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ABSTRACT

Data augmentation is one of the prominent techniques that is often used to improve

the performance of a network, thereby making the network more robust in learning

various features and variations. Though traditional data augmentation techniques

such as mirroring, random cropping and color-shifting improve performance to some

extent, they are at the global level and are not at the object level. (1) introduces a

novel method to augment 2D shape data of deformable images by identifying parts

from the shape and deforming them. Though this technique shows improvements on

the shape datasets, the maximum amount of a part deformation is fixed irrespective

of the object and part.

In this work, we will extend the same method to augment real-world images and

show the effectiveness of the technique on the CUB-200-2011 dataset (7). Also, we

overcome the drawback of fixed maximum amount of deformation by proposing an

algorithm based on reinforcement learning and adversarial training to learn part-

specific values for deformations. We will illustrate that our method performs better

and improves accuracy.
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CHAPTER 1

INTRODUCTION

Over the past couple of years, Deep Convolutional Neural Networks has revolution-

ized many aspects of research and industry related to computer vision tasks and

improved the performance in these tasks. In order to train such networks and learn

complex functions, we need large amounts of data. We have enough data for some

tasks, but not for all. Most often we might not have enough data to train complex

networks especially in the case of computer vision tasks which try to learn informa-

tion present in the pixels. Data augmentation is often useful in such cases which

adds more data to the training set and also avoids the network from overfitting, thus

improving the accuracy.

Traditional data augmentation techniques such as mirroring, random cropping,

random rotations and color-shifting have proved to improve performance for most of

the data hungry algorithms. Though these types of augmentation methods improve

accuracy to some extent, they are at the global level and consider image as a whole

and don’t consider any object-specific changes and hence lack to serve class specific

object variations. Fig 1.1 shows conventional data augmentation methods performed

on a sample image.

In this report, we would like to explore other plausible data augmentation tech-

niques that involve object specific variations. One way is to generate a new image of

the object in a different pose compared to the original pose i.e., image when viewed

from a different position. This can be done by first mapping the 2D image of the

object onto a 3D model as shown in Fig 1.2. Now view the model from another angle



Figure 1.1: Conventional data augmentation methods: random rotations, random
cropping, mirroring. Source: https://kharshit.github.io/blog/
2019/04/12/data-augmentation

and transform it into a 2D image as done in (3). But it is in general difficult to get

the 3D models of all types of classes and map the 2D images onto these 3D models

with detailing for all objects involved in vision tasks.

Figure 1.2: Mapping of 2D image to 3D model and vice versa. Image taken from (3)

Another way is to generate new images of the object by deforming the 2D image.

This is only feasible for those objects that are not rigid and can be deformed such

as humans, animals, birds, etc. We want to utilize the fact that these objects have

parts that can be rotated or scaled. In this work we will exploit such part base

object variations to augment new data. In the following chap 2, we will study a
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novel data augmentation technique introduced by (1) that uses such part based object

deformations to augment data for 2D shape dataset for the task of shape classification.

In chap 3, we will extend the same technique to real world images and show the

effectiveness of this method on CUB-200 dataset (7). In section 3.2 we will overcome

the limitation of (1) i.e., having the same value for maximum amount of deformation

for all parts and objects without any dependence. We propose an algorithm based

on reinforcement learning and adversarial training to learn this maximum amount of

deformation given an object and its part to deform.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In order to deform a given image for augmentation, as mentioned in the previous

section, we first need to identify parts. (1) proposes a new method to identify and

localize parts using a novel cut detection technique. It basically involves discovering

potential cuts. Cuts are line segments that join parts which are obtained by iden-

tifying concave points on the contour of the shape. These concave points serve as

endpoints for the cuts. It then removes all invalid cuts with some valid heuristics

such as

• length of the cut should be less than some threshold

• the entire cut should be within the shape

• the cut should intersect the skeleton structure only once

• the cut should not be parallel to the skeleton segment

• the cut should not be parallel to the contour

Fig 2.1 clearly shows above mentioned heuristics. After obtaining the potential

cuts, it constructs a graph with endpoints of cuts as vertices. Any two vertices in

the graph are connected if either they are neighbors on the contour or they are the

endpoints of a cut. Now it identifies possible parts by detecting cycles in the graph

and prune them with some additional valid heuristics. Fig 2.2 demonstrates the

graph construction from cuts.

After identifying the parts, it randomly selects one of them to apply a local

transformation such as rotation and/or scaling. This local transformation will be



Figure 2.1: Heuristics for potential cuts. Image taken from (1)

Figure 2.2: Graph construction from cuts. Image taken from (1)

spread across the rest of the shape with the shape manipulation technique proposed

by (2) and hence keeps the image consistent. (2) treats the shape as a mesh of

triangles and applies the deformation first on this mesh which will be mapped to the

original shape later.

The vertices of the triangles which reside in the part are considered as handle
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Figure 2.3: Image deformation using mesh optimization. Image taken from (2)

points to which we apply the local transformation. The positions of the remaining

vertices will then be computed to minimize the associated distortions of all triangles.

Thus, it carries deformation from one part of the shape to the whole mesh and makes

the deformation physically constrained as shown in Fig 2.3.

The paper (1) performed experiments and demonstrated the improvements in

results on the Animal-Shape dataset (4) and the MPEG-7 dataset (5). Some of the

deformed images are shown in Fig 2.4. These datasets are just shapes of animals

and birds in the form of binary images. In the following chap 3, we will first extend

this method to real-world images and show its potential in data augmentation with

improvements in accuracy on Caltech-UCSD Birds-200 dataset (7).

In the method proposed by (1), while deforming a selected part, the amount

of deformation i.e. rotation and scaling are sampled from a normal distribution

N(0, σ2
r) and N(0, σ2

s) respectively with σr and σs as hyper parameters. But these

values depend on the object and the part selected in the object. In order to overcome

this issue, we will explore ways to compute the maximum amount of deformation σ.

6



Figure 2.4: Deformed shapes from original images with the technique proposed by
(1). Image taken from (1)
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CHAPTER 3

PART BASED DATA AUGMENTATION

In this chapter we will look at two frameworks. In the first framework we simply

extend (1) to the real-world images i.e. treating σr and σs as hyper parameters. In

the second framework we will learn these parameters given the object and its part.

3.1 Framework 1

In order to extend the method proposed by (1) to real-world images, we need bound-

ing boxes and segmentation masks for the objects in the images. To show the efficacy

of this method on real-world images, we use CUB-200 dataset(7) as it contains both

segmentation masks and bounding boxes.

With the segmentation mask we can extract the object from the original image

leaving the image with background alone. We will fill this void, created by extracting

the object, with image inpainting technique as shown in Fig 3.1. With the help of

bounding boxes we can keep track of the location of the object so that we can place

back the deformed object on top of the image inpainted background. We do this

inpainting once for the entire dataset and store it as metadata.

Segmentation masks can be treated as shapes of the object. We first perform mesh

analysis on the segmentation mask and store the information of vertices of triangles

as metadata. We perform the shape analysis on the segmentation mask, as done in

(1), to identify and localize parts and store all the information about parts such as



Figure 3.1: Filling void after extracting the object with image inpainting techinque

their location, handle points(vertices of mesh triangles that lie inside the part), can

be rotated or not, etc as metadata. This information will later be used to augment

data.

Now given an image, we will select a part randomly from its metadata. We will

sample r and s i.e., the amount to rotate and amount to scale respectively, from a

normal distribution as described in (1).

r ∼ N(0, σ2
r) (3.1)
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sh ∼ N(0, σ2
hs) (3.2)

sv ∼ N(0, σ2
vs) (3.3)

We will now scale the part along its major axis by (1 + sh) times and (1 + sv)

times along its minor axis. Here major axis is the along the skeletal segment that

passes through the part. If there are many skeletal segments, we take the middle

among them as explained in (1). The minor axis will be perpendicular to the major

axis. For the rotation, we will first check if we can rotate the part as all parts cannot

be rotated freely. Only parts with a single cut i.e., only exterior parts can be rotated

freely as explained in (1). If this part can be rotated we will rotate this part by r

degrees.

We apply all these transformations first to the handle points present in the part.

After which positions of other vertices of mesh triangles will be computed minimizing

the distortion as explained in previous chapter. These transformations will then be

mapped to the shape. giving us a new deformed shape. We will do the same set of

transformations to the RGB image of the object and place it back on the background

with the help of bounding box coordinates, thus giving us a new augmented image.

In section 4.2, we will show the effectiveness of this method and compare it with the

conventional data augmentation techniques.

In this section, we have treated σ as a hyper parameter i.e., it will be the same

for all parts in all objects. This assumption may not be reasonable as the maximum

amount of deformations depend on the object and the part selected in it. In the

following section we will try to learn this σ given an object and a part in it.
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3.2 Framework 2

Let us first formulate the required task i.e, we need a function F to tell how much

maximum a particular part can be rotated or scaled for the given object. Let the input

image of the object be I and the extracted object be i (extracted with the help of

segmentation mask) and p be the part selected to deform. Now the problem statement

is to build or model this function F that inputs i , p and outputs σ2(σ2
rσ

2
hsσ

2
vs), from

which we sample the amount this part p can be rotated, scaled along its major axis

and scaled along its minor axis i.e.

σ2 = F (i, p) (3.4)

This σ will then be used to deform the image as explained in the previous section.

In order to get the required σ from the input object i and for the selected part p, we

need to build the function F which is going to be complex. The best way to model or

build such a complex function with the image as input is to use deep convolutional

neural networks(CNN). We, therefore, model F with a CNN namely a suggestion

network that suggests how much this particular part can be rotated or scaled, as

shown in Fig 3.2.

In order to train this network F , we have to define a loss function. But we don’t

have any targets to define a loss. We, therefore, use a Discriminator Network(D) mo-

tivated from Generative Adversarial Networks(6) to evaluate how good the deformed

object is. We also use a Feature Extractor (H) that extracts features from both the

original object and the final deformed object to compare them and tell us how close

the deformed image is with the original object as we don’t desire too much variation.

Though the problem seems to be solved, it is difficult to propagate gradients
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through the deformation module i.e., through the method proposed in (2) to deform

the object. We, therefore, incorporate the idea of policy gradient from Reinforcement

Learning to train the Suggestion Network F .

We will treat the Discriminator(D) and feature extractor(H) as the environment.

Policy is the functional behaviour of an agent. Our goal is to learn a policy from

which the we sample our actions to maximize the total reward. In other words, by

looking at the rewards we make our policy to move in the direction that makes it

better by adjusting it with gradients. In our case, actions are sampling of amount

of deformations from the policy. We want our action a(amount to deform) to be

continuous and the best policy in such scenarios is to use Gaussian Policy. We,

therefore, define our policy π for the current state S(i, p) and action a to be as

follows.

πθ(S, a) = P (a/S, θ)→ N(0, σ2) (3.5)

where θ parameterizes the suggestion network and P denotes the probability of an

action given a state and θ.

πθ(S, a)→ N(0, σ2) (3.6)

where σ2 is a function of input object i and the selected part p and the function is

parameterized by θ as in

σ2 = Fθ(i, p) (3.7)

a ∼ N(0, σ2) (3.8)
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a =


r

sh

sv

 ∼

N(0, σ2

r)

N(0, σ2
hs)

N(0, σ2
vs)

 (3.9)

where r, sh, sv denotes the amount to rotate, scale along major axis and minor

axis of the part respectively.

Figure 3.2: Model architecture for Framework 2. Given an object i with a part p,
Suggestion Network(F) outputs σ2 that helps in building a policy π from
which we sample an action a, amount to deform. The deformation module
outputs the deformed object o and the deformed image O. D tells if o is
valid or not. H compares the features of the o and i. Reward R helps in
propagating gradients to F .

So given an object and part, we get the σ from the Suggestion Network(F ). We

now sample an action a from the policy defined by σ as shown in Eq 3.9 and deform

the object by passing it through the deformation module. The Discriminator Network

13



D, then judges whether the deformed image is valid or not. We train this D like we

train the discriminator in the Generative Adversarial Networks(GAN)(6). We mark

all images from the training data as positive examples and the deformed images as

negative. The objective function for the Discriminator Network will be as follows.

JD = Ei(L2(1, D(i))) + Ei,p(L2(0, D(G(i, p)))) (3.10)

whereG is the combined model of suggestion network and deformation module similar

to a generator in GAN.

We also use a Feature Extractor Network H to compare the generated object with

the original object, so that both have similar features. H will be a VGG-16 network

pretrained on ImageNet.

In order to train the Suggestion network, we need to calculate the reward for the

sampled action a. We calculate the reward R as a linear combination of losses d and

e with hyperparameters α and β as shown in Eq 3.11

R = αd+ βe (3.11)

Here d is the loss from the Discriminator for the deformed object which it should

have classified as positive example and e is the loss from the Feature Extractor

between the features of the deformed and the original image. α and β values will be

negative so that high losses in d and e would imply less reward and vice versa.

Our objective is to maximize the expectation of the reward over the entire dataset.

The Objective function and hence the gradient calculation for the Suggestion Network

14



will be as follows.

J = Eπθ(R)

=
∑
x∈X

q(x)
∑
a∈A

πθ(x, a)Rx,a

where x denotes a data point constituting (i, p) and q denotes the distribution of

sample space X. A denotes the action space.

∇θJ =
∑
x∈X

q(x)
∑
a∈A

∇θπθ(x, a)Rx,a

=
∑
x∈X

q(x)
∑
a∈A

πθ(x, a)∇θlog(πθ(x, a))Rx,a

as ∇z = z∇log(z)

∇θJ = Eπθ(∇θlog(πθ(x, a))Rx,a) (3.12)

Substituting the Gaussian distribution for policy π will result in Eq 3.13

∇θJ = Eπθ(∇θlog(
1√
2πσ

e
a2−0

2σ2 )Rx,a) (3.13)

∇θJ = Eπθ(∇θ(
1

2
log(

1

σ2
)− a2 − 0

2σ2
)Rx,a) (3.14)

∇θJ = Ra(−
1

2σ2
+

a2

2σ4
)
∂σ2

∂θ
(3.15)

∇θJ = Ra(−
1

2(σ2 + ε)
+

a2

2(σ2 + ε)2
)
∂σ2

∂θ
(3.16)
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θ ←− θ + α∇θJ (3.17)

Here, instead of updating the parameters once for the entire distribution, we do

stochastic gradient ascent. Thus eq 3.15 gives the gradient required to update θ.

Since there is a possibility of gradients exploding because of σ in the denominator,

we add a small value ε > 0 to σ2 as in eq 3.16. We update θ with a suitable learning

rate α as in eq 3.17. Thus we can train the Suggestion network, parametrized by θ,

using the above objective function without passing gradients through the deformation

module.

Once we have trained the Suggestion network F , we can now get σ given an object

i and a part p. This σ will then be used to deform the object by the deformation

module and thus generates a new augmented image. In the following chapter we will

show the effectiveness of both frameworks on CUB-200 dataset.

3.2.1 Architecture Details

In this subsection we will look at the architecture details of the Suggestion Network

and Discriminator.

As shown in Fig 3.3, the Suggestion Network inputs 5 channel tensor consisting

of RGB object, mask for the object and mask for the part. Across the whole network

we use 3 × 3 filters and Leaky Relu as activation function. We use MaxPool layers

to reduce the size of the tensors except for the first two convolutional layers. Finally

at the end we use sigmoid to output 3 values representing our σ2.

As shown in Fig 3.4, Discriminator inputs 3 channel tensor i.e., either the RGB

object from the dataset or the deformed RGB object. Across the whole network we

16



use 3 × 3 filters and Leaky Relu as activation function. Instead of MaxPool Layers

we use strides during convolution to reduce the size of the tensor.

Figure 3.3: Network architecture for Suggestion Network.

Figure 3.4: Network architecture for Discriminator Network
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CHAPTER 4

EXPERIMENTS AND RESULTS

To demonstrate the effectiveness of both frameworks on real-world images, we will use

and perform the experiments on CUB-200 dataset(7). In order to show the performce

of the data augmentation techniques, we will train ResNet-18 model to classify this

CUB-200 data with and without data augmentation techniques.

4.1 CUB-200 dataset

Caltech-UCSD Birds 200 (CUB-200) dataset(7) is a collection of approximately 12000

RGB images of birds of 200 species. Each class or species contains 30 images for

training and 30 for testing. It also contains annotations such as segmentation masks,

bounding box and attributes. In the following section we will simply extend the

method proposed by (1) on this dataset.

4.2 Experiments with framework 1

In this section we will demonstrate the effectiveness of the data augmentation tech-

nique proposed in Framework 1 and compare it with conventional data augmentation

techniques such as mirroring, random cropping, color variations and random rota-

tions. As discussed earlier, in this framework, we treat σ2 as hyper parameter. The

maximum value we can sample from N(0, 1) will be greater than 3 which will be

too high for scaling and doesn’t look realistic. So we will choose N(0, 0.3) normal



Dataset σ2
hs σ2

vs σ2
r Test Accurcay

CUB-200 - - - 64.79
CUB-200+ Framework 1∗ 0.2 0.2 20 67.40
CUB-200+ Framework 1∗ 0.3 0.3 30 67.52
CUB-200+ Framework 1∗ 0.4 0.4 40 67.22

Table 4.1: Test accuracies on ResNet-18 when trained using different datasets(with
and without augmentation)
∗:Augmented each image in the training data twice with Framework 1 i.e.,
with σ as hyper parameters.

distribution as the maximum value we can sample will be closer to 1. We have varied

σ2(σ2
rσ

2
hsσ

2
vs) values as shown in table 4.1 and (0.3,0.3,30) values for σ2 have shown

better accuracy. We use these values for all other experiments related to Framework

1.

We will first take entire training data i.e., 30 images per class out of 30 training

images per class and train the ResNet-18 model first without any data augmentation.

We will evaluate the trained ResNet-18 model on testset consisting of 30 images per

class. Now we will use our technique to see the improvement. Augment each image

in the training set twice so that we will have 90 images per class after augmenta-

tion. Now train the model with the original (30 per class training data) and the

augmented data(60 per class). Form the Fig 4.1, we can clearly see the improvement

in performance due to this data augmentation technique.

We will now perform the same experiment as above but now we will take only 20

images per class for training i.e., with 2/3 of the training data. We do the experiment

with and with out the data augmentation. From Fig 4.2 we can clearly notice the

effectiveness of this technique.

Now we will repeat the experiment but with only 10 images per class i.e., with only

1/3 of the training data. Again from Fig 4.3 we can show that this data augmentation

technique gives better accuracy.
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Figure 4.1: Comparision of test accuracies when trained on ResNet-18 between orig-
inal CUB-200 dataset and original dataset with each training image(30
per class) augmented twice using Framework 1

We will now compare this data augmentation technique with conventional data

augmentation techniques. We will first train the ResNet-18 model with conventional

data augmentation techniques namely, random rotations, random cropping, mirror-

ing. Clearly from the Fig 4.4, conventional data augmentation methods outperforms

our data augmentation technique. Also, when we combine our method with conven-

tional methods we see a slight dip in accuracy. One possible reason could be that

conventional data augmentation methods are online i.e., generated during training

where as our method is offline i.e., we generate the augmented data say two times the

dataset before any training. Also, there are high chances of not noticing significant

deformation as we are sampling our action from a N(0, σ2) and values closer to 0 are

more probable.
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Figure 4.2: Comparision of test accuracies when trained on ResNet-18 between 2/3rd
of original CUB-200 dataset and 2/3rd original dataset with each training
image(20 per class) augmented twice using Framework 1

Some of the augmented images with framework 1 are shown in Fig 4.5.

4.3 Experiments with framework 2

In this section we will compare the effectiveness of both frameworks. From the

previous section it is evident that Framework 1 improved accuracy by a significant

amount.

We will train the Suggestion network F as described in section 3.2. Now for every

image from the original CUB-200 training data we randomly select a part. We pass

this object and part through the suggestion network and get σ. We will then sample
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Figure 4.3: Comparision of test accuracies when trained on ResNet-18 between 1/3rd
of original CUB-200 dataset and 1/3rd original dataset with each training
image(10 per class) augmented twice using Framework 1

the amount of deformation from this σ and deform it with the deformation module.

We do this for entire training dataset twice. We see from Fig 4.6 that conventional

data augmentation methods outperforms this method. But still it is better than

accuracy when trained with out any data augmentation. Less accuracy compared to

conventional methods can be attributed to its offline nature and having sampling the

deformations from a Gaussian which has a more probability for close to 0 values as

explained in previous section.

Also, it is slightly better than framework 1 as can be seen in Fig 4.7. Comparing

these two frameworks is a bit uncertain as the accuracy depends on the augmented

data which in turn depends on sampling the amount of deformations. For example

framework 1, when experimented again without any changes gave slightly better
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Figure 4.4: Comparision of test accuracies when trained on ResNet-18 between con-
ventional data augmentation methods and Framework 1
Blue: Original CUB-200 without any data augmentation
Orange: Original CUB-200 + data augmented with rotations, cropping,
mirroring
Green: Original CUB-200 + data augmented twice using Framework 1
Red: Original CUB-200 + Framework 1 + data augmented with rota-
tions, cropping, mirroring

result(0.1% more) than Framework 2.

Some of the augmented images with framework 2 are shown in Fig 4.8.
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Figure 4.5: Augmented images using framework 1 with original images at top and
the deformed images at bottom
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Figure 4.6: Comparision of test accuracies when trained on ResNet-18 between con-
ventional data augmentation methods and Framework 2
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Figure 4.7: Comparision of test accuracies when trained on ResNet-18 between
Framework 1 and Framework 2
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Figure 4.8: Augmented images using framework 2 with original images at top and
the deformed images at bottom
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

In this work, we have extended (1) to real-world images which gives us a new data

augmentation technique. This technique actually improved the accuracy though it

didn’t outperform other conventional data augmentation techniques due to various

reasons. Also, in order to deform a part we have learnt the maximum amount of

deformation we can perform with the reinforcement learning and adversarial based

algorithm. Thus we have a potential automatic data augmentation method and have

shown its effectiveness on CUB-200 dataset.

We will extend this technique to other datasets which have segmentation masks

and bounding boxes and show its effectiveness on them. Also, we would like to further

improve framework 2 as it hasn’t shown much improvement compared to framework

1 and conventional methods. Finally, this technique has a potential to extend to

other computer vison tasks such as human pose estimation.
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