
StereoHDR: OPTIMAL FRAMEWORK FOR STEREO

CAMERA-BASED HDR AND DEPTH

A Project Report

submitted by

PRADYUMNA VENKATESH CHARI (EE15B122)

in partial fulfilment of requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

June 2019



THESIS CERTIFICATE

This is to certify that the thesis titled StereoHDR: OPTIMAL FRAMEWORK FOR

STEREO CAMERA-BASED HDR AND DEPTH, submitted by Pradyumna Venkatesh

Chari, to the Indian Institute of Technology, Madras, for the award of the degree of

Bachelor of Technology, is a bona fide record of the research work done by him under

our supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Prof. Kaushik Mitra
Research Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 7th June 2019



ACKNOWLEDGEMENTS

I would like to thank Prof. Kaushik Mitra for allowing me to work on this topic of

my interest. I would like to thank Mr. Anil Kumar Vadathya for helping me with

understanding various parts of this project. Additionally, I would like to also thank the

various members of the Computational Imaging Lab at IIT Madras for helping me with

various aspects related to operating experiments and collecting the required data for

experimentation.

i



ABSTRACT

KEYWORDS: High Dynamic Range Imaging; Stereo; Optimal Capture Sequence.

Dual cameras have added a new modality to mobile camera imaging. However, most of

the recent applications have limited themselves to extracting only 3D information from

them, or for view diversity during imaging. In this work, we utilize the dual camera

setup’s simultaneous capture ability for HDR recovery in addition to the depth esti-

mation. The simultaneous use of dual cameras enables faster HDR recovery, thereby

reducing native ghosting artifacts as a result of moving objects in the scene. To solve for

HDR and depth, we propose a novel optimization framework for obtaining an optimal

exposure sequence, under the constraints of minimal capture time, minimal disparity

error and high SNR for each exposure. Using the optimal stereo exposure stack cap-

tured we alternate between HDR reconstruction and disparity estimation. We utilize

the estimated disparity to identify point correlations for estimating the Inverse Camera

Response Function. The disparity is also used to warp the secondary (wide) view into

the primary (narrow) view, for HDR recovery. Our experiments show that our optimal

stereo exposure sequence performs better than most other sequences covering the dy-

namic range of interest. It also performs comparably with the full stereo stack spanning

the entire dynamic range of interest, in terms of disparity and HDR.
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CHAPTER 1

INTRODUCTION

1.1 Background

Most commercially available cameras are limited by the range of scene radiance they

can capture (without saturation). In such cases, scenes with a large radiance range, such

as indoor-outdoor scenes or scenes with light sources, cannot be satisfactorily captured

in a single image.

High Dynamic Range imaging, through appropriate fusion of several Low Dynamic

Range images, has consequently been a well-researched solution to this problem. A

stack of images, captured at varying exposures, are used to estimate the radiance of

each scene point. These are then fused into one HDR image.

In recent years, however, cell-phone cameras have become the primary means of

imaging and photography. The most recent disruption in the cell-phone camera sphere

has been the proliferation of multi-camera setups. Two different cameras (wide and

ultra-wide, wide and telephoto etc.) are increasingly being seen in most cell-phones.

These setups are used either to obtain depth cues or for diversity in the types of image

capture possible.

1.2 Objective

In this work, we develop a framework to use such stereo camera setups in cell-phones

for High Dynamic Range scene representations and depth information acquisition. Both

HDR imaging and depth estimation involve a common processing step: disparity esti-

mation. However, as we shall show, both these tasks have different notions of optimal-

ity. Hence, we develop a joint framework of optimality for simultaneous estimation of

both.

The major contributions of this work are as follows:



Figure 1.1: An overview of the StereoHDR algorithm, along with a downstream appli-
cation.

• Framework for simultaneous HDR scene capture and depth estimation

• Pipeline for a general multi-image Stereo HDR setup

• Presenting results and viability of Stereo HDR for real world cell-phone data

• Characterizing time speed-up for HDR scene capture using a stereo setup

• Dataset for multi-image stereo HDR applications

1.3 Structure of Thesis

This thesis begins with a brief literature review of relevant research carried out in Chap-

ter 2. Chapter 3 establishes a few background concepts relevant to this work. This

is followed by a description of the formulation of the optimization framework and the

regime for solving it, in Chapter 4. Chapter 5 addresses the remaining steps of the op-

timization pipeline. Chapter 6 rounds up the Results and Chapter 7 looks to highlight

the Conclusions, along with future scope.
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CHAPTER 2

LITERATURE REVIEW

2.1 HDR Imaging

High Dynamic Range imaging, through fusion of multiple Low Dynamic Range images

is a well-researched topic in the domain of photography. Several previous works have

looked into various aspects contained within HDR imaging, namely identifying required

exposures, as in Pourreza and Kehtarnavaz (2015), conversion of images to radiance

space by identifying and inverting the camera response function, as in Debevec and

Malik (1997), and fusion of scene radiance information from multiple LDR images to

obtain a single HDR image, which is addressed in Robertson et al. (1999). Additionally,

deghosting, or the removal of motion induced artifacts, is also well explored, in works

such as Hu et al. (2013). More recently, several deep learning based HDR frameworks,

both for multi-image HDR and single-image HDR have been successful in obtaining

state of the art results towards the same. Some promising approaches include Eilertsen

et al. (2017) and Kalantari and Ramamoorthi (2017).

2.2 Disparity Estimation

Disparity, and consequently depth estimation using stereo cameras is also widely re-

searched. The Middlebury Stereo Evaluation framework, developed over the course

of HirschmÃijller (2007), provides a comprehensive performance analysis for various

disparity estimation algorithms. In this work, we do not focus on finding the optimal

disparity estimation algorithm for our purposes. Instead, we make the framework and

optimality criteria flexible with respect to the disparity algorithms. However, for the

purpose of experiments, we use the Disparity estimation algorithm proposed by Moze-

rov and Weijer (2015).



2.3 Stereo Camera based HDR

Using stereo camera setups for HDR imaging has been explored in past works. Lin

and Chang (2009) established an early pipeline for HDR imaging using a stereo camera

setup. Bätz et al. (2014) extends the formulation to account for stereo HDR for videos.

Park et al. (2017) looks at improving the pipeline for Stereo HDR over the previously

cited works. However, to the best of our knowledge, there has been no research towards

jointly optimal HDR and depth capture, by designing a framework for said optimality.

2.4 Other Related Work

The idea of optimally selecting exposures and ISOs for imaging was previously pro-

posed in Hasinoff et al. (2010). Here, the optimality was established based on the

notion of maximizing SNR and/or minimizing capture time.
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CHAPTER 3

BACKGROUND CONCEPTS

3.1 Camera Response Functions

Mathematically, a camera works by mapping the scene radiance to a value between 0 to

2n − 1, where n is the bit-depth for the camera. That is, for a given sensor gain (ISO)

I = f(φt), τl < φt < τu, (3.1)

where I is the image pixel value, f(.) is the monotonic Camera Response Function

(CRF), φ is the radiance of the scene point, t is the exposure duration and τl and τu

are the lower and upper pixel value thresholds, beyond which the pixel is noisy or over

saturated respectively.

Rewriting the limits of (1) provides us with the following range for the captured

radiances:

log(τl)− log(t) < log(φ) < log(τu)− log(t) (3.2)

An image captured at a particular exposure can therefore be interpreted as capturing

a particular range of radiances on the log radiance scale (subsequently referred to as

log radiance interval in this work). The standard HDR problem, in such a framework,

reduces to identifying a set of exposures, so as to span the dynamic range of interest.

Figure 3.1 shows a pair of inverse Camera Response Functions, which map from the

pixel intensity space to the scene radiance space. One may note that CRF estimation is

accurate up to a scale factor, or in the log scale, up to a constant offset. However, for

applications such as HDR, this scale uncertainity is not of concern, since most HDR

images, while being displayed, undergo a tone-mapping process which only looks at

relative radiance values.



Figure 3.1: A pair of inverse Camera Response Functions. Note that the x-axis cor-
responds to the pixel value, while the y-axis corresponds to the log of the
scene Radiance.

3.2 Exposure Compensation

A common method of choosing images for single camera HDR is to use exposure brack-

eting. Here, the effective exposure (obtained by varying both the ISO and shutter speed)

between successive captured images are related by a constant multiplying factor. That

is,

ti+1
exp = tiexp × 2C (3.3)

Where tiexp is the effective exposure of the ith image from a particular camera, and C is

the exposure compensation factor.

Commercial cameras often allow exposure compensations anywhere from -2 to +2,

with the integer compensations being common choices for HDR photography.
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3.3 Noise in Imaging and the Signal to Noise Ratio

The imaging process is inherently affected by noise. Noise occurs in various forms,

ranging from thermal noise, due to sensor electronics, to quantization noise arising out

of the Analog to Digital conversion step. Boyat and Joshi (2015) explains a few of these

noise sources, and their corresponding models, in some detail.

Based on our understanding of these noise sources, the Signal to Noise Ratio can

be identified and defined as a metric for image quality. From ?, we use the following

definition for SNR:

SNRj =
φ2tji

2

φtji + σ2
r + σ2

qg
j
i

2 (3.4)

Where φ is the scene point radiance, tji is the exposure duration of the ith image in

the jth camera, gji is the sensor gain of the ith image in the jth camera, σr is the read

noise and σq is the quantization noise. Note that the ISO setting and the sensor gain

are related as ISO = K
g

, where K is a camera-dependent constant. Additionally, the

imaging model used here assumes a linear Camera Response Function, for simplicity

in computation. Hence, in non-saturated regions, the image pixel value I =
φtji
gji

+ Ibias.
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CHAPTER 4

OPTIMAL FRAMEWORK FOR HDR AND DEPTH

Our goal in this work is to recover an HDR image and depth map of the scene using

optimal exposure sequences captured using cell-phone stereo cameras. Since the cam-

eras can be accessed independently, we want to reduce the capture time by splitting

exposure sequences among the left and right camera. Note that estimating depth in this

case is no longer similar to the traditional depth from stereo, since the intensity values

differ across the stereo pairs due to the exposure differences, violating the brightness

constancy assumption. Ideally, without capture time constraints, a naive solution would

be to span the entire exposure stack on both cameras, so as to capture the entire radiance

range in each. This provides the best case for disparity estimation among the stereo pair

with intensity values remaining close due to exposure overlap. However, this is not an

optimal solution in terms of the total acquisition time.

As a result of non-identical exposures on the two cameras, the disparity estimation

step would require transformation to radiance space followed by tonemapping. Conse-

quently, the resulting HDR and depth are not independent, thereby leading to iterative

refinement for improvements.

Fig. 4.1 describes our proposed pipeline for jointly optimal HDR and depth estima-

tion. We begin by looking at the optimality framework and the domains of optimization

for joint stereo depth and scene HDR data acquisition. Following this, we shall de-

scribing the pipeline to acquire the said depth and HDR information from a given set of

images from both cameras.

4.1 HDR and Depth estimation

Any scene to be captured can be represented on the basis of its radiance distribution,

a histogram of the various radiance values in the scene. In order to estimate the HDR

image, the entire dynamic range of interest must spanned, such that each radiance is

captured, without saturation, by at least one camera.



Figure 4.1: Description of the StereoHDR Algorithm Flow, highlighting various steps
in the pipeline and the corresponding results at those steps.

Additionally, since we are dealing with a stereo camera setup, the second aspect

relates to disparity estimation. This is required both for depth estimation as well as

for HDR representation. The performance of disparity estimation algorithms can be

understood in terms of (a) Radiance coverage histograms, and (b) Spatial correlations.

If a particular scene radiance is captured without saturation in both cameras, disparity

can be estimated for that radiance. However, even if certain radiance values are not

captured unsaturated in both cameras, accurate disparity may still be estimated due to

spatial correlation and smoothness constraints that most disparity estimation algorithms

espouse.

In this work, we look solely at the scene radiance histogram representation in order

to set up the optimization for HDR and disparity. The effects of spatial correlation on

disparity estimation can be considered to be algorithm-dependent and can be abstracted

to a disparity error-allowance in the optimization framework, as will be shown later.

Fig. 4.2 shows an example scene radiance distribution and the radiance coverage of

the images from the cameras. Through this, we can identify the criteria that the images

must satisfy in order to capture an optimal representation:

• The capture time for the images should be minimum (under the assumption that
simultaneous capture is possible from both cameras)

• Every radiance value within the dynamic range of interest must be unsaturated in
at least one image

• The fraction of scene pixels without unsaturated images from both cameras should
be less than a threshold value

9



Figure 4.2: Scene Description and Camera Performance Analysis Using Radiance
Maps.

We shall now set up the optimization framework for a stereo camera setup where

both the cameras can be independently accessed, configured and utilized.

4.1.1 Capture Time

Let the various image exposures be represented as tij , for the jth image in the ith camera.

Let m images be captured from the main camera, and n images be captured using the

secondary camera. Then, the overall capture time can be given as,

tcap = max(Σm
j=1t

1
j ,Σ

n
j=1t

2
j) (4.1)

4.1.2 Dynamic Range Coverage

LetKi
j represent the log radiance interval captured by the jth image from the ith camera.

Additionally, let R represent the radiance range of interest, which we wish to capture

10



using our imaging setup. Then, the various log radiance ranges must satisfy,

(∪mj=1K
1
j ) ∪ (∪nj=1K

2
j ) ⊇ R (4.2)

4.1.3 Disparity Error

Let h(.) represent the probability distribution function corresponding to the log radiance

histogram for the scene, and let τerr be the allowed error in disparity. Then, the disparity

error criterion reduces to,

∫
O

h(x)dx ≥ 1− τerr, O = (∪mj=1K
1
j ) ∩ (∪nj=1K

2
j ) (4.3)

4.1.4 Joint Optimization

Based on the above description of the various factors involved, we now set up the opti-

mization framework. It is as follows:

Minimize tcap

Subject to

(∪mj=1K
1
j ) ∪ (∪nj=1K

2
j ) ⊇ R∫

O

h(x)dx ≥ 1− τerr, O = (∪mj=1K
1
j ) ∩ (∪nj=1K

2
j )

(4.4)

The set of exposures for each camera that arise out of this optimization characterize the

optimal exposure capture sequence.

4.2 ISO Control

We now explore an additional domain of control towards optimal exposure sequences.

Increasing ISO allows for capturing a certain radiance range with a lower exposure

time. As a trade-off, the noise characteristics of the image change with changing ISO. In

general, increasing the ISO leads to a degradation in the SNR for an image, as described

in Chapter 3.

11



For a given log radiance interval to be captured, the sensor gain and exposure time

must satisfy t
g

= constant. This characterizes the relation to be satisfied, between the

ISO and shutter speed (exposure time).

This aspect can now be included in the optimization framework to further allow for

freedom to reduce capture time. We propose a lower threshold on the worst-case (min-

imum) SNR (similar to ?) for each of the captured images. Using this, the optimized

framework can be rewritten as:

Minimize tcap

Subject to

(∪mj=1K
1
j ) ∪ (∪nj=1K

2
j ) ⊇ R∫

O

h(x)dx ≥ 1− τerr, O = (∪mj=1K
1
j ) ∩ (∪nj=1K

2
j )

min
φ∈Kj

i

SNRj(φ, tji , g
j
i ) ≥ SNRmin, i ∈ {1, 2, ...,m},

j ∈ {1, 2}

(4.5)

4.3 Implementing the Optimization

The optimization framework previously established has a non-convex nature. In addi-

tion, closed-form solutions are not easily obtained. In order to make the problem more

tractable, we split it into two parts: first, an initial exposure and ISO estimate that sat-

isfies the required constraints, followed by a final optimization over exposure times,

while keeping the ISOs constant.

By virtue of the nature of the formulation, the choice of initial estimate is essential

in order to obtain a sufficiently optimal solution. The initial estimate has two aspects:

exposures and ISOs. For a given ISO configuration, the exposures are chosen such that

the entire dynamic range is covered. In addition, since our objective is to minimize the

capture time, we choose exposures such that most of the disparity error is towards the

lower radiance parts of the scene histogram. As a result, the exposures are shifted to

lower values. In order to optimize over ISO, each image is considered independently,

and the ISO for that image which minimizes the overall capture time, while keeping

12



other ISOs constant, is chosen.

This initial estimate is optimized by an iterative objective minimization approach

using the Levenberg-Marquardt algorithm. This approach provides a locally optimal

exposure sequence. The experiments and results will further analyze the nature and

robustness of this optimality.

13



CHAPTER 5

PIPELINE STEPS

Having looked at the optimization scheme, we now describe the remaining pipeline

steps from Figure 4.1 to facilitate the estimation of HDR representation and depth esti-

mation, for a High Dynamic Range scene.

5.1 Scene Radiance Distribution Estimation

In order to utilize the optimality framework described earlier, the radiance distribution

for the scene must be estimated. We look at two methods for the same:

5.1.1 Accurate Radiance Distribution Estimation

In order to identify accurate radiance distribution for a scene, multiple images can be

used from both cameras, as a pre-processing step, so as to span the radiance range

of interest. Since we deal with small baseline camera setups, the radiance distributions

seen from both the cameras can be assumed to be similar. Hence, the exposures from the

two cameras can be interleaved, to capture alternating subsets of the range of interest.

By fusing information from each of these images, and with a prior Camera Response

Function estimate, the radiance distribution can be estimated.

Figure 5.1 describes this process. This procedure involves a relatively time-consuming

capture of a stack of images. However, this step, being a pre-processing step, does not

play a role in the actual image captured. Hence, the capture time for the images used

for HDR representation will be minimal, thereby allowing for the benefits of the same.

5.1.2 Approximate Radiance Distribution Estimation

Here, we capture a single image from each of the cameras. Using these, limited infor-

mation about the radiance distribution of a scene can be obtained. This information can



Figure 5.1: Figure description of the Accurate Scene Radiance Distribution Estimation.
Interleaved images are captured from both cameras to cover the entire radi-
ance range of interest.

be used to map the scene radiance distribution to the closest among a set of prior distri-

butions, for different scene types. While this scene radiance estimation process is much

quicker, it will only provide an approximate result, thereby allowing for a sub-optimal

exposure sequence. Figure 5.2 describes this method of estimation.

Several different regimes may be adopted to identify the nearest radiance distribu-

tion. One method may be to compute a prior set of radiance distributions, among which

the nearest distribution may be identified using an appropriate metric, for instance the

Earth Movers’ Distance. Alternatively, a parametric model may be identified, to fit best

to the known distribution, given the radiance range of interest.

In all further experiments and discussions in this work, we use the Accurate Scene

Radiance Distribution. Identifying suitable algorithms for the Approximate Scene Ra-

diance Distribution Estimation is left for a future work.
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Figure 5.2: Figure description of the Approximate Scene Radiance Distribution Estima-
tion. A subset of the distribution is estimated, and the closest distribution to
it is identified from a set of pre-defined distributions.

5.2 Iterative Disparity and CRF Estimation

In order to estimate accurate disparity for a scene, we utilize an iterative approach to-

wards estimating the disparity and the inverse Camera Response Function (ICRF). In

each iteration, the ICRF estimate is refined using the point correspondences from the

disparity estimate of the previous iteration. For the first iteration, prior known CRFs for

both the cameras are used.

The estimated ICRFs are then used to transform the images to radiance space. Fol-

lowing processing, this is tonemapped back to the image domain in order to estimate

disparity. The iterations are continued until both the disparity estimate and the CRF

stop improving considerably. We now describe the two estimation processes in some

detail.

16



5.2.1 CRF Estimation

The problem of estimating the CRF is reduced to a least squares estimation problem, as

an extension to Debevec and Malik (1997). The cost function for this is given by:

C = C1 + C2 (5.1)

Cj =ΣiΣp∈Sj
i
(wd(Zj

i,p)(gj(Z
j
i,p)− Ep − log(tji )))

2

+ λsmΣl∈{1...,254}(wsm(l)g
′′

j (l))2
(5.2)

Where g1(.) is the ISO normalized log inverse CRF for the main camera and g2(.)

is the ISO normalized log inverse CRF for the secondary camera. Sji is the set of points

in the ith image of the jth camera, that are valid for estimated (that is, not saturated).

Ep is the scene radiance for each of these points, and tji is the corresponding exposure

time. Zj
i,pis the pixel value for scene point p in the ith image of the jth camera.

The optimal main and secondary Camera inverse CRFs are therefore identified by

optimizing this objective, using Least Squares. However, in practice, it is observed that

estimation of 512 variables (for an 8 bit image) leads to an under-determined system.

This leads to inaccurate ICRFs being estimated.

In this work, we apply a further relaxation step in order to make the ICRF estimation

step more tractable. We assume that the two ICRFs to be estimated differ only by a

constant offset factor. That is,

g2(Z) = g1(Z) + c (5.3)

Where g2(Z) is the ICRF for the secondary camera, g1(Z) is the ICRF for the main

camera and c is the offset factor. Z is the pixel intensity value, ranging from 0 to 255 in

our case.

The performance of the ICRF estimation algorithm will be addressed in Chapter 6.
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Figure 5.3: Figure description of the disparity estimation algorithm. While the core al-
gorithm for disparity estimation is the one proposed by Mozerov and Weijer
(2015), we add appropriate steps to accomodate the HDR scene require-
ments.

5.2.2 Disparity Estimation

The estimated CRFs are used to transform the images into radiance space. Following

this, we estimate the HDR image for each of the cameras, by fusing various images for

that camera. Disparity is estimated between these two tone-mapped HDR images. In

order to improve the depth estimation, we introduce the notion of Simulated Satura-

tion. Each picture of the pair is appropriately thresholded (in radiance space) so that

both images occupy the same radiance range. In essence, the lower exposed image is

thresholded for high pixel values and higher exposed image is thresholded for lower

pixel values. Through this, the tone-mapping process, which is relative to the radi-

ance range of the image being tone-mapped, would be similar for both the images even

though their original radiance ranges are different. This results in more accurate dispar-

ity estimation. This induced accuracy in tone-mapping is at the cost of saturating out

the radiances which are not present in both the images. However, it is experimentally

observed that the loss of radiance information is sufficiently compensated by the tone-

mapping process resulting to similar looking images, for disparity estimation. Chapter

18



6 analyzes the benefit of using simulated saturation in our case. Figure 5.3 describes

this the disparity estimation pipeline.

Note that in our work, we do not look at optimizing for specific disparity estimation

algorithms. Instead, we we aim to create a general, modular optimization framework.

This is in an effort to allow for provisions by which improvements in disparity estima-

tion algorithms may be integrated into the framework. As mentioned earlier, for the

purpose of experiments and results, we use the disparity estimation algorithm proposed

by Mozerov and Weijer (2015).

5.3 Image Fusion

The disparity estimates and the fine-tuned inverse Camera Response Functions can be

used to fuse the radiance information into the consolidated HDR image. The disparity

estimates are used to warp the secondary view images into the main view, while the

ICRFs are used to transform all the captured images into the radiance space.

The weights for image fusion are chosen based on the pixel intensity values at each

point. The radiance for a scene point may only be estimated from an image where the

pixel is neither saturated nor noisy (that is, the pixel values are within the thresholds

defined in Chapter 3). Additionally, higher weightage is given to the information from

the main view, in order to minimize stray occlusion-induced artifacts from the warped

secondary view image.

In order to render the HDR image for display on traditional devices, a final tone-

mapping is applied to the fused HDR image. This may be followed by a color correction

step in order to transfer color information from the LDR images, in case the tone-

mapping does not allow for related controls.
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CHAPTER 6

EXPERIMENTS, RESULTS AND CONCLUSION

The setup used for testing this work included images captured using an LG G5 cell-

phone camera. The camera setup consists of a wide and an ultra-wide angle camera.

Before running our pipeline, the images from the cameras are appropriately rectified,

in order to account for the differing fields of view. Additionally, effects of lens non-

idealities such as radial and tangential distortion are appropriately accounted for and

corrected.

Figure 6.1 highlights the various scenes captured for experiments. The figure dis-

plays, for each scene, the narrow view at high exposure, the wide view at low exposure

and the radiance distribution. As can be seen, all the chosen scenes have radiance dis-

tributions with differing nature (unimodal, bimodal etc.) as well as differing radiance

ranges. This allows us to establish the versatility and robustness of our optimization

framework and the subsequent processing pipeline.

6.1 Validating the Framework

We first look to validate the notion of optimality established previously and to under-

stand the various trade-offs involved. We try to establish empirical evidence towards

the effect and understand the extent of the optimality involved.

6.1.1 HDR Performance

In order to quantify the performance of the StereoHDR algorithm, in terms of capturing

HDR information, we compare it to three other results. First, we look at the HDR

image obtained from fusion of three LDR images, with an exposure compensation of 2

between successive images. We refer to this setup as Three Shot. Second, we look at the

image generated by the proprietary HDR algorithm present on the cell-phone in use (the

LG G5 in our case). Finally, we look at the full Stack HDR image, obtained by taking



Figure 6.1: Description of the various scenes captured for experiments.

images with an exposure compensation of 2, with as many images taken as required

to cover the dynamic range of interest. For instance, under this setting, 5 images were

captured for the Shadow scene, 4 for the Flowers scene and 3 images for the Cycles

+ scene. The images obtained using full stack HDR are considered as ground truth

for the purpose of this experiment. Such a setting, using an exposure compensation of

2, was chosen since exposure compensation based image stack capture is common for

commercial HDR capture.

For all the scenes under consideration, the Three Shot HDR images are unable to

capture the dynamic range of interest. In addition, as can be seen for the Cycles + scene,

the Three Shot HDR image is also unable to appropriately reproduce color information.

This arises due to saturation of the corresponding scene points, leading to inaccurate

color information being sensed.

Similarly, the in-built HDR framework is also unable to capture the entire dynamic

range, in the scenes under consideration. However, it performs better than the Three

Shot setup, and is able to reproduce scene color information accurately.

Our proposed framework shows performance close to ground truth for all the scenes.

It is able to appropriately capture the dynamic range of interest, while also being able to

reproduce color accurately. The color reproduction can be seen easily in the results for

the Cycles + scene. One may however notice the glare artifact visible in the results for

the Shadow scene. This is a result of lens glare, augmented by the high dynamic range

of radiances present in the scene.

Using a stereo setup for HDR also allows for capture-time speedup, in compari-
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Figure 6.2: Comparison of the StereoHDR algorithm against other single camera HDR
algorithms.

son with single camera HDR. This is because the exposures can be split between the

two cameras. Additionally, unlike simultaneous HDR and depth estimation, this ap-

plication requires disparity estimation for only the saturated regions in the main-view

images. Therefore, the optimization framework may be run with a higher disparity error

allowance. As shown in Fig. 6.2, our algorithm consistently provides the best capture

time over all other image capture regime. This is because the optimization minimizes

radiance redundancy during capture, while keeping SNR constraints under check. In

the scenes considered, our algorithm is able to achieve a time gain of 22.15%, 23.38%

and 20.37% over the Three Shots HDR image, for the Shadow, Flowers and Cycles +

scenes respectively, resulting in an average time speedup of 21.97%.
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6.1.2 Optimal HDR+Depth

We now look to analyze the optimality of the stereo HDR framework, through com-

parison with other image selection regimes. To establish optimality, we consider the

disparity error and capture time as relevant metrics.

Since to the best of our knowledge, no established framework for selecting images

for stereo HDR exists, we use a variant of exposure bracketing on both images. The

exposure selection rule involves capturing an equal number of images in the narrow

and wide views, with identical exposure compensations for each image stack. The

narrow view exposures start from the image with the lowest possible exposure time,

that captures the lowest radiance of interest. Each subsequent image exposure time

is obtained using Equation 3.3, thereby creating a stack of images with successively

decreasing exposures. Similarly, for the wide view, the exposures start from the image

with the highest possible exposure time, that captures the highest radiance of interest,

leading to a stack of images with successively increasing exposures.

We present results for exposure compensation factors of 1 and 2 (which are com-

monly used for commercial single camera HDR), for cases with 2, 3, 4 and 5 images

per camera. Figure 6.3 shows these results. Note that only those exposure sequences

are considered which cover the entire radiance range of interest, since the search space

for the optimization is constrained similarly. As a result, the analysis of stereo HDR

optimality reduces to analyzing disparity estimation optimality, under capture time con-

siderations.

The accuracy of the disparity estimated depends on the range of radiances covered

in both the cameras. Hence, the disparity estimate improves with an increase in the

number of images captured, in our test regime. We therefore use an exposure sequence

which captures the entire dynamic range in both cameras to identify a relative ground

truth disparity estimate.

The optimal sequence is found to have the least capture time when compared to

the test sequences. It is also found to have a better disparity estimation performance

than most of the sequences, which establishes the trade-off between capture time and

disparity error that our framework looks to optimize over. The allowed error in disparity,

which is an input to the optimization scheme, establishes the tolerance towards disparity
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error, depending on the disparity estimation algorithm and application. The analysis

shows that the optimization scheme indeed provides us with a scene capture regime

that is more optimal (with regards to capture time and disparity error) as compared to

various naively chosen exposure sequences.

6.2 Validating Pipeline Steps

In this set of results, we analyze various pipeline steps in order to qualify and quan-

tify their performance. We provide empirical evidence of their effectiveness towards

accurate estimation of HDR representation for scenes.

6.2.1 ICRF Estimation

Here, we establish the accuracy of the ICRF estimation process highlighted in Chapter

5. For the purpose of comparison, therefore, we evaluate the ground truth ICRFs for

both the cameras, by capturing single camera exposure stacks and estimating the ICRF

using the method proposed in Debevec and Malik (1997). Additionally, to minimize

the effect of false point correspondences, we use the disparity estimate obtained from

the full range exposure compensation setup, which was also used to identify the ground

truth disparity in Section 6.1.2. Additionally, as mentioned earlier, the ICRF may only

be estimated up to a scale factor from such setups. Therefore, while comparing with

ground truth ICRFs, we remove any average offset that may be present between the two

responses.

Figure 6.4 shows the relevant results. Both the main and secondary camera ICRFs

are seen to be estimated accurately, and they can be seen to closely resemble the cor-

responding ground truth ICRFs. Additionally, we can also see the estimated main and

secondary camera responses on the same radiance scale. This shows the presence of an

offset between the two cameras.

Based on these results, we are able to establish that for the present setup, the relax-

ation of assuming identical ICRFs separated by an offset is general enough to suitably

account for system characteristics.
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6.2.2 Iterative CRF and Disparity Fine-tuning

We now look to validate the jointly iterative ICRF and disparity estimation framework.

For this purpose, we purposely choose corrupted initial estimated for the main and

secondary ICRFs. This is achieved by introducing a large offset in one of the ICRFs,

with respect to the other. This would have the effect of adversely affecting the cross

camera radiance estimation error, the simulated saturation step and consequently the

disparity estimation setup.

The results can be seen in Figure 6.5. The error in disparity is seen to decrease with

the iterations. The initial error in disparity arises as a result of the corrupted ICRFs

fed in as initial estimates. However, the disparity drops to the disparity error value of

convergence within 1-2 iterations. However, the rate of convergence directly depends

on the robustness of the disparity estimation algorithm in use. Therefore, the param-

eters controlling the number of iteration allows for adjustment, and must be adjusted

depending on the disparity estimation algorithm in use.

The effectiveness of the iterations can also be seen in terms of the cross camera

radiance estimation error. This metric is defined as the average error in log radiance

estimated for a scene point by the two cameras. Since the initial ICRFs were corrupted,

the initial error is very high. However, the error drops very rapidly to converge at a low

error value. Again, the rate of convergence depends on the robustness of the disparity

estimation algorithm, since the estimated disparity is the source of point correspon-

dences for ICRF estimation. And persistent/large scale errors in disparity estimation

would therefore degrade the ICRF estimation performance as well.

6.2.3 Simulated Saturation

The final pipeline step we look to validate is the Simulated Saturation step. The vali-

dation is carried out over two scenes, Books- Darker and Flowers. For the first scene,

we choose the optimal exposure sequence. For the second scene, we choose a jointly

exposure compensated sequence (non-optimal) between the two cameras. Using the

optimal (ground truth) ICRFs, we perform the radiance space conversion, leading up to

the simulated saturation. This was done so that the results observed were solely due to

the effect of simulated saturation.
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Figure 6.6 holds the results. For the Books- Darker scene, the lack of simulated

saturation leads to spread out disparity estimation errors. The performance is degraded,

which can be verified both visually, as well as in terms of the average absolute disparity

error, with respect to the ground truth. For the Flowers scene, however, the dispar-

ity estimation specifically fails for the lamp region. This can be visually seen and is

corroborated by the worse average absolute disparity error metric.

Over the two scenes, therefore, simulated saturation augmented disparity estima-

tion is able to provide much better disparity estimates than simple disparity estimation,

without simulated saturation.

6.3 Applications

In this section, we attept to look at some possible downstream applications of the joint

estimated HDR and depth. Primarily, we look at image refocusing as an application, in

order to understand if the disparity estimates are good enough for the purpose.

6.3.1 Image Refocusing

Here, we display some of our results pertaining to HDR refocusing. This is achieved

by segmenting the HDR image based on the disparity values, and applying segment-

dependent blur kernels, depending the on the location of the focal plane.

The two scenes used for this are the Cycles + and the Books scene. In both, the

first image is focused on the background, while the second image is focused on the

foreground. As can be seen, these results are perceptually good, since the difference

between the foreground and the background can be quite easily identified and resolved.
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Figure 6.3: This figure analyzes the optimality of our Stereo HDR framework: (a) Op-
timal exposure sequence; (b) Relative ground truth sequence- 6 shots, ex-
posure compensation of 1; (c) Test sequence- 3 shots, exposure compensa-
tion of 1; (d) Test sequence- 4 shots, exposure compensation of 1 (e) Test
sequence- 5 shots, exposure compensation of 1; (f) Test sequence- 2 shots,
exposure compensation of 2; (g) Test sequence- 3 shots, exposure compen-
sation of 2 (h) Test sequence- 4 shots, exposure compensation of 2.
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Figure 6.4: This figure describes the accuracy of the ICRF estimation algorithm for
the main and secondary cameras, through comparison with ground truth
responses. It also shows the main and secondary camera ICRFs on the same
plot for comparison.
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Figure 6.5: This figure describes the effectiveness of the proposed jointly iterative ICRF
and disparity estimation framework, in terms of disparity error and cross
camera log radiance estimation error.
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Figure 6.6: This figure describes the performance of the Simulated Saturation step, by
comparing the disparity estimation performance with and without simulated
saturation for two scenes.

Figure 6.7: This figure describes the performance of the refocusing, performed using
the HDR and depth estimates.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

This work establishes an optimal framework for the acquisition of HDR scene infor-

mation using cell-phone stereo cameras. We propose a novel famework that is modular

and flexible in order to accomodate a wide variety of state of the art disparity esti-

mation algorithms, camera setups and imaging noise requirements. The optimality of

the framework is established by comparison with other candidate exposure sequences,

which shows that the optimal capture sequence leads to better or comparable results as

compared to other capture sequences. It was also shown that stereo HDR is more than

20% quicker than Three Shot single camera HDR, which is often traditionally used for

commercial HDR photography.

We also validate the various pipeline steps and motivate their necessity in the algo-

rithm. These include the ICRF estimation and the simulated saturation, as well as the

benefit of iteratively estimating the ICRF and disparity map for the scene. All these

steps are novel proposals as part of this work, and have not been proposed or utilized as

part of previous Stereo HDR works.

Finally, we also show some applications for Stereo HDR, such as image refocusing

and other possibilities such as perspective shift. Again, to the best of our knowledge,

no other Stereo HDR works look to propose and show downstream applications such as

HDR refocusing.

Based on the work carried out and possible avenues for improvement, the following

may be considered as future directions:

• General two camera ICRF estimation algorithm (without relaxations)

• Theoretical analysis of optimization framework

• Ghosting correction

• Deployment on cell-phone platform
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