The task of Multi-hop Question Generation involves linking properties of common

entities across multiple support documents. To be able to link properties of an

entity across multiple sentences, all the sentences should be sufficiently attended

to. Thus, to ensure that attention is adequately distributed across all sentences

and no sentence is attended to repeatedly, sentence-level coverage mechanism is

incorporated.



Hierarchical encoder with word-level and sentence-level attention is imple-

mented as detailed in Section 2.7.5. Coverage mechanism, as detailed in Section

2.7.3, is implemented for both word-level attention and sentence-level attention.

The sentence-level coverage loss and the word-level coverage loss are both

added to the standard cross-entropy loss, with a weighting factor of 1.0 (as the

cross-entropy loss and the coverage losses are observed to be of a similar order of

magnitude).

Sentence-level attention and coverage

ct
s = Σt−1

t′=0α
t
s
′

αs = so f tmax(Vs
attn

Ttanh(Us
attnst−1 + Ws

attnhj + Cs
attnct

s) (4.5.1)

covlosss
t = Σimin(αt

si, c
t
si) (4.5.2)

where,

cs - coverage vector for sentence

αs - attention weights for sentence

i - encoder steps, t - decoder steps

h - encoder state, s -decoder state

Word-level attention and coverage
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ct
w = Σt−1

t′=0α
t′

αw = so f tmax(Vw
attn

Ttanh(Uw
attnst−1 + Ww

attnhj + Cw
attnct

w) (4.5.3)

α( j) =
αw( j)αs(s( j))

ΣNd
k=1αw(k)αs(s(k))

(4.5.4)

covlossw
t = Σimin(αt

i , c
t
wi) (4.5.5)

where,

cs - coverage vector for sentence

αw - attention weights for words

α - sentence-attention weighted attention weights for words

i - encoder steps, t - decoder steps

h - encoder state, s -decoder state

4.6 Graph Convolutional Networks

GCNs were largely used with the intention to model non-linear sequential rela-

tionships between the words in a given document. These non-linear dependencies

are incorporated as a part of the input feature representation.

Two kinds of adjacency matrices were used as input to the GCN (in disjoint

experiments):
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1. Dependency Parses
The dependency parses were generated by the Spacy Natural Language
Processing toolkit. This approach enhances connections between entities
and the properties that describe it.

2. Capitalized Entity Linking
This approach enhances connections between common entities across differ-
ent supporting documents.

Figure 4.1: Model with GCN flow diagram
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CHAPTER 5

Experimental Results and Analysis

Maximum number of epochs run for all experiments = 20

Learning Rate = 0.0004

Optimizer = Adam

Batch-size = 64

5.6 Sentence-level coverage

Weighting factor for Sentence-level coverage loss = 1.0

Table 5.1: Sentence-level Coverage

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGEL

Primary model 36.7 26.1 19.5 15.0 34.2
Primary model + sentence-
level coverage

37.5 26.8 20.2 15.7 34.6

Sentence-level coverage improves the BLEU-4 score by 0.7 points over our

primary model. The intuition behind sentence-level coverage, thus, seems largely

successful.

A visual analysis of the attention-plots reveals that upon incorporating sentence-

level coverage mechanism, the model attends over both the support sentences



Figure 5.1: Left: Word-level coverage Right: Sentence-level coverage

more proportionately. This enables the model to take a step forward in identifying

the common entities shared by Scott Derrickson and Ed Wood, as it now attends

sufficiently to supporting facts that discuss both these entities.

5.7 Graph Convolutional Networks

Experiments have been run with two different kinds of adjacency matrices as input

to GCNs.

1. Depencdency Parse created using Spacy, an existing NLP toolkit.

2. Capitalized entity linking across the passage.

GCNs have further been run in conjugation with Sentence-level coverage mech-

anism.

To our disappointment, the performance of GCNs has been greatly dismal.

The poor performance of GCNs, as implemented, on the current task of Question-

Generation can be attributed to three primary intuitions.

1. The tasks that GCNs have been greatly successful on, typically classfication
tasks, have one adjacency matrix across all input datapoints. For example, in
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Table 5.2: Sentence-level Coverage

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGEL

GCN with Spacy depen-
dency parse

24.2 13.1 7.7 4.8 25.6

GCN with Entity graph 26.8 16.0 10.6 7.3 27.3
GCN with Spacy depen-
dency parse + Sentence-
level coverage

24.5 12.6 7.0 4.1 23.4

GCN with Entity graph +
Sentence-level coverage

30.7 18.4 11.9 8.0 27.8

Figure 5.2: GCN: Left: Spacy dependency parse Right: Entity graph

Figure 5.3: GCN + Sentence-level coverage: Left: Spacy dependency parse Right:
Entity graph
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a document classification task over a citation network, the adjacency matrix
that describes the citation network is fixed across all input datapoints to be
classified.

In the task of Question Generation, however, the adjacency matrix changes
with every input passage, thus rendering the each element of the GCN
weight-matrix to be very sparsely trained.

Figure 5.4: GCN weights that are being trained at two distinct datapoints

GCNs are a generalization over CNNs in the sense that each node may have
a different number of neighbours. For our task, the neighbours of each
numbered-node has is changing across input datapoint. Thus, each element
in the weight-matrix, is not trained while iterating over every input.

To showcase the sparsity in training GCNs in a more pronounced manner,
The maximum number of words in each context passage is 100. The size
of the adjacency matrix for every input is, thus, 100 x 100. There 2100x100

possible adjacency matrices across all inputs, whereas the HotpotQA dataset
provides only 86,400 training points, which is orders of magnitude lower
than the number of adjacency matrices. A majority of the weights in the
weight matrix may not get trained at all!

Imagine how challenging it would be to train a CNN where the size or
structure of the filters changed with each input point.

2. Another issue with the complexity of trainability of GCNs is that, if the
weights aren’t trained well, in the process of obtaining the node’s final em-
bedding, you could be enforcing more information about the node’s neigh-
bours than optimal for the task. This might be responsible for diluting the
amount of information present in the node’s original embedding. This is
termed as Node Information Morphing Vijayan et al. [2018].

For example,

In a dependency parse of the passage sentence in Table 5.3, the words, ’The
and ’dog’ are related. When we use GCN output embeddings to generate a
question based on dog, we have lost some information about dog as compared
to its original GloVe embedding. This is likely to reduce the quality of the
question generated.
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Table 5.3: Node Information Morphing

Passage: The dog jumps over the fence.
Given Answer: dog
Expected question to be
generated:

What jumps over the fence?

3. On analysing the questions generated, we observe that some words appear in
loop on using GCN embeddings for question generation. This phenomenon
is not observed when GCN embeddings are not used. The loops present
in the adjacency matrix of input graph to the GCN seem to appear in the
generated text. The loops in the input graph appear to be likely to manifest
as loops in the decoder states.

5.7.1 More observations

Using entity graphs as the input graphs for GCN gives better results than using

dependency parses. Two possible reasons for this are:

1. Entity graphs link capitalized entities across sentences, while the links given
by dependency parses are local to each sentence. Since the task is of multi-hop
question generation, having information of entities across different sentences
in the supporting passage aids the model.

2. The links in Dependency parses are denser than the links in entity graphs.
Hence, the problem of Node Information Morphing is likely more pronounced
when dependency parses are used as input graphs.

On a side note, on the note on the SQuAD dataset ( Rajpurkar et al. [2016]

), GCNs with edge-wise gating mechanism seems to get closer to competitive

performance than on the HotpotQA dataset. On closer examination of the datasets,

we attribute this to the reasoning that context passage sentences in SQuAD have

more patterns while the sentences in HotpotQA are more diverse. Thus, since the

input graph diversity in SQuAD is much lower, it is likely that the GCN weights

are trained more consistently and meaningfully.
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CHAPTER 6

Future work and GCNs for NLP

Some future work directions are described as follows:

1. Edge-wise Gating for GCNs ( Marcheggiani and Titov [2017] )
Edges are assigned scalar gates to upscale or downscale their contribution to
the output. Although Edge-wise gating may help alleviate Node Information
Morphing, the usefulness of this technique can be commented about only
after trial. The poor trainability of GCNs in our use-case may adversely
impact the expected improvements from this method.

2. Node-tagging
When dependency parses are used as GCN input graph, nodes can be sup-
plemented by typed dependency relations ( De Marneffe and Manning [2008]
) they are derived from.

3. Input graph information may instead be used to set attention priors ( Shankar
et al. [2018] ) rather than manipulate word embeddings. This approach
is more flexible as attention weights vary with decoder time-steps. This
approach allows to retain all input information.

4. Training GCN weights jointly for Question Generation and Question An-
swering tasks
Among the given inputs for Question Generation and Question Answering
tasks, i.e. the context passage, the question and the answer, the context pas-
sage plays an equivalent role in both the tasks while the question and answer
play inverse roles. Since the GCN is typically used for embedding the input
tokens of the context passage, training the GCN weights jointly for both tasks
may enhance training outcome.
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