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ABSTRACT

KEYWORDS: Reflection removal, image restoration, reflection detection, seman-

tic segmentation, deep learning

An image captured through a glass plane usually contains both of a target transmitted

scene behind the glass plane and a reflected scene in front of the glass plane. Removing

undesirable reflections from a photo taken in front of a glass is of great importance for

enhancing the efficiency of visual computing systems. In this thesis, we use a semantic

segmentation network to extract regions of real and synthetic mixed images affected

by reflection. We propose two approaches for estimation of the ground truth reflection

binary masks of synthetic images to avoid cumbersome manual pixel-level annotation.

The estimated reflection binary mask, along with the original input mixed image, can be

used subsequently by an encoder-decoder architecture to guide reflection removal from

images. We propose a synthetic dataset consisting of 50, 000 mixed images synthesized

from real pairs of the targeted transmitted scene and the reflected scene to simulate

real-world reflections. A real dataset of 622 image pairs of the mixed image and the

transmitted scene is also captured.
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CHAPTER 1

INTRODUCTION

1.1 Thesis outline

The main contributions of this thesis are organized as follows :

• Chapter 1 : provides (i) a detailed description and motivation of the problem of
reflection removal from images and the major challenges associated with it and
(ii) the primary focus of this thesis.

• Chapter 2 : contains (i) a brief overview of the traditional methods for reflection
removal using single and multiple images and (ii) a brief overview of the deep
learning based approaches used for single image reflection removal.

• Chapter 3 : describes (i) the characteristics of an ideal dataset for single image
reflection segmentation and reflection removal, (ii) the various procedures used
for synthesizing 50000 mixed images I from real pairs of the targeted transmit-
ted scene T and the reflection scene R and (iii) the proposed and existing real
datasets.

• Chapter 4: describes (i) the proposed approaches used to estimate the ground truth
reflection strength maps and reflection binary masks for the synthetic datasets and
(ii) the experiments performed to estimate the ground truth reflection strength
maps and reflection binary masks for real data.

• Chapter 5 : contains (i) the network, training and implementation details for the
task of reflection segmentation, (ii) quantitative evaluation of the proposed re-
flection segmentation network on the synthesized datasets and (iii) qualitative
evaluation of the proposed reflection segmentation networks on the synthesized
and real datasets.

• Chapter 6 : contains a summarization of the major takeaways from this thesis.

• Chapter 7 : describes the scope of future work for the task of accurate reflection
segmentation and reflection removal in single images.

1.2 Problem description : single image reflection removal

Capturing images through a transparent glass is unavoidable in many daily scenarios

such as looking through a window or in front of a glass show case at the museum.



However, when taking pictures through glass, light reflection occurs on glass planes,

which reduces the visibility of target transmitted scenes behind the glass planes and thus

degrades the performance of computer vision techniques such as text recognition, object

detection and object classification. Images taken under such circumstances usually have

the objects of interest overlaid by the undesirable reflections of the scene behind the

camera. The mixture image is composed of two components, the background target

objects behind the glass and the reflected objects in front of the glass, in a weighted

additive manner.

Figure 1.1: Some examples of images captured through glass : the first row contains
the mixed images (I) and the second row contains the corresponding target
transmitted images without undesirable reflections (T ).

Reflection removal aims at removing the reflection (while obtaining the clear back-

ground or transmitted scene) from the mixture image using one or more shots, where the

former is a highly ill-posed problem. For CNN-based single image reflection removal,

our focus herein, the challenge originates from at least two sources: (i) the extraction

of a background image layer devoid of reflection artifacts is fundamentally ill-posed

because of twice the number of unknowns as equations, and (ii) training data from

real-world scenes, is exceedingly scarce because of the difficulty in obtaining ground

truth labels of the background or the transmitted scene. Mathematically speaking, it is

typically assumed that a captured image I is formed by a linear combination of a back-

ground or transmitted layer T and a reflection layer R. Obviously, when given access

only to I , there exist an infinite number of feasible decompositions.

Further compounding the problem is the fact that unlike in the case of rain and

shadow removal, the structures and properties of reflections can be similar to that of

the background. This makes it difficult to simultaneously remove the reflections and

restore the contents in the background. This can make them difficult to distinguish even

2



for human observers in some cases, and simple priors that might mitigate this ambiguity

are not available except under specialized conditions.

Although CNNs can perform a wide variety of visual tasks, at times exceeding hu-

man capabilities, they generally require a large volume of labeled training data. Unfor-

tunately, real reflection images accompanied with densely-labeled, ground-truth trans-

mitted layer intensities are scarce. Consequently, previous learning-based approaches

have resorted to training with synthesized images and / or small real-world data captured

from specialized devices. However, existing image synthesis procedures are heuristic

and the domain gap may jeopardize accuracy on real images. On the other hand, col-

lecting sufficient additional real data with precise ground-truth labels is tremendously

labor-intensive.

1.3 Focus of this thesis

Most of the existing learning-based single image reflection removal methods first es-

timate a prior image (like semantic map of the ground truth transmission layer T , or

the edge map of the ground truth transmission layer T ) and then use the prior image

to guide the process of reflection removal from the input mixed image I . This thesis

focuses on solving the problem of single image reflection removal guided by the reflec-

tion segmentation map of the input mixed image I . We provide results of the reflection

segmentation map, which is essentially a reflection binary mask whose pixel values

are set to 1 if reflection is present at the pixel location, and 0 otherwise. The primary

focus of this thesis lies in accurately estimating a reflection binary mask of the input

mixed image I . Although we don’t provide results of reflection removal, we believe

that accurately estimating the reflection binary masks will help us eventually achieve

state-of-the-art results in reflection removal from single images.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, in Section 2.1, we first provide a categorization of the reflection removal

methods in images. In Section 2.2, we briefly discuss the various non-learning based ap-

proaches in literature to remove reflection from single and multiple input images. This

is followed by Section 2.3, which provides an overview of the existing deep learning

based approaches in literature to remove reflections from single input images.

2.1 Categorization of reflection removal methods

The existing methods for reflection removal in images can be classified on the basis of

(i) number of input images used (single or multiple) and (ii) the approach used (learn-

ing or non-learning). Single image reflection removal (SIRR) methods use only one

input mixed image whereas multiple image reflection removal (MIRR) methods utilize

slightly differing multiple shots of the same scene through glass. Traditional methods

apply additional priors to make the problem of reflection removal less ill-posed whereas

the deep learning based methods employ CNNs so that the handcrafted priors can be

replaced by data-driven learning.

Figure 2.1: A categorization of methods of reflection removal in images

In this thesis, our focus lies on SIRR using DL based methods. We will discuss



the traditional methods for SIRR in brief and move on to describing existing DL based

methods for SIRR in slightly more detail.

2.2 Traditional methods for single image reflection re-

moval

The focus of this thesis is on reflection removal from single images. Existing works uti-

lizing multiple input images of e.g., flash / non-flash pairs [6], different polarization [7],

multi-view or video sequences [8, 9, 10, 11, 12, 13, 14, 15, 16] will not be considered

here.

Reflection removal from a single image is a massively ill-posed problem. Additional

priors are needed to solve the otherwise prohibitively-difficult problem in traditional

optimization-based methods. In [17], user annotations are used to guide layer separa-

tion jointly with a gradient sparsity prior [18]. [19] introduces a relative smoothness

prior where the reflections are assumed to be blurry and thus their large gradients are

penalized. [20] explores a variant of the smoothness prior where a multi-scale Depth of

Field (DoF) confidence map is utilized to perform edge classification. [21] exploits the

ghost cues for layer separation. [22] proposes a simple optimization formulation with

an l0 gradient penalty on the transmitted layer inspired by image smoothing algorithms.

Traditional methods often impose certain priors or assumptions to target particular

type(s) of reflection such as shifted double reflection, and thus have difficulty to gener-

alize to other types of reflection. Despite the fact that decent results can be obtained by

these methods when their assumptions hold, the vastly-different imaging conditions and

complex scene content in the real world render their generalization problematic. When

the structures and patterns of the background are similar to those of the reflections, the

non-learning based methods have difficulty in simultaneously removing reflections and

recovering the background. All these approaches rely on low-level info and are limited

in cases where a high level understanding of image is needed.
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2.3 Deep learning based methods for single image re-

flection removal

Due to the advantages in robustness and performance, there is an emerging interest in

applying neural networks to SIRR. Most methods estimate a prior image from the mixed

image I first. This prior image acts as auxiliary information along with the input mixed

image I to recover the transmission layer T . Fan et al. [1] provide the first neural net-

work model (CEILNet) to solve this ill-posed problem. They propose a linear method

for synthesizing images with reflection for training, and use an edge map as auxiliary

information to guide the reflection removal. Wan et al. [4] employ two cooperative

sub-networks that predict the transmission layer intensity and gradients concurrently.

Both of these works [1, 4] utilize edge or gradient information of the captured layer I ,

motivated by the idea that the reflection layers are usually not in focus and thus blurry

as compared to the transmission layers. From the edge information of the captured im-

age I , the edge map of the transmission image T is predicted and used in estimating

the transmission result. Other works that use edge or gradient information of the trans-

mission layer T include [23] and [24]. In [24], the authors improve upon [4] by using

shared encoders for the image and gradient decoder as opposed to the independent en-

coders utilized in [4]. This allows for more cooperation between the image and gradient

decoders. [25] predicts reflection layers which are then used as auxiliary information in

a subsequent network to estimate the target transmission layer T . [26] tries to imitate

the HVS by using a semantic segmentation map of the transmission layer T as a prior

image for reflection removal.

Typical training losses include a combination of (i) L1 loss, (ii) L2 loss and (iii) gra-

dient loss. In several recent methods, improved formulations of the objective function

are presented. These include the adoption of perceptual losses [27] to account for both

low-level and high-level image information [2, 28, 29, 23, 30]. In these works, images

are fed to VGG-19 [31] pre-trained on ImageNet, and comparisons are made based on

extracted multi-stage features. Adversarial losses have also been applied, specifically

to improve the realism of predicted transmission layers [2, 32, 25, 5, 33, 34]. [35] pro-

poses a cGAN based framework conditioned on the input mixed image I with a U-Net

[36] based generator and FCN based classifier as discriminator.
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Another direction of study focuses on datasets for training. Moving beyond im-

provements for the linear synthesis method in [1] and [2], Wen et al. [33] synthe-

size training data with learned non-linear alpha blending masks that better model the

real-world imaging conditions. These masks are also used in forming a reconstruction

loss that guides the prediction of transmission layers. To deal with the insufficiency of

densely-labeled and properly aligned training data, Wei et al. [5] present a technique

for utilizing misaligned real-world images as the training data, since they are less bur-

densome to acquire than aligned images and are more realistic than synthetic images.

[34] proposes a framework where unlike most SIRR methods, image generation and

separation are not treated as two separate stages. For image generation, a more general

non-linear mapping from (T,R) to I is learnt.

Yet another approach [37, 38] involves utilizing multiple mixed images with the

same transmission layer T and different reflection layersR for training and using single

image during inference stage.

Many networks [30, 28, 37] adopt a residual learning framework, i.e. estimate the

residual I − T instead of the transmission layer T . This is based on the fact that resid-

ual learning is known to have faster convergence and the reflection layer is relatively

consistent in terms of luminance and color, thus being more tractable to learn for the

generator as compared to the transmission layer T .

For quantitative evaluation on real data, the authors in [3] conclude that MSE (Mean

squared error) is a bad error metric and instead introduce four other metrics : (i) Lo-

cal MSE, (ii) NCC (Normalized Cross Correlation), (iii) Structural Similarity (SSIM)

and (iv) SI (Structured Index). Local MSE evaluates the local structure similarity by

calculating the similarity of each local patch. NCC is used because the ground truth

T and estimated T can have different intensities, which can be compensated for by

subtracting their mean values. SSIM is a perceptually motivated error metric, which

evaluates the similarity of two images on the basis of luminance, contrast, and structure

as the human eyes do. SI evaluates only structural similarities. [4] introduces regional

SI and regional SSIM (SSIMr and SIr respectively) as additional metrics for quantita-

tive comparison of SIRR methods. This is deemed necessary by the authors because

of their observation that due to the regional properties of reflections, many existing re-

flection removal methods (non DL based) may downgrade the quality of whole images,
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although they can remove the local reflections cleanly. The reflection dominant regions

are manually labelled and the SSIM and SI values at these regions are evaluated. The

error metric SI usually shows best consistency with visual quality.

No method is able to completely remove reflections, and various artifacts are vis-

ible in most of the results. The performances of the methods on bright backgrounds

are much better than those on dark backgrounds, which indicates that removing strong

reflection components in dark backgrounds is still challenging for all methods. Most

networks are also limited in input images that have focused reflections, or when the

reflection layer has very similar structure as the transmission layer.
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CHAPTER 3

DATASETS

In this chapter, we first briefly discuss the characteristics of the ideal dataset for single

image reflection segmentation and reflection removal in Section 3.1. Subsequently, in

Section 3.2, we describe the various procedures implemented by us for synthesizing the

input mixed images I using real pairs of (T,R). This is followed by Section 3.3, where

the proposed and existing real-world reflection image datasets are described.

3.1 Ideal dataset for single image reflection segmenta-

tion and removal

In order to model the diversity in real-world reflections well, the ideal dataset for single

image reflection segmentation and removal should have the following characteristics :

• T and R should have a sufficient amount of both indoor and outdoor scenes.

• T should have varied illuminations, like direct sunlight, cloudy sky light, twilight,
low light conditions etc. This is because many existing state-of-the-art methods
don’t perform well in mixed input images having weak transmitted light.

• I should contain varied blur levels of the reflection scene, i.e. it should contain
both focused and defocused reflections. This is to ensure that the method also
learns to remove reflections as sharp as T . Most of the current methods don’t
perform well on mixed input images having sharp reflections.

• To account for ghosting effects, (arising from shifted reflections on the two sur-
faces of glass) thickness of the glass should be varied while capturing I . The
phenomena of shifted reflections increases with increase in glass thickness.

• I should have both localized reflection and reflection spread almost throughout I .

• I should have some regions where the background is completely removed. This
is to account for saturated reflection intensities, for example, when R has strong
light sources. The network needs to learn to perform inpainting in such cases.



3.2 Synthetic datasets

We will now describe the procedures implemented by us for synthesizing input mixed

images I using real T andR. We synthesize 6 different synthetic datasets : (i) linear mix

dataset (Subsection 3.2.1), (ii) CEILNet synthetic dataset (Subsection 3.2.2), (iii) PLNet

synthetic dataset (Subsection 3.2.3), (iv) convex blurring dataset (Subsection 3.2.4),

(v) focused reflection dataset (Subsection 3.2.5) and (vi) ghosting dataset (Subsection

3.2.6). Table 3.1 presents the salient features of the datasets synthesized by us. The

mixed image I is synthesized via I = T̃ + R̃, where T̃ and R̃ denote the effective

transmission layer and effective reflection layer respectively.

Synthetic
dataset

Number of I
synthesized

Source of real
T and R T̃ and R̃

target
reflections

Linear mix
dataset

7642
PASCAL

VOC 2012
[39]

T̃ = αT, R̃ =
(1− α)R

no particular
reflection

CEILNet
synthetic
dataset

7642
PASCAL

VOC 2012
[39]

T̃ = T, R̃ =
gaussian

blurred and
gamma

corrected R

localized,
defocused and

saturated
reflections

PLNet
synthetic
dataset

12585 flickr

T̃ = αT, R̃ =
gaussian

blurred and
vignette

applied R

defocused
reflections

Convex
blurring
dataset

7642
PASCAL

VOC 2012
[39]

T̃ = αT, R̃ =
(1− α)R~G

defocused
reflections

Focused
reflections

dataset
7642

PASCAL
VOC 2012

[39]

T̃ = T, R̃ =
gaussian

blurred and
gamma

corrected R

focused
reflections

Ghosting
dataset

7642
PASCAL

VOC 2012
[39]

T̃ = αT, R̃ =
R~K

ghosted
reflections

Table 3.1: Table describing the six datasets synthesized by us. Here I, T̃ and R̃ denote
the mixed image, effective transmission layer and effective reflection layer
respectively.
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3.2.1 Linear mix dataset

The input mixed image I is synthesized as per Eqn. 3.1, with α drawn fromU(0.65, 0.90).

I = αT + (1− α)R (3.1)

7642 mixed input images are generated from 7642 real pairs of I, T taken from the

PASCAL VOC 2012 dataset [39]. Images from the PASCAL VOC 2012 dataset [39]

are randomly cropped to a size of 224× 224 before using. Fig. 3.1 shows the effect of

increasing α on the mixed image for the same T and R. Fig. 3.2 shows some examples

of mixed images generated via this procedure for different T and R.

Figure 3.1: This figure shows the effect of increasing α in Eqn. 3.1 for the same T and
R. From left to right : transmission layer T , reflection layer R, synthesized
mixed image I with α = 0.5, synthesized mixed image I with α = 0.7 and
synthesized mixed image I with α = 0.9 .

The major drawback of generating I via naive linear mixing of T and R is that

many reflection removal networks when trained on synthetic images generated via lin-

ear mixing don’t perform well on real test datasets. In typical mixed imagesR will only

partially cover T . In fact, the visibility of R depends on the relative intensity between

the transmitted light from T and the reflected light. Hence there are large regions in I

where R is not visible at all. This model doesn’t allow that. Also, scaling of both T

and R is questionable. In real-world images, T and R contain various levels of lumi-

nance, from the darkest to the brightest color. Scaling the images not only constraints

each layer within a relatively smaller color range, but also suppresses abrupt color tran-

sitions, especially for R. This doesn’t model real-world mixed images well because

reflection intensities can be arbitrarily large in some areas.
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Figure 3.2: Examples of some synthesized mixed images via linear mixing of T and R.
From left to right in each row : input mixed image I , transmission layer T ,
transmission layer T scaled by α, reflection layer R and reflection layer R
scaled by (1− α) .
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3.2.2 CEILNet synthetic dataset

In our thesis, we call the the dataset of mixed images synthesized via the procedure

proposed in [1] as the CEILNet synthetic dataset. Two natural images are picked and

normalized to [0, 1] as transmission layer T and reflection layer R and then the input

mixed image I is synthesized as shown below. (Eqns. 3.2-3.7)

1. R̃← gauss_blurσ(R) with σ ∼ U(2, 5) (3.2)

2. I ← T + R̃ (3.3)

3. m← mean(I(x, c)|I(x, c) > 1,∀x,∀c = 1, 2, 3) (3.4)

4. R̃(x, c)← R̃(x, c)− γ(m− 1), ∀x, ∀c; γ = 1.3 (3.5)

5. R̃← clip[0,1](R̃) (3.6)

6. I ← clip[0,1](T + R̃) (3.7)

One key difference from naive image mixing is that the brightness overflow issue is

avoided not by scaling down the brightness, but by subtracting an adaptively computed

value followed by clipping. In this way: (i) reflection-free regions are very likely to

appear which is consistent with natural images, (ii) strong reflections can occur in other

places, and (iii) the reflection contrast is better maintained. The subtraction and clipping

operations allow reflection intensities to saturate and vanish. One drawback of this

model is that it model doesn’t account for ghosting effects of reflection i.e. disregards

the thickness of glass. This model also inherently assumes that the reflection R is

blurrier compared to the transmission layer T .

In our implementation, 7642 real images from PASCAL VOC 2012 [39] cropped

randomly to a size of 224× 224 are taken for T and R each. 7642 mixed images I are

synthesized using these real pairs of (T,R). A gaussian blurring kernel of size 11× 11

with σ drawn from U(2, 5) is used. The Fig. 3.3 shows the synthesized mixed image

I for the same T and R and increasing values of σ. Fig. 3.4 shows some examples of

mixed images I generated via this procedure for different real T and R.
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Figure 3.3: This figure shows the effect of the increasing the blurring of the reflection
layer while synthesizing the mixed image I as per the CEILNet data synthe-
sis procedure [1] in Eqns. 3.2 - 3.7. From left to right : transmission layer
T , reflection layer R, synthesized mixed image I with σ = 2, synthesized
mixed image I with σ = 4 and synthesized mixed image I with σ = 5 .

3.2.3 PLNet synthetic dataset

In our thesis, we call the the dataset of mixed images synthesized via the procedure pro-

posed in [2] as the PLNet synthetic dataset. This data synthesis procedure is similar to

the CEILNet synthesis procedure described in Subsection 3.2.2 except for the following

differences :

• The adaptive gamma correction is removed.

• Linear space is used to better approximate the physical formation of images.

• Instead of fixing the intensity decay on R, variation is applied to intensity decay
since it’s observed that reflection in real images could have comparable or higher
intensity level than the transmission layer.

• Slight vignette is applied centered at a random position in R, which simulates the
scenario when camera views the reflection from oblique angles.

• T is also scaled by α drawn randomly from U(0.8, 1.0). R is not scaled any
further after blurring and application of the vignette mask.

In our implementation, random image pairs (indoor-outdoor) are taken from flickr

for T and R and are then resized to 260×260. The standard deviation σ of the gaussian

blurring kernel is randomly chosen from 80 values uniformly spaced between 1 and 5

and the kernel size is set accordingly to (2∗(d2∗σe+1)), between 3 and 17. The blurred

R is multiplied element-wise with a vignetting mask centered at a random position. This

resultant blurred and vignette R is then added to a scaled T to get the mixed image I .

12585 mixed images are generated in our dataset. Fig. 3.5 shows some examples of

mixed images generated via this procedure for different T and R.
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Figure 3.4: Examples of some synthesized mixed images via the CEILNet data synthe-
sis procedure [1]. From left to right in each row : mixed image I , transmis-
sion layer T , reflection layer R and reflection layer R blurred by a gaussian
blurring kernel of size 11× 11 and σ drawn randomly from U(2, 5).
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Figure 3.5: Examples of some synthesized mixed images via the PLNet data synthesis
procedure [2]. From left to right in each row : input mixed image I , trans-
mission layer T , the scaled transmission layer T , reflection layer R and
reflection layer R after gaussian blurring and application of vignette mask.
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3.2.4 Convex blurring dataset

The input mixed image is synthesized as per Eqn. 3.8, with α = 0.6 and K set to a

gaussian blurring kernel (for defocused reflection) of size 11×11 and standard deviation

σ drawn randomly uniformly from U(2, 5). In our implementation, 7642 real images

from PASCAL VOC 2012 [39] cropped randomly to a size of 224×224 are taken for T

and R each. 7642 mixed images I are synthesized using these real pairs of (T,R). Fig.

3.6 shows some examples of mixed images generated via this procedure for different T

and R.

I = αT + (1− α)R~G (3.8)

Figure 3.6: Examples of some synthesized mixed images via convex addition of T and
blurredR, as mentioned in Subsection 3.2.4. From left to right in each row :
input mixed image I , transmission layer T , the scaled transmission layer T ,
reflection layer R and reflection layer R after gaussian blurring and scaling.
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3.2.5 Focused reflection dataset

In the previous subsections 3.2.2, 3.2.3 and 3.2.4, R was blurred by a gaussian blur-

ring kernel with σ being drawn from either U(2, 5) or U(1, 5). Because of the uniform

distribution, most of the mixed images had defocused reflections because of the larger

proportion of high σ values. In this subsection, we implement a data synthesis proce-

dure with focused reflections, where R is almost as sharp as T .

In our implementation, 7642 real images from PASCAL VOC 2012 [39] cropped

randomly to a size of 224×224 are taken for T and R each. A synthesis procedure sim-

ilar to the CEILNet data synthesis (as explained in Subsection 3.2.2) is utilized with the

only difference being that σ is drawn from U(0.5, 1.5) instead of U(2, 5). This allows

for much lesser blurring of the reflection layer R and hence produces mixed images

with focused reflections. Fig. 3.7 shows some examples of mixed images generated via

this procedure for different T and R.

3.2.6 Ghosting dataset

In all the data synthesis methods discussed in the previous subsections, the glass thick-

ness was assumed to be negligible. In this subsection, the glass thickness is not ignored,

which results in two shifted reflections due to reflections from both sides of the glass

surface. The mixed image I is synthesized as per Eqn. 3.9, with K denoting the ghost-

ing kernel.

I = αT +R~K (3.9)

In our implementation, 7642 images from PASCAL VOC 2012 [39] cropped ran-

domly to a size of 224 × 224 are taken for T and R each. 7642 mixed images are

synthesized via this procedure. K has a size of 20 × 20 and has two pulses of intensi-

ties (1 −
√
α) and (

√
α − α). Each of the coordinates (x1, y1, x2, y2), where (x1, y1)

and (x2, y2) denote the positions of the two pulses, are drawn from U(5, 20). More is

the distance between the two pulses, the greater is the the ghosting effect and the shift

between the two reflections. This models different glass thickness values. α is drawn

from U(0.6, 0.9). Fig. 3.8 shows some some examples of mixed images generated via

this procedure for different T and R.

18



Figure 3.7: Examples of some synthesized mixed images with focused reflections.
From left to right in each row : input mixed image I , transmission layer
T , reflection layer R and reflection layer R blurred by a gaussian blurring
kernel of size 11× 11 and σ drawn randomly from U(0.5, 1.5) .
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Figure 3.8: Examples of some synthesized mixed images with ghosting of reflections.
From left to right in each row : input mixed image I , transmission layer T ,
transmission layer T scaled by α, reflection layer R and ghosted (or double
shifted) reflection layer R.
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3.3 Real datasets

In this subsection, we will describe the existing and proposed dataset of real world

mixed images I containing undesirable reflection and the corresponding ground truth

transmission layer T .

The existing publicly available datasets include (i) SIR2 (Single Image Reflection

Removal) dataset [3], (ii) CEILNet real dataset [1], (iii) PLNet real dataset [2], (iv)

RID (Reflection Image Dataset) [4] and (v) ERRNet unaligned dataset [5]. Other real

datasets (in [33, 34]) that are not publicly released at the time of writing this thesis are

not described here. Fig. 3.9 illustrates the physical and mathematical image formation

models of the three major types of reflection : focused, defocused and ghosting. Table

3.2 shows a comparison of the existing real datasets and the captured real dataset.

Figure 3.9: The physical and mathematical image formation models of the three major
types of reflection : focused, defocused and ghosting.

The proposed dataset contains 622 (I, T ) pairs captured using a smartphone placed

on a tripod. Slight spatial misalignment is observable in some pairs of I and T due

to refraction by glass. The dataset has both types of mixed images : the ones having

localized reflection and the ones having reflection layer spread throughout the mixed

image. Although the dataset has both indoor and outdoor scenes for R, T and R don’t

have varied illuminations. Only one glass thickness is used, and the glass is not thick

enough to produce double shifted reflections (ghosting effect) in the mixed image. Fig.

21



Real dataset
Dataset

size
Diversity

Post-
capture
spatial

alignment
of I and T

Our dataset
622 pairs of

(I, T )
scenes, reflection location yes

SIR2 real dataset
[3]

454 triplets
of (I, T,R)

aperture size, glass thickness,
illuminations, object reflectance,

scenes, reflection location
yes

CEILNet real
dataset [1]

45 I scenes, reflection location N/A

PLNet real
dataset [2]

110 pairs of
(I, T )

aperture size, illuminations,
camera viewing angles, scenes,

reflection location
no

Reflection Image
Dataset [4]

3250 R
aperture size, illumination,

scenes
N/A

ERRNet
unaligned dataset

[5]

450 pairs of
(I, T )

reflection location no

Table 3.2: A comparison of our real dataset and existing real datasets on the basis of
dataset size, diversity and spatial alignment procedures implemented.

3.10 and Fig. 1.1 show examples of the (I, T ) pairs in the captured dataset. Some

experiments performed for spatial alignment of I and T in the captured dataset are

described in detail in Section 4.2 .

The major limitation of all real datasets is that it is almost impossible to get a per-

fectly aligned pair of images I and T even with a tripod because of glass refraction. Due

to refraction, the glass in front of the scene shifts the path of light transmitting through

the glass and this leads to the spatial misalignment problem. Regional illumination

changes between I and T can also cause misalignment. If not eliminate completely, it

is possible to reduce these misalignment effects by carefully shooting only static scene

from a stationary camera or using thinner glass with small refraction. The authors of

[3] who propose the SIR2 dataset perform processing on (I, T ) pairs post-capture for

spatial alignment. Specifically, they first extract SURF [40] feature points from I and

T and then estimate the homographic transformation matrix using the RANSAC [41]

algorithm. Finally, I is aligned to T with the estimated transformation. Even after this

processing post-capture, slight spatial misalignments are visible.
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Figure 3.10: Examples of some pairs of (I, T ) in the proposed real dataset. In each row,
the image at the left is the mixed image I and the image at the right is the
transmission layer T .
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CHAPTER 4

ESTIMATION OF GROUND TRUTH FOR

REFLECTION SEGMENTATION

For reflection segmentation using any of the deep learning based approaches, we need

a large amount of labelled training data consisting of mixed images with undesirable

reflection and their corresponding pixel level reflection binary masks, with pixel values

of the masks set to 1 if reflection is present at the pixel location, and 0 otherwise. As

the pixel-level manual annotation of the reflection binary masks for a large number of

images is very cumbersome and lengthy, we propose methods for estimation of ground

truth of the reflection strength maps and reflection binary masks of synthetic mixed

images. We also try our approach on real data, but the results are not very encouraging.

In Section 4.1, we present results of estimation of ground truth reflection strength

maps and reflection binary masks on the synthetic datasets that are described in Sec-

tion 3.2. In Section 4.2, we present the results of our experiments for estimation of

ground truth reflection strength maps and reflection binary masks on real datasets that

are described in Section 3.3.

4.1 Estimation of ground truth reflection strength maps

and reflection binary masks for synthetic data

All the mixed image data synthesis procedures described in Section 3.2 essentially syn-

thesize the mixed image as per

I = T̃ + R̃ (4.1)

where T̃ and R̃ denote the effective transmission layer and reflection layer respectively.

The effective transmission layer and reflection layer images are modified versions of

the real transmission layer and reflection layer respectively, and they are modified dif-

ferently for different data synthesis procedures.



The effective transmission and reflection layer images for each data synthesis pro-

cedure, as shown in Table 3.1, are listed below :

• Linear mix dataset : T̃ ← αT, R̃← (1− α)R

• CEILNet synthetic dataset : T̃ ← T, R̃← gaussian blurred and gamma corrected R

• PLNet synthetic dataset : T̃ ← αT, R̃← gaussian blurred and vignette applied R

• Convex blurring dataset : T̃ ← αT, R̃← (1− α)R~G

• Focused reflection dataset : T̃ ← T, R̃← gaussian blurred and gamma corrected R

• Ghosting dataset : T̃ ← αT, R̃← R~K

We will now describe the two proposed approaches to estimate the ground truth

reflection strength maps and reflection binary masks for synthetic data of each type.

4.1.1 Proposed approach 1 : absolute differencing of the mixed im-

age and transmission layer intensities

Both the RGB images, the mixed image I and the effective transmission layer T̃ are

converted to YUV color space first. The reflection strength map is generated by sub-

tracting the y channel of I and the y channel of T̃ , as per Eqn. 4.2,

rsm[i][j] = |(yI [i][j]− yT̃ [i][j])| (4.2)

where rsm denotes the reflection strength map, yI denotes the intensity channel of the

mixed image I and yT̃ denotes the intensity channel of the effective transmission layer

T̃ . The reflection strength map is a single channel image and has pixel values between

0 − 1, indicating the absolute strength of reflection at that pixel location. A value of 0

indicates that R̃ has zero intensity at that location and a value of 1 indicates that T̃ has

zero intensity at that location.

To generate the reflection binary mask, the reflection strength map is thresholded at

pixel level for 3 values of thresholds : (i) 0.1, (ii) 0.2 and (iii) 0.3. As shown in Eqn.

4.3, the binary mask pixels are set a value of 1 where the strength map is above the

25



threshold and set a value of 0 otherwise. In Eqn. 4.3, rbm denotes the reflection binary

mask and t denotes the threshold value chosen from amongst 0.1, 0.2 and 0.3.

rbm[i][j] =

1, rsm[i][j] > t

0, otherwise

(4.3)

4.1.2 Proposed approach 2 : proportion of reflection intensity in

the mixed image intensity

Both the RGB images, the mixed image I and the effective reflection layer R̃ are con-

verted to YUV color space first. The reflection strength map is generated by dividing

the y channel of R̃ and the y channel of I , as per Eqn. 4.4,

rsm[i][j] = (yR̃[i][j]/yI [i][j]) (4.4)

where rsm denotes the reflection strength map, yI denotes the intensity channel of the

mixed image I and yR̃ denotes the intensity channel of the effective reflection layer R̃.

The reflection strength map is a single channel image and has pixel values between 0−1

indicating the relative strength of reflection at that pixel location. A value of 0 indicates

that yR̃ contributes 0% to the total intensity at that location and value of 1 indicates that

yR̃ contributes 100% to the total intensity at that location.

To generate the reflection binary mask, the reflection strength map is thresholded at

pixel level for 3 values of thresholds : (i) 0.1, (ii) 0.2 and (iii) 0.3. As shown in Eqn.

4.3, the binary mask pixels are set a value of 1 where the strength map is above the

threshold and set a value of 0 otherwise.

4.1.3 Qualitative estimation results for synthetic data

In this subsection we provide some examples of ground truth reflection strength maps

and ground truth reflection binary masks estimated for the following categories of syn-

thetic data - (i) linear mix dataset : Fig. 4.1, (ii) CEILNet synthetic dataset : Fig. 4.2,

(iii) PLNet synthetic dataset : Fig. 4.3, (iv) convex blurring dataset : Fig. 4.4, (v)
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focused reflection dataset : Fig. 4.5 and (vi) ghosting dataset : Fig. 4.6.

4.1.4 Analysis of estimation results on synthetic data

Approach 1 is based on absolute differencing of the y channel values of I and T̃ and

approach 2 is based on relative y channel values of R̃ and I . The ground truth reflection

strength maps and reflection binary masks look good visually. Since the mixed image

I is generated via I = T̃ + R̃, the approach 1, which also subtracts the y channels of

I and T̃ , yields better reflection strength maps. The reflection strength maps generated

via approach 1 also don’t have any scene structures of T , unlike approach 2.

Since our reflection binary masks are generated from reflection strength maps via

hard-coded thresholds, approach 2 can yield better reflection binary masks in certain

situations. We can consider a example where yI [i][j] = 0.1, yT̃ [i][j] = 0.01 and

yR̃[i][j] = 0.09 at a particular pixel location. Here, although yR̃[i][j] contributes 90%

of the total intensity of yI [i][j], the binary reflection mask generated via approach 1

will not classify this pixel as reflection pixel because yI [i][j] − yT̃ [i][j] = 0.09 which

is lesser than the threshold values 0.1, 0.2 and 0.3. Approach 2 will still classify it as a

reflection pixel because yR̃[i][j]/yI [i][j] = 0.9, which is greater than the threshold val-

ues of 0.1, 0.2 and 0.3. Similarly, some cases can be identified where reflection binary

masks obtained via approach 1 are better than those obtained via approach 2.

4.2 Experiments for estimation of ground truth reflec-

tion strength maps and reflection binary masks for

real data

For real data, since we do not have the ground truth reflection layer, only approach 1

in Subection 4.1.1 can be utilized to estimate reflection strength maps and reflection

binary masks. Since the mixed image formation model is not known for given real

T and R, theoretically estimating the reflection strength maps and reflection binary

masks is a highly ill-posed problem. For estimating the reflection strength maps for

real data, we use the approach 1 described in Subsection 4.1.1 with T̃ = αT for five
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Figure 4.1: Some examples of reflection strength maps and reflection binary masks es-
timated for mixed images synthesized by linear mixing of T and R. In each
column, from top to bottom : mixed image I , transmission layer T , reflec-
tion layer R, reflection strength map rsm1 estimated via approach 1, rbm1

obtained by setting a threshold of 0.1 on rsm1, reflection strength map rsm2

estimated via approach 2 and rbm2 obtained by setting a threshold of 0.1 on
rsm2.
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Figure 4.2: Some examples of reflection strength maps and reflection binary masks es-
timated for mixed images synthesized as per the CEILNet data synthesis
procedure. In each column, from top to bottom : mixed image I , transmis-
sion layer T , reflection layer R, reflection strength map rsm1 estimated via
approach 1, rbm1 obtained by setting a threshold of 0.1 on rsm1, reflection
strength map rsm2 estimated via approach 2 and rbm2 obtained by setting
a threshold of 0.1 on rsm2.
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Figure 4.3: Some examples of reflection strength maps and reflection binary masks esti-
mated for mixed images synthesized as per PLNet data synthesis procedure.
In each column, from top to bottom : mixed image I , transmission layer T ,
reflection layer R, reflection strength map rsm1 estimated via approach 1,
rbm1 obtained by setting a threshold of 0.1 on rsm1, reflection strength map
rsm2 estimated via approach 2 and rbm2 obtained by setting a threshold of
0.1 on rsm2.
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Figure 4.4: Some examples of reflection strength maps and reflection binary masks es-
timated for mixed images synthesized as per Subsection 3.2.4. In each col-
umn, from top to bottom : mixed image I , transmission layer T , reflection
layer R, reflection strength map rsm1 estimated via approach 1, rbm1 ob-
tained by setting a threshold of 0.1 on rsm1, reflection strength map rsm2

estimated via approach 2 and rbm2 obtained by setting a threshold of 0.1 on
rsm2.
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Figure 4.5: Some examples of reflection strength maps and reflection binary masks es-
timated for mixed images with focused reflections. In each column, from
top to bottom : mixed image I , transmission layer T , reflection layer R,
reflection strength map rsm1 estimated via approach 1, rbm1 obtained by
setting a threshold of 0.1 on rsm1, reflection strength map rsm2 estimated
via approach 2 and rbm2 obtained by setting a threshold of 0.1 on rsm2.
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Figure 4.6: Some examples of reflection strength maps and reflection binary masks es-
timated for mixed images with ghosting effect. In each column, from top to
bottom : mixed image I , transmission layer T , reflection layer R, reflection
strength map rsm1 estimated via approach 1, rbm1 obtained by setting a
threshold of 0.1 on rsm1, reflection strength map rsm2 estimated via ap-
proach 2 and rbm2 obtained by setting a threshold of 0.1 on rsm2.
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different values of α, with α = 0.6, 0.7, 0.8, 0.9 and 1.0. For each reflection strength

map, the corresponding reflection binary masks are subsequently generated by applying

thresholds of 0.1, 0.2 and 0.3.

The reflection strength maps and reflection binary masks don’t look accurate for the

proposed dataset and the SIR2 dataset. Many pixel locations in the mixed image that are

not affected by reflection are wrongly classified as affected by reflection. The reflection

strength maps still have scene structures of T . This is primarily because of the slight

spatial misalignment between I and T due to refraction by glass, because of which

direct differencing of the intensities of the two images doesn’t yield the desired residual

reflection component. We reiterate the fact that this spatial misalignment between I

and T exists not because of camera jerks during capture, but due to refraction by glass,

which is unavoidable when capturing an image through glass. This spatial misalignment

between I and T exists even if image capture is done in a completely static background

and on a tripod. To reduce the spatial misalignment between I and T , we attempt the

following approaches : (i) we extract ORB features [42] from I and T , estimate the

homography transformation matrix using the RANSAC algorithm [41] and then align

I and T using the estimated transformation matrix, (ii) perform gaussian blurring on I

and T with kernel of sizes 3 × 3 to 17 × 17 with σ = 2 and (iii) downsample I and

T from (1960, 4032) to (224, 460), with a gaussian anti-aliasing filter. Approach (iii)

reduced the spatial misalignment in the proposed dataset to some extent but differencing

still didn’t yield the desired reflection components.

Even if I and T are spatially aligned (like in SIR2), the estimation results are not

accurate because our assumption of the linear image model formation with glass trans-

mittance constant throughout the image doesn’t hold true for real data. The reflection

binary masks of different mixed images look best with different settings of α and thresh-

old, because of which it is not feasible to use a single ground truth estimation approach

with hardcoded thresholds. Some examples of the estimated ground truth reflection

strength maps and reflection binary masks for real images are shown in Fig. 4.7.

We conclude this discussion by noting that for real data, estimation of ground truth

reflection strength maps and reflection binary masks is an intractable problem and un-

like synthetic data, pixel level manual annotation looks unavoidable for real data.
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Figure 4.7: Some examples of reflection strength maps and reflection binary masks es-
timated for real mixed images from the SIR2 dataset. In each column, from
top to bottom : mixed image I , transmission layer T , reflection layer R,
reflection strength map rsm1 estimated via approach 1 with α = 0.6, rbm1

obtained by setting a threshold of 0.2 on rsm1, reflection strength map rsm2

estimated via approach 1 with α = 0.8 and rbm2 obtained by setting a
threshold of 0.2 on rsm2.
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CHAPTER 5

REFLECTION SEGMENTATION

In this chapter, we provide the results of reflection segmentation using our network

trained on synthetic pairs of the mixed images and their corresponding ground truth

reflection binary masks estimated in Chapter 4. Section 5.1 provides the details of the

network and the training procedure used for the task of reflection segmentation. This is

followed by Section 5.2, which provides quantitative results of the proposed reflection

segmentation network on synthetic images, and Section 5.3, which provides some visual

results of the proposed reflection segmentation network on synthetic and real images.

5.1 Network and training details

In Chapter 4, we had proposed two approaches (Subsection 4.1.1 and Subsection 4.1.2)

for estimation of ground truth reflection strength maps and reflection binary masks for

synthetic data. We will use the reflection binary masks obtained via approach 1 (Sub-

section 4.1.1) as the ground truth images for training the network.

We train 4 different models for 4 different types of synthetic data - (i) CEILNet

synthetic dataset (Subsection 3.2.2), (ii) PLNet synthetic dataset (Subsection 3.2.3),

(iii) focused reflections dataset (Subsection 3.2.5) and (iv) ghosting dataset (Subsection

3.2.6). The training dataset for each model consists of synthetic pairs of mixed im-

ages and ground truth reflection binary masks estimated via approach 1, as described in

Subsection 4.1.1. 20% of the training data is used as validation data. We call the net-

works trained on CEILNet synthetic dataset, PLNet synthetic dataset, focused reflection

dataset and ghosting dataset as CNet, PNet, FNet and GNet respectively.

The network architecture is inspired from DeepLabv3 [43]. We modify the final

layer in DeepLabv3 [43] so that the final output contains only two classes : (i) pixels

having reflection and (ii) pixels not having reflection. We use a ResNet-101 [44] back-

bone for feature extraction and the weights are initialized as per pre-trained DeepLabv3



[43]. For training the network, we use the Adam optimizer [45] with a learning rate of

0.0001. MSE between the predicted and ground truth reflection binary masks is used as

the training loss. We train the network for 10 epochs with a batch size equal to 4. For

the training loss, BCE (Binary Cross Entropy) is also tried because MSE is not gener-

ally considered the best loss for classification problems. But we observed that the batch

training loss isn’t very stable on doing so. To improve the stability of the batch training

loss, we tried the BCE with logits loss but the results were similar to the network trained

with MSE as the loss function. The network outputs a grayscale image with pixel value

equal to the probability that the pixel belongs to reflection class. For the final output

reflection binary mask, the classification threshold value is set to 0.5. In this manner,

we train 4 different models for the 4 types of synthetic data.

Fig. 5.1 shows the evolution of (i) train MSE loss, (ii) test MSE loss, (iii) F1 score on

the training dataset (with a classification threshold of 0.5), (iv) train AUROC value, (v)

F1 score on the test dataset (with a classification threshold of 0.5) and (vi) test AUROC

value for the reflection segmentation model trained on the CEILNet synthetic dataset.

Similarly, Fig. 5.2, Fig. 5.3 and Fig. 5.4 show the plots for networks trained on the

PLNet synthetic dataset, focused reflections dataset and ghosting dataset respectively.

Figure 5.1: Plot showing the evolution of train MSE loss, test MSE loss, F1 score on
the training dataset, train AUROC value, F1 score on the test dataset and
test AUROC value for CNet.
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Figure 5.2: Plot showing the evolution of train MSE loss, test MSE loss, F1 score on
the training dataset, train AUROC value, F1 score on the test dataset and
test AUROC value for PNet.

Figure 5.3: Plot showing the evolution of train MSE loss, test MSE loss, F1 score on
the training dataset, train AUROC value, F1 score on the test dataset and
test AUROC value for FNet.

38



Figure 5.4: Plot showing the evolution of train MSE loss, test MSE loss, F1 score on
the training dataset, train AUROC value, F1 score on the test dataset and
test AUROC value for GNet.

5.2 Quantitative evaluation on synthetic data

The train and test AUROC values of the four trained models on their respective synthetic

datasets are shown in Table 5.1, where the training dataset size of x means x pairs of

mixed images and their corresponding ground truth reflection binary masks estimated

via approach 1 (Subsection 4.1.1). Due to lack of ground truth reflection binary masks

for real data (as explained in Section 4.2), we don’t perform quantitative evaluation on

real data.

For the CEILNet, focused reflection and ghosting synthetic datasets we use 4480

image pairs for training and 1120 image pairs for testing. For the PLNet synthetic

dataset we use 6400 image pairs for training and 1600 pairs for testing. Higher the

AUROC values, better the network is at predicting 0s as 0s and 1s as 1s. As shown

in Table 5.1, we achieve train and test AUROC values in excess of 0.9 for all models.

These are outstanding results on synthetic data and the high test AUROC values suggest

that all our 4 networks are able to distinguish between the two classes (reflection and

no reflection) really well.
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Synthetic
dataset

Training
dataset size

Testing
dataset size

Train AUROC Test AUROC

CEILNet
synthetic
dataset

4480 1120 0.97 0.96

PLNet
synthetic
dataset

6400 1600 0.95 0.93

focused
reflection
dataset

4480 1120 0.96 0.95

ghosting
dataset

4480 1120 0.94 0.90

Table 5.1: The train AUROC and test AUROC values of the four different reflection
segmentation networks trained on four synthetic datasets : (i) CEILNet syn-
thetic dataset, (ii) PLNet synthetic dataset, (iii) focused reflection dataset and
(iv) ghosting dataset

5.3 Qualitative evaluation on synthetic and real data

In this section, we show some visual results of the reflection segmentation networks on

synthetic and real data. Fig. 5.5, Fig. 5.6, Fig. 5.7 and Fig. 5.8 show results of the

four trained reflection segmentation networks tested on their corresponding synthetic

datasets. Fig. 5.9, 5.10 and 5.11 show estimation results of the four trained reflection

segmentation networks CNet, PNet, FNet and GNet on real data.

Based on the outputs of the reflection strength maps and reflection binary masks, we

conclude that the networks achieve very good segmentation results on synthetic data.

Of the pixel locations that are misclassified as not having reflection, most have very low

intensity reflections. Most of the high intensity reflection regions are correctly classified

as having reflection.

For qualitative evaluation on real data, we use 45 images from the CEILNet real

dataset [1]. We observe that for almost all the 45 real images, PNet, the reflection seg-

mentation network trained on the PLNet synthetic dataset, performs the best visually

amongst all the four networks. CNet, trained on the CEILNet synthetic dataset, per-

forms second best. Due to a lack of ghosted reflections in the CEILNet real dataset,

GNet produces unsatisfactory outputs for most input images. In images with focused

reflections, PNet still produces better results than FNet.
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Figure 5.5: Some reflection segmentation results of CNet on the CEILNet synthetic
dataset. In each row, from left to right : the mixed image I , transmis-
sion layer T , ground truth reflection binary mask as estimated in Subsection
4.1.1, output reflection strength map and output reflection binary mask
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Figure 5.6: Some reflection segmentation results of PNet on the PLNet synthetic
dataset. In each row, from left to right : the mixed image I , transmis-
sion layer T , ground truth reflection binary mask as estimated in Subsection
4.1.1, output reflection strength map and output reflection binary mask
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Figure 5.7: Some reflection segmentation results of FNet on the focused reflection
dataset. In each row, from left to right : the mixed image I , transmis-
sion layer T , ground truth reflection binary mask as estimated in Subsection
4.1.1, output reflection strength map and output reflection binary mask
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Figure 5.8: Some reflection segmentation results of GNet on the ghosting dataset. In
each row, from left to right : the mixed image I , transmission layer T ,
ground truth reflection binary mask as estimated in Subsection 4.1.1, output
reflection strength map and output reflection binary mask
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Figure 5.9: Some reflection segmentation results on real images from CEILNet real
dataset [1]. In each column, from top to bottom : mixed image I , rsm
output by CNet, rsm output by PNet, rsm output by FNet, rsm output by
GNet, rbm output by CNet and rbm output by PNet.
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Figure 5.10: Some more reflection segmentation results on real images from CEILNet
real dataset [1]. In each column, from top to bottom : mixed image I , rsm
output by CNet, rsm output by PNet, rsm output by FNet, rsm output by
GNet, rbm output by CNet and rbm output by PNet.
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Figure 5.11: Some reflection segmentation results on real images from CEILNet real
dataset [1] where none of the networks perform well. In each column,
from top to bottom : mixed image I , rsm output by CNet, rsm output by
PNet, rsm output by FNet, rsm output by GNet, rbm output by CNet and
rbm output by PNet.
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CHAPTER 6

KEY RESULTS and SUMMARY

The major outcomes of this thesis are :

• We have described the major challenges associated with reflection removal using
single images in detail.

• We have provided a comprehensive overview of the existing deep learning based
and traditional approaches for single image reflection removal.

• In order to model different kind of real-world reflections well, we synthesize a
dataset of 50000 mixed images containing undesirable reflection from real pairs
of the target transmission layer and the reflection layer.

• To deal with the acute shortage of real pairs of the mixed image and target trans-
mission layer, we propose a real dataset with 622 pairs of mixed image and target
transmission layer.

• We propose a novel approach for reflection removal, using a reflection binary
mask as a prior image which can guide reflection removal from single images.

• We estimate the ground truth reflection masks for reflection segmentation on syn-
thetic datasets to avoid cumbersome pixel level manual annotation of images.

• We achieve very accurate results for reflection segmentation on synthetic data.
We also perform qualitative evaluation of the proposed reflection segmentation
networks on real data.

• Though results for reflection removal are not provided here, we believe that ac-
curate reflection segmentation of images can help achieve state-of-the-art results
of reflection removal using single images.



CHAPTER 7

SCOPE FOR FUTURE WORK

This thesis provides accurate reflection segmentation results on mixed images affected

by undesirable reflection. We hope that the accurate reflection segmentation maps can

act as auxiliary information along with the input mixed image to help achieve state-

of-the-art results for the task of single image reflection removal. An encoder-decoder

architecture can be implemented to recover the transmission layer T using (i) the mixed

image I and (ii) the corresponding reflection binary mask estimated via the proposed

reflection segmentation network. The long-term extension of this thesis is thus, single

image reflection removal.

For further improvements in the task of reflection segmentation using single image,

we list down the following short-term steps that can be taken :

• We can manually annotate the reflection binary masks for real data at pixel-level
for 100+ mixed images. This will enable quantitative evaluation of the proposed
reflection segmentation networks on real data. In this thesis, we have only per-
formed qualitative evaluation of the reflection segmentation networks on real data
due to lack of ground truth reflection binary masks for real data.

• We can segregate real mixed images having different types of reflections : (i)
defocused, (ii) focused, (iii) ghosting and (iv) saturated. Performing quantitative
evaluation of the proposed reflection segmentation networks on the segregated
real datasets will provide us clarity about the four networks’ performance on dif-
ferent types of reflections.

• We can train another network with the same architecture but with a combined
training dataset consisting of (i) linear mix dataset, (ii) CEILNet synthetic dataset,
(iii) PLNet synthetic dataset, (iv) convex blurring dataset, (v) focused reflection
dataset and (vi) ghosting dataset. This might improve the reflection segmentation
results because of increased robustness to different types of reflections.

• We can explore using the reflection binary masks estimated via approach 2 (Sub-
section 4.1.2) as ground truth for training the reflection segmentation network.

• We can train our reflection segmentation network using other state-of-the-art se-
mantic segmentation network architectures : U-Net [36], DeepLabv3+ [46] etc.

• Most of the existing networks for single image reflection removal don’t perform
well in mixed images with low-light or weak backgrounds. A reflection segmen-
tation network trained exclusively on mixed image with dark backgrounds can be
trained. Mixed images with dark backgrounds can be synthesized if they are not
available in sufficient quantity.
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