
Multidataflow Systolic Array

A THESIS

Submitted by

Rohan Kaulgekar

(EE15B097)

under the guidance of

Dr. Pratyush Kumar

for the award of

B.Tech & M.Tech Degree

in

ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

2020

1

Thesis Certificate

This is to certify that the thesis titled with Multidataflow

Systolic Array submitted by Rohan Kaulgekar to Indian

Institute of Technology, Madras, for the award of the degree

of Bachelor of Technology & Master of Technology,

is a bona fide record of the research work done by him under

my supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University

for the award of any degree or diploma.

Dr. Pratyush Kumar

Project Guide

Assistant Professor

Computer Science and Engineering

Indian Institute of Technology Madras

Place: Chennai

Date: 22 June, 2020

2

Acknowledgement

I express my sincere gratitude to my project guide Dr. Pratyush

Kumar. for his constant support during the entire period of my

Dual Degree Project. His friendly guidance kept me motivated at

all times.

I also express my gratitude towards my teammates: Vinod

Ganesan, Gokulan Ravi, Mohan Prasath G R and Neel Gala for

countless discussions which helped me in solving challenging

problems.

3

Abstract

Deep learning architectures such as Deep Neural Networks have

been applied to various fields in the modern world. Convolutional

Neural Networks(CNNs) are the dominant DNNs of choice. It is

observed that systolic arrays, due to its data reuse capabilities,

count as one of the most dominant architectures to perform the

convolution operations effectively. This work proposes one such

systolic architecture. The project explains the design and operation

of each Processing Element(PE) inside the systolic array, and then

moves towards analyzing and testing the array as a whole. The

project finally analyzes the hardware and mode-switching cost of

systolic array.

4

Contents

1 Introduction 11

1.1 Introduction . 11

1.2 Systolic Operation . 13

1.3 Objective . 14

1.4 Scope of the thesis . 14

2 Literature Review 16

2.1 Introduction . 16

2.2 Gemmini microarchitecture [1] 16

2.3 Google TPUs [2] . 17

2.4 Bit-serial Systolic Arrays [3] . 19

3 DNN Accelerator 22

3.1 Overview . 22

3.2 Compute Grid . 23

3.3 Control and Memory subsystem 24

3.4 Mapping DNNs to Systolic Array 26

4 Dataflows in Systolic Architecture 27

4.1 Introduction . 27

5

4.2 Output-Stationary Dataflow . 27

4.2.1 Data movement . 27

4.2.2 Operational view of PE 28

4.3 Weight-Stationary Dataflow . 28

4.3.1 Data movement . 28

4.3.2 Operational view of PE 29

5 Design of Multidataflow Processing Element 31

5.1 Introduction to mode-wise approach 31

5.2 Multidataflow PE . 32

5.3 PE operation in different Modes 32

5.3.1 Setup mode . 33

5.3.2 Ws mac mode . 34

5.3.3 Os mac mode . 35

5.3.4 Os drain mode . 36

6 Design of Multidataflow Array 37

6.1 Introduction . 37

6.2 Top Module . 38

6.3 Interfacing . 39

6.3.1 Array Connections using TxRx custom package 39

6.3.2 Connections to Buffers 39

7 Operation of Multidataflow Array 40

6

7.1 Introduction . 40

7.2 WS Operation . 40

7.2.1 Setting up weights for first phase 40

7.2.2 Performing MAC operations 41

7.2.3 Setting up weights for next phase 41

7.3 WS to OS Switch . 42

7.3.1 Setting up initial accumulator values 42

7.4 OS Operation . 43

7.4.1 Performing MAC operations 43

7.4.2 Draining out the outputs 44

7.5 OS to WS Switch . 44

8 Results and Discussions 46

8.1 Introduction . 46

8.2 Simulation Results . 46

8.2.1 Weight Stationary . 46

8.2.2 Output Stationary . 48

8.3 Discussions on the design . 50

8.4 Synthesis Results . 52

8.5 Discussions on the dataflow . 55

9 Summary 57

7

List of Figures

1.1 Convolution Operation . 13

2.1 Gemmini Microarchitecture . 17

2.2 Bit-serial PE . 20

2.3 Bit-serial Array . 21

3.1 DNN Accelerator . 23

4.1 Output-stationary dataflow . 29

4.2 Weight-stationary dataflow . 30

5.1 Multidataflow PE . 32

6.1 Multidataflow Systolic Array . 38

7.1 Weight Stationary operation . 43

7.2 Output Stationary operation . 45

8.1 Weight Stationary Results: PE View 47

8.2 Weight Stationary Results: Column View 48

8.3 Output Stationary Results: PE View 49

8.4 Weight Stationary Results: Column View 50

8.5 HW: Weight Stationary PE . 52

8

8.6 HW: Output Stationary PE . 53

8.7 HW: Multidataflow PE . 53

8.8 HW: Weight Stationary FIFO Connectable 54

8.9 HW: Output Stationary FIFO Connectable 54

8.10 HW: Multidataflow FIFO Connectable 54

9

Abbreviations

PE: Processing Element

MDF: Multidataflow

SA: Systolic Array

WS: Weight Stationary

OS: Output Stationary

nRow: Number of rows in systolic array

nCol: Number of columns in systolic array

bWidth: Bitwidth of input and weight data elements

twbWidth: Bitwidth of accumulator data elements

rg coord: 8-bit register storing the Y-coordinate value of PE

rg stationary: twbWidth-wide register storing the stationary

value inside PE

we data: Input data element inside a PE coming from west FIFO

ns data: Weight/accumulator data element inside a PE coming

from north FIFO

NSData: Data structure storing ns data, 8-bit counter value and

enumerated mode value which travels along north-south direction

MAC: Multiply-and-ACcumulate

TxRx: Custom Bluespec package for transmitting/recieving data

to/from a FIFO

10

Chapter 1

Introduction

1.1 Introduction

Deep learning architectures such as Deep Neural Networks(DNN)

have been applied to fields like computer vision, speech recognition,

NLP and audio recognition programs, where they have produced

results comparable to and even in some cases surpassing human

expert performance. A DNN is an Artificial Neural Network with

multiple layers between the input and output layers. The DNN

finds the correct mathematical manipulation to turn the input into

the output, whether it be a linear relationship or a non-linear

relationship.

DNNs are typically feedforward networks in which data flows from

the input layer to the output layer without looping back. At first,

the DNN creates a map of virtual neurons and assigns random

numerical values, or ”weights”, to connections between them. The

weights and inputs are multiplied and return an output between 0

and 1. Once such a network is ready, the user feeds in a set of

inputs whose outputs are already known. This phase is called

training phase, where the outputs computed by the network is

compared against actual output. If the network did not accurately

recognize a particular pattern, an algorithm would adjust the

weights to steer the network in the correct direction. That way the

algorithm can make certain parameters more influential, until it

determines the correct mathematical manipulation to fully process

the data.

One of the main issues with the DNNs is that it must consider

many training parameters, such as the size (number of layers and

number of units per layer), the learning rate(the rate of change of

weights), and initial weights. Sweeping through the parameter

space for optimal parameters is a challenge due to the cost in time

and computational resources. Hence, it is paramount that we

accelerate this operation to get the maximum performance possible

out of a DNN by using suitable hardware accelerators.

The primitive unit of computation is the convolution operation

which amounts for more than 90% of the execution time for

modern DNNs. In mathematical terms, convolution is basically an

element-wise matrix multiplication of an input data matrix and a

filter matrix to generate an output feature map. Each output entry

is generated by one matrix multiply operation, and the feature

matrix is strided across the complete input matrix to generate the

output map.

12

Figure 1.1: Convolution Operation

It can be clearly seen that one output element requires each input

element only once. However, adjacent elements reuse these data

elements. Conventional CPUs in this case will not perform well as

they perform one operation at a time. Thus for bigger dimensions

of matrices, the CPU will run out of free cache and will have to

fetch the same data elements again. Hence we need a better

hardware to tackle this problem.

1.2 Systolic Operation

A systolic array is made of multiple small PEs, capable of

performing a MAC operation, connected in a grid-like structure.

Elements from one of the maps(which is generally the feature map

or weights) are kept stationary inside the PE. Elements from the

other map are pushed across in west to east direction. Elements

from output feature map(which are generally 0) are then pushed in

13

north to south direction. During each cycle, the PE multiplies the

incoming input element with the weight value stored inside its

register and adds it to the partial output element. The updated

elements are then sent in east and south directions and gets ready

for performing next MAC operation on the next incoming data set.

The final output elements are extracted at the end of each column.

1.3 Objective

The objective of this work is to use the idea of systolic dataflow

and create and test a systolic array based on it, with support for

output-stationary and weight-stationary dataflows. We will then

verify the operation of the array by building custom testbenches

around it, and analyze the hardware costs for the same. With this,

the final objective will be able to analyze the cost of

reconfigurability.

1.4 Scope of the thesis

The thesis organization is as follows:

• The thesis first gives a brief overview of the DNN Accelerator,
where we plan to use the multidataflow systolic array

• It then explains two dataflows in systolic architecture, namely
weight stationary and output-stationary dataflows

• It then proposes a PE design which can be used for both the

14

dataflows, followed by connecting these elements to form a 2D
array

• We then look at how the data needs to be sent across the
buffers to carry out convolution operation

• We then discuss the simulation results of the array which was
run under a custom testbench and follow it up by comparing
the hardware requirements for each of the dataflow

• Finally, the thesis analyses and comments on the current
design, its strengths and potential improvements

The main point to note here is that multidataflow array is basically

a Matrix Multiply Unit inside the DNN accelerator. All the other

blocks like memory modules, buffers, frontend and host-interface

modules are not discussed and are out of the scope of this thesis.

15

Chapter 2

Literature Review

2.1 Introduction

Many recent hardware-based state-of-the-art deep learning

accelerators use systolic arrays for efficient implementations of

convolutional neural networks (CNNs). They leverage properties of

systolic arrays such as parallel processing under the dataflow

architecture, regular layout of processing elements, efficient

inter-processor communication, and minimized I/O by being able

to reuse the same data fetched from the memory many times.

2.2 Gemmini microarchitecture [1]

The microarchitecture of the systolic array is illustrated in Figure

2.1. The basic element of the systolic array is a fully combinational

processing element (PE), which performs MACs. The PEs can

support weight-stationary and output-stationary dataflows. The

PEs can also support different bitwidths for their inputs, outputs,

and internal buffer.

Figure 2.1: Gemmini Microarchitecture, Figure 2 in [1]

The authors concluded that weight-stationary dataflow consumed

less power than the output-stationary baseline, as it did not require

accumulators in the PEs of the systolic mesh. The combined

dataflow consumed more power and occupied larger area compared

to both, the output-stationary and weight-stationary dataflows as

it needed extra control logic to get the desired results.

2.3 Google TPUs [2]

Tensor Processing Unit(TPU) is a custom ASIC developed by

Google Inc. for inference, when they realised that speech

recognition DNNs would requirethem to double their datacenters to

meet the computation demands, and would be very expensive to

satisfy with conventional CPUs. The TPU was designed to be a

coprocessor on the PCIe I/O bus, allowing it to plug into existing

servers just as a GPU does.

17

The data is stored in a Unified Buffer(UB) inside the TPU, which

interacts with the host interface. The main computational part of

TPU is the Matrix Multiply Unit(MMU), which uses

weight-stationary systolic execution to save energy by reducing

reads and writes from the buffers. Its inputs are the weight FIFO

and the UB, and the output is stored inside accumulators. Custom

CISC instruction set was developed, out of which the key ones are

used to send the data in and out from the UB to host memory.

The transfer of weights from UB to Weight FIFO and from

Accumulators back to UB is done using similar instructions. Once

the peripherals to MMU are ready, a Convolve command is given

to MMU to begin the MAC operations.

The authors employed a roofline model to compare the

performances of their TPU, an NVIDIA K80 GPU and an Intel

Haswell CPU. They found out that on Neural Networks such as

LSTMs, CNNs and MLPs, the ridge point at 1350 operations per

byte of weight memory fetched TPU. This was significantly higher

as compared to 13 and 9 operations per byte in the case of Haswell

CPU and K80 GPU respectively. Power-wise, the TPU server has

17 to 34 times better total-performance/Watt than Haswell, and 14

to 16 times the performance/Watt of the K80 server.

This was so because inference apps usually emphasize

response-time over throughput since they are often user-facing.

The time-varying optimizations of CPUs (caches, out-of-order

18

execution, multithreading, multiprocessing, prefetching) that help

average throughput more than guaranteed latency was key reason

for CPU’s poor performance. Because of the latency limits, the

K80 GPU was underutilized for inference, and is just a little faster

than a Haswell CPU. Thus, TPUs were the servers-of-choice for

inference apps.

2.4 Bit-serial Systolic Arrays [3]

Kung et al. used bit-serial systolic cells . It is a weight-stationary

dataflow array where instead of buses, they use 1-bit serial input

wires for both, input and accumulator.

Figure 2.2 shows the proposed bit-serial MAC design which is used

across all systolic array implementation for 8-bit input Xi and 8-bit

filter weight W. The white logic elements implement the bit-serial

multiplication between the input Xi and the absolute value of the

filter weight. The blue logic elements negate the product based on

the sign of the filter weight. The pink full adder performs bit-serial

addition between the product and the input accumulation Yi.

19

Figure 2.2: Bit-serial PE, Figure 7 in [3]

The balanced version of the array considers 8-bit input and 8-bit

accumulator values. Thus, maintaining one clock delay across

adjacent inputs/accumulators across columns/rows is sufficient.

However in case of unbalanced widths, a delay of M-N clock cycles

was required between two subsequent inputs, where M is

accumulator width and N is input width. To hide this latency,

when M=32 and N=8, they filled in these gaps for each cell by

processing four independent input data streams simultaneously in

an interleaved manner, while expanding the processing power and

accumulation data path by 4x. Figure 2.3 shows the corresponding

cell arrays.

20

Figure 2.3: Bit-serial Array, Figure 9 in [3]

Since the main objectives of the paper were to introduce a column

combining algorithm and joint optimization methodology, it is not

very clear that how much of an impact was generated by bit-serial

arrays. Similarly, the paper didn’t explain the algorithm which the

authors used for pushing in weights.

21

Chapter 3

DNN Accelerator

3.1 Overview

The accelerator itself can be divided into three components,

namely the compute module, the control and memory subsystem

and the interface module. The compute module consists of the

multi-dimensional array of Processing Elements (PEs), built as a

systolic array. In addition, the module also contains a Tensor ALU,

which performs SIMD operations on inputs.

The control and memory subsystem can be split into frontend

module and backend module, handling instructions and data

respectively. The frontend consists of instruction queues, to which

instructions are fetched from the interface module, and finally

dispatched to the compute module. The backend contains buffers

for storing input and output feature maps and filters. The frontend

and compute module communicate using a set of micro-ops, which

store the hyper-parameters of operation to be executed on the grid.

Lastly, the interface module manages the communication with the

core (to configure registers) and memory (to send/receive data).

The interface module connects the accelerator sub-system to

DRAM and other associated storage through AXI interface. In

addition, it also connects the base control processor with the

accelerator sub-system. The module sends/receives data to/from

buffers in the memory subsystem.

Figure 3.1: DNN Accelerator

3.2 Compute Grid

Processing Element (PE) is the smallest unit of logic, which is

replicated to a multi-dimensional grid. Each PE contains registers

23

to store one value each of input, weight and output, and performs

one Multiply-and-ACcumulate operation each cycle using those

values to generate one output value. Depending on the way data

flows through the compute module, later explained in the Design

Section, one data-structure out of inputs, weights and the outputs

are kept stationary in the PE and the remaining are streamed

across the rows and columns of the systolic grid.

The above mentioned PE is replicated along two dimensions, and

interconnected along both the dimensions with immediate PEs

using FIFOs to form a systolic array. Three different

multi-dimensional vectors (input maps, output maps, weight filters)

are involved in the convolution operation. One of them is first

populated into the systolic grid, with each PE holding one or few

values throughout the entire computation. This work proposes a

PE design which can work correctly in two of the dataflows,

namely weight-stationary and output-stationary.

3.3 Control and Memory subsystem

The control and memory subsystem of the accelerator can broadly

be split into two parts - the frontend for fetching and executing the

accelerator instructions and buffers for storing input and output

maps. The frontend consists of task queues to which tasks are

streamed into by the core, and configuration registers which store

24

the runtime parameters of the current operation.

The frontend consists of instruction queues, one queue for each

type of instruction - LOAD, STORE, GEMM and ALU operation,

with each instruction being 128-bit wide. The frontend has an

instruction fetch module, which fetches instructions from the main

memory by interacting with the interface module. In addition,

there is a load and a store unit that takes in the instruction from

the command queue, contains address generation units that

generates the relevant set of addresses to fetch from the

main-memory and a dependency resolution module which resolves

the dependency across instructions coming from the command

queue.

The buffers of relevance are Global buffer and Accumulator buffer,

which store input maps and output maps respectively. Both buffers

are banked structures, and hence support multiple accesses

simultaneously. Global buffer is used to store input feature maps.

To maximize utilization, in each cycle, one value should be sent

into each row. Accumulator buffer is used to store output feature

maps. The minimum number of banks in the accumulator buffer is

same as the number of columns present in the systolic grid. Each

column produces one output value per cycle, and hence, equal

number of banks are needed to store them.

25

3.4 Mapping DNNs to Systolic Array

The stationary values are first unrolled and fed to each columns

where they are kept stationary in the PEs. The inputs are

streamed across the rows. The output partial-sums/weights are

streamed across the columns in WS/OS dataflows respectively. In

WS dataflow, the outputs along the column are simply pushed

inside Accumulator buffer. However for OS dataflow, an extra step

for draining the outputs is used and the outputs are pushed into

buffers in this final stage.

26

Chapter 4

Dataflows in Systolic Architecture

4.1 Introduction

This chapter explains the two dataflows used for the convolution

operation, namely the output-stationary and weight stationary

dataflows.

4.2 Output-Stationary Dataflow

4.2.1 Data movement

In output-stationary dataflow, initial accumulator values(which will

be 0 if there are no initial values) are stored inside the PE. The

weight values flow in north-south direction, whereas the input

values flow in west-east direction. In each cycle of Multiply phase,

the PE multiplies the incoming weight value with the incoming

input value and adds it to the accumulator value stored inside its

stationary register. The weight and input values are then pushed in

respective directions without any change. Once all the

multiplications are done, the array pushes the final accumulator

values inside the AccumFIFOs at the rate of one element per

column per cycle during the drain phase.

4.2.2 Operational view of PE

At the start of each cycle, PE dequeues NSData and looks at the

associated mode value. It then either dequeues we data(if

mode=Os mac) or not. In the latter case, it also compares the

associated counter value with the coordinate value stored inside

rg coord. If there is a match, ns data is written into rg stationary

and the previous value of rg stationary is pushed along with

counter and mode values in the south direction. In case of no

match, NSData is pushed in the south direction without making

any changes.

If the mode value is Os mac, we data is dequeued as well. The PE

then multiplies this value with the ns data and adds the result to

partial accumulator value stored inside rg stationary. NSData and

we data are then pushed in south and east directions respectively

without any change.

4.3 Weight-Stationary Dataflow

4.3.1 Data movement

In weight-stationary dataflow, weight values are stored inside the

PE. The accumulator values flow in north-south direction, whereas

the input values flow in west-east direction. In each cycle of

Multiply phase, the PE multiplies the weight value stored inside its

28

Figure 4.1: Output-stationary dataflow

stationary register with the incoming input value and adds it to the

accumulator value coming from north direction. Once the

accumulator value gets updated by all the PEs in the column, it is

ready and already present at the end of the column. We can then

connect an AccumFIFO and push the final accumulator value into

it.

4.3.2 Operational view of PE

At the start of each cycle, PE dequeues NSData and looks at the

associated mode value. It then either dequeues we data(if

mode=Ws mac) or not. In the latter case, it also compares the

associated counter value with the coordinate value stored inside

rg coord. If there is a match, ns data is written into rg stationary

29

Figure 4.2: Weight-stationary dataflow

and the previous value of rg stationary is pushed along with

counter and mode values in the south direction. In case of no

match, NSData is pushed in the south direction without making

any changes.

If the mode value is Ws mac, we data is dequeued as well. The PE

then multiplies this value with the rg stationary value and adds the

result to partial accumulator value coming from north direction.

The updated NSData and we data are then pushed in south and

east directions respectively.

30

Chapter 5

Design of Multidataflow Processing Element

5.1 Introduction to mode-wise approach

A multidataflow PE should operate in both the dataflows. Because

of this, there will be a lot of control flow and thus we come up with

such a mode-wise approach for tackling this issue. The reason is

that a complete operation in any of the phases can be divided into

various modes. And it was observed that the setup operation in

both dataflows are functionally same. Even the drain operation for

output-stationary dataflow is similar, it is just that we need an

extra label to let the acccumulator FIFOs know that this is a fresh

copy of output which needs to be stored in a particular location.

No such observations were made while comparing the MAC phases,

this is so because the second multiplicand and the result

destinations itself differ.

With these points in mind, this chapter introduces a multidataflow

PE and its construction. We then discuss how the PE operates in

each of the modes. Chapter 6 then explains how do we construct a

2D array using MDF-PEs. Chapter 7 discusses the order in which

the top module needs to push in the corresponding data elements

to get desired outputs.

5.2 Multidataflow PE

Figure 5.1 gives a broader control and data level view of MDF-PE.

It has receiver interfaces in north and west direction and is able to

receive data elements of type NSData and we data respectively in

each cycle. The PE then has similar transmitter interfaces in south

and east direction, which are able to send data elements of type

NSData and we data respectively.

Figure 5.1: Multidataflow PE

5.3 PE operation in different Modes

We currently are using 4 different modes, namely: Setup, Ws mac,

Os mac and Os drain.

32

5.3.1 Setup mode

This mode is used by MDF-SA to set initial values in rg stationary

registers of the PEs. In WS dataflow, these are the weight data

elements whereas in OS dataflow, these are the inital biases for the

output data elements.

A PE operates in this mode if the south FIFO is notFull and the

north FIFO is notEmpty, with the first mode value being Setup. In

this mode, the PE compares the rg coord value with the counter

value. If both of them match, ns data is copied into rg stationary

and the rg stationary element is pushed through south TXe

interface, along with counter and mode values. If there is no

match, the incoming NSData is directly pushed through south TXe

interface.

Pseudo code for Setup mode

. .

if(mode==Setup){

NSData_in=deq.from.north();

if(counter==rg_coord){

rg_stationary=NSData_in.ns_data;

NSData_out={rg_stationary,NSData_in.mode,NSData_in.counter};

}else{

NSData_out=NSData_in;

}

enq.to.south(NSData_out);

33

. .

5.3.2 Ws mac mode

This mode is used by MDF-SA to perform a MAC operation in WS

dataflow. Incoming ns data value is the partial accumulator value,

and the value stored in rg stationary is the weight data element.

A PE operates in this mode if the south and east FIFOs are

notFull, and the west and north FIFOs are notEmpty, with the

first mode value being Ws mac. In this mode, the PE multiplies

rg stationary value with input we data and adds it to the input

ns data. The updated ns data is then pushed through south TXe

interface, along with counter and mode values. , The we data is

pushed through east TXe interface

Pseudo code for Ws mac mode

. .

if(mode==Ws_mac){

NSData_in=deq.from.north();

WEData=deq.from.west();

new_accum=WEData*rg_stationary + NSData_in.ns_data;

NSData_out={new_accum,NSData_in.mode,NSData_in.counter};

enq.to.south(NSData_out);

enq.to.east(WEData);

}

. .

34

5.3.3 Os mac mode

This mode is used by MDF-SA to perform a MAC operation in OS

dataflow. Incoming ns data value is the weight value, and the value

stored in rg stationary is the partial accumulator value.

A PE operates in this mode if the south and east FIFOs are

notFull, and the west and north FIFOs are notEmpty, with the

first mode value being Os mac. In this mode, the PE multiplies

input ns data value with input we data and adds it to the input

rg stationary. The NSData is then pushed through south TXe

interface, and we data is pushed through east TXe interface.

Pseudo code for Os mac mode

. .

if(mode==Os_mac){

NSData_in=deq.from.north();

WEData=deq.from.west();

rg_stationary=WEData*NSData_in.ns_data + rg_stationary;

enq.to.south(NSData_in);

enq.to.east(WEData);

}

. .

35

5.3.4 Os drain mode

This mode is used by MDF-SA to drain the accumulator values

from rg stationary registers of the PEs in OS dataflow.

A PE operates in this mode if the south FIFO is notFull and the

north FIFO is notEmpty, with the first mode value being Os drain.

In this mode, the PE compares the rg coord value with the counter

value. If both of them match, ns data is copied into rg stationary

and the rg stationary element is pushed through south TXe

interface, along with counter and mode values. If there is no

match, the incoming NSData is directly pushed through south TXe

interface.

Pseudo code for Os drain mode

. .

if(mode==Os_drain){

NSData_in=deq.from.north();

if(counter==rg_coord){

rg_stationary=NSData_in.ns_data;

NSData_out={rg_stationary,NSData_in.mode,NSData_in.counter};

}else{

NSData_out=NSData_in;

}

enq.to.south(NSData_out);

. .

36

Chapter 6

Design of Multidataflow Array

6.1 Introduction

The MDF-SA consists of multidataflow PEs connected in a grid

like structure by a top module using TxRx custom package. The

inputs and outputs to the array were pushed in and extracted using

the Get-Put interfaces.

The we data is the input data element of the systolic array and

travels along West-East direction. The ns data is the

weight/output data element in OS/WS dataflows respectively. This

ns data is clubbed along with an 8-bit counter value and an

enumerated mode value to form an NSData data structure.

NSData travels along North-South direction.

Figure 5.1 shows the basic multidataflow PE. These PEs are

connected in a grid-like structure to form a systolic array, as shown

in figure 6.1.

Figure 6.1: Multidataflow Systolic Array

6.2 Top Module

A top module is used to instantiate the MDF-SA, along with

defining nRow, nCol, bWidth and twbWidth parameters. The

intra-array connections between FIFOs and PEs through TxRx

interfaces are done here. The input and output GetPut interfaces

for the array are exposed to corresponding buffers so as to receive

inputs and send out the outputs.

38

6.3 Interfacing

6.3.1 Array Connections using TxRx custom package

The PEs were connected in a top file using custom TxRx package

developed by Shakti team, IIT Madras.

For every connection along North-South or East-West direction, we

instantiate a FIFO. Inside the PE to be connected to the input side

of this FIFO, a transmitter(TX) interface is created. Inside the PE

to be connected to the output side of this FIFO, a receiver(RX)

interface is created. These interfaces are connected to the FIFO

inside the top module.

6.3.2 Connections to Buffers

At the edges of the array, we declare another set of input-output

FIFOs. FIFOs along West and North edges of the array have their

input sides connected to input buffers using GetPut interfaces,

whereas their output sides are connected to PEs in first column

and row respectively using TX interface. FIFOs along East and

South edges of the array have their output sides connected to

output buffers using GetPut interfaces, whereas their input sides

are connected to PEs in last column and row respectively using RX

interface.

39

Chapter 7

Operation of Multidataflow Array

7.1 Introduction

The MDF-SA should operate in OS and WS dataflows. This

chaptern describes how the inputs should be pushed in along the

rows and columns to ensure correct operation in either dataflows.

We will also look at how switches between these modes can be

carried out so that no data is lost.

Let us assume we have instantiated an MxN array. Similarly, let us

assume we want to perform X MAC operations in each phase.

7.2 WS Operation

7.2.1 Setting up weights for first phase

Before the start of MAC operations, we want to set up weight

values correctly in rg stationary registers of each PE. Every PE has

an inbuilt coordinator value stored in its rg coord register. This

value stores the row number of PE, and takes value from the set

{1,...M}. To set the weights correctly, the north input FIFO needs

to push NSData = {Weighti, i, Setup} ∀ i ∈ {1, ...M}. The order in

which weights are being pushed in do not matter as long as they

are accompanied by the corresponding counter values. At the south

output FIFO, the mode value ’Setup’ can be used to infer that the

accompanying ns data is not convolution output and should be

discarded.

7.2.2 Performing MAC operations

During MAC phase, the north input FIFO needs to push NSData

= {InitialAccumi, i, Ws mac} ∀ i ∈ {1, ...X}. In MAC phase, each

PE waits for WEData to be present at the west input FIFO before

starting the operation. Thus as long as relative order is maintained

inside each input FIFO, we can guarantee correct operation. At the

south output FIFO of the array, the counter value ’i’ and mode

value ’Ws mac’ can be used to store the output of convolution at

the corresponding location inside the buffer.

7.2.3 Setting up weights for next phase

The operation described in section 7.2.1 can be repeated to push in

next set of inputs. The entire procedure can then be repeated for

the subsequent set of operations in MAC phase.

41

7.3 WS to OS Switch

7.3.1 Setting up initial accumulator values

The following procedure needs to be performed if the user has to

either start operations directly in OS dataflow or switch from WS

to OS dataflow. The initial value in rg stationary of each PE will

be either ’0’ or Wi from the previous operation set. For operating

in OS dataflow, the user should set up initial biases in

rg stationary of each PE. To do so, the north input FIFO needs to

push NSData = {InitialAccumi, i, Setup} ∀ i ∈ {1, ...M}. The

order in which the accumulator values are pushed do not matter as

long as they are accompanied by the corresponding counter value.

At the south output FIFO, the mode value ’Setup’ can be used to

infer that the accompanying ns data is not convolution output and

should be discarded.

42

Figure 7.1: Weight Stationary operation: Wis are the weights, A[i]s are initial
accumulator value, A[i]’ s are partial output accumulator values and
A[i]”s are final output accumulator values. Yis are stationary values
for the next set of operations, which will either be weights/accumulator
values for WS/OS dataflow

7.4 OS Operation

7.4.1 Performing MAC operations

During MAC phase, the north input FIFO needs to push NSData

= {Weighti, i, Os mac} ∀ i ∈ {1, ...X}. In MAC phase, each PE

waits for we data to be present at the west input FIFO before

starting the operation. Thus as long as relative order is maintained

inside each input FIFO, we can guarantee correct operation. At the

south output FIFO of the array, the mode value ’Os mac’ can be

used to infer that the accompanying ns data is not convolution

output and should be discarded.

43

7.4.2 Draining out the outputs

During the drain phase, the north input FIFO needs to push

NSData = {Yi, i, Os mac} ∀ i ∈ {1, ...M}. Yi in this regard refers

to the stationary value which the user wants to use for the next

MAC operation phase. The order in which NSData is pushed in

does not matter, as long as it is accompanied by the corresponding

counter value. At the south output FIFO of the array, the counter

value ’i’ and mode value ’Os drain’ can be used to store the output

of convolution at the corresponding location inside the buffer.

7.5 OS to WS Switch

For carrying out this switch operation, the north input FIFO needs

to push NSData = {Weighti, i, Os drain} ∀ i ∈ {1, ...M} after the

final Os mac phase. Weighti in this regard refers to the weight

value which the user wants to use for the next WS dataflow

operation. At the south output FIFO of the array, the counter

value ’i’ and mode value ’Os drain’ can be used to store the output

of convolution at the correct location inside the buffer. Once all the

weights for next WS operation are pushed in and outputs from the

previous OS operation are drained out, procedure mentioned in

section 7.2.2 should be carried out to perform the MAC operations

for current WS phase.

44

Figure 7.2: Output Stationary operation: W[i]s are the weights, Ais are initial
accumulator value, Ai’ s are partial output accumulator values and
Ai”s are final output accumulator values. Yis are stationary values
for the next set of operations, which will either be weights/accumulator
values for WS/OS dataflow

45

Chapter 8

Results and Discussions

8.1 Introduction

In this section, we will look at simulation and hardware synthesis

results of the MDF array in both, OS and WS dataflows. We will

then comment on the pros and cons of the current design and

finally look at which design suits well for what type of workloads.

8.2 Simulation Results

This section shows the simulation results of the array. NOTE: The

rg coord value of the PE is the row value of PE + 1.This means for

PE[1][1], rg coord=2.

8.2.1 Weight Stationary

A 3x3 SA was initialised with twbWidth=32 bits and

bWidth=8bits. The operation involved setting up weights for the

first phase, performing 5 MAC operations for each weight element,

followed by setting up new set of weights for next operation.

Figure 8.1: WS PE view: The result shows how operations are being carried out
in PE[1][1]

Refer figure 8.1. Initially, there is a 2-cycle delay. That is because

the top module(in this case the testbench) takes one cycle to fill

the first element in the column FIFO of the SA. Because of the way

the testbench was constructed, we are encountering one cycle delay

everytime a mode switch happens. These delays can be removed if

the data elements are ready and pushed into column FIFOs well in

time.

In the next cycle, PE[0][1] processes on the first data element.

Thus, we see that PE in 2nd row begins its operation in 3rd cycle.

In cycle 2 and cycle 4, since the PE encounter Setup mode but the

counter values don’t match, the rg stationary value remains same

for the following cycle. The NSData element is pushed southwards

without any change. However in cycle 3, Setup mode is

encountered and counter values match. Hence the rg stationary

copies the ns data value(which is reflected in the next cycle) and

47

the initial value of rg stationary is pushed instead.

During the MAC phase(cycles 6 - 10)

South Output = North Input + West Input * rg stationary

The behaviour of the PE in cycles 12-14 is similar to that in cycles

2-4. This is expected as both of them are actually the setup

phases. The only difference between the sets is the value of the

ns data elements(weights in this case).

Figure 8.2: WS Column view: The results show how the inputs should be pushed
inside column FIFOs and see if we get correct results at the end of the
array

8.2.2 Output Stationary

A 3x3 SA was initialised with twbWidth=32 bits and

bWidth=8bits. The operation involved setting up initial

48

accumulator values for the first phase, performing 5 MAC

operations for each output element, followed by setting up new set

of accumulator elements for next operation.

Figure 8.3: OS PE view: The result shows how operations are being carried out
in PE[1][1]

Refer figure 8.3. The delays are similar to the ones seen in weight

stationary dataflow. We have a 2-cycle delay for PEs in second

row, followed by one cycle delay for each mode change because of

testbench structure. The setup phase of OS dataflow(cycles 2-4) is

exactly the same as presented in WS dataflow. During the MAC

phase(cycles 6 - 10)

rg stationary = North Input + West Input * rg stationary

NSData is pushed without modifying by the PE as they contain

weight elements which should not be modified. The change in

rg stationary is reflected in next cycle, as register writes have one

cycle write time.

The drain phase(cycles 12-14) is operationally similar to the Setup

49

phase. However we need to differentiate between the two because

ns data elements popped along with Os drain should be pushed

inside the accumulator buffer and not the weight buffer. This is

demonstrated in figure 8.4, where the column FIFO prints the

output value when the ns data is popped along with Os drain

mode.

Figure 8.4: WS Column view: The results show how the inputs should be pushed
inside column FIFOs and see if we get correct results at the end of the
array

8.3 Discussions on the design

Thus after looking at the results, we can see that we have an

operational Systolic Array with Multidataflow support. However,

just like any other design, the current hardware design has its own

pros and cons.

Pros:

• Switching: It is easier to switch between different dataflows

50

and also between different modes of the same dataflow. Since
every data element is accompanied by a corresponding mode
value, we just need to push in the NSData elements in the
desired order.

• No global signals: Using mode-wise approach also serve
another purpose. We do not need to have global signals to
switch the array from one operational mode to other.

• Row-column independency: The logic of the PE does not
allow the we data to dequeue if the PE does not have
corresponding ns data in any of the MAC modes. Similarly,
the MAC data element doesn’t get dequeued/pushed forward
before we data element is available. Hence to get the desired
operation, the user just needs to make sure that relative order
of pushing inputs along each row and column is correct and
not worry about the cycle times. So as can be seen in figures
4.2 and 4.1, we do not need to push those ’0’s (or wait for
those many cycles).

Cons:

• Hardware costs: Because of this mode-approach, we now
have to have an extra register to store this value for each PE.
One can come up with alternate designs(like usage of some
global register) to counter this, but then it would impact the
latency of the array.

• Complexity at top module: The top module responsible
for pushing and popping the inputs and outputs now has to
arrange for this mode value as well. It might be possible to
remove this complexity if we use a design similar to the one
mentioned in the previous point.

Potential Areas of improvement:

• Getting rid of mode approach: It might be possible to get
rid of mode approach and save the corresponding hardware
registers if we use a global register for array itself. This
register can then be used to send interrupts to each PE.

51

However, the new design then has to have provisions for
interrupts and high delays will be incurred.

• Using a different connection interface: The current
design uses TxRx interfaces which are connected to the FIFOs.
The FIFO behaves like a flip-flop and enqueue/dequeue signal
behaves like the enable signals. It might be possible to get rid
of these FIFOs by using some alternate connection interfaces.

• Multi-data Support: In the current design,
ns data(twbWidth bits wide) and we data(bWidth bits wide)
are expected to have only one data element. By investing in
some extra hardware, we can extend the support for multiple
data elements. Basically, we can use bit partitioning to send n
data elements along the column(twbWidth/n bits wide) and
along the row(bWidth/n bits wide) in each cycle.

8.4 Synthesis Results

Synthesis for the three dataflows(WS, Os and MDF) was carried

out in Vivado 2019.2 on Spartan SP701 evaluation platform. A 3x3

SA was initialised with twbWidth=32 bits and bWidth=8 bits.

Following results show hardware requirements for one PE.

Figure 8.5: HW: Weight Stationary PE

52

Figure 8.6: HW: Output Stationary PE

Figure 8.7: HW: Multidataflow PE

Refer figures 8.5, 8.6 and 8.7. As expected, WS requires the least

amount of hardware. This is so because we need only two modes,

namely Setup and Ws mac for this dataflow. OS PE, on the other

hand, requires an extra 32-bit MUX as compared to WS. The

reason behind this might be that in OS dataflow, rg stationary

register must be written by ns data during the Setup mode and an

extra Os drain mode(which is not present in WS dataflow). Finally

as Multidataflow itself has a lot of control flow, we see the highest

hardware requirements for this PE.

53

Figure 8.8: HW: Weight Stationary FIFO Connectable

Figure 8.9: HW: Output Stationary FIFO Connectable

Figure 8.10: HW: Multidataflow FIFO Connectable

Refer figures 8.8, 8.9 and 8.10. Each PE uses one 8-bit FIFO

54

connectable module in West-East direction and an x-bit FIFO

connectable in North-South direction. ’x’ takes the value of 41 in

WS as we have 32-bits for ns data, 8-bits for counter and 1-bit for

mode(2 modes for WS). On the other hand, ’x’ takes the value of 42

in OS and MDF as we have 32-bits for ns data, 8-bits for counter

and 2-bits for mode(3 modes for OS and 4 modes for MDF). Since

the number of FIFOs used for each PE in all the modes is same, we

do not see any other difference between the 3 results.

8.5 Discussions on the dataflow

Since a real NN will require a fully functional DNN accelerator, we

did not offload an actual convolution operation on the MDF-SA.

Hence we can qualitatively discuss which dataflow performs well in

certain circumstances and how can we use the MDF-SA to speed

the underlying MAC operations up.

Output stationary dataflow can be used if we want to minimizes

Read/Write energy consumption for partial accumulators. Since

the output is available only at the end of the MAC phase, high

latency is involved. Thus OS dataflow should be used if latency is

not of prime concern and the weight maps are too large to fit inside

a limited size SA.

Weight stationary dataflow can be used if we want to minimizes

Read/Write energy consumption for filter weights. Since the

55

output has a latency equal to the number of rows in the SA, the

latency is low. Thus WS dataflow should be used if latency is of

prime concern and if we want to generate/evaluate huge number of

outputs which use the same weight, but number of Weight * Input

terms are low.

A MDF-SA would be a good choice if the user wants to map

multiple types of workloads on the same hardware, at the cost of

some extra hardware per conventional single dataflow PE.

56

Chapter 9

Summary

The objective of the project was to design a Multidataflow SA

design which can work in OS and WS dataflows and can be

mapped on the same hardware. It involved using a mode-wise

approach as different phases in the aforementioned dataflows

require different types of operation to be performed inside the PE.

The final design used 4 modes:

• Setup: For setting up initial accumulator/weight values

• Ws mac: For performing MAC operation in WS dataflow

• Os mac: For performing MAC operation in OS dataflow

• Os drain: For draining out the final accumulator values after
Os mac phase

We were able to simulate the design in both OS and WS dataflows

and found out that the operations were performed successfully. We

were also able to extract and analyse the synthesis results for each

PE block used inside the array.

Bibliography

[1] Hasan Genc et al. Gemmini: An Agile Systolic Array

Generator Enabling Systematic Evaluations of Deep-Learning

Architectures. 2019. arXiv: 1911.09925 [cs.DC].

[2] Norman P. Jouppi et al. “In-Datacenter Performance Analysis

of a Tensor Processing Unit”. In: Proceedings of the 44th

Annual International Symposium on Computer Architecture.

ISCA ’17. Toronto, ON, Canada: Association for Computing

Machinery, 2017, pp. 1–12. isbn: 9781450348928. doi:

10.1145/3079856.3080246. url:

https://doi.org/10.1145/3079856.3080246.

[3] H. T. Kung, Bradley McDanel, and Sai Qian Zhang. Packing

Sparse Convolutional Neural Networks for Efficient Systolic

Array Implementations: Column Combining Under Joint

Optimization. 2018. arXiv: 1811.04770 [cs.LG].

http://arxiv.org/abs/1911.09925
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
http://arxiv.org/abs/1811.04770

	Introduction
	Introduction
	Systolic Operation
	Objective
	Scope of the thesis

	Literature Review
	Introduction
	Gemmini microarchitecture genc2019gemmini
	Google TPUs 10.1145/3079856.3080246
	Bit-serial Systolic Arrays kung2018packing

	DNN Accelerator
	Overview
	Compute Grid
	Control and Memory subsystem
	Mapping DNNs to Systolic Array

	Dataflows in Systolic Architecture
	Introduction
	Output-Stationary Dataflow
	Data movement
	Operational view of PE

	Weight-Stationary Dataflow
	Data movement
	Operational view of PE

	Design of Multidataflow Processing Element
	Introduction to mode-wise approach
	Multidataflow PE
	PE operation in different Modes
	Setup mode
	Ws_mac mode
	Os_mac mode
	Os_drain mode

	Design of Multidataflow Array
	Introduction
	Top Module
	Interfacing
	Array Connections using TxRx custom package
	Connections to Buffers

	Operation of Multidataflow Array
	Introduction
	WS Operation
	Setting up weights for first phase
	Performing MAC operations
	Setting up weights for next phase

	WS to OS Switch
	Setting up initial accumulator values

	OS Operation
	Performing MAC operations
	Draining out the outputs

	OS to WS Switch

	Results and Discussions
	Introduction
	Simulation Results
	Weight Stationary
	Output Stationary

	Discussions on the design
	Synthesis Results
	Discussions on the dataflow

	Summary

