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                                      ABSTRACT 

 

 Musical sound patterns are created and performed by some humans in order to communicate with others. 

Perception details not just sensing the world but also making sense of it. When you listen to music from a 

live orchestra , you hear guitar, oboes, violins, piano,tabala and so on, each playing distinct notes. But the 

sound waves travelling towards your ears do not come packaged as distinct channels for the winds, the 

strings; the signal the ear recognizes is the air pressure changing as a function of time, p(t). Effectively 

sound of the whole orchestra is compressed into a single audio line. Notes and chords, melodies and 

harmonies are all variations created by the brain interpretively; they are “hidden variables” to be evaluated  

from an analysis of the signal. 

 

Along with speech, music is one of the most prominent among communicative sound patterns that our 

species generates. Music is complex and diversified in style, context, and specific function. 

 

Stochastic modelling of music through pattern theory gives hope to decode the complexities in music and 

allows to perform various operations. 
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                                 CHAPTER 1 

                                INTRODUCTION 

 

1.1 MOTIVATION 

            

Listening to music and finding its composition is a fairly easy task for humans, it is even 

for normal listeners without any particular musical training. However, building 

stochastic models to perform this process is a tough problem. Further, the amount of 

music available in digital platform has already become unfathomable. 

 

Music generation is very important nowadays.Mostly it became commercial. It can be 

used in many applications. Musicians build and produce  their work on what is 

generated by the computational machine.  

 

The significance of stochastic modelling in present days  is vigorous and end-reaching. 

Stochastic modelling is applied in various industries around the world.  

Stochastic modelling is a major hope in  the analysis of the real signal patterns 

generated in any modality  by the world, with all their naturally occurring ambiguity 

and  complexity with the goal of constructing the processes, objects and events that 

produced them.  

 

  

 

 
 

 



1.2 PROBLEM STATEMENT 
 

The main aim of this project is to build stochastic model  for music and this can be 

obatained by answering  the following  questions. 

1. Generation of  music using first order markov model and second order markov 

model. 

2. Finding the broken music or missed notes using the trained markov model. 

3. Comparing the outcomes of both first order markov model and second order markov 

model. 

4. Building stochastic model for music using piecewise Gaussian distribution which is 

possible by building Gaussian model for each note of piano chords.On building 

model the main work is to segment the music. 

 

1.3 FLOWCHART 

For Music Generation: 

 

 
 

 

 

 

 

 

 

Comparing n- gram model with increasing n through finding   music data 

missed : 
 

 

 

 

 

 

Segmentation of music 

Create n-grams for 

the data and train the 

n-gram model 

Pick the n-gram, 

which has the given 

note using the 

probability matrix and 

predict the next state 

And  

Generate sequence 

by inductively 

following previous 

two steps 

Create n-grams for 

the data and train the 

n-gram model 

Train the whole data 

and Generate music 

for the number of 

samples missed 

Get the output with 

increase in n and 

compare accuracy . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             

 

 

 

 

 

Building stochastic model for single note 

Building probabilistic model for the whole audio with hidden random 

variables notes ,time,periods 

Using Bellman ford Algorithm and inductively  

Find the best score of the data by finding the period from last note 

Set the boundaries for each note 



1.4 SOFTWARE USED 

The software used to code the comaparison of n-gram markov model is 

Jupyter Notebook and programming language is python. 

The software and the coding platform used for segmenatation of music is 

Matlab. 

The music in .mp3 format is converted to .wav which is the input to Matlab 

code through Zamar Application. 
  

 

1.5 SCOPE 
      

  By implementing python midi library package the music can be 

harmonized and can be used in real life. 

And the stochastic modelling of music method can be applied to speech or 

image and the data can be reconstructed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                              CHAPTER 2 
 

                                    BASICS  

 

2.1 STOCHASTIC MODEL 
 

A stochastic model represents a condition or situation where uncertainty exists. 

 In the real world, uncertainty is present every where , so a stochastic model could 

literally is applied to everything or anything. 

Stochastic models contains some inherent randomness. The same set of initial 

conditions and parameter values will lead to an ensemble of different outputs. 

Obviously, the real world is comprised by stochasticity  But, stochastic models are 

considerably more hard and complicated. 

Common Features of every stochastic model: 

1. Reflecting all aspects of the question  being studied, 
2. Assiging probabilities to events within the model, 
3. Those probabilities are used in making predictions or reveal otherinformation 

about the process. 
 
 

2.2 MUSIC 
 

Music is the systematical and chronological organisation of sounds; which makes 

particular sounds at particular times, which make sense in  melodic, rhythmic and 

harmonic manner 

Music is taken as an input which can be  analysed through the  frequency. Chords can be 

studied through the frequency is related.Here we are going to consider chords as inputs.  

 

 

 

 

 

 

 

https://www.statisticshowto.com/uncertainty-in-statistics/


PITCH: 

Pitch is defined as  the highness or lowness of a sound.Some instruments may have high 

pitch while others might have a lo pitch. 

For example, a flute has a high pitch, while a tuba has a low pitch. 

A note or chord is a written representation of a particular pitch. 

 

CHORDS: 

There are totally  12 different pitches, or notes, in music.  

Chords in  music, are represented  using the letters C, D, E, F, G, A and B. 

These are names of notes, or pitches, as well as name of chords, or part of chord names. 

It is not the same thing though, a C note is just a note, whereas a C chord includes a 

couple of notes with C as the root note 

 

2.3 PATTERN THEORY 

 
Real-world signals show two very distinct types of patterns. 

 We call these (1) value patterns and  

                            (2)geometrical patterns. 

                                                   

         The fundamental architecture of pattern theory follows as 

 

                                                

 

 



                                                    CHAPTER 3 

       ST0CHASTIC MODELLING USING MARKOV CHAINS 

3.1 BACKGROUND 
Markov chains constitute the probability of transferring from one state to the next 

possible state in a sequence of events. Markov chains are generally used in learning 

algorithms when usually it is the abstraction of the data of probabilities  which can be 

used to predict how the next forthcoming  steps would be from the preceding steps that 

just have got completed or passed. Composition of music is an exciting content that can 

have Markov chains applied easily as a piece of music  can be easily seen as a sequence 

of states, with each state as a chord or a note, for the  specific length it is been played. As 

the notes available are finite, the  options of lenth are finite either, even adding to the 

probability of many instruments, the categories of state will also be finite. Thus Markov 

chains which can be built with previous existing pieces of music of  multiple genre and 

can be the basis for learning algorithm to make probabilistic decisions and create new 

musical pieces in the same genre. 

3.2 FIRST ORDER MARKOV MODEL 
 

In a first-order Markov model , the probability depends only on the present state, and 

not including any preceding transition state history. So, if we are currently present  at 

State 1, and we want to know the probability of changing  to State 2, we don't take any 

transitions prior to State 1 

  "Memorylessness" of this type  is named as the Markov property: the probability of 

future actions is not dependent on the steps that led up to the present state. 

TRANSITION MATRIX: 

The transition matrix for a Markov chain is a stochastic matrix whose (i, j) entry gives 

the probability that an element moves from the jth state to the ith state during the next 

step of the process. 

Mnp  is the probability vector after n steps of a Markov chain. 

 Here p is defined as the initial probability vector and M to be  the matrix of transition. 

A limit vector for a Markov chain is always a fixed point (a vector x such that Mx = x, 

if M is the transition matrix). 

 

 

 

 



n-gram model: 

Generally an n-gram is defined as a continuous sequence conataning n items from a 

given sample of speech or text .An n-gram model is a type of probability language 

model for being able to predict the next item in  a sequence in the form of a (n − 1)–

order Markov model. 

INPUT: 

Same as natural languages we may think about music as a sequence of notes and consider 

chords as inputs. 

 

3.3   MUSIC GENERATION: 

3.3.1 BIGRAM 

Here we will  operate with chords. 

If we take sequence of chords  and learn its pattern we may notice the fact  that certain 

chords might  follow some particular chords more often, and other chords rarely follow 

that chords. We will construct  our model to find and understand this pattern. 

The steps need to be followed: 

STEP1:             A corpus of chords is taken as an input in csv file:    Example of sequence. 
                             [['B', 'C#m', 'B', 'A', 'E', 'B', 'A', 'E', 'B', 'A', 'E', 'B', 'A', 'B', 'A', 'E', 'B'] 

STEP 2:           Calculate probability distribution for chords to follow a particular chord.  
                   BIGRAM: 

 Bigram  is a sequence consisting of two adjacent elements from a string of things, which 

are typically syllables, or  letters, words. In this case it is chords.A bigram is an n-

gram for n=2. 

The bigram model evaluates  the probability of a chord given all the  chords existing 

previously by using only the conditional probability of one previous chord. 

This assumption that the probability of a chord depends only on the preceding chord is 

also known as Markov assumption. 

 

Now let us assume  chord F is taken as  first chord in a sequence of chords, 

 18 bigrams are found that start with chord F: 

https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Musical_note
https://en.wikipedia.org/wiki/Chord_(music)
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Token_(parser)
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram


STEP 3:   PREDICT THE NEXT STATE 
        After creating the bigrams  which start with the give state then  we’ll calculate the 

frequency of each unique bigram to appear in the sequence: 

{'F Em7': 4, 'F C': 4, 'F F': 3, 'F A7sus4': 4, 'F Fsus4': 2, 'F G7': 1} 

Then normalisation of the frequencies is done to get the proabablities. 

{'F Em7': 0.222, 

'F C': 0.222, 

'F F': 0.167, 

'F A7sus4': 0.222, 

'F Fsus4': 0.111, 

'F G7': 0.056} 

 

Each node of this graph, except initial node F in the center, represents possible states 

that our sequence can achieve, in our case they are chords that may follow F. Some of the 

chords have higher probabilities than other, some chords can’t follow F chord at all, for 

example, Am, because there was no bigram than combine this chord with F.  

Now, Markov Chain is a stochastic process, or random process is you prefer. In order to 

move to the next state, we will be choosing chord randomly but according to the 

probability distribution, in our case, that means that we are more likely to choice chord C 

than G7. 



Here we are predicting next chord in two different strategies 

1.Random manner 

      The next chord is predicted  randomly from the bigrams. 

 2.Probability wise 

     The next chord is predicted according to probability i,e preference is according to 

probability. 

  After calculating probabilities of each bigram containing the initial chord they are 

rounded off and multipled by 100.Now they are any natural numbers between 1 and 

100. 

Now using python listoflists we are generating lists mapping each bigram. 

These list are numbers ranging according to proabblities. 

Then a random number is picked from 1 to 100. 

The list which conataing the random number is selected and the note mapped to it is the 

predicted as next state. 

The bigram [‘F’,’C’] is selected in a random way 

The state predicted is  ‘C’. 

 

 STEP 4: GENERATING SEQUENCE 

Create list.and by calling the predict next state sunction append all the next states into 

the list.There by new sequence of notes is formed. 

The sequence is generate  is 

 

 ['Dm7', 'Bb', 'Dm', 'Gm6', 'C7', 'F', 'Em7', 'A7', 'Dm', 'Dm7'] 

 

 

 

3.3.2 TRIGRAM 

Similarly to bigram,trigrams  are created. 

PROCEDURE: 

STEP1:             A corpus of chords is taken as an input in csv file:    Example of sequence. 

                             [['B', 'C#m', 'B', 'A', 'E', 'B', 'A', 'E', 'B', 'A', 'E', 'B', 'A', 'B', 'A', 'E', 'B'] 



STEP 2:           Calculate probability distribution for chords to follow a particular chord.  
                   TRGRAM: 

 Trigram  is a sequence consisting of three adjacent elements from a string of things, 

which are typically syllables, or  letters, words. In this case it is chords.A trigram is an n-

gram for n=3 

Trigrams are created like 

['C#m B A', 'B A B', 'A B C#m', 'B C#m B', 'C#m B A'] 

 

STEP 3: PREDICITING THE NEXT STATE 

Create list.and by calling the predict next state sunction append all the next states into 

the list.There by new sequence of notes is formed. 

 

A second order Markov assumption  on the state  at time k would depend on state at 

time  k-1 and time k. 

 

In general representation the second order markov model is represented as above formula 

where n=2. 

Now let us assume  chord B  and chord E are taken as  first  and second chord in a 

sequence of chords, 

 Trigrams with B followed by E are found.Trigram is picked according to most 

probability rule and the following note is selected as next state generated. 

 

STEP 4: GENERATING SEQUENCE 

The first state predicted is B. 

Create list.and by calling the predict next state sunction append all the next states into 

the list.There by new sequence of notes is formed. 

The sequence generated is 

['B', 'A', 'B', 'C#m', 'B', 'A', 'C#m', 'B', 'A', 'E', 'B'] 

                                              

 

 

https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Token_(parser)
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram


                                                 CHAPTER 4 

                RECONSTRUCT MUSIC FROM  MISSING  PARTS 

4.1 BACKGROUND 
 

We want to construct music in a song where some part is missing. 

We will select a song and take the sequence of notes in text file. 

And a part of song is missing.So we will use markov models to recreate it. 

Here we will compare the original song with construted song and check the accuaracy. 

In this way both first order markov model and second order markov model is used to 

construct back the song.And both models are compared interms of accuracy. 

4.2 PROCEDURE 
 

STEP 1:  

Take sequence of notes of song.And remove some part of song. 

Train the remaning notes of chords as input and generate music using the first order markov 

model as mentioned in above process. 

STEP 2:  

Similarly  take the data with missing chords as input to second order markov model and 

generate music. 

STEP 3: 

Compare the output of both models with the missing part and check the accuracy of the 

chords matching in the generated sequences. 

4.3 RESULTS OF INPUT 1 

  
The input data is taken to be data. 

And the data missed is 

list1=['C#m','B','A','B','C#m','B','A','C#m','B','A','B','C#m','B','A','B','C#m','B','A'] 

Using the first order markov model the music generated is  

List2= ['B', 'C#m','B','A','E','B', 'A','E','B', 'A', 'E', 'B', 'A', 'B', 'A', 'E', 'B'] 

The accuracy is calculated by measuring the number of elements common in the list which 

are:  the element numbers   5, 6, 8, 9, 16. 

http://localhost:8888/edit/Untitled%20Folder/3.csv


So totally 5 chords are matched. 

Similarly using the second  order markov model the music generated is  

List3= list2=['C#m','B','A','E', 'B','A','B','C#m', 'B','A', 'C#m', 'B', 'A','B', 'C#m', 'B','A', 'B'] 

The accuracy is calculated by measuring the number of elements common in the list which 

are:  the element numbers   0 1 2 7 8 9. 

So totally 6 chords are matched. 

4.3.1 OBSERVATION OF OUTPUT 1 
So by calculating the acccuarcy of both first oder and second order markov model. 

It is understood that second order model has good accuaracy compared to first order model. 

By increasing n in n gram model and apply markov assumption accordingly the results will be 

better I,e with more accuracy. 

4.4 RESULTS OF INPUT 2 

 
The input data is taken to be data. 

And the data missed is ['C','C','A','F','F','E','D','B♭','B♭','A','F','G','F'] 

Using the first order markov model the music generated is ['C', 'D', 'C', 'C', 'C', 'D', 'C', 'D', 'B♭', 

'A', 'F', 'G','F'] 

The accuracy is calculated by measuring the number of elements common in the list which 

are:  the element numbers   0 8 9 10 11 12 

So totally 6 chords are matched. 

Similarly using the second  order markov model the music generated is  

['C', 'C', 'D', 'C', 'F', 'E', 'D', 'B♭', 'B♭', 'A', 'F', 'G', 'F'] 

The accuracy is calculated by measuring the number of elements common in the list which 

are:  the element numbers   0 1 4 5 6 7 8 9 10 11 12 

So totally 11 chords are matched. 

4.4.1 OBSERVATION OF OUTPUT 2 

 
So by calculating the acccuarcy of both first oder and second order markov model. 

It is understood that second order model has good accuaracy compared to first order model. 

By increasing n in n gram model and apply markov assumption accordingly the results will be 

better I,e with more accuracy 

 

http://localhost:8889/edit/Untitled%20Folder/4.csv


4.5 ACCUARCY COMPARISION BETWEEN FIRST ORDER AND SECOND ORDER 
 

The accuracy between first order and second order model is compared by generating 

many output list through the 2 models and comparing them individually with the 

missed data list. 

12 outputs generated from both first order and second order are taken to be comapared 

and the result obtained is: 

 

 

 

FIGURE 4. 1 ACCUARCY COMPARISION BETWEEN FIRST ORDER AND SECOND ORDER 

MARKOV MODEL  

 

 

OBSERVATION  FROM  GRAPH 

After comparing data from the hidden list with the generated lists after training the data to 

both first order and second order it is observed that out of 13 generated notes in a sequence 

first order has 5,3,6,2,1,3,2,2,4,1,2,2 number of notes exactly matched with given list. 

Similarly out of 13 generated notes in a sequence second order has 5,6,13,9,11,5,6,6,4,5,5,5 

number of notes exactly matched with given list. 

We can say that second order results are matched more with given sequence compared to 

the first order markov model. 

Similarly if we increase n in n-gram markov model the accuracy is increased. 
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                                                         CHAPTER 5 

                              GAUSSIAN MODEL FOR MUSIC 

5.1 BACKGROUND 

 
 Music is nothing but the air pressure varying with respect to time.We need to 

construct the stochastic model for the signal s(t) which represents music 

A typical piece of  musical data is taken with a sampling frequency of 8000 Hz 

so that if  we consider 5 seconds of data ,we have a sequence 𝑠𝑘= s(k∆t),1≤k 

≤40,000 of real numbers and we want a stochastic model for this finite-

dimensional piece of data. 

We need to put in the model extra hidden random variables which represent 

the patterns.  

In this model, the main pattern i,e audio  consists in what is usually called the 

“musical score”. We need :  

1. The number of notes m, 

2. The times 𝑡𝑖  = 𝑘𝑖(∆t) where new notes begin, 1 < k1 < k2 < .... < km < N 

3. The frequency 𝑤𝑖   of the  note “i” in hertz (or its approximate integer 

period 𝑝𝑖  ≈1/(∆t·𝑤𝑖   ) ∈Z). 

 

For developing  this model, we will define a probability density p(𝑠,m, 𝑡, �⃗�) in 

all the variables.Siginificantly we can use this distributon to rescore from a 

given signal,through recovering the hidden variables m, 𝑡, �⃗� by maximizing the 

condtional proabability 

 

 
 

 

 

 



5.1.1 GAUSSIAN DISTRIBUTIONS 

 
 Let  �⃗� =( 𝑥1, … . . , 𝑥𝑛) denote a vector in  𝑅𝑛; we then define a Gaussian distribution on𝑅𝑛; by 

its density 

 
where �⃗⃗⃗�  ∈ 𝑅𝑛;, Q is a n × n symmetric positive definite matrix, and Z is a constant such 

that ∫ 𝑝(�⃗� )dx = 1. 

CENTRAL LIMIT THEORM: 

If �⃗� in Rn is any random variable with mean 0 and finite second moments, and if 

(𝑋(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ,……… 𝑋(𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) are independent samples of �⃗� , then the distribution of (
1

√𝑁
∑ 𝑋(𝐾)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑁

𝑘=1 ) 

tends, as N → +∞, to a Gaussian distribution with mean 0 and the same second moments 

as �⃗� 

 

The definition of central limit theorm projects idea that the correct “default” 

probability models for continuous random variables are Gaussian. 

The important properties used are: 

 

 

 

 

 

 

 

 

 



5.1.2 Fourier Analysis 

When doing analysis of any pattern theory, we need to use only the discrete Fourier 

transforms (Fourier transforms on finite abelian groups), since the  the transition from 

infinite to finite can cause much confusion. 

If f is a periodic function of x with period 1, then the Fourier coefficients 𝑓�̂� of f for n∈ Z 

and the inversion formula are: 

 

 
 

5.2 The Gaussian Models for Single Musical Notes 

we combine the ideas from n-dimensional Gaussian distributions and from 

discrete Fourier transforms. Let 𝑠 ⃗⃗⃗=( 𝑠1,..., 𝑠𝑁) be a periodic signal (𝑠𝑁+1 = 𝑠1). 

We first take the Fourier transform of �̂� of 𝑠 ⃗⃗⃗. 

 

 

 



5.2.1 CASE OF A MUSIC NOTE 
 

Returning back  to the question  of finding a stochastic model for music. 

We first construct a Gaussian model of a single note. Let ω be the fundamental 

frequency of the note being played and p = 1/ω be its period. 

If the signal is s(t) then s(t + p) ≅ s(t), which means that the signal is close to 

be periodic, although in real music, there are always small residual variations. 

By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

We then constrain the expected total power of the signal by bounding 

∫ 𝑠(𝑡)2𝑑𝑡. 

Take a discrete sample of the signal s and, for simplicity, we assume that s 

‘wraps around’ at some large integer N, i.e 𝑠𝑁+𝑘 =  𝑠𝑘, and that p is an integer 

dividing N. 

Let q = N/p, the number of cycles present in the whole sample. We’ll analyze 

the simplest possible Gaussian model for s which gives samples which are 

periodic plus some small residual noise. 

Its density is : 

 



 

 

 

 



This is not, however, an accurate model of real musical notes because the 

power in all harmonics (integer multiples of the fundamental frequency) is 

equally large. It is easy to change this and include extra parameters for the 

expected power of the various harmonics using the second expression in 

Equation (1). 

5.3 The Geometric Model for Notes via Poisson Processes 

The simplest model we can choose for the set of discontinuities is a Poisson process. These 

processes are precise mathematical description of what it means to throw down random 

points with a certain density. 

 

5.3.1 Poisson Processes 

A Poisson Process is a discrete model for a series of  events  where the information 

regarding average time between events is given, but the exact timing of events is 

random. The arrival of an event is independent of the event before (waiting time 

between events is memoryless).  

Poisson disibution with mean λ(b−a) is given as 

 

5.3.2 GEOMETRIC MODEL 
 

The simplest model is gotten by taking the random variable 𝑡 ⃗⃗⃗  to be Poisson and each 𝑝𝑙  to 

be independent of the other periods and uniformly sampled from the set of periods of all the 

notes the musical instrument is capable of producing (something like ‘atonal’ music). If per 

represents this set of periods, then this gives the form : p(𝑝 ⃗⃗⃗ ⃗, 𝑡 ⃗⃗⃗m) = A𝑒−𝐶𝑚 where  

I{~ 𝑝 ⃗⃗⃗ ⃗∈𝑝𝑒𝑟𝑚} 

Where  a = log(|per|)+log((1−λ)/λ) and Z = (1 − 𝜆).𝐵 

 

 

 

https://en.wikipedia.org/wiki/Memorylessness


5.4 MODEL FOR MUSIC 

5.4.1 CONSTRUCTION OF MODEL 

  
We construct the model for music in two stages 

We recall that for this model, we need :  

The sampled sound signal s, and hidden random variables : 

                                                                  The number of notes m,  

                                                                   The times   𝑡 where new notes begin, and  

                                                                      The periods  𝑝 ⃗⃗⃗ ⃗ of the notes. 

 

 

STAGE 2: 

Segmentation. 

 

 

 

 

 

 



5.5 FINDING BEST SCORE VIA DYNAMIC PROGRAMMING 

Since music is a one-dimensional signal, we can compute by dynamic 

programming the best possible score or the mode of the posterior probability 

distribution in the hidden variables �⃗⃗⃗�, p, 𝑡.⃗⃗⃗ 
   

The algorithm used for dynamic programming is Bellman Ford Algorithm. 

5.5.1 BELLMAN FORD ALGORITHM 
The dynamic programming algorithm of Bellman is a very efficient algorithm 

to compute the minimum of a function F of n variables (𝑥1,..., 𝑥𝑛), provided this 

function can be decomposed as the sum of functions fi(𝑥𝑖 ,𝑥𝑖+1). 

 

 

 

 

 

 

 

 



 

 

 

COMPLEXITY OF THE ALGORITHM: 

 

 



5.5.2 FINDING BEST SCORE 

 
The probability model for music is 

 

 

and that continues the induction. Only at the end, however, do we go back and decide where the 

note boundaries are. 

 

 

 

 

 

 

 

 

 

 

 

 



5.6 PROCEDURE 

5.6.1 GENERATING INPUT SOUND THROUGH MATLAB 
First we will take input data generated through  MATLAB. 

The notes of a piano  are: 

notes={'C' 'C#' 'D' 'Eb' 'E' 'F' 'F#' 'G' 'G#' 'A' 'Bb' 'B'} 

And these above  notes have their respective  frequencies which are: 

freq=[261.6  277.2  293.7  311.1  329.6  349.2... 
  370.0  392.0    415.3  440.0  466.2  493.9] 
 
Now lets consider the input to be sequence of following notes: 
 
  song={'A' 'G' 'G' 'A' 'B' 'C' 'F' 'G'}; 

 

And the song is heard through  inbuilt function sound. 

THE INPUTS TO OTHER HIDDEN RANDOM VARIABLES 

1.Number of notes m =8 

2.Times at where the new notes begin : 

  A new note begins at every 0.5 second 

the times ti = ki∆t where new notes begin, 1 < k1 < k2 < .... < km < N 

   And each note lasts for 4000 samples so a new note begins at every 4000 note 

  And as total no of samples are 8 then N=8*4000=32000 samples 

    K1 =4000,K2=8000…….. 

3. Frequency of ith note: 

                     song={'A' 'G' 'G' 'A' 'B' 'C' 'F' 'G'}; 
 

       𝑤1 = 440 Hz 
       𝑤2 =  392 Hz 
      𝑤3  =392 Hz 
      𝑤4 =440 Hz 
      𝑤5 =493.9 Hz 
      𝑤6 =261.6 Hz 
      𝑤7 =349.2 Hz 
      𝑤8 =392 Hz 
       

 

 

 



PERIODS: 

'C' ' 'D' 'Eb' 'E' 'F' 'F#' 'G' 'G#' 'A' 'Bb' 'B'  
 
 The approximate integer period 8000/frequency of note . 
 
C     261.6      period =30 
 C#   277.2    period =28 
 D     293.7     period =27 
 Eb   311.1     period =25 
 E     329.6      period =24 
 F      349.2      period =23 
 F#   370.0     period =21 
 G     392.        period =20  
 G#  415.3      period =19 
 A     440.0      period =18 
 Bb  466.2       period =17 
 B    493.9        period =16 
 
 
But since input song has following notes: 
 
song={'A' 'G' 'G' 'A' 'B' 'C' 'F' 'G'}; 
  
The periods are 
       𝑝1 =18 
       𝑝2 =  20 
      𝑝3  =20 
      𝑝4 =18 
      𝑝5 =16 
      𝑝6 =30 
      𝑝7 =23 
      𝑝8 =20 
       
 

 

 

 

 

 

 

 



5.6.2 BUILDING GAUSSIAN MODEL FOR SINGLE NOTE 
 

We will construct Gaussian model for every note 

1.NOTE B :  

                      Its frequency is 493.9 Hz. 

                      Period is taken to be 16. 

          Such that the property s(t + p) ≅ s(t) is valid. But actual p= 16.19Hz    

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

            The value of obtained is 4.13*10(-21) 

            We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is 161.080 

            Taking the discrete sample of signal s and it wraps around some large integer N 

            N is taken as  49  Such that  𝑠𝑁+𝑘 =  𝑠𝑘, 

         q=3; three cycles of data. 

          Lets take two values  to be a=5,b=30. 

    Construct a matrix Q which is in positive definite quadratic form. 
 
 

            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

With a=5,b=30 the proability is obtained 0.9978. 

 

FIGURE 5.1 : Probabilty variation for different values of a and b for note B 
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EXPECTED POWER SPECTRUM: 

Since we have taken values to be a=7;b=6 

The limits are 1/b =0.033                              1/b+4a=.002 

         

                       FIGURE 5.2  EXPECTED POWER SPECTRUM OF NOTE B AT a=7,b=6 

A=5,b=1 

 

                     FIGURE 5.3  EXPECTED POWER SPECTRUM OF NOTE B AT a=5,b=1 

 

 

 

 

 

 



2. NOTE Bb :  
                      Its frequency is 466.2 Hz. 

                      Period is taken to be 17. 

Such that the property s(t + p) ≅ s(t) is valid.  

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

             The value of obtained is 3.0774e-21 

             We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is 171.4047 

           Taking the discrete sample of signal s and it wraps around some large integer N 

            N=52 

           
 

            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

 

FIGURE 5.4 : Probabilty variation for different values of a and b for note B 
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A=5,b=1 

 

            FIGURE 5.5:  EXPECTED POWER SPECTRUM OF NOTE Bb AT a=5,b=1 

 

A=5,b=10 

 

      FIGURE 5.6: EXPECTED POWER SPECTRUM OF NOTE Bb AT a=5,b=10 

 

 

 



3. NOTE A :  

                      Its frequency is 440 Hz. 

                      Period is taken to be 18. 

          Such that the property s(t + p) ≅ s(t) is valid.  

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

            The value of obtained is 2.4923e-21 

            We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is  181.2043 

            Taking the discrete sample of signal s and it wraps around some large integer N 

            N=55,. Such that  𝑠𝑁+𝑘 =  𝑠𝑘, q=3; three cycles of data.             

  

            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

a=5,b=30 

 

                         FIGURE 5.7  EXPECTED POWER SPECTRUM OF NOTE A AT a=5,b=30 

 

 

 

 

 



4. NOTE G :  
 

                      Its frequency is 392 Hz. 

                      Period is taken to be 20. 

          Such that the property s(t + p) ≅ s(t) is valid.  

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

            The value of obtained is 2.4923e-21 

            We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is  181.2043 

            Taking the discrete sample of signal s and it wraps around some large integer N 

            N=62 Such that  𝑠𝑁+𝑘 =  𝑠𝑘,         q=3; three cycles of data. 

            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

 

  For a =5,b=30; 

 

                   FIGURE 5.8  EXPECTED POWER SPECTRUM OF NOTE G AT a=5,b=30 

 

 

            

 



5. NOTE G# :  

                      Its frequency is 415.3 Hz. 

                      Period is taken to be 19. 

          Such that the property s(t + p) ≅ s(t) is valid. But actual p= 19.26Hz   

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

            The value of obtained is 3.9665e-21 

            We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is 192.3735 

            Taking the discrete sample of signal s and it wraps around some large integer N 

            N=58 Such that  𝑠𝑁+𝑘  =  𝑠𝑘,         q=3 

          
            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

 

For a=5,b=30 

 

         FIGURE 5.9  EXPECTED POWER SPECTRUM OF NOTE G# AT a=5,b=30 

 

 



 6.NOTE F:  

                      Its frequency is  349.2 Hz. 

                      Period is taken to be 23. 

          Such that the property s(t + p) ≅ s(t) is valid. But actual p= 22.909 Hz    

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

            The value of obtained is  3.0172e-21 

            We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is  228.9075 

            Taking the discrete sample of signal s and it wraps around some large integer N 

            N=69  Such that  𝑠𝑁+𝑘  =  𝑠𝑘, q=3 

            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

 

For a=5,b=30

 

 

                            FIGURE 5.10  EXPECTED POWER SPECTRUM OF NOTE F AT a=5,b=30 



7.NOTE F#:  

                      Its frequency is  370 Hz. 

                      Period is taken to be 21. 

          Such that the property s(t + p) ≅ s(t) is valid. But actual p= 21.621 Hz    

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

            The value of obtained is  8.0879e-21 

            We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is  215.7921 

            Taking the discrete sample of signal s and it wraps around some large integer N 

            N=63,. Such that  𝑠𝑁+𝑘 =  𝑠𝑘, 

            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

With a=5,b=30 

 

           FIGURE 5.11  EXPECTED POWER SPECTRUM OF NOTE F# AT a=5,b=30 



8. NOTE E:  

                      Its frequency is  329.6 Hz. 

                      Period is taken to be 24. 

          Such that the property s(t + p) ≅ s(t) is valid. But actual p= 24,271 Hz    

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

            The value of obtained is  1.2355e-21 

            We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is  242.2883 

            Taking the discrete sample of signal s and it wraps around some large integer N 

            N=73 ,Such that  𝑠𝑁+𝑘  =  𝑠𝑘 

  
            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

  For a=5,b=30 

 

                    FIGURE 5.12  EXPECTED POWER SPECTRUM OF NOTE E AT a=5,b=30 

 

 

 



9. NOTE Eb:  

                      Its frequency is  311.1 Hz. 

                      Period is taken to be 25. 

          Such that the property s(t + p) ≅ s(t) is valid. But actual p= 25.715 Hz    

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

            The value of obtained is  8.0879e-21 

            We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is  215.7921 

            Taking the discrete sample of signal s and it wraps around some large integer N 

            N=75  Such that  𝑠𝑁+𝑘  =  𝑠𝑘, 

            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

For  a=5,b=30  

 

                               FIGURE 5.13  EXPECTED POWER SPECTRUM OF NOTE Eb AT a=5,b=30 

 

 

 

 



10. NOTE C:  

                      Its frequency is  261.6Hz. 

                      Period is taken to be 30. 

          Such that the property s(t + p) ≅ s(t) is valid. But actual p= 30.58Hz    

             By assuming that the expected value of ∫(s(t +  p) − s(t))2dt is quite small 

            The value of obtained is  7.1568e-21 

            We then constrain the expected total power of the signal by bounding ∫ 𝑠(𝑡)2𝑑𝑡. 

            The value obatained is  305.1973 

            Taking the discrete sample of signal s and it wraps around some large integer N 

            N=90,. Such that  𝑠𝑁+𝑘 =  𝑠𝑘, 

            Then  later afer finding fft of the data the probability distribution is set  

 

Based on a,b the probability distribution is set for a single note. 

With a=5,b=30  

 

                 FIGURE 5.14  EXPECTED POWER SPECTRUM OF NOTE C  AT a=5,b=3 

 



5.6.3 BUILDING POISSON MODEL FOR TIME INTERVALS 

 

 
 

 

                                    Assume no of notes in the total model to be n 

                                   λ=n/total no of samples 

                                    substitute in the above formula to get  the poisson model 

 

5.6.4 DYNAMIC PROGRAMMING 
 

 

The goal is to find the note boundaries and the frequencies of the notes themselves by 

implementing the piecewise Gaussian model 

Best possible music score from a given audio signal. 

Since music is a one-dimensional signal, we can compute by dynamic programming the 

best possible score or the mode of the posterior probability distribution in the hidden 

variables . 

Posterior Probability: 

In Bayesian statistics a posterior probability, is the probability revised or updated of an 

event occurring after taking into consideration new information. Using Bayes' theorem 

the posterior probability is numbered  after  updating the prior probability Statistically 

the posterior probability is the probability of event 1 occurring given that event 2 has 

occurred. 

 

https://www.investopedia.com/terms/b/bayes-theorem.asp
https://www.investopedia.com/terms/p/prior_probability.asp


We might make guesses about the note boundaries and periods based on local evidence, 

but this is often misleading. 

Our probability model for music is 

 

 

 

Apply – logarithm to above formula and it results in the form which is applicable to 

bellman ford algorithm. 

And the e function can be approximated to 

 

Where  

 

 

 

For the next note to be predicted ,its  probability should be maximum which indirectly 

lead to max of above approximation. 

 

Inductively predict all the possible periods of current boundary(k) and by solvation in 

next boundary(k+1) .The best score in k boundary is known. 

 

 

 

 

 

 



5.7 SEGMENTATION 

5.7.1 INPUT 1 
 

Let the input data be 

 

 

 

 

song={'C#m' 'A' 'E' 'F' 'G#' 'A' 'Eb' 'B' 'C' 'F' 'Bb' 'B'} 

 

And the pitch of above audio signal plotted is: 

 

 

                             FIGURE 5.15  INPUT SIGNAL AND PITCH OF THE INPUT 1  

 

 



SEGMENTATION AND BEST SCORE OBTAINED: 

 

In the above sample it is noted that the total no of samples are: 48000 

BOUNDARIES: 

FIRST NOTE  

We will first estimate the end point of first note. 

Assume that the endpoint of first note to be n=1000 and obtain the periods  

Possible periods for first note = 24    25    26    27    28    29      

 

So increment the ‘n’ till the periods list remain same. 

 

Here for n=4000 

Possible periods for first note = 24    25    26    27    28    29 

The period list reamin same. 

 

 Here for n=5000 

Possible periods The period list changes so here we confirm that the first note ends at 4000. 

 

 

SECOND NOTE: 

Since we have obtained that the first note ends at 4000 sample point. 

Second note is assumed to be started at sample number 4001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for second note =14    15    16    17    18 

So increment the ‘n’ till the periods list remain same. 

 

Here for n=8000 

Possible periods for first note = 14    15    16    17    18 

The period list reamin same. 

On incrementing n the list changes. 

The period list changes so here we confirm that the second note ends at 8000. 

The best possible period for the previous boundary is 29 

 

THIRD NOTE: 

Since we have obtained that the second note ends at 8000 sample point. 

Second note is assumed to be started at sample number 8001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

 

 



Possible periods for third note = 
 

          19    20    21    22    23    24 

 

So increment the ‘n’ till the periods list remain same. 

The period list changes so here we confirm that the third note ends at 12000. 

The best possible period for the previous boundary is 18.  

 

FOURTH NOTE: 

Since we have obtained that the third note ends at 12000 sample point. 

Fourth note is assumed to be started at sample number 12001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for fourth note = 
 

          18    19    20    21    22    23 

 

So increment the ‘n’ till the periods list remain same. 

 

The period list changes so here we confirm that the fourth note ends at 16000. 

The best possible period of previous boundary for all the possible periods of current boundary  is 23.  

 

FIFTH NOTE: 

Since we have obtained that the fourth note ends at 16000 sample point. 

Fourth note is assumed to be started at sample number 16001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for fifth note = 
 

          15    16    17    18    19 

 

So increment the ‘n’ till the periods list remain same. 

 
The period list changes so here we confirm that the fifth note ends at 20000. 

The best possible period of previous boundary for all the possible periods of current boundary  is 23.  
 

 

 



SIXTH NOTE: 

Since we have obtained that the fifth note ends at 20000 sample point. 

Sixth note is assumed to be started at sample number 20001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for sixth note = 14 15 16 17 18 

 

The period list changes so here we confirm that the sixth note ends at 24000. 

The best possible period of previous boundary for all the possible periods of current boundary  is 19.  

 

SEVENTH NOTE: 

Since we have obtained that the sixth note ends at 24000 sample point. 

Seventh note is assumed to be started at sample number 24001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for seventh note =  21 22 23 24 25 26 

The period list changes so here we confirm that the seventh note ends at 28000. 

The best possible period of previous boundary for all the possible periods of current boundary  is 18.  

 

EIGTH NOTE: 

Since we have obtained that the seventh note ends at 28000 sample point. 

Eighth note is assumed to be started at sample number 28001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for eighth note = 13 14 15 16 

The period list changes so here we confirm that the eighth note ends at 32000. 

The best possible period of previous boundary for all the possible periods of current boundary  is 18.  

 

NINTH NOTE: 

Since we have obtained that the eighth note ends at 32000 sample point. 

Ninth note is assumed to be started at sample number 32001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for ninth note = 26 27 28 29 30 31 

The period list changes so here we confirm that the ninth note ends at 36000. 

The best possible period of previous boundary for all the possible periods of current boundary  is 16.  
 

 

 



 

TENTH NOTE: 

Since we have obtained that the ninth note ends at 36000 sample point. 

Tenth note is assumed to be started at sample number 36001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for tenth note = 18 19 20 21 22 23 
 

The period list changes so here we confirm that the tenth note ends at 40000. 

The best possible period of previous boundary for all the possible periods of current boundary  is 31.  

 

 

ELEVENTH NOTE: 

Since we have obtained that the tenth note ends at 40000 sample point. 

Eleventh note is assumed to be started at sample number 40001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for eleventh note = 13 14 15 16 17 

The period list changes so here we confirm that the eleventh note ends at 44000. 

The best possible period of previous boundary for all the possible periods of current boundary  is 23.  
 

TWELFTH NOTE: 

Since we have obtained that the eleventh note ends at 44000 sample point. 

Twelfth note is assumed to be started at sample number 44001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for twelfth note = 13 14 15 16 

The period list changes so here we confirm that the twelfth note ends at 48000. 

The best possible period of previous boundary for all the possible periods of current boundary  is 17.  
 

 

 

 

 

 

 

 

 



 

 

FINAL BOUNDARIES: 

NOTE 1:   [1,4000] 

NOTE 2:   [4001,8000] 

NOTE 3:   [8001,12000] 

NOTE 4:   [12001,16000] 

NOTE 5:   [16001,20000] 

NOTE 6:   [20001,24000] 

NOTE 7:   [24001,28000] 

NOTE 8:   [28001,32000] 

NOTE 9:   [32001,36000] 

NOTE 10:   [36001,40000] 

NOTE 11:   [40001,44000] 

NOTE 12:   [44001,48000] 

 

NOTE FREQUENCIES 

Note 12: period =16 ,frequency =500 Hz 

Note 11: period =17 ,frequency =470.5 Hz 

Note 10: period =23 ,frequency =347.82 Hz  

Note 9: period =31 ,frequency =258.06 Hz 

Note 8: period =16 ,frequency =500 Hz 

Note 7: period =18 ,frequency =444.44 Hz 

Note 6: period =18 ,frequency =444.44 Hz 

Note 5: period =19 ,frequency =421.05 Hz 

Note 4: period =23 ,frequency =347.82 Hz 

Note 3: period =23 ,frequency =347.82 Hz 

Note 2: period =18 ,frequency =444.44 Hz 

Note 1: period =27 ,frequency =296.3 Hz 

 

 

 



THE SEGMENTATION PLOT 

 

                           FIGURE 5.16  REPRESENATION OF BOUNDARIES OF NOTES FOR INPUT 1 

 

 

THE PITCH GRAPH OF SEGEMENTATION RESULT 

 

                       FIGURE 5.17  PITCH OF THE SIGNAL OBTAINED VIA SEGMENTATION OF INPUT 1 

 



 

 

COMPARING PITCHES: 

 

 

 

FIGURE 5.18  COMPARING FREQUENCIES OF ORGINAL INPUT 1 AND THE SEGMENTED 

OUTPUT 1 

 

 

 

OBSERVATION: 

 

All pitches are matched. 

This represent  perfect  score. 

All the notes present  in the input signal is present in output signal too. 
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5.7.2 INPUT  2 
 

INPUT 2: 

The input and pitch graph is taken to be  

 

                             FIGURE 5.19  INPUT SIGNAL AND PITCH OF THE INPUT 2  

 

The information of audio is 

 

 

 



SEGMENTATION AND BEST SCORE OBTAINED: 

In the above sample it is noted that the total no of samples are: 40,000 

BOUNDARIES: 

FIRST NOTE  

We will first estimate the end point of first note. 

Assume that the endpoint of first note to be n=30 and obtain the periods  

Possible periods for first note =        7     8    15 

So increment the ‘n’ till the periods list remain same. 

The period list changes so here we confirm that the first note ends at 1500. 

 

 

SECOND NOTE: 

Since we have obtained that the first note ends at 1500 sample point. 

Second note is assumed to be started at sample number 1501. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for second note =13   14    15         

So increment the ‘n’ till the periods list remain same. 

Here for n=3000 

The period list changes so here we confirm that the second note ends at 3000. 

 

THIRD NOTE: 

Since we have obtained that the second note ends at 3000 sample point. 

Third note is assumed to be started at sample number 3001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

  

Possible periods for third note =  8     9    10    19    20 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the third note ends at 4800. 

 

FOURTH NOTE: 

Since we have obtained that the third note ends at 4800 sample point. 

Fourth note is assumed to be started at sample number 4801. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for fourth note =    7     8    15 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the fourth note ends at 6600 

 

 

 



 

 

 

FIFTH NOTE: 

Since we have obtained that the fourth note ends at 6600 sample point. 

Fifth note is assumed to be started at sample number 6601. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for fifth note =  8    15    30 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the fifth note ends at 6900 

 

 

SIXTH NOTE: 

Since we have obtained that the fifth note ends at 6900 sample point. 

Sixth note is assumed to be started at sample number 6901. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for sixth note =     8    15     

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the sixth note ends at 7200 

 

SEVENTH NOTE: 

Since we have obtained that the sixth note ends at 7200 sample point. 

Seventh note is assumed to be started at sample number 7201. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for seventh note =        8    15     

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the seventh note ends at 8700 

 

EIGHTH NOTE: 

Since we have obtained that the seventh note ends at 8700 sample point. 

Eighth note is assumed to be started at sample number 8701. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for eighth note =     9    10    19    20 

 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the eighth note ends at 10400 

 

 

 



 

 

NINTH NOTE: 

Since we have obtained that the eighth note ends at 10400 sample point. 

Ninth note is assumed to be started at sample number 10401. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

 

Possible periods for ninth note =     12 

 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the ninth note ends at 12500 

 

 

TENTH NOTE: 

Since we have obtained that the ninth note ends at 12500 sample point. 

Tenth note is assumed to be started at sample number 12501. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

  

Possible periods for tenth note =            27 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the tenth note ends at 14700 

 

 

 NOTE 11: 

Since we have obtained that the tenth note ends at 14700 sample point. 

Eleventh note is assumed to be started at sample number 14701. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

  

Possible periods for eleventh note =             16 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the eleventh note ends at 16100 

 

 

NOTE 12: 

Since we have obtained that the eleventh note ends at 16100 sample point. 

Twelfth note is assumed to be started at sample number 16101. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

  

Possible periods for twelfth note =             27 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the twelfth note ends at 19200 

 



 

NOTE 13: 

Since we have obtained that the twelfth note ends at 19200 sample point. 

Thirteenth note is assumed to be started at sample number 19201. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

  

Possible periods for thirteenth note =           16 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the thirteenth note ends at 20700 

 

NOTE 14: 

Since we have obtained that the thirteenth note ends at 20000 sample point. 

Fourteenth note is assumed to be started at sample number 20001. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

  

Possible periods for fourteenth note =32            

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the fourteenth note ends at 20600 

 

 

NOTE 15: 

Since we have obtained that the fourteenth note ends at 20600 sample point. 

Fifteenth note is assumed to be started at sample number 20601. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

  

Possible periods for fifteenth note =      23,  32 

 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the fifteenth note ends at 21500 

 

NOTE 16: 

Since we have obtained that the fifteenth note ends at 21500 sample point. 

Sixteenth note is assumed to be started at sample number 21501. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

  

Possible periods for sixteenth note =  11    34 

 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the sixteenth note ends at 22400 

 

 

 



 

NOTE 17: 

Since we have obtained that the sixteenth note ends at 22400 sample point. 

Seventeenth note is assumed to be started at sample number 21501. 

Similarly with incrementing n for every thirty points the possible periods list is obtained. 

  

Possible periods for seventeenth note =     6    12    24    36 

 

So increment the ‘n’ till the periods list remain same.  

The period list changes so here we confirm that the seventeenth note ends at 23200 

 

 

NOTE BOUNDARIES  AND POSSIBLE FREQUENCIES IN IT: 

 

18. 23200-24000:   6  12  24 

19.24000-25000: 6   7  15  30 

20.25000-25700:   6  12  24  36 

21: 25700-28200: 6  12 

22.28200 -29100   : 7  15 30 

23.29101-30650:  9 10 

24. 30650-31400:  6 11  34 

25. 31400-31700:6  23 

26. 31700-33400:6  13  40 

27.33400-35200: 6  11  34 

28. 35200-35800:  6 12 

29.35800-36700:  6  8 13 40 

30.36700-38300:8 9 

31.38300-38400: 10 11 23 34 

32.38400-39000:     10    11    21    32 

33. 39000-39700  : 10 

34.39700-39800: 10    20 

35:39800-40000:10 

 



 

Segmentation: 

 

                          FIGURE 5.20  BOUNDARIES AT WHICH SEGMENATATION  IS BEING DONE INPUT 2 

So this is segmentation of 40,000 samples 

 

These are the possible notes at particular note boundaries: 

Now we are segmenting with period in each segment taken to be 

pr=[15 15 20 15 30 15 15 20 12 27 16 27 16 32 23 34 36 24 30 36 12 30 10 34 23 40 34 

12 8 8 23 32 10 20 10] 

 The new signal is found and the pitch of the signal is 

 

 

 

                      FIGURE 5.21  PITCH OF THE SEGMENTED AUDIO 2 



 

Comparing pitches of signal taken and new signal created. 

 

 

             FIGURE 5.22 COMPARING PITCHES OF INPUT 2 AND SEGMENTED AUDIO 2 

On observation it is known that out  

295 matched out of 495. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5.7.3 INPUT 3 
 

The input is taken to be 

 

 

 

 

                                      FIGURE 5.23  INPUT SIGNAL AND PITCH OF THE INPUT 3 

 

 

The information of audio is taken to be: 

 

 Total number of samples 32000 

Sampling frequency 8000 Hz 

Total time is 3 seconds  

 

 

 

 

 



SEGMENTATION: 

SETTING BOUNDARIES: 

Boundaries are set and periods which are the hidden random  varaiables are known through 

considering the posterior probability. 

FIRST NOTE: 

Lets assume that the first boundary ends at  200. 

So the interval of first note is [1,200] samples. 

On following the bellman ford algorithm the periods should have min value of e function. 

So the possible periods are:     12    24 

SECOND NOTE: 

Second note is started at 201 sample. 

And by induction the periods which give minimum for e function is obtained. 

So the possible periods are:  12 

And the best possible periods for the previous boundary is 12,24 both. 

boundary ends at  950. 

THIRD NOTE: 

Third note is started at 951 sample. 

And by induction the periods which give minimum for e function is obtained. 

The code is only looped over the immediately preceding note boundary  and possible p’s in the 

last time segment. 

So the possible periods are:  12,13 

And the best possible periods for the previous boundary is 12. 

boundary ends at  1050. 

FOURTH NOTE: 

Fourth note is started at 1051 sample. 

And by induction the periods which give minimum for e function is obtained. 

The code is only looped over the immediately preceding note boundary  and possible p’s in the 

last time segment. 

So the possible periods are:  7,15,23 

And the best possible period for the previous boundary is 13. 

boundary ends at  1050. 

 



FIFTH NOTE: 

Fifth note is started at 4301 sample. 

So the possible periods are:     12  23  36 

And the best period for the previous boundary is 23 for all possible periods 

boundary ends at  4450. 

SIXTH BOUNDARY: 

Sixth boundary is started at 4451 sample. 

So the possible periods are:      13 23 

And the best period for the previous boundary is 36 for all possible periods 

boundary ends at  5900. 

SEVENTH BOUNDARY: 

Seventh boundary is started at 5901 sample. 

So the possible periods are:      15 16 23 

And the best period for the previous boundary is 13 for all possible periods 

boundary ends at  7500 

EIGTH BOUNDARY: 

Eighth boundary is started at 7501 sample. 

So the possible periods are:      8 9 17 18 

And the best period for the previous boundary is 16 for all possible periods 

boundary ends at  8600 

NINTH BOUNDARY: 

Ninth boundary is started at 8601 sample. 

So the possible periods are:      7 17 22 34 

And the best period for the previous boundary is 18 for all possible periods 

boundary ends at  9100 

TENTH BOUNDARY: 

Tenth boundary is started at 9101 sample. 

So the possible periods are:      7 8 11 21 

And the best period for the previous boundary is 34 for all possible periods//do once more/// 

boundary ends at  9400 

 



ELVENTH BOUNDARY: 

Eleventh boundary is started at 9401 sample. 

So the possible periods are:      7 8 20 21 

And the best period for the previous boundary is 21 for all possible periods 

boundary ends at  13000 

TWELETH BOUNDARY: 

Twelfth boundary is started at 13001 sample. 

So the possible periods are:      6 15 20 21 

And the best period for the previous boundary is 21 for all possible periods 

boundary ends at  15500 

THIRTEENTH BOUNDARY: 

Thirteenth boundary is started at 15501 sample. 

So the possible periods are:      6 7 20 21 

And the best period for the previous boundary is 20 for all possible periods 

boundary ends at  23000 

 FOURTEENTH BOUNDARY: 

Fourteenth boundary is started at 23001 sample. 

So the possible periods are:      6 7 8 13 19 20 21 

And the best period for the previous boundary is 20 for all possible periods 

boundary ends at  30000 

FIFTEENTH BOUNDARY: 

Fifteenth boundary is started at 30001 sample. 

So the possible periods are:      6 7 8 9 20 29 30 31 33 40 

And the best period for the previous boundary is 20 for all possible periods 

boundary ends at  31000 

SIXTEENTH BOUNDARY: 

Sixteenth boundary is started at 31001 sample. 

So the possible periods are:      5 7 34 37 38  

And the best period for the previous boundary is 40 for all possible periods 

boundary ends at  31500 

 



SEVENTEENTH BOUNDARY: 

Seventeenth boundary is started at 31501 sample. 

So the possible periods are:     5  

And the best period for the previous boundary is 38 for all possible periods 

boundary ends at  32000 

So the best score is calculated from backwards 

If we segment the total audio sample of 32000 samples it results in 17 notes 

FINAL BOUNDARIES: 

NOTE 1:   [1,200] 

NOTE 2:   [201,900] 

NOTE 3:   [951,1050] 

NOTE 4:   [1051,4300] 

NOTE 5:   [4301,4450] 

NOTE 6:   [4451,5900] 

NOTE 7:   [5901,7500] 

NOTE 8:   [7501,8600] 

NOTE 9:   [8601,9100] 

NOTE 10:   [9101,9400] 

NOTE 11:   [9401,13000] 

NOTE 12:   [13001,15500] 

 NOTE 13:   [15501,23000] 

NOTE 14:   [23001,30000] 

NOTE 15:   [30001,31000] 

NOTE 16:   [31001,31500] 

NOTE 17:   [315001,32000] 

 

 

 

 

 

 

 



FINAL NOTES: 

Note 17: period =5 ,frequency =1600 Hz 

Note 16: period =38 ,frequency =210.5 Hz 

Note 15: period =40 ,frequency =200 Hz 

Note 14: period =20 ,frequency =400 Hz 

Note 13: period =20 ,frequency =400 Hz 

Note 12: period =20 ,frequency =400 Hz 

Note 11: period =21 ,frequency =380.9 Hz 

Note 10: period =21 ,frequency =380.9 Hz 

Note 9: period =34 ,frequency =235.9 Hz 

Note 8: period =18 ,frequency =444.44 Hz 

Note 7: period =16 ,frequency =500 Hz 

Note 6: period =13 ,frequency =615.3 Hz 

Note 5: period =36 ,frequency =222.2 Hz 

Note 4: period =23 ,frequency =347.82 Hz 

Note 3: period =13 ,frequency =615.3 Hz 

Note 2: period =12 ,frequency =666.67 Hz 

Note 1: period =24 ,frequency =333.33 Hz (or) period =12 ,frequency =666.67 Hz 

 

The pitch of the newly created signal 

 

                                FIGURE 5.24  PITCH OF THE SEGMENTED OUTPUT 3 

 

 

 



COMPARING THE PITCH  OF INPUT AND OUTPUT 

 

 

 

                            FIGURE 5.25  COMPARING PITCHES OF INPUT 3 AND SEGMENTED OUTPUT 3 

 

 

NUMBER OF  MATCHES OF PITCHES 

 

 

              FIGURE 5.26   NUMBER OF MATCHES FOR PITCHES  

 

 

Here if  Y axis =1 then match. 

               Y axis = 0  then not a match. 
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