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ABSTRACT

KEYWORDS: Cross-modality, Stereo Matching, Deep Learning, Disparity

Map Estimation,Matching Cost, Feature Map Comparison

Stereo Matching attempts to identify the depth of objects in a scene given two

images of the said scene from different angles. Depth estimation becomes difficult

if the modality of the two images are different, due to appearance differences.

Currently, hand-crafted feature descriptors provide the best outputs for disparity

map estimation.

The focus of this thesis is to provide a novel attempt to solve this problem by

using a Siamese style CNN. The CNN takes in both the images, and generates

a disparity map.The aim is to be able to estimate the disparity map for various

scenes, both outdoors and indoors.

The different network architectures proposed for solving the problem are first

discussed,along with the key idea behind each network.We then discuss the final

proposed network that generates the best output.By comparing feature maps of

the thermal and RGB images, we show that this is a plausible method for disparity

map estimation.The method has been trained and tested on the CATS dataset.
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CHAPTER 1

INTRODUCTION

Stereo Matching is a fundamental problem of computer vision. Given two images,

the aim is to estimate the depth of the scene. The central theme of this thesis is

to compute the depth when one image is thermal infrared (LWIR) and the other

is an RGB image.

Figure 1.1: Different Modalities

The two images are from different modalities. As such, they contain different

aspects of the same scene. The thermal image works well in case of dark surroundings,

as objects can be easily identified on the basis of their temperatures.RGB images

fail in such situations, since the brightness and contrast is low. However, the LWIR

modality suffers when temperature differences are minimal. The RGB image,

works well in such cases. The objective to leverage the strengths of the two , while

ironing out the differences, and generate a disparity map to estimate the depth.

A disparity map is a 2D representation of the shift in pixels of an image of a

scene to obtain the image taken by the other camera. Thus disparity map can

also be viewed as input to a warping function W such that for every pixel I lijin
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the left image I l, to obtain the right image Ir:

W (I l) = I li+dijj
= Ir

Given the camera parameters, a depth map can be easily obtained from a 2D

disparity map from the relation: z = fb
d

, where f is the focal length, b the distance

between cameras,z the depth and d the disparity value.

Cross-Modality immediately throws up several problems. Different imaging techniques

capture different aspects of a scene. As a result, a naive comparison of images

wouldn’t be an appropriate method to generate an accurate disparity map. Regular

networks used for RGB stereo matching would fail due to appearance differences

in the two domains.

The problem is compounded by the fact that despite being in different domains,

a common platform is required to bring the two modalities together to enable the

comparison required to generate a disparity map.

In order to not constrain the network to only certain types of images, unsupervised

training is adopted. Although harder to train, the resulting network is more

general and can be applied to various scenes, which is the goal

Since the two images are of the same scene, the focus of this thesis is a novel

approach by taking advantage of this fact and comparing feature maps of the

thermal and colour images so as to generate the disparity map.

In short, the contribution is as follows:

• Train a reconstruction network from scratch such that aligned, rectified
images have similar feature maps.

• Train a disparity map network by taking in the images and generating a
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disparity map.Using the map, the images are warped and feature maps of
the input are compared with those of the warped images to train the network.

Several architectures have been developed in order to solve this problem in an

unsupervised manner. Each method has its merits and demerits. However, the

final proposed network is the Correlation network. The following methods have

been discussed:

• Naive encoder-decoder network

• VGG features based network

• Two Networks model

• Correlation Network

3



CHAPTER 2

RELATED WORK

2.1 Unsupervised Depth Estimation

Zbontar and LeCun was the first to use a CNN for stereo matching using imaged

patches. Luo, Schwing, and Urtasun use a Siamese network and treat the problem

as a multi-class classification, where the different classes are all possible disparity

values.The data is modelled as a probability distribution. They also join the

features of their siamese network with a inner product which produces very good

results. One of the inspirations of the proposed network in this thesis is the

architecture in this paper. Garg et al. was the first to use a warping-based

unsupervised method to estimate the disparity map. The approach was to warp

the right image to left using the disparity map and obtain the absolute difference

between warped image and the left image. The error, also known as reconstruction

error or photometric error, is minimized to learn the estimated disparity map.

Godard, Mac Aodha, and Brostow improved upon this by adding a left-right

view consistency term. The model in the paper is closest to the model proposed

by this thesis. However, the issue with these methods based on photometric loss

is that, they fail when appearance differences are substantial, as in the case of

cross-modality.

2.2 Cross-spectral stereo matching

Previous methods had mainly two approaches to this problem:

• Generate an invariant between the two modalities
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• Generate a thermal image from the rgb image and vice-versa and compare.

2.2.1 Modality Invariance

Most of the methods adopted here are traditional. They are still the go-to methods

for disparity estimation for RGB-LWIR. There are mainly three kinds of methods,

as detailed in [2] and [9]:

• Similarity of pixels in two windows

• Squared Difference of pixels in two windows

• Comparison of binary vector representing windows

In the first catergory we have methods based on mutual information(MI) [14].

These compute the co-occurence of intensities of pixels in windows taken from

each image.As such, these methods can generate a good result for the problem at

hand.

In the second method, we have methods relying on descriptors such as LSS[13],HOG[3],SIFT[10],

etc. Heo, Lee, and Lee proposed Adaptive Normalized Cross-Correlation(ANCC)to

tackle illumination changes and camera parameter differences. Pinggera12, Breckon,

and Bischof showed that dense gradient features based on HOG achieved better

performance than MI and LSS descriptors. Kim et al. proposedDense adaptive

self-correlation descriptor (DASC) by im-proving LSS descriptor with random

receptive field pooling.

In deep learning methods, Aguilera et al. learned a similarity measurement of

cross-spectral image patches.

2.2.2 Image-to-Image translation

The approach taken Zhi et al. for estimating RGB-NIR disparity map is to train

the network to convert RGB to NIR images and then perform the comparison.
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The approach by Liang et al. is of a similar nature. A cycle GAN is used to train

conversion of a RGB image to NIR and vice versa, and from this, a disparity map

is learnt. However, these methods have been developed for RGB-NIR wherein the

appearance differences are lesser as compared to Thermal-RGB.

2.2.3 Correlation Based

Recently, a third method has been proposed for Thermal Infrared(LWIR)-RGB

Spectral Matching using a Siamese network modelled along the lines of [11].

Beaupre and Bilodeau attempt to compare image patches from the different modalities

and model the disparity value as a probability distribution. However, the focus

of the paper is disparity estimation for human silhouettes and may not generalize

for other scenes. This thesis is an attempt to estimate the disparity in general,

and not restricted to any particular object in question.

6



CHAPTER 3

NAIVE NETWORK

The Naive implementation of unsupervised disparity map estimation network

consists of a simple Siamese style encoder-decoder network. The network takes in

a thermal image and a RGB image. These are passed separately through several

convolutional layers with shared weights and the results are concatenated . This

is the encoder.

The output is then once again are passed through convolutional layers with upsampling

and skip connections.This is the decoder. The output of the network are two

disparity maps, one for each modality.

To enforce the similarity between the disparity map and the images, the loss

function is a cosine similarity function between the output and the corresponding

images.The training is unsupervised.

The aim is to make the network learn the relevant features with which both images

can be compared and estimate the disparity map from those features.The disparity

map is learned directly from the images, and thus contains the basic features

present in both images. On the flip side, since both the images are radiometrically

variant, the disparity map is not very accurate.
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3.1 Network Architecture
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Each ’conv’ represents a block of two convolutional layers. The layers are

designed in such a way that the image dimensions are halved after every alternate

’conv’ block. The purple layers represent the encoder with shared weights.

The outputs of the encoder are concatenated and sent through the decoder. The

decoder consists of ’upconv’ layers designed in such a way that after every alternate

block, the image dimensions are doubled. With such an arrangement in place,

outputs from the layers in the encoder are concatenated using skip connections

as shown above. This is to incorporate the higher-level encoded features while

generating the disparity map.This architecture has been inspired from [6].

3.2 Network Results

As we can see, the network is able to capture the features of the given images.

However,it struggles to learn the shift in the images.One of the reasons is that the

network is forced to learn the disparity map as well as extract features from the

input images.

A better approach is to separate feature extraction and disparity map estimation,

which forms the basis of the successive networks.
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CHAPTER 4

VGG NETWORK

The VGG network is an enhancement over the Naive implementation. Instead

of forcing the network to transform both the images to a common feature space,

the same network is trained to generate the disparity map.There are two ways to

proceed.

First way is, the images are passed through the VGG network and features from

the third layer of VGG are extracted.These extracted features are then warped

using the disparity map. The warped feature maps are compared with the feature

maps of the input images.

The significant advantage of this network is that the network need not learn the

feature transformation and the disparity map at the same time. Given that a

VGG network is used for the feature maps, the maps can said to have captured

the salient features of the original images.This method is in line with the naive

implementation.

The other way is that the images are passed through the network to generate

a disparity map.The images are also passed through the VGG network, and the

features from the thirs layer of VGG are extracted. The disparity map is then

applied on those feature maps in order to warp and compare.

In this method, the network learning the disparity map is same as that of the

Naive implementation as shown above.However the difference lies in the focus of

the network as well as the approach to extract the features.
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However, the VGG network has been trained for an image classification problem.

Although the outputs contain salient features, they might not be the best suited

for the problem at hand.

4.1 Network Results

The results are not much of an improvement over the Naive implementation.

In order to address the issue of feature extraction, one of the ways is to train

a network from scratch to extract features, and use it with the disparity map

estimation network, which forms the crux of the following networks.
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CHAPTER 5

SSIM NETWORK

5.1 Introduction

The SSIM loss network aims to address the issues of the VGG netowrk. The

method consists of two networks viz. Feature Map Network(FMN) and Disparity

Map Network(DMN).

The FMN is trained to reconstruct the images provided, and feature maps are

extracted from the bottleneck layers. The aim of the FMN to generate similar

feature maps when a thermal image and a RGB image is taken of the same

scene, in the same perspective. This results in the thermal image and RGB image

being projected onto a common feature space, where they can be compared more

accurately.

The DMN is trained to generate the disparity map given a thermal image and

a RGB image. The disparity map is used to warp the input to produce warped

rgb and warped thermal images ,respectively. Feature maps are extracted from

the input images and warped images using the FMN and are then compared.

However, here the DMN is different in terms of the loss function used.

5.2 Feature Map Network

The FMN is an encoder-decoder style Siamese network, inspired by[6]. The input

images are passed through shallow CNN layers. The output is then passed through

two encoders with shared weights. They are then concatenated and passed to the
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decoder, with skip connections. The decoder tries to reconstruct the original

images. Feature maps are extracted from the bottleneck layer of the encoder. The

training is unsupervised.

By enforcing reconstruction, we can be assured that the feature maps capture

the requisite information from the images. From this information, the network

tries to generate the original images.As such, this information can be seen as

a representation of the underlying data. Therefore, since the thermal and rgb

images are of the same scene from the same perspective, this information should

also ideally be matched, which is ensured by the L2 loss between features

In short, the network takes in a thermal image I tml
l , and a rgb image Irgbr , and

generates output images Ĩ tml
l and Ĩrgbr . Feature maps of the images extracted are

Fl and Fr. The loss function is

αrct ∗ (||I tml
l − Ĩ tml

l ||+ ||Irgbr − Ĩrgbr ||) + αft ∗ ||Fl − Fr||

In order to emphasize the similarity of feature maps, αrct is taken to be 0.1 and

αf t as 1

Thermal Image Il

RGB Image Ir

Network

Thml Features Fl

RGB Features Fr

Thml Reconst.Image Ĩl

RGB Reconst. Image Ĩr

5.2.1 Implementation Details

The decoder is a set of convolutional layers with Upsampling. Upconvolutional

layers weren’t used, unlike [6], in order to avoid checkerboard artifacts. ELU were

used for activation, instead of ReLUsLearning rate is 1e-5 for the ADAM optimizer.
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To ensure that thermal and rgb images undergo similar processing, the thermal

image is concatenated with itself twice to obtain a 3 channel image, similar to the

3-channel rgb image.

In order to force the encoder to generate similar feature maps for images of the

same scene, the KAIST dataset is used. This dataset consists of aligned,rectified

thermal-rgb image pairs. In the loss function, an MSE loss between feature maps

extracted is used.

Data Augmentation is performed by random cropping of images, while ensuring

that the centre of the image always remains in scene.This is to ensure that there

will be a portion of the image that will be matched to a corresponding part in the

other.
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5.2.2 Network Architecture
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5.2.3 Network Results

Thermal Feature Map RGB Feature Map Thermal Image RGB Image

5.3 Disparity Map Network

The DMN is of a similar construct as the FMN. However, it differs in the initial and

final output layers. The FMN takes in 3 channel inputs and generates 3 channel

output so as to ensure similar processing. However, the constraint is relaxed for

DMN. For the DMN, difference is processing is preferred in order to obtain slight

differences in the two outputs generated.The dataset used is CATS, which has

rectified but not aligned images, so as to produce a disparity map.The training is

unsupervised.

The DMN takes in the two images, and generates two disparity maps, Dl map

for the thermal image I tml
l and Dr map for the rgb image Irgbr . These maps are

then applied to the images to generate warped images Ĩ tml
r and Ĩrgbl .

Thml Image I tml
l

RGB Image Irgbr

Network

Thml Disparity Map Dl

RGB Disparity Map Dr

Warped RGB Image Ĩrgbl

Warped Thml Image Ĩ tml
r

F tml
l

F rgb
r

F̃ rgb
l

F̃ tml
r
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Similar to [6], the loss for the network consists of three components

Loss = Lfs + Lam + Lds

5.3.1 Feature Similarity Loss

By the construct of FMN, the outputs must have similar features to the input

images, since ideally, the warped images are aligned to the input images. Thus,

these 4 images are passed to the FMN to obtain the corresponding feature maps.

The loss is:

 Lfs = αfs ∗ (||F̃ tml
r − F rgb

r ||+ ||F̃
rgb
l − F tml

l ||)

. This is in correspondence with the idea used for training the FMN.

5.3.2 Appearance Matching Loss

The loss used by [6] is used to ensure that the warped images generated are

similar to the original images. Thus the loss is an SSIM loss between the pairs in

consideration:

Lam = αam ∗ [(1− SSIM(F tml
l , F̃ rgb

l )) + (1− SSIM(F rgb
r , F̃ tml

r ))]

5.3.3 Disparity Smoothness Loss

For this too, the loss used for smoothing the disparity map is taken from [6]. This

is to ensure that the edges and corners in the disparity map are similar to those

in the original images.

Lds = |∂x(Dl)e
−||∂x(Itml

l )|||+|∂y(Dl)e
−||∂y(Itml

l )|||+|∂x(Dr)e
−||∂x(Irgbr )|||+|∂y(Dr)e

−||∂y(Irgbr )|||
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5.3.4 Implementation Details

Similar to FMN, CNN+Upsampling is used so as to avoid checkerboard artifacts,along

with ELUs instead ReLUs. This is because the disparity map can have negative

values. The ADAM optimizer is used with a learning rate of 1e-5, with Xavier

initialization for the weights.
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5.3.5 Network Architecture

Thermal Image
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5.3.6 Network Results

Left Disparity Right Disparity Thermal Img RGB Img Ground Truth

As can be observed, the disparity map is a significant improvement over the

previous estimated maps. The network is successful in learning the features as

well as trying to estimate the shift of objects. However, it is still far from the

actual ground truth.

Given that the output is a reasonable improvement over the previous approaches,

the focus is now on ensuring the network is able to predict the shift in the pixels.

One of the ways is to shift the feature maps and perform correlation. When

a particular object is shifted by the right amount, the correlation between its

thermal feature map and RGB feature map would be high.

Since the warping function uses the disparity map to shift the pixels and that

different map shifts would result in highest correlation for different patches, by

using shift and correlate, an estimation of the disparity map can be made. An

enhancement can be achieved by providing the network with this additional information.

The proposed network builds on this idea to generate the disparity map.
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CHAPTER 6

CORRELATION NETWORK

The correlation network is an improved modification to the SSIM model. This

network consists of a Feature Map Network and a Disparity Map Network.

The Feature Map Network(FMN) is essentially the same as that of the SSIM

network. The modification is in the Disparity Map Network(DMN) by adding

correlation and a method for coarse-to-fine resolution.The training is unsupervised

for both the networks.

6.1 DMN

The DMN takes in the thermal and RGB images, and passes both through encoders

with shared weights. The output maps are then concatenated. The output maps

are also shifted multiple times and each time, they are multiplied with each other.

The resultant maps are all concatenated with the output maps. This follows the

correlation scheme in [4]. This is then passed to the decoder.

The decoder consists of several convolutional blocks. The first block applies

convolutional layers on the maps obtained from the operation described above.

The rest of the blocks apply convolutional layers on the input to generate the

output required for the final disparity map. At the same time, they also generate

another output that is passed through a convolutional layer to obtain an intermediate

disparity map.

The intermediate disparity maps provide a useful way to improve training by

providing the loss gradient directly to upper layers of the network, since the
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loss function is also applied on these maps. The scale of these maps are half or

one-fourth the scale of the final disparity map. These maps are also upsampled,

and are given as input to the next convolutional block of the decoder, along with

the output from the previous blocks. This provides refines the coarser, lower scale

feature maps to provide a high resolution output. This approach has been taken

from [4] and [6]. In total, three sets of intermediate disparity maps are generated

Following [6], Skip connections from previous layers are also provided to the

decoder blocks. The multiplication process is not fool-proof. The skip connections

and the concatenations of feature maps helps mitigates issues.

The loss function from the previous network is applied to each scale of disparity

map. Each disparity map is upsampled to match the dimensions of the feature

maps of the input images.

Lossi = Li
fs + Li

am + Li
ds iε{1, 2, 3, 4}

 Li
fs = αfs ∗ (||F̃ tml

r − F rgb
r ||+ ||F̃

rgb
l − F tml

l ||)

Li
am = αam ∗ [(1− SSIM(F tml

l , F̃ rgb
l )) + (1− SSIM(F rgb

r , F̃ tml
r ))]

Li
ds = |∂x(Dl)e

−||∂x(Itml
l )|||+|∂y(Dl)e

−||∂y(Itml
l )|||+|∂x(Dr)e

−||∂x(Irgbr )|||+|∂y(Dr)e
−||∂y(Irgbr )|||

6.1.1 Implementation Details

Similar to FMN, CNN+Upsampling is used,along with ELUs instead ReLUs. This

is becuase the disparity map can have negative values. The ADAM optimizer is

used with a learning rate of 1e-5, with Xavier initialization for the weights.
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6.1.2 Network Architecture
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CHAPTER 7

RESULTS

The final proposed network is the correlation network. It combines all the ideas

presented so far. The central idea is still the same: images of the same scene

should have similar features

7.1 Results

The results obtained are as follows:

7.1.1 Feature Map Network

Thermal Image RGB Image Thermal Ft.Map RGB Ft.Map
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7.1.2 Disparity Map Network

RGB Image Thermal Image Ground Truth Network Output

The FMN takes in images from the KAIST dataset, wherein the thermal and

RGB images are same. This is successfully reflected in the results. The feature

maps look almost similar. The slight differences are due to the fact that the

network has been trained for image reconstruction. As a result, the radiometric

variations generate slight dissimilarities in the feature maps.

The DMN takes in images from the CATS dataset. The outputs resemble the

ground truth. This shows that the central idea is indeed a viable method for

cross-modality disparity estimation. However, the output map is still not perfect.

There is room for a lot of improvement. The network struggles when either or

both the images are almost completely dark due to either lighting variation, or

temperature uniformity.
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7.2 Comparison

The RGB-Thermal depth estimation field is a relatively new one. As such, given

the nature of the problem, not much progress has been made yet. A comparison of

this network output with the results of other networks, as published in the CATS

paper, is given below.[CATS]

Compared to the outputs of other networks, the output of the proposed network

is significantly better. The network is able to estimate the disparity of both

the human as well as the slab below. Most outputs struggle to identify both

successfully.
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CHAPTER 8

CONCLUSION

The results demonstrate that cross modal disparity estimation using similarity

of feature maps generates a reasonably better disparity map as compared to the

previous works. Since the network has been trained in an unsupervised manner on

images containing objects in different surroundings, the resulting neural network

is more general and can be applied to different scenes.

The drawbacks are still significant.The output can be improved vastly. The

network struggles when appearance differences are large. Thus there is a lot of

room for improvement. However, it is hoped that this work spurs more research

in this field.

This work can be extended to multi-modal imaging.The key idea remains the same:

images of the same scene in different modalities will contain similar features. An

advantage of multi-modal imaging as comapred to thermal-rgb stereo matching

is that more information is available at the network’s disposal. The network can

leverage this extra information to produce better disparity maps.
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