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ABSTRACT 

Subject identification involves the subject accessing the biometric system and gets           

identified based on features that are unique to him/her. In EEG subject identification we              

identify the subject based on brain signals recorded by an EEG device. This project is aimed                

at reducing the number of channels required to get a meaningful result on subject              

identification. It is a tedious task to process data streaming from over one hundred channels               

and then identify the subject. Previously, by reducing the channel count to nine, a result close                

to that of using all 128 channels of the EEG system has been achieved. 

In the first part of the project we will go through some of the methods used in speaker                  

identification and try to apply them in the context of EEG. Techniques such as feature               

switching will be implemented on channels to see if the performance could be improved.              

Later, we will explore different channel setups and switching them based on the type task can                

give us good results. 

The second part introduces the Muse device which is a portable device for recording              

EEG signals. It is a commercial product that can also be used for research. It has only four                  

channels that are located at important areas (frontal and temporal lobes) of the brain. This               

device gives us advantage over the 128 channel system in multiple ways. For instance, this               

device is cheaper, and easier to wear. In this part we will be able to observe that task is not a                     

requirement while testing for any given subject using this device. 

 

  

5 
 



 

TABLE OF CONTENTS 

ABSTRACT 5 

TABLE OF CONTENTS 6 

LIST OF TABLES 8 

LIST OF FIGURES 9 

LIST OF ABBREVIATIONS 10 

CHAPTER 1 11 

INTRODUCTION  

1.1. INTRODUCTION 11 

1.2. ​MOTIVATION OF THE WORK 12 

1.3. ORGANIZATION OF THE THESIS 13 

CHAPTER 2 14 

LITERATURE REVIEW  

2.1. INTRODUCTION 14 

2.2. EEG SIGNALS 14 

2.3. DATASETS 15 

2.4. PROCESSING THE EEG SIGNALS 17 

2.5. EEG SUBJECT IDENTIFICATION 18 

2.6. KULLBACK LEIBLER DIVERGENCE 21 

CHAPTER 3 23 

EXPERIMENTS AND RESULTS  

3.1. PART - 1 23 

3.2. PART-2 31 

CHAPTER 4 3​6 

CONCLUSION  

REFERENCES 36 

 

6 
 



 

 

7 
 



 

LIST OF TABLES 

Table 2.1: Elicitation Protocols 15 

Table 3.1.1: Baseline (Classical Identification) 23 

Table 3.1.2: Baseline (Intersession Identification) 23 

Table 3.1.3: Parallelization Performance 25 

Table 3.1.4: KLD Channels Performance 25 

Table 3.1.5: Subject-wise Channel Switching using KLD 26 

Table 3.1.6: Sanity Check 1 26 

Table 3.1.7: Sanity Check 2 27 

Table 3.1.8: Intersession Eye-Open 28 

Table 3.1.9: Intersession Eye-Closed 29 

Table 3.1.10: Intersession Eye-Open (Combined Setups) 29 

Table 3.1.11: Intersession Eye-Closed (Combined Setups) 30 

Table 3.2.1: Muse Baseline 31 

Table 3.1.2: Chunk Size vs Accuracy 32 

Table 3.2.3: Band vs Accuracy 32 

Table 3.2.4: i-vector Accuracy 33 

Table 3.2.5: Task vs Rest Performance 33 

Table 3.2.5: Re-Referencing 35 
 

  

8 
 



 

LIST OF FIGURES 

Figure 1.1: 128 Channel EEG System 11 

Figure 1.2: Muse Device 13 

Figure 2.1: EEG Bands 15 

Figure 2.2: EEG Preprocessing Step 17 

Figure 2.3: Channel Setups 1 24 

Figure 2.4: Channel Setups 2 24 

Figure 3.1.1: Frontal + Occipital 30 

  

9 
 



 

LIST OF ABBREVIATIONS 

EEG: Electroencephalogram  

GMM: Gaussian Mixture Models 

UBM: Universal Background Models 

KLD: Kullback Leibler Divergence 

JFA: Joint Factor Analysis  

AR 1: All Regions 1  

10 
 



 

CHAPTER 1 

INTRODUCTION 

1.1. INTRODUCTION 

At present, biometric systems exist in various forms and have their own advantages and              

drawbacks. One particular drawback is that almost all biometric systems are physically            

hackable without the presence of the subject in different ways. For instance, a biometric              

system incorporating facial recognition can be hacked by face masks or photos. To add to               

that, a finger-print scanner can be bypassed by an artful usage of chewing gum, or clay.                

Since, there is no way to physically emulate a subject’s brain signals, this problem can be                

overcome by EEG based biometrics. 

EEG biometric systems have their limitations as well. To begin with, they come with a heavy                

price tag. Also, it is computationally expensive to process the signals from a large number of                

channels. To top it off, the design of the system isn’t very elegant, or compact. 

Figure 1.1: 128 Channel EEG System in this project  1

 

1 Mari Ganesh Kumar, EEG signals and task-independent person-specific signatures, PhD Seminar 
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1.2. MOTIVATION OF THE WORK 

Reducing the number of channels can pave the way to overcome all of the above mentioned                

shortcomings. Previously, it has been shown that using just 9 channels will give us similar               

results as when all of the channels were used [5]. Well-educated guesses were the basis for                

selecting the channels to obtain those results. The first part of the project will explore the                

following two questions. 

First of all, will selecting those channels in a quantitatively justifiable way ensure better              

results? The brain is a very complex organ made of tens of billions of neurons. In addition,                 

the asymmetric nature of the brain makes the task of identifying the subject specific              

signatures even harder. Even if the assumptions made to arrive at the previous results were               

right, the possibility that even slight changes in the location of channels giving us better               

results cannot be dismissed. Hence, a scoring mechanism could enhance the result, and lead              

us to answer the question. 

Secondly, are subject specific signatures located at different locations for different subjects?            

Since, every human’s brain structure is different from each other, it wouldn’t be surprising to               

see locations associated with prominent subject specific signatures not coinciding across           

subjects. Therefore, channel switching is an idea that has to be explored to address this               

question. 

In the second part of the project, the 128 channel system was replaced by Muse device. This                 

device covers the limitations of the 128 channel EEG system in terms of both expenditure,               

and elegance. Hence, any practical result on subject identification will be of some             

significance. 
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Figure 1.2: Muse Device  2

 

 

1.3. ORGANISATION OF THE THESIS 

There are three more chapters in this study. The thesis organization is as follows: 

● In Chapter 2 (Literature Review), we will go through the various papers from which              

techniques and definitions were incorporated in this paper. 

● Chapter 3 (Experiments and Observations) has a description of the experiments and            

the results obtained from them. It is split into two parts, on the basis of work done                 

during the two semesters. 

● Chapter 4 (Conclusion) wraps up the thesis with the relevance of the results and some               

possible future work on them. 

 

2 Official Muse Website 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. INTRODUCTION 

This chapter contains experiments and analysis that incorporated techniques from both           

speech and EEG signal related papers. Here we will go through previous work that laid the                

foundation of our project. Also, we will discuss the dataset collected by other members of               

CCBR, and the portable Muse device. 

2.2. EEG SIGNALS 

EEG signals mentioned in the first part of chapter 3 were collected using 128 channels with a 

sampling rate of 250 Hz. This system was manufactured by ​Electrical Geodesics, Inc​. In the 

second part of the project, the Muse device with 4 channels was used to collect the data. Both 

these signals tend to have bands ranging upto 50 Hz. These dataset contained EEG signals 

collected from multiple subjects performing various elicitation protocols. They are made of 

subbands, namely delta, theta, alpha, beta, and gamma. This study mostly involves the later 

three among them. 

● Alpha: The range of this band is between 3-15 Hz. When in a meditative state, this 

band will be dominant in the spectrum. 

● Beta: This band falls between 15-30 Hz. When the subject is trying to focus on a 

given task, this band has a more significant magnitude. 

● Gamma: This band has a range of 30 to 50 Hz. During REM sleep, and performing 

tasks requiring copious amounts of attention and focus. 
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Figure 2.1: EEG Bands 

2.3 DATASETS 

2.3.1. 128 CHANNEL DATASET 

There are over 80 subjects in the dataset. Our interest and focus will be mostly on the 30                  

subjects that have completed multiple sessions. 

In previous research, subjects were made to go through a few elicitation protocols so that 

their EEG signals could be collected in a systematic way. Here is the list of all the  elicitation 

protocols used to collect the dataset in [5]: 

Table 2.1: Elicitation Protocols 

S. No. Experiment Brief Description 

1 Odd Ball Subjects were instructed to differentiate non-target stimuli 
from explicitly distinguishable target stimuli. There are 
different ways in which these stimuli were shown: 1. 
Figures differing in shape and colour. 2. Audio beeps of 
frequencies identifiable from each other. 3. Audio beeps 
occuring on the left and right ear. 

2 Familiar and 
Unfamiliar Words 

Upon hearing a familiar word, subjects were asked to click 
on the mouse. 

3 Imagining Binary 
Answers 

Subjects were asked to answer ‘yes’ or ‘no’ to the 
questions using mouse click before imagining the answer 
in their mind. 

4 Motor and Mental 
Imaginary 

Subjects imagined various motor and mental tasks 
alternatively. 

5 Passive Audio To the subject listening passively, various audio clips were 
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played. The audio clips included stories, sentences, words, 
phrases, and attention inducing sounds. 

6 Steady State 
Visually Evoked 
Potential 

A set of figures were displayed at various frequencies, after 
which the subjects were supposed to answer questions 
about the figure. 

7 Passive 
Audio-Visual 

Subjects were watching video clips followed by a question 
about each of them. 

 

Visual form of Odd Ball, Steady State Visually Evoked Potential, Passive Audio-Visual 

required the eyes of the subject to be open. For the rest of the experiments the subjects had to 

keep their eyes closed. 

 
2.3.2 MUSE DEVICE CONFIGURATION & DATASET 

In this section, we will examine the Muse device. The locations of the channels of the device                 

will be mapped on the 128 channel setup here for later reference. 

 

Figure 2.2: Muse Device Mapped on 128 Channel Device 
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In the above figure, the reference channels are marked with a downward arrow (22, 15, and                

9). The upward arrows refer to the non-reference channels (26, 2, 56, and 107).  

Two of those channels are situated around the frontal lobe. The other two are located around                

the temporal lobe. 

We have collected data from 18 subjects with the device. Multiple sessions have been              

performed by 11 subjects. We used four elicitation protocols mentioned in 2.3.1. The dataset              

is also decently well distributed over both eyes-open and eyes-closed experiments. 

2.4 PROCESSING THE EEG SIGNALS 

The preprocessing involved splitting the data into chunks of 10 to 60 seconds. They were               

further split into windows of length 360 ms. Finally the PSD of those widows are computed                

and taken as features for UBM-GMM classification. This is very similar to the way in which                

data is preprocessed for speaker identification. 

 

Figure 2.3: EEG Preprocessing Step 
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2.5 EEG SUBJECT IDENTIFICATION 

2.5.1. DIFFERENT KINDS OF IDENTIFICATION 

In this project, we will be taking a look at the following two types of subject identification: 

1. Classical Identification: All chunks from every elicitation protocol and session were            

pooled together and shuffled. Then they were split into train, validation, and test data for               

identification.  

2. Intersession Identification: For any given subject, chunks from the last few sessions             

(around 1-3) were taken for validation, and test purposes. The rest of the sessions (around               

2-4) were used for training. This type of identification resembles the real world more. 

In intersession identification is preferred more due to the robustness it can provide to the               

result. 

2.5.2 UBM-GMM SUBJECT IDENTIFICATION 

The UBM-GMM algorithm has been the foundation to analysing a lot of speech data. It has                

provided a solid basis for speaker identification problems. It is rooted in two important              

concepts, namely Gaussian Mixture Models (GMM’s), and Bayesian Estimation [1]. 

First, a GMM is modeled on the entire training dataset. We call this the universal background                

model (UBM). After this the training dataset is separated based on the subject id. Then the                

UBM is adapted to each and every subject using bayesian estimation. 

After training the UBM on the entire training dataset, for any given speaker, let’s say ​X =                 

{x​i​,...,x​T​} ​makes up the training dataset. Now we find the probability that a given training               

data-point belongs to mixture ​i​ in the UBM. 

(i|x )P t = w p (x )i i t

p (x )∑
M

j=1
wj j t

 

Using these computed probabilities, we can estimate other statistics that define the speaker’s             

data. 
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 (i | x )n i = ∑
T

t=1
P t  

(x) 1/n ) (i | x ) xEi = ( i ∑
T

t=1
P t t  

(x ) 1/n ) (i | x ) xEi
2 = ( i ∑

T

t=1
P t t

2  

To apply bayesian adaptation we have to define adaptation coefficient for every mixture as, 

αi = ni
n  + γi

 

The new statistics of the mixture can be estimated using bayesian adaptation on the existing               

statistics of the speakers data. 

n /T 1 )wwi
︿ = αi i + ( − αi i  

E (x) 1 )μμ︿i = αi i + ( − αi i  

σi
2
︿

= E (x ) 1 )(σ )αi i
2 + ( − αi i

2 + μi
2 − μi

2
︿

 

The above steps are performed for each and every speaker. Using the speaker models             

and the UBM the likelihoods are calculated and the speaker is {i , .., } λi = 1 . N     λubm         

identified. 

peaker rgmax [log(p(x  | λ )) og(p(x  | λ ))]S = a i ∑
T

t=1
t i − l t ubm  

Applying UBM-GMM is a little different in the context of an EEG dataset, because we have                

to consider that the signals are received from multiple channels [2]. Here ​c ​refers to the                

channel number.  

ubject rgmax [log(p(x  | λ )) og(p(x  | λ ))]S = a i ∑
C

c=1
∑
T

t=1
t
c

i − l t
c

ubm  

 

19 
 



 

2.5.3 I-VECTOR SUBJECT IDENTIFICATION 

Currently, i-vectors are one of the state of the art methods to solve speaker identification               

problems, and they can perform well when applied to EEG signals as well [4,5]. UBM-GMM               

laid the foundation to this method. 

Prior to i-vectors, Joint Factor Analysis (JFA) used to be the go-to algorithm for speaker               

identification [3]. In JFA, a supervector (M) formed by a speaker’s utterance can be              

separated as  

y x z  M = m + V + U + D  

In this equation ​U represents the subspace of the session (in case of multiple sessions) or the                 

medium of the recording device. ​V and ​D are known as the eigenvoice matrix and diagonal                

residual, respectively. Combinedly, these matrices define the speaker subspace. Vector ​m is            

the supervector which is formed using the UBM. 

i-vector method hypothesised that this equation can be reduced to 

 m T  w  M =  +   

Here ​T is called the total variability matrix. Our objective is to find ​w​. First, we need to                  

determine the Baum-Welch statistics of the utterance. 

(i |x , )N i = ∑
C

c=1
∑
T

t=1
P t

c λubm  

(i |x , )(x )F i = ∑
C

c=1
∑
T

t=1
P t

c λubm t
c − mi  

These parameters are used to find the i-vector representing the utterance. 

I Σ NT ) T Σ Fw = ( + T T −1/2 −1 T −1  

These vectors are later used by a classifier such as SVM for identifying the speakers. 
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2.6 KULLBACK LEIBLER DIVERGENCE 

KLD between any two probability distributions P and Q, assuming that the data follows the               

distribution P can be given by 

(P ||Q) (log( ))D = EX~P Q(X)
P (X)  

To compute this score between two GMMs, a theoretical approximation can be made. 

(P ||Q) .5 log( ) r|Σ Σ | Σ (μ )D = 0 × [ Σp

Σq + T q
−1

p
−1 − d + (μ )p − μq

T
q
−1

p − μq  

In UBM-GMM, if the subject MAP adapted GMM is well-separated from the UBM, then it               

indicates that the subject can be easily identified. If we select for channels that are the most                 

well-separated from the UBM, then it could make the subjects easily identifiable. We can use               

KLD to solve this problem. To use KLD as a distance metric, it has to be commutative. To                  

ensure this we can use the 2 sided formula that was used in [5,6]. 

istance .5 D(P ||Q) (Q||P ))  D = 0 × ( + D  
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CHAPTER 3 

EXPERIMENTS AND RESULTS 

3.1 PART - 1 

3.1.1 BASELINE MODEL 

In order to obtain baseline results, a small subset of the data with around 20 subjects from all                  

128 channels was taken for the purpose of classical identification. The dataset included about              

1100 segments of EEG with each one being 15 seconds long. Then they were split into                

windows of 360 milliseconds. We tried a method which was unconventional. In this method              

instead of adapting the UBM to each subject and obtaining the subject-wise model, separate              

GMM’s were trained on a subject-wise basis. As we can see in Table 3.1.1, The conventional                

UBM-GMM yielded better results. 

Table 3.1.1: Baseline (Classical Identification) 

Method Accuracy % 

GMM for each subject 60 

UBM-GMM 90 

 

For intersession identification, the baseline results were achieved with 30 subjects from all             

128 channels, amounting to around 3500 chunks. The chunk and window sizes were retained              

from the previous analysis at 15 sec and 360 milliseconds, respectively. Table 3.1.2 suggests              

that having a higher number of mixtures around 150 gives us better performance. 

Table 3.1.2: Baseline (Intersession Identification) 

Mixtures Accuracy % 

50 55 

150 72 
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3.1.2 CHANNEL SETUPS 

Before we move further to more experiments it is important to lay out some channel setups                

that are associated with different parts of the brain. Here we will take a look at the different                  

channel setups (figure 2.4 and 2.5) that have been used in [5] to prove that subject                

identification can be done utilizing only 9 channels instead of using all 128 channels. 

 

Figure 3.1.1: Channel Setups 1 

 

 

Figure 3.1.2: Channel Setups 2 

The All Regions 1 (AR1) setup gave the best result when compared to the other setups [5].                 

On the intersession dataset, this setup gave an accuracy around 70%. The result given by               

using all 128 channels was 72% which is only slightly higher in comparison. 
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3.1.3 PARALLELIZATION OF UBM TRAINING 

Since it took a long time to train the UBM, parallelizing the process across multiple cores                

became the apparent solution. Let’s say we want to parallelize an M-mixture GMM             

algorithm to N cores. K-Means was applied to the entire dataset to split the dataset to the N                  

cores. Within each core, applied GMM with M/N mixtures to obtain the weights, means, and               

covariances. This led us to obtain an accuracy of 70.69% with the 9 channels mentioned on                

the second chapter (AR 1) on intersession classification which is very similar to the 71.71%               

accuracy using all 128 channels (Table 3.1.3). 

Table 3.1.3: Parallelization Performance 

Channels Accuracy % 

AR1 70.69 

All Channels 71.71 

 

3.1.4 APPLYING KLD TO OUR PROBLEM 

The parallelized UBM was used for this part of the analysis as well. If the KLD score                 

between UBM trained on a channel and the subject MAP adapted GMM is high, then the                

channel is a better representation of the subject compared to other channels. The weighted              

average KLD score across different subjects was calculated for each channel. All channels             

were ranked according to this score. The top channels were chosen and a UBM-GMM model               

was trained with these channels alone. The results (mentioned in table 3.1.4) were not as               

expected. 

Table 3.1.4: KLD Channels Performance 

Channels Accuracy % 

Top 9 KLD Channels 56.35 

Top 20 KLD Channels 68.14 

Top 30 KLD Channels 68.69 
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3.1.5 KLD AS A DISTANCE MEASURE 

Due to the lack of commutativity, this score can’t be used as a distance measure, possibly                

owing to lower accuracy. However, if KLD is calculated on both sides, it becomes              

commutative. Hence, 2-sided KLD was used from this part of the analysis. 

In order to answer the second question mentioned in the motivation section of chapter 1               

(section 1.2), we tried switching the channels according to each and every subject. To ensure               

uniformity of likelihood function for all subjects, all channels were used while training to              

score KLD and classification.  

Table 3.1.5: Subject-wise Channel Switching using KLD 

top_C Accuracy (Top 9 KLD 
Channels) 

Accuracy (Top 3 KLD 
Channels) 

Accuracy % (AR1 
Channels) 

5 60.00 % 22.75% 73.33% 

10 59.20 % 22.75% 72.94% 

 

 

3.1.6 SANITY CHECKS 

Since the results were not as close to the previously achieved baseline, a few sanity checks 

were performed. To check if KLD technique is working, results from previously 

well-established setups from the journal paper were cross-checked with KLD scores. In this 

analysis, only the channels of the corresponding setup were used to compute KLD and 

classification. To replicate the results on [5], we trained a UBM for each setup. In the end, no 

strong positive correlation was found between KLD and accuracy. 

Table 3.1.6: Sanity Check 1 

Setup KLD Accuracy % 

AR 1 0.6349 71.10 

AR 2 0.6206 64.31 

AR 3 0.6052 69.41 

Central 0.6120 69.41 
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Parietal 0.6809 67.06 

Temporal 0.6084 57.65 

Occipital 0.7886 67.65 

Frontal 0.5206 61.96  

 

This analysis was further broken to the subject level. Also, the results from subject-wise 

channel switching was included. Since channel switching is involved, an all channel UBM 

was used in order to enforce uniformity throughout this analysis. In addition to that, KLD 

was scored analytically also. The resulting accuracies for a random subject are mentioned 

below. 

Table 3.1.7: Sanity Check 2 

Setup KLD (Theoretical) KLD (Analytical) Accuracy % 

AR 1 0.4927 0.8739 70.0 

AR 2 0.4365 0.8519 90.0 

AR 3 0.4389 0.8060 80.0 

Central 0.4358 1.2704 50.0 

Parietal 0.5065 0.8496 10.0 

Temporal 0.5077 1.4110 10.0 

Occipital 0.8513 1.5822 60.0 

Frontal 0.3021 0.9317 40.0 

KLD Top 9 0.5824 NA 0.0 

 

 

3.1.7 TWO LEVEL ADAPTATION ON UBM-GMM: 

There is a possibility that the subject MAP model could also be adapted to the respective kld 

channels' signatures along with the subject-specific signature. This could be overcome by the 

use of two level adaptation on an UBM trained on all channels and subjects.  
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We will look at the execution of this method here. For every subject, the top channels were 

noted, and the UBM was adapted to those channels alone from the dataset containing all the 

subjects. This channel adapted UBM was further adapted to the respective subject. This 

adapted subject model and the UBM trained on all channels, and subjects were used for 

classification. Despite using this method, the accuracy was only 69.02%, which was no better 

than the 73.33% achieved in section 3.1.4 using the AR 1. 

 

3.1.8 EYE OPEN VS EYE CLOSED EXPERIMENTS 

Since KLD scoring was clearly not working, we performed a different experiment in this              

section. From the intersession dataset consisting 30 subjects, 14 subjects who completed both             

eye-open, and eye-closed experiments were selected. Among the 14 subjects, 11 have            

completed multiple sessions with eyes open, 13 have completed multiple sessions with            

eye-closed experiments. Various setups in section 2.8 were used to find the best set of               

channels. Also, a combination of these channel setups were used to get better results.  

Table 3.1.8: Intersession Eye-Open 

Region Accuracy % 

All Regions 1 89.47 

All Regions 2 85.53 

All Regions 3 89.47 

Central 80.26 

Parietal 84.21 

Temporal 73.68 

Occipital 69.73 

Frontal 76.32 

 

All the previously mentioned setups were used to arrive at the table above. Only the tasks                

which allowed the eyes to be open were taken for that experiment. 
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Table 3.1.9: Intersession Eye-Closed 

Region Accuracy % 

All Regions 1 82.22 

All Regions 2 70.00 

All Regions 3 75.55 

Central 54.44 

Parietal 75.55 

Temporal 82.22 

Occipital 81.11 

Frontal 74.44 

 

The only difference from the previous table is that the tasks chosen required the eyes               

of the subject to be closed. 

We wanted to see if a combination of the setups mentioned in the second chapter               

could give us good results. So we chose two setups at a time and fixed the channel count to                   

nine. 

Table 3.1.10: Intersession Eye-Open (Combined Setups) 

Region Accuracy % 

Central + Parietal 82.89 

Central + Temporal 86.84 

Central + Occipital 81.58 

Central + Frontal 73.68 

Parietal + Temporal 82.89 

Parietal + Occipital 86.84 

Parietal + Frontal 81.58 

Temporal + Occipital 73.68 

Temporal + Frontal 76.32 

Occipital + Frontal 84.21 
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Table 3.1.11: Intersession Eye-Closed (Combined Setups) 

Region Accuracy % 

Central + Parietal 78.89 

Central + Temporal 80.00 

Central + Occipital 78.89 

Central + Frontal 81.11 

Parietal + Temporal 78.89 

Parietal + Occipital 80.00 

Parietal + Frontal 78.89 

Temporal + Occipital 81.11 

Temporal + Frontal 80.00 

Occipital + Frontal 83.33 

 
From the four tables mentioned in this section, all regions 1 gave the best accuracy 

when the subject’s eyes were open. Whenever the subject’s eyes were closed, a combination 

of the occipital, and frontal lobes came out to be the best option.  

 

Figure 3.1.3: Frontal + Occipital 
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3.2 PART 2 

 

In this part we will move over from the 128 channel EEG system to the 4 channel Muse                  

device. Here we will take a look at the data collected using the device and the Data from 18                   

subjects in total were collected, out of which 11 subjects have completed more than one               

session.  

A good mix of both elicitation protocols with the eyes open and closed were used for                

data collection. Visual form of Odd Ball, audio frequency version of Odd Ball, Passive              

Audio-Visual, and Passive Audio were the elicitation protocols used for collecting with this             

device. In total, subjects went through around 100 elicitation protocols. The device covers             

only the frontal and temporal lobes. This information provides us a strong reason to choose               

these tasks that mostly involve the use of these two lobes. 

 

3.2.1 MUSE DATA BASELINE 

There were 18 subjects in the dataset of whom 11 have completed multiple sessions. With               

the chunk size and window size fixed at 15 seconds and 360 milliseconds respectively, the               

number of mixtures was set to 128. Only the PSD between 3 to 30 Hz were used. The results                   

for both classical identification, and intersession identification are mentioned on Table 3.2.1. 

 

Table 3.2.1: Muse Baseline 

Mixtures Types of Classification Accuracy 

128 Classical Identification 55.65 % 

128 Intersession Identification 49.33 % 

 

The chunk size was varied to see if the accuracy could be improved. As we can observe in                  

Table 3.2.2, the intersession accuracy was the highest when the chunk size was 30 seconds               

long. 
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Table 3.2.2: Chunk Size vs Accuracy 

Chunk Size Accuracy % 

15 sec 49.33 

30 sec 51.75 

60 sec 51.67 

 

From now on, the chunk size was fixed at 30 seconds. There seems to be a negative return on                   

investment after a certain chunk length. 

 

3.2.2 BAND COMBINATIONS 

Combinations of the following band frequencies alpha (3 to 15 Hz), beta (15 to 30 Hz), and                 

gamma (30 to 50 Hz) were tried out to get the best band range in table 3.2.3. Alpha and beta                    

bands together gave the best result, which is the same as the 128 channel EEG system. 

Table 3.2.3: Band vs Accuracy 

Bands Accuracy % 

Alpha 50.00 

Beta 36.84 

Gamma 31.57 

Alpha, Beta 51.75 

Beta, Gamma 35.96 

Gamma, Alpha 39.47 

Alpha, Beta, Gamma 40.35 

 

Perhaps, alpha and beta were the dominant during the tasks that were performed by the               

subjects in these experiments. 
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3.2.3 USE OF I-VECTORS 

In this section, i-vectors were used to check if the accuracy could be improved further. In                

previous research, i-vectors are known to have improved the performance over UBM-GMM            

in subject identification [5]. In the table 3.2.4 we have listed the accuracies achieved with               

different numbers of UBM mixtures. 

Table 3.2.4: i-vector Accuracy 

Mixtures Accuracy % 

16 46.37 

32 45.97 

64 39.52 

128 52.02 

256 33.47 

 

The results didn't improve by much. This could be due to less amount of training data (only                 

four channels) to feed a complex algorithm such as i-vector and SVM classification. 

 

3.2.4 TASK VS REST 

For this experiment, we took the entire dataset with 18 subjects. irrespective of the number of 

sessions the subject has completed. The training dataset only included the time spent on 

tasks. The validation dataset was switched between task data, and a dataset resting state data. 

The resulting split was 60:20:20 between the training, task validation and rest validation 

datasets. 

Table 3.2.5: Task vs Rest Performance 

State Accuracy % 

Rest 39.90 

Task 47.32 
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As expected, in the table above we can see that the task dataset outperformed the rest dataset, 

but not by a lot. The reason for this is still unclear at the moment. It can be explored as a 

future work. This is a result worth pondering over. 

 

3.2.5 UBM POOLING 

We went back to intersession testing and tried to increase the training dataset. From the 128                

channel dataset, we took the corresponding channels that are used in Muse and then              

re-referenced them. The re-referencing was done in two ways.  

In the 128 channel system, all the channels are referenced from channel 0 (a.k.a.              

channel Cz). 

V 0 = 0  

V 1 = V 1 − V 0  

V 2 = V 2 − V 0  

. 

. 

V 128 = V 128 − V 0  

In order to re-referenced to channel ​x, 

V 0 = V 0 − V x  

V 1 = V 1 − V x  

. 

. 

V x = 0  

. 

. 
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V 128 = V 128 − V x  

We only take channels 2, 26, 56, and 107 because only those are mapped on Muse device. 

Single Channel Re-Referencing: We take the middle reference channel (channel 15) and            

then use it for re-referencing. 

 V x = V 15  

Three Channel Re-Referencing: We take an average of all three reference channels            

(channel 22,15,9) and then use it for re-referencing. 

)/3  V x = (V 22 + V 15 + V 9  

Table 3.2.6: Re-Referencing 

Method Accuracy % 

Single Channel Re-Referencing 18.70 

Three Channel Re-Referencing 44.66 

 

After the dataset was re-referenced they were normalized to follow the distribution of             

the other, both datasets together were then used for UBM training. Then they were adapted               

with Muse training dataset. The reason for this lack-lustre result could be owed to the fact                

that 128 channel data is entirely different from that of Muse data. The collecting electrodes               

are different. Almost none of the subjects overlapped between the two datasets. These             

reasons might have influenced the performance. 
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CHAPTER 4 

CONCLUSION 

In spite of all the complex methodologies used in the first part, modest results were the final                 

product. Scoring the channels with KLD didn't bring any positive results. Perhaps, there is a               

better scoring mechanism. Also, these results don't mean channel switching as an idea should              

be completely devalidated from EEG signal analysis. EEG signals are extremely susceptible            

to environmental conditions that are out of the experimenter's control, such as the plasticity              

of the brain. Hence, these methods shouldn't be dismissed altogether, as they might work              

elsewhere in a totally different scenario. 

Since we had some success with the intersession eye open and eye closed experiment, maybe               

more well-educated guesses should be looked into. Probably, extending these heuristics to            

incorporate the asymmetry of the brain could bring us good results as well. 

In the second part of the project, we directed our attention towards Muse device. It has only                 

four channels, rendering most of the drawbacks of the 128 channel system obsolete. So far,               

over 35 sessions, and 100 elicitation protocols were taken using this device. The results we               

have might not be great, but they were way better than the performance of a random number                 

generator. There were some areas of improvement. For instance, we could have gone back to               

the 128 channel system and check if the Task vs Rest experiment can yield a similar result.                 

In the re-referencing experiment we could have tried two level adaptation for the Muse data,               

and then to the subjects separately. 

The Task vs Rest experiment is something to be noted. In practice, there could be some                

complications when the subject is asked to go through an elicitation protocol. This             

experiment shows us that the necessity to make the subject perform an elicitation protocol is               

not as important as it was previously thought to be. 
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