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ABSTRACT

KEYWORDS: Federated Learning, Distributed Optimization, Dataset Distilla-

tion, Deep Learning

On-device machine learning enables the training process to utilize a large amount of

user-generated data samples. Numerous algorithms such as Federated Learning, Fed-

erated Distillation, and Hybrid Federated Distillation have been proposed hitherto to

exploit this benefit. These are typically based on exchange of local gradients, local

parameters, or even averaged outputs. In this report we study an alternative– Feder-

ated Dataset Distillation (FDD), a distributed model training algorithm which creates

synthetic, distilled versions of users’ datasets which are provided to users to train on.

We show that using the proposed algorithm, a device can achieve good accuracy on an

image classification task in a bandwidth-constrained cooperative learning scenario.
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NOTATION

x Real dataset, comprised of samples xi

x̃ Distilled dataset, comprised of synthetic samples x̃i

Mreal Sample size of real dataset

M Sample size of distilled dataset

η̃ Optimal learning rate for distilled dataset

`(xi, θ) Loss of neural network with parameters θ at data point xi

θ0 Initial distribution of weights of neural network

N Number of clients

Dk Local dataset of client

n Size of each client’s local dataset

D̃k Distilled local dataset of client

D̃ Union of clients’ distilled datasets
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CHAPTER 1

INTRODUCTION

Applications of Machine Learning in communications have a long history covering

a wide range of applications comprising of channel modelling and prediction, local-

ization, equalization, decoding, quantization, compression, demodulation, modulation

recognition, and spectrum sensing to name a few (Ibnkahla (2000), Bkassiny et al.

(2012), Kim et al. (2017), Kim et al. (2018), and references therein). The advent of

open-source Deep Learning (DL) libraries and readily available specialized hardware

along with the astonishing progress of DL in computer vision have stimulated renewed

interest in the application of DL for communications and networking.

An interesting application of DL in communication is the concept of Federated

Learning (Konečenỳ et al. (2016)). Federated Learning is a machine learning setting

where a shared global model is trained from a federation of large number of clients each

with unreliable and relatively slow network connections. A principle motivating exam-

ple of Federated Learning is enabling mobile phones to collaboratively learn a shared

prediction model while keeping all the training data on device. In this algorithm the

global model is shared among the users using the model parameters.

Not long ago Hinton et al. (2015) proposed network distillation as a way to trans-

fer the knowledge from an ensemble of many separately-trained networks into a single,

typically compact network, performing a type of model compression. Taking inspira-

tion from that phenomenal work, Wang et al. (2018) proposed an algorithm that per-

forms a similar, but orthogonal task - distill a dataset. Unlike network distillation, in

Dataset Distillation the model is kept fixed and the knowledge of the entire training

dataset, which typically contains thousands to millions of images, is encapsulated into

a small number of synthetic training images. It was shown that one can go as low as one

synthetic image per category, training the same model to reach surprisingly good per-

formance on the synthetic images. Considering Dataset Distillation as a compression

algorithm, we were inspired to apply it to the concept of cooperative learning to create

an algorithm similar to Federated Learning.



In this work, we suggest an alternative to Federated Learning where clients share

distilled versions of their datasets amongst themselves instead of their model parameters

with a central server. We show that when the union set of distilled data from all the

clients is shared with a new client, he can have a head-start on performance for a fraction

of the bandwidth that would be required to share their complete datasets with him.
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CHAPTER 2

PRECURSORY ALGORITHMS

2.1 Federated Learning

Machine Learning algorithms often rely on distributing the optimization of their model

parameters over multiple machines due to their enormous datasets and models of in-

creasing complexity. Existing ML algorithms are designed for highly controlled en-

vironments (such as data centers) where the data is distributed among machines in a

balanced and IID fashion, and high-throughput networks are available. Konečenỳ et al.

(2016) wished to extend this application to mobile phones and tablets which contain

unprecedented amounts of data. However, bearing in mind the data privacy concerns

that would arise, they proposed Federated Learning (FL) as an alternative to this setting.

In this algorithm, a shared global model is trained under the coordination of a central

server, from a federation of participating devices. The participating devices (clients) are

typically large in number and have slow or unstable internet connections. The training

data is kept locally on users’ mobile devices, and the devices are used as nodes per-

forming computation on their local data in order to update a global model. This differed

from conventional distributed machine learning due to the very large number of clients,

highly unbalanced and non-IID data available on each client, and relatively poor net-

work connections. We suppose that we have extremely large number of devices in the

network — as many as the number of users of a given service, each of which has only

a tiny fraction of the total data available. In particular, we expect the number of data

points available locally to be much smaller than the number of devices. Additionally,

since different users generate data with different patterns, it is reasonable to assume that

no device has a representative sample of the overall distribution. Under the naive imple-

mentation of Federated Learning (FSVRG, etc.), each client shares their entire model

with the central server. This becomes a communication bottleneck when the models

used by clients are large. Hence, Konečený et al. followed up their research on FL

with work which focused on the communication efficiency of the algorithm (Konečený



et al. (2016)). In this work they proposed two ways to reduce up-link communication

costs: structured updates, where we directly learn an update from a restricted space

parametrized using a smaller number of variables, e.g. either low-rank or a random

mask; and sketched updates, where we learn a full model update and then compress it

using a combination of quantization, random rotations, and subsampling before sending

it to the server. With the goal of minimizing the inter-device communication overhead

in FL, while still protecting the users’ privacy, Jeong et al. (2018) proposed Federated

Distillation (FD): a distributed model training algorithm whose communication payload

size is much smaller than FL, particularly when the model size is large. Further stat-

ing that the user-generated data samples are likely to become non-IID across devices,

which commonly degrades the performance compared to the case with an IID dataset,

they proposed another algorithm: Federated Augmentation (FAug). It is a data augmen-

tation scheme using a generative adversarial network (GAN) that is collectively trained

under the trade-off between privacy leakage and communication overhead. The trained

GAN empowers each device to locally reproduce the data samples of all devices, so as

to make the training dataset become IID.

Results: FSVRG, the Federated Learning algorithm proposed, converged to optimal

test classification accuracy in just 30 rounds of communication. It outperformed the

basic algorithm of Stochastic Gradient Descent for learning the global model. In terms

of modifications made for reducing the up-link costs, structured updates performed bet-

ter than sketched updates. This is because by sketching one throws away some of the

information obtained during training. After the modification, a modest accuracy of

85% was obtained on CIFAR10 dataset while in total communicating less than half of

what would be required to upload the original data. Federated Distillation and Hybrid

FD (Ahn et al. (2019)) performed better than classic FL in a low-SNR (-10dB), fewer

channels (T = 3000) scenario. When tested with MNIST, HFD outperformed FD along

with all other schemes when number of channels used was small (1000 ≤ T ≤ 5000).

When more channels were used, FL performed the best.

Although quite a few newer, better cooperative learning algorithms have been pro-

posed, the fundamental setup of such algorithms remains the same. Multiple clients

obtain a fraction of the total dataset which they train on, and share certain results from

the training to develop a global model. We too adopt the same setup for our algorithm,

as one can see in Chapter 3.

4



2.2 Dataset Distillation

Formerly, algorithms such as ensemble learning, network distillation, and model com-

pression (Ba and Caruana (2014), Hinton et al. (2015), Radosavovic et al. (2018)) have

been studied to simplify Deep Learning. In all these algorithms the models are manip-

ulated while the data remains constant. In their work,Wang et al. (2018) investigated

if the dataset, which typically consists of thousands of samples, could be compressed

while the model remained fixed. Their goal was to generate a synthetic dataset, much

smaller than the original, which delivered the same performance as the full dataset on

the same network. The algorithm (Fig. 2.1) does this by first deriving the network

weights as a differentiable function of the synthetic data, and given this, instead of

optimizing network weights, optimizing pixel values of these synthetic images.

Figure 2.1: Algorithm of Dataset Distillation

The authors of this paper aimed to learn a tiny set of synthetic data x̃ = {x̃i}Mi=1,

with M � Mreal (size of real dataset), and a corresponding learning rate η̃ so that a

single GD step using this synthetic x̃ boosts performance on the real dataset. Given an

initial θ0, we obtain the synthetic dataset and η̃ that minimize the objective L:

(x̃∗, η̃∗) = arg min
x̃,η̃

L(x̃, η̃; θ0) = arg min
x̃,η̃

`(x, θ1) = arg min
x̃,η̃

`(x, θ0 − η̃∇θ0`(x̃, θ0))

Distilled data obtained in the above manner, from a given initialization θ0 (called

fixed initialization), did not generalize well to other initialization weights. This was

because the result was encoding the information of both the dataset (x) and the initial-

ization θ0. To address this issue, the authors made the provision to create a small set of
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distilled data that can work with networks with random initializations from a distribu-

tion p(θ0) (called random initialization). This can be seen in Step 4 of the algorithm.

The algorithm can be extended by performing GD in Step 6 to multiple sequential

GD steps each on a different batch of distilled data and learning rate,i.e., each step i is:

θi+1 = θi − η̃i∇θi `(x̃i, θi)

and changing Step 9 to backpropogate through all steps. The recent technique of back-

gradient optimization was used for faster and low-memory gradient calculations. It for-

mulates the necessary second order terms into efficient Hessian-vector products (Pearl-

mutter (1994), Paszke et al. (2017)). The performance can be further improved by

training the network with same distilled images for multiple epochs of the GD step(s).

For each epoch, the algorithm cycles through all GD steps, where each step is associ-

ated with a different batch of distilled data. The learning rates are not tied across epochs

as later epochs often use smaller learning rates.

Results: The authors’ experiments showed that using the algorithm, the distilled

dataset of MNIST can boost the performance of LENET network up to 94% with fixed

initialization, and up to 79.5% with random initialization. The size of the distilled

dataset in these experiments was M = 10 and M = 100 (Fig. 2.2a) respectively.

Similarly the distilled dataset (of size M = 100) of CIFAR10 (Fig. 2.2b) boosted the

performance of Alex Krizhevsky’s network (Krizhevsky (2012)) (accuracy 80% when

fully trained) to 54% with fixed initialization, and 36.8% with random initialization.

It was also observed that increasing the number of GD steps significantly improved

the performance. A similar but slower trend was seen in number of epochs. It was

also seen that longer training time helped the model learn all the knowledge from the

distilled images, but the performance was limited by the total number of images.

6



(a) 100 MNIST images (79.5% ± 8.1%)

(b) 100 CIFAR10 images (36.8% ± 1.2%)

Figure 2.2: Experiment results of dataset distillation with expected test accuracy when
trained on network with unknown random initialization
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CHAPTER 3

FEDERATED DATASET DISTILLATION

3.1 Algorithm

Figure 3.1: Schematic Overview of Federated Dataset Distillation (FDD)

In Federated Dataset Distillation (FDD) we consider a small group of clients who

hold subsets of a larger dataset. Similar to the context of FL seen previously, this data

might be what a client could gather from a larger dataset - images, cellular commu-

nication data, and so on. However, in contrast to FL, here the size of the subset is

significantly larger than the number of clients (n � N ). As illustrated in Fig. 3.1,

we consider a wireless edge learning system with N users (clients), each consisting of

a neural network and a unique local dataset Dk. To enable cooperative learning, the

devices are allowed to wirelessly communicate with each other (or perhaps a common

Access Point). Each user distills his dataset Dk (of Mreal samples) to a new, synthetic

dataset D̃k (of size M � Mreal) using the Dataset Distillation Algorithm with ap-

propriate hyper-parameters. Each user transfers these smaller datasets which are then

integrated and used to train a new user to the dataset.

3.2 Evaluation

We conducted an experiment where N clients train a Convolutional Neural Network

(CNN) to carry out image classification based on subsets of the MNIST and CIFAR10



Algorithm 1 Federated Dataset Distillation
procedure DISTILLATION PHASE

for User k = 1, 2, . . . , N do

Distill dataset Dk = (xk,y) to D̃k = (x̃k,y)

return D̃k
end for

procedure TRAINING PHASE

Combine distilled datasets received: D̃ =
N⋃
k=1

D̃k = ({x̃k}Nk=1,y)

Train a new user on this new dataset D̃

datasets available at their device. We randomly select disjoint sets of n samples from the

training dataset, and allocate each set to a device. The MNIST and CIFAR10 samples

are trained on LENET and Krizhevsky’s neural net respectively. We first observe what

performance each user can achieve if they were to train on their local dataset alone.

Then, each user distills their dataset, and all N such distilled datasets are merged to

form a custom dataset. This is given to a new (N +1)th user who has a network similar

to the others. We observe how his performance evolves when trained on this custom

dataset and tested on the entire test dataset.

MNIST

The experiment was performed with N = 5 users and subsets of sizes n = 1000

samples and n = 5000 samples.

When the networks are trained on 1000 samples, the accuracy maxes out around

94% at 20 epochs (Fig. 3.2a). The datasets are then distilled for 40 epochs consisting of

2 epochs (repetitions) of 20 steps each (configured as (40,20,2)). The sixth user’s learn-

ing curve also ascends, although in a rather irregular fashion and only up to 63%, till 15

epochs and then begins to fall (Fig. 3.2b). One might find this behaviour inconsistent

since the sixth user’s dataset is larger (20 × 2 × 5 users ×10 samples= 2000 samples)

than that of any other user. However, the problem here is not the size of the dataset, but

the information within. Hence, it is within reason to believe that decreasing accuracy is

due to over-fitting.

For n = 5000 samples, as expected, the learning curves reach a higher saturation

9



(a) Learning Curves of N Users

(b) Learning Curve of (N + 1)th User

Figure 3.2: n = 1000 MNIST samples for N = 5 users distilled for (40,20,2) to give
2000 synthetic samples

(97%) than the previous case (Fig. 3.3a). The sixth user also achieves a higher maxi-

mum accuracy (76%) for the same degree of distillation (Fig. 3.3b) when compared to

n = 1000.

The above reasoning for why the sixth user’s learning curve descends after a point

can be verified from Figure 3.4. Here, as the number of epochs are increased, the

information contained in the distilled data increases thereby allowing higher maximum

accuracy (86%) and delaying the point at which over-fitting begins.

CIFAR10

Out of the 50,000 training samples of the original dataset, 10,000 (largest disjoint sub-

sets) were given to each user. The users achieved a maximum accuracy of 67% when

trained, for 35 epochs, on this data alone (Fig. 3.5a). The distilled data gave the sixth

user an accuracy of 40% when trained for one epoch. The accuracy declined for every

training epoch thereafter (Fig. 3.5b).

10



(a) Learning Curves of N Users

(b) Learning Curve of (N + 1)th User

Figure 3.3: n = 5000 MNIST samples for N = 5 users distilled for (40,20,2) to give
2000 synthetic samples

3.3 Inferences

The following inferences were made from the results of the experiment:

1. The most trivial observation one can make from the results is that the performance
of the new user is much better if he was given the real data. To understand how
better he can really perform, we compared the learning curves of the user with
the union of the users’ real datasets and the union of their distilled counterparts.
As seen in Fig. 3.6a the difference in accuracy is around 20%. However, for
one-tenth of the bandwidth, this accuracy can be considered fairly good.

2. It can be seen that the new user’s performance increases with the number of sam-
ples of distilled data provided to him. To verify this, we measured his perfor-
mance while varying the number of steps of distillation (which linearly varies
with the number of samples). It was observed (Fig. 3.6b) that the user has higher
accuracy with larger number of samples.

3. In the previous section it was pointed out that with more time to distill, the al-
gorithm transfers more information from the real dataset into the distilled images
(see Fig. 3.4). This was verified (Fig. 3.6c) by gradually increasing the number
of epochs of distillation while keeping the number of samples produced constant.

4. The lack of variance in the learning curves of distilled data could perhaps be
attributed to the design of the data. The intended purpose of this data was to

11



(a) Learning Curve for (20,20,3) distillation

(b) Learning Curve for (40,20,3) distillation

Figure 3.4: n = 5000 MNIST samples for N = 5 users distilled with two different
configurations

provide good performance when trained for just one step of GD. Hence, multiple
steps of optimization should not make a large difference to their performance.

5. The distilled dataset can be considered as a sufficient statistic of the real data for
the given neural network. The dataset D̃ can be viewed as a statistic of the real
dataset D which contains all the information needed to compute any estimate of
the parameters (of the network).

12



(a) Learning Curves of Users

(b) Learning Curve of (N + 1)th User

Figure 3.5: n = 10, 000 CIFAR10 samples for N = 5 users distilled for (50,30,3) to
give 4500 synthetic samples
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(a) Real vs. distilled data

(b) Effect of no. of samples

(c) Effect of time

Figure 3.6: Inferences verified with N = 5 users with n = 5000 samples (MNIST)
each
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CHAPTER 4

CONCLUSIONS

In this work, we proposed an alternative to Federated Learning that does not require

a central server to process data; one where the data of the users is shared amongst

themselves. Using the algorithm of Dataset Distillation, we showed that for a fraction

(≈ 10%) of bandwidth required to share the users’ original data, one could achieve

good accuracy for a new client in the system. However, concluding that the approach is

stunningly superior to existing methods would not be completely fair nor correct

Another fast-growing application of DL in communication is the interpretation of

the communication system as an auto-encoder, and to think of its design as an end-

to-end reconstruction task that seeks to jointly optimize the transmitter and receiver

components (O’Shea and Hoydis (2017)). This has been proven to be superior to the

traditional communication system design because a DL-based system can capture the

non-linear, non-stationary imperfections of the channel often left out by classic signal

processing algorithms. Moreover, it has been observed that optimizing the blocks, that

constitute the traditional communication system, independently is not necessarily better

than an end-to-end optimized system.

In future work, we wish to apply the technique discussed in this work to a practical

system. A suitable application would be in the improvement of the end-to-end learning

of communication systems. For instance, clients who have trained on the data received

at different points in a wireless network can distill and share this data. When a new

client processes the union of such data from all the users, he could have a head-start on

his performance (a lower BER) when he encounters the said network for the first time.
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