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CHAPTER 1

Latent Factor Modeling of Users Subjective Perception

for Stereoscopic 3D Video Recommendation

ABSTRACT

Numerous stereoscopic 3D movies are released every year to theaters and created large

revenues. Despite the improvement in stereo capturing and 3D video post-production

technology, stereoscopic artifacts which causes viewer discomfort continue to appear

even in high-budget films. Existing automatic 3D video quality measurement tools can

detect distortions in stereoscopic images or videos, but they fail to consider viewer’s

subjective perception of those artifacts, and how these distortions affect their choices.

In this paper, we introduce a novel recommendation system for stereoscopic 3D movies

based on a latent factor model that meticulously analyse viewer’s subjective ratings

and influence of 3D video distortions on their preferences. To the best of our knowl-

edge, this is a first-of-its-kind model that recommends 3D movies based on stereo-film-

quality ratings accounting correlation between the viewer’s visual discomfort and the

stereoscopic-artifact perception. The proposed model is trained and tested on bench-

mark IRCCYN and LFOVIAS3DPh2 S3D video quality assessment datasets. The ex-

periments revealed that resulting matrix-factorization based recommendation system is

able to generalize considerably better for viewer’s subjective ratings.

1.1 Introduction

The audience of 3D films and virtual reality content is growing, as most of the films or

YouTube videos have been released in the stereoscopic 3D format today. There are three

popular approaches to generate a stereoscopic 3D video (S3D): 1) Scene acquisition

using a stereo camera, 2) 2D-to-3D video conversion, which means creation of left and

right eye views from the original source video, 3) Rendering, which is the process of



synthesizing views by means of 3D reconstruction or employing global 3D models and

computer vision techniques [1, 2, 3, 4].

Despite advancement in technology, there are numerous sources of visual artifacts to

appear in the created stereoscopic picture/video [6, 7]. A comprehensive study of visual

artifacts in S3D content has been carried out at MSU Graphics & Media Lab, Moscow

State University, under VQMT3D project [6, 7] in cooperation with IITP RAS. The

research study identified potential artifacts in several popular Hollywood S3D movies.

The artifacts like disparity, scale, color, sharpness mismatches or temporal asynchrony,

cardboard, crosstalk effects are prominent in the S3D 3DTV content. Besides, different

types of artifacts at various stages of the content delivery affect S3D video. The com-

pression, blur and frame-freeze distortions influence 3D video in format-conversion and

representation stage, and in the coding and transmission stage [14]. Zeri and Livi [16]

interviewed 854 people. They recognized frequent symptoms like eye strain, blurred

vision and a burning sensation after watching 3D movies in theaters. Even high-budget

films, like Pirates of the Caribbean, Dolphin Tale, The Three Musketeers, The Avengers,

etc., contain scenes with geometric and color impairments, camera rotation difference,

shift vertical variation between the left and right views. An important research study

conducted by Miguel et al. [15] on 3D content using psychophysiological methods

establish complex effects of visual discomfort over 3DTV viewer’s emotional arousal,

which leads to problems like headache, nausea, fatigue and eye strain, etc. The com-

pression artifacts and their variation with a depth range on 3D displays noticeably af-

fects viewer’s perception [17, 18, 19].

The most reliable way to reduce such distortions is to correct and enhance the

stereoscopic-content quality during production. But correction process is extremely

labor intensive and heavily rely on degree of automation and on the workflow which is

not cost efficient. The algorithms for automatic detection of such artifacts and quality

assessment are emerging [20, 21]. However, measuring frequency and intensity of an

artifact does not account how painful it can be for the viewer. Therefore, it is critical to

consider subjective perception ratings for artifacts, that is, which egregious distortions

affect a viewer notably and which distortions are within tolerable limits of his/her visual

comfort.

In this paper, we proposed a novel recommendation system for S3D movies. The
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well-controlled subjective experiments and careful statistical analysis conducted by

most studies establish that discomfort is greater for some specific distortions than for

others when viewing stereo video [5, 7] . Mainly the influence is from the content it-

self. We observed most significant information for designing a recommendation system

for S3D movies is that describe the viewer’s perceptual discomfort with the particular

distortion types. Despite enough advances in image/video quality objective assessment

techniques, it is difficult to propagate the same achievement for S3D video because au-

tomatic estimation of relevant characteristics for problems that causes visual discomfort

is nontrivial. We wonder when even very simple yet reliable metrices measure several

problems affecting stereo quality on the fly. Thus, it is crucial to account subjective

ratings for healthy and reasonable 3D video watching as well as properly designing of

recommendation system.

Our recommendation system is build on latent factor model, rely on viewer-movie

ratings. Given a set of pristine and distorted S3D videos and their subjective ratings, our

latent factor model that is based on matrix factorization map viewer’s and 3D videos to

a set of latent features. The problem of predicting perceptual quality rates of S3D video

is formulated as a matrix completion problem for the user-movie rating matrix. Our

system rate the S3D videos in accordance with the user’s discomfort level. Our model

recommendation mechanism can easily integrates within Netflix matrix factorization

methods, which is most important class of collaborative filtering approaches. The pro-

posed recommendation system will be very useful in reducing the flood of low-quality

3D content online by ratings stereo 3D more-consistent with quality. The encourging

results obtained by statistical analysis of the proposed model conducted on benchmark

IRCCYN and LFOVIAS3DPh2 S3D data demonstrates its potential for generating ac-

curate predictions.

1.2 Related Work

A comprehensive survey of algorithms used by Netflix for its Recommendation Sys-

tem is found in a paper written by Leidy Esperanza MOLINA FERNÁNDEZ [24]. It

covered Collaborative Filtering, Content-based Filtering, model-based SVD, PCA, and

Probabilistic Matrix Factorization techniques. The paper explains a movie recommen-
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dation mechanism build within Netflix on the Matrix factorization (MF) approach that

learns the latent preferences of users and movies from the ratings and make a prediction

of the missing ratings using dot product of the latent factors [27, 24].

Lu et al. [25] applied MF model for computing vector representations of words.

Their work demonstrated how a convolutional neural network can be integrated into MF

model to produce interpretable recommendations. Lee et al. [26] demo model consid-

ered freshly uploaded YouTube videos. Here the collaborative filtering approach is not

much applicable since it relies on aggregate user behavior. Instead, they modeled rec-

ommendation problem as a video content-based similarity learning. They learned deep

video embeddings and predict ground-truth video relationships from trained model.

However, this approach is built up purely based on video content signals.

YouTube provides a vast collection of 2D videos. In constrast since 2009, YouTube

offers users interesting feature to upload two channel stereo videos for 3D viewing expe-

rience. YouTube flash players can support anaglyph videos in red/cyan, green/magenta

or blue/yellow layout and follow row/column interlaced display on the screen. The 3D

content on YouTube appear (or display) in accordance to the relevance order. Tsingalis

et al. [22] presented a study on YouTube recommendation graphs of 2D and 3D videos.

They studied the statistical relevance or recommendation properties of social network

sites like Facebook, Tweeter and Flickr, such as power-law distribution. Also they ana-

lyzed clustering methods to understand the existence of media content groups. David-

son et al. [9] discussed in details about the recommendation system in use at YouTube.

The study reveals YouTube recommends personalized sets of videos to users based on

their previous activity on the web. They discussed some unique challenges YouTube

faces for video endorsement and how to address them. Covington et al. [13] describe

a YouTube system at a high level and center their study about substantial performance

improvements brought by deep learning. They presented deep architecture built on deep

candidate generation and separate ranking model for recommending YouTube videos.

Estrada and Simeone [8] developed a recommender system for guiding physical ob-

ject substitution in virtual reality. This user-perception based recommender approach

allows them to watch the physical world whilst navigating the virtual environment

through a video feed. The user identifies the location of object placement in the sur-

roundings given the feed.
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(a) IRCCYN dataset.
µ = 3.09, m = 3, σ = 1.35.

(b) LFOVIAS3DPh2 dataset.
µ = 3.19, m = 3, σ = 1.37

Figure 1.1 Subjective score distribution of dataset. The µ, m and σ denote the statistical mea-
sures (mean (µ), median (m), standard deviation (σ)) of the subjective ratings.

Niu et al. [23] presented a video recommendation system based on the affective

analysis of the users. Their subjective model evaluates feature of emotion fluctuation

based on the Grey Relational Analysis (GRA). Certain video features are extracted and

mapped to the well-known Lovheim emotion-space specifying prominent human feel-

ings, patterns, attitudes and behaviour such as Anger, Distress, Surprise, Fear, Enjoy-

ment, Shame, Interest, and Contempt. GRA-based recommendation method is devel-

oped under the Fisher model to analyse extracted emotions as factors.

Zhang et al. [11] developed a recommendation system for Mobile AR application

incorporating user’s preferences, location and temporal information in an aggregated

random walk algorithm. Their system predicts user’s preferences modifying the graph

edge weight and computing the rank score. Similarly, Shi et al. [10] predicts individual

location recommendation, Chatzopoulos and Hui [12] anticipates object recommenda-

tion in Mobile AR environments.

1.3 MATHEMATICAL MODELING OF S3D VIDEOS

RECOMMENDATION SYSTEM

We proposed a novel recommendation system for stereoscopic 3D videos based on

a Matrix Factorization (MF) model [27]. In the proposed model, viewer’s and S3D

movies are mapped to a joint latent factor space. The row or column associated to a spe-

cific viewer or S3D movie is referred as the latent factors. In the mapped latent factor

space of dimensionality, say f , the viewer-movie ratings are analyzed as inner products.

Suppose each S3D movie i is associated with a latent vector qmi ∈ Rf , and each user
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u is associated with a latent vector puj ∈ Rf . In the proposed problem formulation, for

a given movie i, the elements of qmi estimate the extent to which the S3D movie holds

those factors, whether distorted with a particular artifact or free from that. For a given

user u, the elements of puj determine the extent of user acceptance has in S3D movies

that are high on the corresponding factors, again, whether distorted with a particular

artifact or not. The model approximates viewer u′s rating of S3D movie i by measuring

resulting dot product, r̂ui = qm
T

i puj . The dot product captures interconnection between

the viewer u and S3D movie i, that is, the viewer’s overall acceptance/tolerance in the

particular distortion affecting the movies. Once the mapping is computed for each S3D

movie and viewer to factor vectors qmi , p
u
j ∈ Rf , the proposed model easily determines

the rating a viewer will give to any S3D movie with distortions by using r̂ui.

We avoided imputation in proposed model [28]. The observed ratings are modeled

directly as suggested by [27, 29] and avoided overfitting through the regularization. On

the set of known matrix ratings, regularized squared error is minimized to learn the

factor vectors qmi , p
u
j as

min
p̂,q̂

∑
(u,i)∈S

(rui − qm
T

i puj )
2 + λ(||qmi ||2 + ||puj ||2) (1.1)

where, S is the training set of (u, i) pairs for which rui is known.

To make matrix factorization approach more effective in our proposed application-

specific requirements, we add biases in capturing the full ratings of the observed signals

r̂ui = µ+ bi + bu + qm
T

i puj (1.2)

The observed rating in (1.2) is broken down into its four components: global average

(or mean), 3D movie bias, viewer bias, and viewer-movie interaction. This allows each

component to represent only the part of an observed signal relevant to it. The model is

learned by minimizing the squared error function as

min
p̂,q̂,b̂

∑
(u,i)∈S

(rui − µ− bi − bu − qm
T

i puj )
2 + λ(||qmi ||2 + ||puj ||2 + b2i + b2u) (1.3)

The stochastic gradient descent algorithm [27, 30, 31] is used to optimize equation

(1.3). For better accuracy in prediction, the algorithm loops through all ratings in the
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training data and estimate the model parameters. The system estimates r̂ui for each

given training case. The prediction error is determined as

Eui = rui − µ− bi − bu − qm
T

i puj (1.4)

The parameters are updated as

bi ← bi + ς(Eui − λbi) (1.5)

bu ← bu + ς(Eui − λbu) (1.6)

qmi ← qmi + ρ(Euip
u
j − λqmi ) (1.7)

puj ← puj + ρ(Euiq
m
i − λpuj ) (1.8)

where, ρ and ς specify constant magnitudes that accounts proportion by which parame-

ters are modified in the opposite direction of the gradient.

The objective of our matrix factorization model is to the predicts the unknown fu-

ture S3D video ratings, from the learned model obtained by fitting the earlier observed

ratings. We determined the regularization constant λ by cross-validation [32].

1.4 Results and Discussion

The efficacy of the proposed algorithm is evaluated on the IRCCYN [33] and LFOVIAS3DPh2

[20] S3D video datasets. IRCCYN database has 10 reference and 100 test S3D video

sequences. The video sequences have a resolution of 1920×1080 and saved in .avi con-

tainer. The frame rate is 25 fps and a duration of either 16 sec or 13 sec. The database

is a combination of H.264 and JP2K, scaling and down sampling distorted S3D video

sequences. These artifacts are applied symmetrically on each view of an S3D video

and published the DMOS scores as subjective scores. Human assessment on perceptual

quality was performed in single stimulus continuous quality evaluation (SSCQE) with

hidden reference method. They have used 5 scales to rate the perceptual quality of an

S3D video and 28 subjects involved in the study. They have published each subject

quality score and an overall mean quality score of the dataset. LFOVIAS3DPh2 S3D

video dataset has 12 pristine sequences with good variety of structure, texture, depth
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(a) Pristine stereoscopic video frame. (b) Distorted stereoscopic video frame.

(c) Pristine stereoscopic video. (d) Distorted stereoscopic video.

Figure 1.2 Perceptual quality rates of subjective study and proposed objective study on pristine
and distorted ‘Hall’ S3D videos.

and temporal information. The video sequences have a resolution of 1920 × 1080 and

duration of 10 seconds with a frame speed of 25 fps. They created 288 test stimuli by

introducing the H.264 and H.265 compression, Blur and Frame freeze distortions. The

dataset is a combination of symmetric and asymmetric S3D videos. They have used

SSCQE method to perform the subjective study and 20 subjects involved in the study.

They published each subject perceptual quality score and final difference mean opinion

score of the dataset. Figure 1.1 shows the subjective score distribution of IRCCYN and

LFOVIAS3DPh2 S3D video datasets. From the plots, it is clear that both the datasets

are diverse in video perceptual quality range. Also, it is clear that the subjective ratings

are consistent and followed the trend observed in perceptual quality of S3D videos.

Figure 1.2a shows the 1st frame from the left view of the ‘Hall’ S3D video from

IRCCYN dataset. Figure 1.2b shows the 1st frame of H.264 (quantization parameter =

38) compressed S3D video of the corresponding reference view. Figures 1.2c and 1.2d

show the distribution of subjective assessment rates and proposed algorithm predicted

perceptual quality rates of a pristine and distorted S3D videos, respectively. From the

plot it is clear that the proposed algorithm accurately predicts the subjective quality

rates of pristine and distorted videos. Also, the deviation between average scores of

subjective rates and the proposed algorithm predictions is very less. The plot clearly
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demonstrates the proposed algorithm efficacy to model the perceptual subjective quality

ratings of a given video.

The performance of the proposed algorithm is measured using the Linear Cor-

relation Coefficient (LCC), Spearman Rank Order Correlation Coefficient (SROCC)

and Root Mean Square Error (RMSE). LCC indicates the linear dependence between

two quantities. The SROCC measures monotonic relationship between two input sets.

RMSE measures the magnitude error between estimated scores and subjective scores.

Higher LCC and SROCC values indicate good agreement between subjective and ob-

jective measures, and lower RMSE signifies more accurate prediction performance. For

both the databases, 80% of the human opinion scores are used for proposed algorithm

training and the remaining samples are used for testing. In other words, the training and

test sets are obtained by partitioning the set of available human opinion scores in the

80:20 proportion. We performed the random assignment for 100 trials of each epoch

for statistical consistency, and calculated the mean of the LCC, SROCC and RMSE

measures of each epoch to report the performance analysis. Table 1.1 shows the perfor-

mance evaluation of the proposed algorithm on the training and test sets of IRCCYN

and LFOVIAS3DPh2 S3D video datasets. It is clear that the proposed algorithm shows

robust performance across all datasets.

Figure 1.3b shows the LCC score variation of 100 iterations of an epoch. From

the plot it is clear that the scores are consistent across all iterations, and further, we

experienced the lower standard deviation (2 × 104) of 100 LCC scores. Figure 1.3a

shows the average training and test RMSE measure variation over 200 epochs. From

the plot, it is clear that both the RMSE errors reduced with the number of epochs.

These plots clearly demonstrate the proposed algorithm efficacy to estimate the human

assessment quality of a given video.

Table 1.1 Performance evaluation of proposed algorithm on LFOVIAS3DPh2 and IRCCYN
video dataset subjective scores.

Score Training Set Testing Set
LCC SROCC RMSE LCC SROCC RMSE

IRCCYN 0.8873 0.8858 0.6903 0.8753 0.8700 0.7527
LFOVIAS3DPh2 0.8966 0.8911 0.5359 0.7385 0.7288 0.7849
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(a) RMSE (b) LCC score

Figure 1.3 Performance plot: a)RMSE error variation across epochs. b)Variation of proposed
algorithm LCC score over 100 trails where Standard deviation of LCC score over 100 trails is
2× 10−4.

1.5 Conclusion

This paper presented a novel recommendation system for S3D movies. This is a first

attempt that accounts 3DTV viewer’s subjective ratings for visual artifacts and analyse

their degree of visual discomfort to predict “rating” or “preference” that the viewer’s

would give to the S3D movie. In this study, we considered four common distortion

types; Blur, Frame-freeze, H.264 and H.265 compression; that adversely affect S3D

video signal at different stages of the content generation and delivery chain. Experimen-

tal results on 3DTV viewer’s subjective study and parameter evaluation of latent factors

demonstrate that the proposed matrix factorization based model improve accuracy of

S3D video affective analysis and performance of recommendation. This model will

be very useful for media-service providers like Netflix, Amazon, TiVo to recommend

quality 3D videos and minimize flood of low-quality content based on the viewer’s

subjective perception, depending on their age groups and preferences.

We will further extend this recommendation system by considering the detail analy-

sis of commercial S3D movies. The model will be improved by offering per-frame anal-

ysis of artifacts causing potential visual discomfort while viewing stereo films like large

horizontal disparity, vertical parallax, crosstalk noticeability, cardboard effect, stuck-

to-background objects, stereo window violation, depth continuity, etc. Such artifacts

earn poor rating according to the existing metrics. Combining objective and subjective

scores will help reduce the error rate further while recommending new stereo movies.

Besides, we will perform affective analysis on the emotional reactions of 3DTV

viewers while watching stereo 3D movies or virtual reality S3D content. We will ac-

count both subjective scores and brain-activity measurements to understand the depen-
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dencies between the degree of viewer discomfort and the intensity of the distortions.

This will help to better classify viewers from different age groups by their suscepti-

bility to artifacts and movies content types. How this affect viewer’s accumulation

of discomfort caused by stereoscopic movies and influence recommendation ratings is

an interesting endeavour of future study ?. To continue to work on this idea, we will

account the percentage of viewers susceptible to various distortions. We will design

new experiments and work on evaluation models like probabilistic matrix factorization

(PMF) to improve the predictive accuracy. We will experiments on the linear combina-

tion of predictions of multiple PMF models with predictions of Restricted Boltzmann

Machine (RBM) models. This could significantly improve the accuracy of the blended

solution.
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CHAPTER 2

DEPTH VIDEO CODING

ABSTRACT

The growing interest and popularity in 3D television had created new needs of storing

the information related with 3D views. 3D video coding includes the use of multiple

color views and depth maps associated to each view. An adequate coding of depth

maps should be adapted which allows us to store 3D video efficiently. This paper pro-

poses efficient techniques to compress a depth video. To increase efficiency first depth

video is approximated by Tensor based method of Tucker decomposition with the Al-

ternating Least Squares (ALS) algorithm and then efficiently compressed using HEVC

encoder. Experimental results show the proposed scheme outperforms HEVC software

on benchmark “Ballet” and “Breakdancers” sequences and Kinect depth sequences.

Experimental results showed the effectiveness of our method and it can be applied to

interactive video coders

2.1 Introduction

Advances in computer graphics, computer vision, multimedia and related technologies

together with increased interest in three-dimensional (3D) video technologies have pro-

moted the development of new means to store and transmit video information. Depth

images/video that indicates the real world distances enables lots of applications. It has

shed light on the advancement of many applications in computer vision, such as robot

navigation, gesture recognition, 3d reconstruction, human-machine interaction, pose

tracking, activity detection, foreground/background segmentation, and so on. In 3D

video areas, besides multi-view video, the typical representations of 3D video include

video-plus-depth, multi-view video plus depth (MVD) and layered depth video (LDV),

where the depth information permits the easier rendering of new views [38][39]. Re-

cently, many depth cameras, such as Kinect [40] prevail and make the access of depth



image much easier. In Kinect, depth image is obtained based on disparity estimation

over the pattern emitted from one infrared camera and that actually observed by another

camera. Another type of depth camera, called Time-of-Fight camera, sense the depth

by computing the time of flight from light being emitted to that light being received.

3D video, however, involves a huge amount of data that needs to be encoded and

transmitted. Consequently, it is essential to have efficient 3D content representation

and compression techniques in order to enable prospective 3D services and technolo-

gies. Depth maps are used to render new images and not to be viewed directly by the

user. Thus, the aim when coding depth maps is to maximize the perceived visual quality

of the rendered virtual color views instead of the visual characteristics of decoded depth

maps themselves. Conventional image or video compression techniques have been de-

signed for high visual quality, and are not well adapted to depth video coding.

Figure 2.1 Compact data representation

Data approximation is widely used in the fields of computer graphics and scientific vi-

sualizations. One way to achieve data approximation is to decompose the data into a

more compact and compressed representation. The general idea of a compact data rep-

resentation is to express a dataset by a set of bases, which are used to reconstruct the

dataset to its approximation when needed(see fig. 1). Precisely speaking, a set of bases

usually consists of the actual bases and coefficients describing the relationship between

the original data and the actual bases. Typically, such bases sets constitute less data

than the original dataset, capture the most significant features, and, moreover, describe

the data in a format that is convenient/appropriate for adaptive data loading.

Bases for compact data representation can be classified into two different types:

pre-defined and learned bases. Predefined bases comprise a given function or filter,

which is applied to the dataset without any a priori knowledge of the correlations in

the dataset. In contrast, learned bases are generated from the dataset itself. Established
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examples of pre-defined bases are the Fourier transform (FT) and the Wavelet transform

(WT). Well-known examples of learned bases are the PCA or the SVD. Using pre-

defined bases is often computationally cheaper, while using learned bases requires more

computing time (to generate the bases), but potentially removes more redundancy from

a dataset. Generally, PCA-like methods are able to extract the main data direction of the

dataset and represent the data in a different coordinate system such that it makes it easier

for the user to find the major contributions within the dataset. To exploit this, PCAs

higher-order extension – tensor approximation (TA) – can be used for multidimensional

datasets. A very popular numerical method to compute the decomposition for a given

tensor Tucker decomposition and it should be observed that ALS is commonly-used for

the Tucker decomposition and seems to be efficient for compression problems.

2.2 HEVC: Brief Overview

HEVC signifies a number of advances in video coding development. In the family of

video coding standards, HEVC has the promise and potential to replace/supplement all

the existing standards (MPEG and H.26x series including H.264/Advanced Video Cod-

ing AVC). Its video coding layer design is based on conventional block-based motion

compensated hybrid video coding concepts. The HEVC standard is built to achieve

multiple goals, including coding efficiency, ease of transport system integration and

data loss resilience, as well as implementability using parallel processing architectures.

In HEVC, the main goal was to achieve a compression gain higher when compared

to the H.264/AVC at the same video quality. While the complexity of the HEVC en-

coder is several times that of H.264/AVC, the decoder complexity is within the range of

the latter, making HEVC decoding in software very practical on current hardware[41].

HEVC retains the basic hybrid architecture of prior video coding standards such as

H.264/AVC[42]

Source video, consisting of a sequence of video frames, is encoded or compressed

by a video encoder to create a compressed bit stream, which will be stored or transmitted

Compared to AVC, HEVC provides the following new features [43] : quad-tree parti-

tioning for prediction and transform with more and larger block sizes parallel process-
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Figure 2.2 Typical HEVC video encoder (with decoder modeling elements shaded in light gray)

ing with tiles and wave-forms, ultra-low delay processing with dependent slices, inter-

picture prediction block merging, advanced motion vector prediction, high throughput

transform coefficient coding, transform skip mode for screen content coding, sample

adaptive offset in loop filtering[44]

The improved coding efficiency of HEVC, however, come with a price tag: increased

computational complexity. Compared with its predecessor, HEVC is complex for en-

coding and decoding. The HEVC standard is a general one suitable for the compression

of all kinds of video.

2.3 Proposed Scheme

Figure 2.3 Overview of Encoder

Considering the special characteristics of depth videos, we propose a novel com-

pression framework, aiming to enhance the coding efficiency while preserving the in-

herent depth features. Compression standards such as H.264/AVC and HEVC provide
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superior coding performance through the exploration of the spatial and temporal corre-

lations. For depth images/video, they can efficiently remove the redundancy in data.

Figure 2.4 Overview of Decoder

Fig. 3 & 4 shows the architecture of the proposed encoder and decoder. By using the

framework of the conventional HEVC, it is efficient to implement the proposed depth

encoder and decoder by utilizing Tensor ALS.

The encoder contains a pre-processing block that enables the spatial resolution and

dynamic range reduction of depth signal, if necessary, for an efficient depth map com-

pression. The motivation is that with an efficient Tensor algorithm, encoding the ap-

proximated depth data on can reduce the bit rate substantially while still achieving a

good synthesized view quality. For the decoding process the framework remains as

conventional HEVC decoder.

2.4 Quality Measurements

We take our experiments at the benchmark of HEVC test model (HM) using software

of HM2.0 . We have conducted a series of experiments to evaluate the performance of

the proposed depth compression techniques. We have tested with the Breakdancers and

Ballet test sequences with resolutions of 1024 × 768, of which both the color video and

depth map are provided from Microsoft Research [45].

The bitrate of the compressed depth videos and the peak signalto-noise ratio (PSNR)

of the rendered virtual views are the two main performance measures for comparison.
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Table 2.1 PSNR vs Bitrate analysis of Camera4 Ballet and Breakdancers dataset

BALLET BREAKDANCERS
QP BITRATE (kbps) PSNR (dB) BITRATE (kbps) PSNR (dB)

RANK 1

2 88.484 71.5652 78.7052 71.5823
6 45.868 63.7623 40.6212 64.0371
10 23.9336 60.5351 22.6816 60.962
14 14.0212 58.3281 12.59 58.758
20 7.5296 55.5065 6.5572 56.0513
26 4.332 52.8418 3.6 53.3778
38 2.0824 45.727 1.566 46.1376

RANK 5

2 989.8124 61.8702 772.6688 63.1238
6 438.0408 58.4929 363.9332 59.7206
10 218.046 56.504 186.9116 57.6155
14 116.0116 54.8954 98.7312 55.8834
20 50.9192 52.7956 40.8132 53.7284
26 23.5004 50.1449 17.922 51.2406
38 6.208 42.9849 4.9632 44.0549

RANK 10

2 1076.96 61.1878 1007.117 61.6846
6 524.2048 58.1217 498.8484 58.5806
10 282.5764 56.1354 268.8484 56.531
14 162.8956 54.5264 151.2096 54.8959
20 79.9164 52.3321 69.6912 52.81
26 39.17 49.4471 32.9508 50.1857
38 10.7896 41.9825 8.7676 42.6037

RANK 15

2 1198.818 60.6656 1119.452 61.0293
6 591.5128 57.6406 561.506 58.0322
10 328.4748 55.7001 311.1148 56.0421
14 197.5608 54.1194 181.318 54.4764
20 100.874 51.8871 88.4972 52.3299
26 50.7916 48.8881 43.0976 49.5284
38 13.9664 41.2267 11.5904 41.9059

RANK 20

2 1317.327 60.2517 1217.69 60.5687
6 651.2208 57.2305 616.1936 57.6338
10 367.1012 55.3158 347.8264 55.683
14 222.6292 53.753 208.5464 54.1591
20 114.3328 51.4555 105.37 51.9982
26 57.136 48.3824 52.4428 49.099
38 15.0484 40.7415 14.1104 41.3569

The empirical results, against different values of quantization parameter (QP) for dif-

ferent Tensor Rank, regarding the bitrate of the compressed depth video and the PSNR

of the rendered virtual view are listed in Table 2.1.

Fig 2.5 and 2.6 shows the rate-distortion(RD) curves for ranks 1,5,10,15,20 in terms

of the depth bitrate(dB) and the depth quality for Ballet and Breakdancers respectively.
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Figure 2.5 PSNR vs Bitrate plot for Ballet

Figs. 2.7 (a) and (b) show sample frames of the views generated based upon the

reconstructed depths shown in Fig. 2.7 (a) (i.e. without the proposed encoder) and Fig.

2.7 (b) (i.e. with the proposed encoder), respectively.
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Figure 2.6 PSNR vs Bitrate plot for Breakdancers

(a) (b)

Figure 2.7 Visual quality comparison over synthesized view. (a) uncompressed depth image
(b) depth images decoded by proposed HEVC (HM);

2.5 Conclusion

We have presented novel techniques to compress the depth video by using HEVC

Framework and utilizing Tensor ALS to approximate the input to HEVC. The exper-

imental results have shown the performance of the proposed scheme for different rank

and different quantisation parameter (QP). It has been observed that as rank increases

the bitrate of the compressed depth videos increases and the peak signal to-noise ratio

(PSNR) of the rendered virtual views decreases. Also as QP increases both the bitrate of

the compressed depth videos and the peak signal to-noise ratio (PSNR) of the rendered

virtual views decreases. As a result, incurring lower coding bit rate, we can achieve the

same quality of the synthesized view.
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CHAPTER 3

VIDEO PLUS DEPTH VIDEO CODING

ABSTRACT

We propose in this paper a new method of Multi view videos coding based on the 3D-

HEVC framework to simultaneously compress a color video and corresponding depth

map. A popular format for 3D uses a conventional color video and an associated per

sample depth map. 3D-HEVC has received a remarkable response due to its high com-

pression efficiency which is based on High Efficiency Video Coding (HEVC). However,

the complexity of its encoding process is large. We propose an efficient method in which

First depth video and color video is approximated by Tensor based method of Tucker

decomposition with the Alternating Least Squares (ALS) algorithm and then efficiently

compressed simultaneously using 3D-HEVC encoder. The simulation results on Bal-

let and Breakdancers datasets show that the proposed method achieves better saving in

depth bit-rate and depth PSNR compared with conventional 3D-HEVC based coding of

MVD representations.

3.1 Introduction

Several high-resolution video applications have arisen in the last decade demanding

high efficiency and quality of encoding. Besides, these videos are stored in several

media and places and streamed over several heterogeneous communication systems

distributed at the internet. Therefore, video coding experts spent a high effort in the

standardization of the modern Two-Dimensional (2D) video coding standards such as

High Efficiency Video Coding (HEVC)[46], VP9 [47], Audio Video Coding Standard 2

(AVS2) [48], to obtain a high encoded video quality with a reduced stream size. How-

ever, currently, video coding utilization goes beyond capturing and encoding simple 2D

scenes. Now, video applications allow sharing screens or enjoying a three-dimensional

(3D) experience that goes beyond 2D videos by providing a depth perception of the



scene. The 2D video coding standards do not encode these new video properties prop-

erly because they focus on the texture aspects of the scene; consequently, reducing

the efficiency on capturing depth aspects of each video’s scene. To fulfill this require-

ment, several HEVC extensions were designed by the video coding experts, including

HEVC Screen Content (HEVC-SCC) [49], which enables achieving a higher perfor-

mance when sharing computer screens or similar videos, and the 3D High Efficiency

Video Coding (3D-HEVC) [50, 51], which better encode 3D video redundancies.

3.2 3D-HEVC: Brief Overview

In 2010 , MPEG and VCEG established a Joint Collaborative Team on Video Coding

(J CT-VC) to develop the HEVC standard and the first standard of HEVC was finalized

on January 25, 20l3. 3D-HEVC is a codec for 3D video which represents an extension

of HEVC. It was put forward by JCT-3V in 2012 and hasn’t been finalized yet. After

12 meeting discussion since 2012, there are more than 10 drafts and 15 test models for

3D-HEVC. The 3D-HEVC codec scheme came into being with many additional depth

map coding tools and multi-view coding methods integrated into the HEVC codec.

The highest advantage of MVD is the stream size reduction for encoding a 3D

video because the decoder can synthesize high-quality intermediary views interpolat-

ing texture views based on the depth data and using Depth Image Based Rendering

(DIBR) [10] or others view synthesis techniques. These techniques allow synthesizing

several high-quality intermediary texture views of the scene, reducing the number of

stored/transmitted views. Figure3.1 illustrates an abstraction of 3D-HEVC usage com-

posed by coding and decoding processes. The first step is the scene capturing, then,

the obtained data passes by the 3D-HEVC video encoding, followed by the video stor-

ing/transmitting. Next, the 3D, stereo and 2D video decoders decode the bit-stream

of the encoded video. Finally, according to the output video format, the intermediary

virtual views are synthesized.
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Figure 3.1 Example of typical 3D-HEVC encoding/decoding flow

3.3 Proposed Scheme

Figure 3.2 Overview of Encoder

Figure 3.3 Overview of Decoder

Fig.3.2 & 3.3 shows the architecture of the proposed encoder and decoder. By

using the framework of the conventional 3D-HEVC, it is efficient to implement the

proposed encoder and decoder by utilizing Tensor ALS. The encoder contains a pre-

processing block that enables the spatial resolution and dynamic range reduction of
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depth signal, if necessary, for an efficient depth map compression. The motivation is

that with an efficient Tensor algorithm, encoding on the approximated color video and

corresponding depth data can reduce the bit rate substantially while still achieving a

good synthesized view quality. For the decoding process the framework remains as

conventional 3D-HEVC decoder.

3.4 Quality Measurements

Similar to previous chapter, We have conducted a series of experiments to evaluate the

performance of the proposed color and depth compression techniques. We have tested

with the Breakdancers and Ballet test sequences with resolutions of 1024 × 768, of

which both the color video and depth map are provided from Microsoft Research.

The bitrate of the compressed depth videos and the peak signalto-noise ratio (PSNR)

of the rendered virtual views are the two main performance measures for comparison.

The empirical results, against different values of quantization parameter (QP), regard-

ing the bitrate of the compressed color and depth video and the PSNR of the rendered

views are listed in Table 3.1 and 3.2 respectively.

Fig 3.4 and 3.5 shows the rate-distortion(RD) curves for ranks 1,5,10,15,20 in terms

of the color bitrate(dB) and the color quality for Ballet and Breakdancers respectively.

Fig 3.6 and 3.7 shows the rate-distortion(RD) curves for ranks 1,5,10,15,20 in terms

of the depth bitrate(dB) and the depth quality for Ballet and Breakdancers respectively.

Figs. 3.8 show sample frames of the views generated based upon the reconstructed

color frames shown in Fig. 3.8(a) (i.e. without the proposed encoder) and Fig. 3.8(b)

(i.e. with the proposed encoder), respectively.

Figs. 3.9 show sample frames of the views generated based upon the reconstructed

depths shown in Fig. 3.9(a) (i.e. without the proposed encoder) and Fig. 3.9(b) (i.e.
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Table 3.1 PSNR vs Bitrate analysis of Camera4 RGB Ballet and Breakdancers dataset

BALLET BREAKDANCERS
QP BITRATE (kbps) PSNR (dB) BITRATE (kbps) PSNR (dB)

RANK 1

2 2500.445 62.3403 2266.011 62.7013
6 796.4528 56.6491 811.6128 57.3797
10 161.4368 54.6474 136.8992 55.1352
14 72.2464 53.5462 61.8528 54.1431
20 29.7264 51.7731 26.392 52.6401
26 14.6048 49.1946 12.1952 50.3563
38 5.2864 42.8713 4.9296 44.0849

RANK 5

2 3646.282 60.3261 4034.835 60.55
6 1293.554 54.7863 1466.725 54.9954
10 424.3536 52.8804 455.8688 53.1772
14 225.84 51.5869 246.008 52.1379
20 106.2528 49.4523 115.0848 50.4619
26 50.0352 46.401 53.3024 47.838
38 13.0112 39.44 13.6864 41.154

RANK 10

2 4101.798 59.5655 4430.072 59.5885
6 1578.19 54.2794 1733.525 54.4752
10 607.192 52.3914 659.6112 52.7316
14 345.1472 51.0189 389.4864 51.6085
20 167.48 48.7172 195.176 49.6426
26 77.9648 45.4927 91.304 46.7025
38 18.6608 38.3859 21.984 39.4506

RANK 15

2 4374.002 59.3158 4637.085 59.1582
6 1756.597 54.0383 1921.637 54.2468
10 732.0032 52.1496 819.7904 52.5061
14 422.8144 50.7343 495.9344 51.264
20 205.8384 48.3087 253.5392 49.0906
26 94.1296 44.9975 118.8416 45.8254
38 21.856 37.9686 26.9984 38.372

RANK 20

2 4561.434 59.1801 4960.086 58.8385
6 1896.28 53.9328 2122.394 53.9992
10 831.8608 52.0007 956.0816 52.2789
14 488.4784 50.5145 594.5984 51.0259
20 236.2176 47.9777 307.3104 48.7588
26 106.392 44.587 143.712 45.3429
38 23.6768 37.5252 32.2608 37.8289

with the proposed encoder), respectively.
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Table 3.2 PSNR vs Bitrate analysis of Camera4 Depth Ballet and Breakdancers dataset

BALLET BREAKDANCERS
QP BITRATE (kbps) PSNR (dB) BITRATE (kbps) PSNR (dB)

RANK 1

2 166.8064 69.0769 157.5744 69.3469
6 44.4 58.012 45.4336 58.306
10 29.128 56.2816 26.5616 56.4007
14 20.5664 54.7613 18.4944 55.0043
20 12.6784 52.2568 11.1552 52.7243
26 8.3488 49.3881 7.4864 49.7688
38 4.5344 39.9835 3.936 41.2293

RANK 5

2 918.1616 57.2403 786.5744 58.6763
6 347.0048 54.8219 295.376 55.8724
10 182.5632 53.3963 155.5888 54.4284
14 107.9296 52.1252 89.6032 53.2151
20 55.536 49.7844 44.3136 51.1098
26 29.3696 46.6961 23.832 48.0949
38 8.8416 38.1427 7.6768 39.7496

RANK 10

2 1060.662 56.9473 1004.717 57.7897
6 459.7184 54.5548 421.3712 55.1089
10 260.9792 53.0213 241.0944 53.6417
14 164.2368 51.7028 149.6432 52.3961
20 87.4016 49.2054 78.2112 50.0284
26 46.496 45.8725 41.3808 46.8986
38 13.4096 37.5046 12.1504 38.4379

RANK 15

2 1277.701 56.1778 1142.682 57.154
6 585.2512 53.8696 483.944 54.6057
10 353.4224 52.3543 283.4368 53.1792
14 228.9424 50.9753 179.5584 51.9398
20 124.144 48.2813 94.3056 49.4873
26 65.2656 44.7386 49.36 46.1873
38 17.84 36.3202 13.6192 37.7684

RANK 20

2 1363.334 55.9977 1187.954 57.0947
6 651.4288 53.7205 514.0944 54.5471
10 399.8784 52.1495 305.9408 53.1235
14 262.112 50.7106 195.0336 51.8574
20 140.2656 47.8633 102.088 49.3243
26 72.0768 44.2568 52.7904 45.9527
38 19.0112 35.9311 14.3488 37.6808

3.5 Conclusion

We have presented novel techniques to compress the depth video by using 3D-HEVC

Framework and utilizing Tensor ALS to approximate the input video sequences. The

experimental results have shown the performance of the proposed scheme for different

rank and different quantisation parameter (QP). It has been observed that as rank in-
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Figure 3.4 PSNR vs Bitrate plot for Ballet RGB

creases the bitrate of the compressed RGB and depth videos increases and the peak sig-

nal to-noise ratio (PSNR) of the rendered virtual views decreases. Also as QP increases

both the bitrate and the peak signal to-noise ratio (PSNR) of the rendered virtual views

decreases. As a result, incurring lower coding bit rate, we can achieve the same quality

of the synthesized view. Experimental results showed the effectiveness of our method

and it can be applied to interactive video coders
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Figure 3.5 PSNR vs Bitrate plot for Breakdancers RGB

Figure 3.6 PSNR vs Bitrate plot for Ballet Depth
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Figure 3.7 PSNR vs Bitrate plot for Breakdancers Depth

(a) (b)

Figure 3.8 Visual quality comparison over synthesized view. (a) uncompressed color image (b)
color images decoded by proposed HEVC (HM);

(a) (b)

Figure 3.9 Visual quality comparison over synthesized view. (a) uncompressed depth image
(b) depth images decoded by proposed HEVC (HM);

29



REFERENCES

[1] A. Smolic et al. Three-Dimensional Video Postproduction and Processing. In Pro-

ceedings of the IEEE, vol. 99, no. 4, pp. 607-625, April 2011.

[2] M. Sharma, S. Chaudhury and B. Lall. A Novel Hybrid Kinect-Variety-Based

High-Quality Multiview Rendering Scheme for Glass-Free 3D Displays. in IEEE

Transactions on Circuits and Systems for Video Technology, vol. 27, no. 10, pp.

2098-2117, Oct. 2017.

[3] M. Sharma, Uncalibrated Camera Based Content Generation for 3D Multi-view

Display, Phd Dissertation, Indian Institute of Technology Delhi, 2017.

[4] Mansi Sharma, Santanu Chaudhury, Brejesh Lall, and M. S. Venkatesh. 2014. A

flexible architecture for multi-view 3DTV based on uncalibrated cameras. Journal

of Visual Communication and Image Representation, 25, 4 (May 2014), 599-621.

[5] Jing Li, Marcus Barkowsky, Patrick Le Callet. Visual Discomfort in 3DTV: Defi-

nitions, Causes, Measurement, and Modeling. Novel 3D Media Technologies pp.

185-209, 2014.

[6] A. Antsiferova and D. Vatolin. The influence of 3D video artifacts on discomfort of

302 viewers. International Conference on 3D Immersion (IC3D), Brussels, 2017,

pp. 1-8.

[7] MSU 3D-video Quality Analysis, Video Quality Measurement Tool 3D Project,

MSU Graphics & Media Lab (Video Group), http://compression.ru/

video/vqmt3d/

[8] J. Garcia Estrada and A. L. Simeone. Recommender system for physical object

substitution in VR. IEEE Virtual Reality (VR), Los Angeles, CA, 2017, pp. 359-

360.

[9] Davidson et al. The YouTube video recommendation system. In Proceedings of

30

http://compression.ru/video/vqmt3d/
http://compression.ru/video/vqmt3d/


the fourth ACM conference on Recommender systems (RecSys ’10), ACM, New

York, NY, USA, 293-296.

[10] Z. Shi, H. Wang, W. Wei, X. Zheng, M. Zhao and J. Zhao. A Novel Individual

Location Recommendation System Based on Mobile Augmented Reality. Interna-

tional Conference on Identification, Information, and Knowledge in the Internet

of Things (IIKI), Beijing, 2015, pp. 215-218.

[11] Zhuo Zhang, Shang Shang, Sanjeev R. Kulkarni, and Pan Hui. Improving aug-

mented reality using recommender systems. In Proceedings of the 7th ACM con-

ference on Recommender systems (RecSys’13), ACM, New York, NY, USA, 173-

176.

[12] Dimitris Chatzopoulos and Pan Hui. ReadMe: A Real-Time Recommendation

System for Mobile Augmented Reality Ecosystems. In Proceedings of the 24th

ACM international conference on Multimedia (MM’16), ACM, New York, NY,

USA, 312-316.

[13] Paul Covington, Jay Adams, and Emre Sargin. Deep Neural Networks for

YouTube Recommendations. In Proceedings of the 10th ACM Conference on Rec-

ommender Systems (RecSys’16). ACM, New York, NY, USA, 191-198.

[14] A. Gotchev, G. B. Akar, T. Gapin, D. Strohmeier, A. Boev. Three-Dimensional

Media for Mobile Devices. Proceedings of IEEE, Vol. 99, No. 4, pp. 708-741,

April 2011.

[15] M. Barreda-Ángeles, R. Pépion, E. Bosc, P. Le Callet and A. Pereda-Baños. How

visual discomfort affects 3DTV viewers’ emotional arousal. 3DTV-Conference:

The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON),

Budapest, 2014, pp. 1-4.

[16] Fabrizio Zeri and Stefano Livi. Visual discomfort while watching stereoscopic

three-dimensional movies at the cinema. Ophthalmic and Physiological Optics,

35(3):271-282, 2015.

[17] G. Sanchez, J. Silveira, L. Agostini and C. Marcon. Performance Analysis of

Depth Intra Coding in 3D-HEVC. in IEEE Transactions on Circuits and Systems

for Video Technology, 2018.

31



[18] S. Jumisko-Pyykkö, T. Haustola, A. Boev, A. Gotchev. Subjective Evaluation of

Mobile 3D Content: Depth Range versus Compression Artefacts. Proceedings

of SPIE, Multimedia for Mobile Devices, part of Electronic Imaging Symposium,

2011.

[19] B. Appina, K. Manasa, and S. S. Channappayya. Subjective and objective study

of the relation between 3D and 2D views based on depth and bitrate. In Electronic

Imaging, vol. 2017, no. 5, pp. 145-150, 2017.

[20] A. Bokov, D. Vatolin, A. Zachesov, A. Belous, and M. Erofeev. Automatic detec-

tion of artifacts in converted S3D video. In Proc. SPIE 9011, Stereoscopic Dis-

plays and Applications XXV, vol. 9011, pp. 901112-1–901112-14, March 2014.

[21] B. Appina, S. V. R. Dendi, K. Manasa, S. S. Channappayya and A. C. Bovik.

Study of Subjective Quality and Objective Blind Quality Prediction of Stereo-

scopic Videos. in IEEE Transactions on Image Processing, 2019.

[22] I. Tsingalis, I. Pipilis and I. Pitas. A statistical and clustering study on Youtube 2D

and 3D video recommendation graph. In 6th International Symposium on Commu-

nications, Control and Signal Processing (ISCCSP), Athens, 2014, pp. 294-297.

[23] J. Niu, S. Wang, Y. Su and S. Guo. Temporal Factor-Aware Video Affective Anal-

ysis and Recommendation for Cyber-Based Social Media. In IEEE Transactions

on Emerging Topics in Computing, vol. 5, no. 3, pp. 412-424, 2017.

[24] Leidy Esperanza MOLINA FERNÁNDEZ. Recommendation System for Netflix.

Faculty of Science Business Analytics, Vrije Universiteit Amsterdam, 2018.

[25] Yichao Lu, Ruihai Dong, and Barry Smyth. Convolutional Matrix Factorization

for Recommendation Explanation. In Proceedings of the 23rd International Con-

ference on Intelligent User Interfaces Companion, ACM, New York, NY, USA,

Article 34, 2 pages, 2018.

[26] Joonseok Lee, Nisarg Kothari, Paul Natsev. Content-based Related Video Recom-

mendations. Advances in Neural Information Processing Systems (NIPS) Demon-

stration Track, 2016.

32



[27] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix Factorization Techniques

for Recommender Systems. Computer, Volume 42, Issue 8, August 2009, pp. 30-

37

[28] Dimitris Bertsimas, Colin Pawlowski, and Ying Daisy Zhuo. From predictive

methods to missing data imputation: an optimization approach. Journal of Ma-

chine Learning Research, Res. 18, 1 (January 2017), 7133-7171.

[29] A. Paterek. Improving Regularized Singular Value Decomposition for Collabora-

tive Filtering. In Proc. KDD Cup and Workshop, ACM Press, 2007, pp. 39-42.

[30] Bangti Jin and Xiliang Lu, On the regularizing property of stochastic gradient

descent, Inverse Problems, Volume 35, Number 1, 2018.

[31] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collabora-

tive filtering model. In Proceedings of the 14th ACM SIGKDD international con-

ference on Knowledge discovery and data mining (KDD’08). ACM, New York,

NY, USA, 426-434.

[32] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic Matrix Factorization. In

Proceedings of the 20th International Conference on Neural Information Process-

ing Systems (NIPS’07), J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis (Eds.).

Curran Associates Inc., USA, 1257-1264.

[33] M. Urvoy et al. NAMA3DS1-COSPAD1: Subjective video quality assessment

database on coding conditions introducing freely available high quality 3D stereo-

scopic sequences. Fourth International Workshop on Quality of Multimedia Expe-

rience, Yarra Valley, VIC, 2012, pp. 109-114.

[34] Y. Zhang, H. Zhang, M. Yu, S. Kwong and Y. Ho Sparse Representation-Based

Video Quality Assessment for Synthesized 3D Videos. in IEEE Transactions on

Image Processing, vol. 29, pp. 509-524, 2020, doi: 10.1109/TIP.2019.2929433.

[35] Dumic, E., Sakic, K. and da Silva Cruz, L.A. Crowdsourced subjective 3D video

quality assessment Multimedia Systems, 25, 673–694 (2019).

[36] Fan, Q., Luo, W., Xia, Y. et al. metrics and methods of video quality assessment:

a brief review. Multimed Tools Appl, 78,31019–31033 (2019).

33



[37] Peng, Zongju and Wang, Shipei and Chen, Fen and Zou, Wenhui and Jiang,

Gangyi and Yu, Mei. (2019). Quality Assessment of Stereoscopic Video in Free

Viewpoint Video System. Journal of Visual Communication and Image Represen-

tation, 63, 10.1016/j.jvcir.2019.06.011.

[38] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G. B. Akar,

G. Triantafyllidis, and A. Koz. Coding algorithms for 3dtv—a survey. IEEE

Transactions on Circuits and Systems for Video Technology, 17(11):1606–1621,

2007.

[39] Philipp Merkle, Aljosa Smolic, Karsten Muller, and Thomas Wiegand. Multi-view

video plus depth representation and coding. volume 1, pages I – 201, 09 2007.

[40] Wikipedia contributors. Kinect — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/w/index.php?title=Kinect&

oldid=958970348, 2020. [Online; accessed 1-June-2020].

[41] F. Pescador, M. Chavarrias, M. J. Garrido, E. Juarez, and C. Sanz. Complexity

analysis of an hevc decoder based on a digital signal processor. IEEE Transactions

on Consumer Electronics, 59(2):391–399, 2013.

[42] Telecom ITU. Advanced video coding for generic audiovisual services. ITU-T

Recommendation H.264, 2003.

[43] Dragorad Milovanovic and Z. Bojkovic. Mpeg video deployment in interactive

multimedia systems: Hevc vs. avc codec performance study. WSEAS Transactions

on Signal Processing, 9:167–176, 01 2013.
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