

OPTIMIZATION OF THE INVERTERLESS SOLAR DC SYSTEM

AND

THE MQTT LIBRARY IMPLEMENTATION

In the partial fulfillment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

&

MASTER OF TECHNOLOGY

in

ELECTRICAL ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

CHENNAI-600 036, TAMIL NADU, INDIA

JUNE 2020

A Project Report
Submitted by

K HARIPRIYA
(EE15B090)

THESIS CERTIFICATE

This is to certify that the thesis titled OPTIMISATION OF THE INVERTERLESS

SOLAR DC SYSTEM AND THE MQTT LIBRARY IMPLEMENTATION, submitted

by K Haripriya, to the Indian Institute of Technology, Madras, for the award of the degree

Bachelor of Technology & Master of Technology in Electrical Engineering, is a bonafide

record of the research work done by her under our supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University for

the award of any degree or diploma.

Place: Chennai

Date: 10th July 2020

Prof. Ashok Jhunjhunwala

Project Guide

Professor

Dept. of Electrical Engineering

IIT-Madras, 600 036

 i

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor and project

guide Professor Ashok Jhunjhunwala, Electrical Engineering, IIT Madras, for his

guidance and continuous support throughout my Dual degree study and project, for his

patience, motivation, insightful comments and immense knowledge. Working under him

was a pleasant and great learning experience for me and I would like to thank him for

giving me this opportunity.

I wish to express my profound gratitude to my co-guides/supervisors Mr S Sree Hari

Nagarajan and Mr Durai Bose, Chakra Network Solutions Pvt. Ltd., IITM Research Park,

for their valuable guidance throughout my project. Their suggestions, critical comments,

and constant encouragement have been instrumental in completing this work.

Last but not the least I would like to thank all the people who extended their support

and shared valuable information that helped in the completion of this project.

 ii

ABSTRACT

OPTIMIZATION OF THE INVERTERLESS SOLAR DC SYSTEM

KEYWORDS: Inverterless Solar DC system, Power management algorithm, Efficiency,

minimized cost

The Inverterless Solar DC system is a decentralized solar rooftop system that is

designed to provide DC power at a very low cost. The system combines a Solar PV, a

Li-ion battery, and the grid in a highly efficient manner and supplies power to the load.

The system is cost-effective and efficient in powering off-grid homes where providing

grid connectivity is not economical. In places that have grid connectivity but face load

shedding, this system can replace the inverters, to provide uninterrupted power supply at

a reduced cost. Even at other places that have grid power available all the time, this

system can make the households self-sufficient in sourcing power to meet their energy

demand at a lower cost.

The Solar-DC system has three power sources in usual grid connected places which

are the Solar PV, the Battery, and the Grid. In places where the grid is not available like

in remote areas, the Solar and the Battery support the entire load. Since multiple sources

are available at the same time, a decision must be taken as to which source supplies the

load or what is the fraction of the load power that is supplied by each of the power

sources. Another decision of utmost importance is the charging and discharging of the

battery, i.e. at any given point in time, it must be decided whether the battery acts as a

source or as a load. These power decisions are handled by the power management

algorithm in the firmware code of the system. The effective cost per unit of energy mainly

 iii

depends on these decisions, which ultimately decides whether the installation of this

system is beneficial or not, especially in grid-connected places. Thus this algorithm must

be optimized to make the inverter less system optimal in terms of efficiency, the effective

cost per unit, and the emergency power backup hours the battery provides.

This work aimed to come up with an optimal power management algorithm that

manages the sources and loads connected to the system efficiently to minimize the

effective cost per unit of energy consumed. Two algorithms were proposed and both the

proposed algorithms performed better in all terms when compared to the existing

algorithm. Simulations showed that on average, algorithm 1 showed a 12% reduction, and

algorithm 2 showed a 16% reduction in the effective cost per unit of energy.

 iv

THE MQTT LIBRARY IMPLEMENTATION

KEYWORDS: MQTT, Eclipse Paho Embedded C library, wrapper library

implementation

MQTT is a communication protocol designed primarily for IoT applications where the

memory, power, and bandwidth usage are constrained. It is a lightweight event and

message-oriented protocol that enables resource-constrained devices to asynchronously

communicate and distribute telemetry information to multiple devices efficiently across

constrained networks.

Eclipse Paho Embedded C library is a lightweight, open-source MQTT v3.1.1

implementation for embedded devices. It is a generic implementation that is not reliant on

any particular libraries for networking, threading, or memory management. This is done

to make the library portable since TCP/IP stacks and multithreading libraries are not

standardized. Complete implementation of the MQTT protocol using the Eclipse Paho

library in any embedded platform requires the implementation of network calls, timer

functions, and memory management functions. Threading functions must be implemented

if one wants the MQTT communication to function on a separate thread. Besides, security

implementation requires integrating a TLS library and implementing the necessary

functions.

This work is an implementation of an abstract, easy to use wrapper MQTT library for

STM32 Microcontroller devices using the Eclipse Paho Embedded C library. All the

necessary functions were implemented to provide a clean and complete MQTT client

library with TLS deployment for optional security.

 v

LIST OF TABLES

TABLE 1.1 HOUSEHOLD LOAD ENERGY ... 17

TABLE 1.2 OFFICE 1 LOAD ENERGY .. 18

TABLE 1.3 OFFICE 2 LOAD ENERGY .. 18

TABLE 1.4 SOLAR PANEL AND BATTERY SIZING CALCULATIONS ... 20

TABLE 1.5 LOSSES ASSUMED FOR SIMULATION ... 21

TABLE 1.6 PERFORMANCE RESULTS OF THE ALGORITHM WITH TWO SOC THRESHOLDS 27

TABLE 1.7 PERFORMANCE RESULTS OF THE ALGORITHM WITH AUTO-UPDATING

THRESHOLD ... 31

TABLE 1.8 COMPLETE SIMULATION RESULTS ... 34

TABLE 1.9 PERFORMANCE SUMMARY ... 35

TABLE 2.1 API'S PROVIDED AND THEIR FUNCTIONALITIES .. 52

 vi

LIST OF FIGURES

FIGURE 1.1 THE INVERTER LESS 500 SOLAR-DC SYSTEM .. 2

FIGURE 1.2 IL3K BLOCK DIAGRAM ... 2

FIGURE 1.3 INEFFICIENT CHARGE-DISCHARGE STRATEGY ... 7

FIGURE 1.4 PROPOSED CHARGE-DISCHARGE STRATEGY ... 8

FIGURE 1.5 CHOOSING THE BEST THRESHOLD VALUE .. 10

FIGURE 1.6 MONTH WISE SOLAR POWER PROFILE IN CHENNAI .. 14

FIGURE 1.7 SOLAR POWER PROFILES ... 15

FIGURE 1.8 HOUSEHOLD LOAD POWER PROFILE .. 16

FIGURE 1.9 OFFICE 1 LOAD POWER PROFILE .. 17

FIGURE 1.10 OFFICE 2 LOAD POWER PROFILE .. 19

FIGURE 1.11 SIMULATION WITH THE OLD CHARGE-DISCHARGE STRATEGY 25

FIGURE 1.12 SIMULATION USING THE PROPOSED STRATEGY ... 25

FIGURE 1.13 SOLAR VARIATION .. 28

FIGURE 1.14 HOUSEHOLD LOAD: PREDICTION AND ERROR IN PREDICTION 30

FIGURE 1.15 OFFICE LOAD 1: PREDICTION AND ERROR IN PREDICTION 30

FIGURE 1.16 SIMULATION WITH FIXED SOC THRESHOLD (55%) .. 32

FIGURE 1.17 SIMULATION WITH AUTO-UPDATING THRESHOLD .. 32

FIGURE 2.1 THE MQTT PUBLISH-SUBSCRIBE ARCHITECTURE .. 38

FIGURE 2.2 EXCHANGE OF CONTROL PACKETS IN AN MQTT NETWORK 42

FIGURE 2.3 DATA EXCHANGE FUNCTIONALITIES PROVIDED .. 51

 vii

TABLE OF CONTENTS

 ACKNOWLEDGMENTS ... i

 ABSTRACT ... ii

LIST OF TABLES ... v

LIST OF FIGURES ... vi

OPTIMIZATION OF THE INVERTER LESS SOLAR DC SYSTEM... 1

1. INTRODUCTION ... 1

1.1 ABOUT THE INVERTERLESS SYSTEM .. 1

1.2 THE INVERTER LESS SOLAR-DC SYSTEM’S POWER MANAGEMENT

ALGORITHM .. 3

2. MOTIVATION AND PROBLEM STATEMENT .. 4

3. PROPOSED MECHANISM/ALGORITHM ... 5

3.1 PREVIOUSLY USED ALGORITHM .. 5

3.2 PROPOSED APPROACH .. 6

3.4 IMPLEMENTATION DETAILS .. 13

4. PERFORMANCE STUDY ... 22

4.1 PERFORMANCE METRICS ... 22

4.2 RESULTS AND ANALYSIS ... 24

4.3 SUMMARY OF PERFORMANCE STUDY.. 35

5. CONCLUSIONS AND FUTURE WORK .. 36

 viii

THE MQTT LIBRARY IMPLEMENTATION ... 37

1. INTRODUCTION ... 37

1.1 THE MQTT PROTOCOL ... 37

1.2 THE MQTT ARCHITECTURE.. 38

1.3 MQTT TOPICS ... 39

1.4 HOW MQTT WORKS .. 40

1.5 OTHER FEATURES OF THE MQTT PROTOCOL ... 42

1.6 SECURITY IN MQTT .. 44

1.7 COMPARISON WITH OTHER COMPETING IOT PROTOCOLS 46

1.8 PROS AND CONS OF MQTT ... 48

2. OVERVIEW AND PROBLEM STATEMENT .. 49

3. IMPLEMENTATION AND TESTING .. 50

REFERENCES ... 53

1

OPTIMIZATION OF THE INVERTER LESS SOLAR

DC SYSTEM

1. INTRODUCTION

1.1 ABOUT THE INVERTERLESS SYSTEM

The Inverterless Solar DC system is a decentralized solar rooftop system that system

combines a Solar PV, a Li-ion battery, and the grid in a highly efficient manner to supply

power to the load. The system is cost-effective and efficient in powering off-grid homes

in remote parts of the country where the terrain is so foreboding that they are beyond the

reach of Electricity Grids. The system has been successfully installed in many remote

villages in Manipur, Assam, Meghalaya, and Jammu & Kashmir under the Inverterless

solar DC technology project that targets 100 per cent electrification of rural households.

In places that have grid connectivity but face load shedding, this system can replace

the inverters, to provide uninterrupted power supply at a reduced cost. Even at other

places that have grid power available all the time, this system can make the households

self-sufficient in sourcing power to meet their energy demand at a lower cost.

Different variants of the system are available like IL500, IL2500, IL3K, etc. and one

can choose the one that best suits their load requirement. The number at the end

represents the maximum DC power the system can provide. IL500 is designed to support

a solar panel, a battery and grid input, and can provide a maximum of 500 W of power. A

 2

block diagram of the IL500 system is shown in Figure 1.1. IL2500 is a scaled version of

IL500 and can support a maximum load of 2500 W. IL3K, as shown in Figure 1.2, is an

advanced system and is designed with many additional features like better support for

AC loads, exporting power to the grid, adding power sources like generators, etc.

Figure 1.1 The Inverter less 500 Solar-DC System

Figure 1.2 IL3K block diagram

 3

1.2 THE INVERTER LESS SOLAR-DC SYSTEM’S POWER MANAGEMENT

ALGORITHM

When multiple power sources are available, they have to be managed efficiently to

minimize the effective cost per unit, since the cost per unit is different for each power

source. Similarly, load management plays an equally important role. Decisions on when

to charge the battery and when to discharge it to supply the load have to be taken

carefully since the battery life depends on the charge-discharge cycles. Over a period of

time (say a day), the power management algorithm of the Inverterless system takes these

decisions to ensure that maximum energy is used from solar followed by the battery and

is lastly augmented by grid whenever it is available [1]. The algorithm is known as the

heartbeat of the system since the efficiency of the system in terms of power loss and in

terms of cost per unit of energy, primarily depends on this algorithm. Thus to have an

efficient system, the power management algorithm must be optimally written.

 4

2. MOTIVATION AND PROBLEM STATEMENT

In addition to providing low-cost electricity to places where the grid is not set up, the

Inverterless system proves to be an efficient and cost-effective alternative to the

centralized grid power system. Cost and efficiency are the two key factors that one

considers when shifting from the current centralized AC grid system to the decentralized

solar PV system. Hence the system has to be optimal in these terms which depend on the

power management algorithm as stated earlier.

Problem statement

1) Improvise the power management algorithm in IL500 to optimize the Inverterless

system with respect to cost and efficiency.

2) Write an optimized power management algorithm for the IL3K system with the

following objectives:

a. Minimize the cost per unit

i. Maximize solar energy utilization

 Maximize direct supply to the load

 Try to capture the maximum of the excess in battery

 Export only if the battery is fully charged

ii. Minimize grid energy imported

 Maximize direct supply to the load

 Minimize energy supply from the grid to the battery to the load

iii. Reduce the losses and improve the overall efficiency

b. Maintain a certain guaranteed battery energy backup

 5

3. PROPOSED MECHANISM/ALGORITHM

3.1 PREVIOUSLY USED ALGORITHM

The following chart briefly describes the previously used algorithm in the IL500

system. A single battery SoC (State of Charge) threshold is defined (ex. 45%), based on

which most of the instantaneous power decisions are taken.

The ΔTh is used to introduce hysteresis in the charging/discharging cycle of the

battery so that the battery state does not switch back and forth between charging and

discharging when the SoC is close to the set threshold value. ΔTh is taken as 5% in the

existing algorithm.

Solar power > load power

Battery SoC > Threshold

• Supply load from Solar and use

excess power to charge battery if

battery is not full

Battery SoC < Threshold - ΔTh

• Supply load from Solar

• Charge battery at a fixed rate

until SoC reaches Threshold.

Use grid if solar power is

insufficient to charge battery.

Solar power < load power

Battery SoC > Threshold

• Supply Load from Solar and

Battery.

• Use battery as source until SoC

falls below Threshold – ΔTh

Battery SoC < Threshold - ΔTh

• Supply Load from the Solar and

the Grid.

• Use grid to charge battery at a

fixed rate until SoC reaches

Threshold.

 6

3.2 PROPOSED APPROACH

3.2.1 Reduce energy Loss and improve Efficiency

Presently, the IL500 uses the following strategy to maintain a minimum guaranteed

power backup. It uses a battery SoC (State of Charge) threshold value (for ex. 50%) based

on which the battery charge-discharge decision and other power decisions are taken.

i. If the Battery SoC is lesser than threshold – ΔTh (for ex. 45%), the battery is

charged until the SoC goes above the threshold. If solar power is insufficient to

supply the load and charge the battery, the remaining requirement is imported

from the grid.

ii. If the Battery SoC is above the threshold and the solar power is insufficient to

supply the load, the remaining requirement is met by discharging the battery until

the SoC goes below threshold - ΔTh.

Because of this, during the non-solar hours, the battery state alternates between (i) and

(ii) continuously and the battery SoC oscillates between threshold and threshold - ΔTh.

This is shown in Figure 1.3. This leads to unnecessary loss of energy since in (i), the grid

charges the battery and in (ii), the battery discharges to supply the load, when the grid can

directly supply the load. Moreover, the battery charge/discharge cycles are wasted, which

reduces battery life. This in turn increases the effective cost per unit of electricity.

 7

Figure 1.3 Inefficient charge-discharge strategy

Proposed Approach: Modification in the Battery Charge-discharge strategy

i. If the Battery SoC is lesser than threshold - ΔTh, the battery is charged until the

SoC goes above the threshold. If solar power is insufficient to supply the load and

charge the battery, the remaining requirement is imported from the grid.

ii. If the Battery SoC is above the threshold and the solar power is insufficient to

supply the load, the remaining requirement is met by discharging the battery until

the SoC goes just below threshold. Thereafter, the Battery SoC is maintained at

that level and the remaining load requirement is supplied by the grid.

With this modification, the SoC will go below the threshold - ΔTh only when grid

failure or load shedding happens. And when grid power becomes available, the grid will

be used to charge the battery until the SoC goes above the threshold. This would reduce

the losses and increase the battery life since the grid directly supplies the load instead of

cycles of the grid charging the battery and battery supplying the load. Figure 1.4 shows

the behavior of the system with the proposed strategy.

 8

Figure 1.4 Proposed charge-discharge strategy

3.2.2 Trade-off between maximizing solar utilization and maintaining sufficient

battery backup

A fixed SoC threshold leads to a trade-off between maximizing solar utilization and

maintaining guaranteed battery backup hours. If the Battery SoC threshold is set high (ex.

70%), we get more power backup hours when grid failure or load shedding happens. But

during the sun hours when solar provides more power than the load requirement, all the

excess solar cannot be stored in the battery since the battery will not be sufficiently

empty. This leads to wastage of solar energy or unnecessary energy export to grid (if it is

supported) and subsequent energy import from the grid to meet the load requirement. If

the Battery SoC threshold is set low (ex. 20%), we can store the available solar energy in

the battery and minimize Solar wastage, but at the cost of having lesser power backup

hours.

 9

Proposed Approach 1: Have two SoC Thresholds

Instead of having a single SoC threshold, we define two thresholds, an upper

threshold (say about 70%) and a lower threshold (say about 40%) for the battery. These

are kept configurable so that we can set them based on the load requirement and the solar

availability at the place of installment. As we approach the evening (say between 5:30

p.m.-8:30 p.m.), we try to keep the battery close to the upper threshold to ensure more

power backup at night time, hence we set the battery SoC threshold value to the defined

upper threshold (ex. 70%) in this time range. During the non-sun hours (at night time), we

allow the battery to be sufficiently drained so that before the next morning, the SoC is

closer to the lower threshold. This would ensure that the wastage of the available solar

energy is lesser since we keep the battery sufficiently empty to capture the excess solar

energy. Hence we set the battery SoC threshold to the defined lower threshold (ex. 50%)

in the other time range (8:30 p.m. to 5:30 p.m.). In any case, we don’t allow the battery to

be drained below the lower threshold and hence guarantee a certain power back-up hours.

In summary, by the end of sun-hours, the SoC will be closer to the upper threshold and

before the beginning of the sun-hours, the SoC will be closer to the lower threshold.

This approach guarantees a certain battery energy backup for the non-solar hours but

does not solve the problem entirely. This is because one cannot be sure that the battery

SoC will reach the lower threshold by morning since it depends on the load requirement

during the non-solar hours. The load pattern is not the same for every system and

moreover, it changes with changing weather conditions. Hence the thresholds have to be

set independently for every system and must be changed manually now and then.

 10

Proposed Approach 2: Auto Update the SoC threshold to the best value

The best threshold is the one that leaves just the minimum required space in the

battery to capture the entire excess solar energy available. With this, solar energy would

charge the battery to 100% by the end of solar hours giving the maximum battery backup

for the non-solar hours. This is illustrated in Figure 1.5.

Figure 1.5 Choosing the best threshold value

But this threshold value depends on the solar insolation and the load power profile

which varies from day to day and from place to place. So every day, we try to update the

threshold to the best possible value. The threshold is set on the previous day, at the right

time, so that the battery drains in the night and by morning the SoC reaches the set

threshold. This means that the excess solar that is going to be available tomorrow has to

be predicted today. Hence at 6:30 p.m. every day, we use the data from the past 12 days

to predict the excess solar that is going to be available the next day. A simple AR (Auto-

Regressive) model is used for the prediction of the excess solar energy available. The

threshold value is calculated using the prediction and the Battery SoC threshold is set to

 11

that value. The performance of the system will therefore depend on how close the

prediction is to the actual value.

3.3 Complete Algorithm

Battery SoC threshold is dynamic with time and depends on which of the proposed

approaches is used. At time t, let SoC_U = threshold and SoC_L = threshold – ΔTh. At

that time,

a. If Battery SoC < SoC_L:

 The battery is charged at a fixed charging rate until the Battery SoC reaches

SOC_U (for ex. charging rate = 0.2C  2kW for a 10 kWh battery).

 If Excess Solar power (= Solar power – load power) > 2kW, grid is not used

since solar gives sufficient power supply the load and charge the battery.

 If Excess Solar power < 2kW, grid is used to charge the battery and grid

provides the rest of the power so that battery is charged with 2kW.

 If Excess Solar power < 0, i.e. Solar power < load power, then the solar and

the grid are used to supply the load and charge the battery with 2kW.

b. if Battery SoC > SoC_U:

 If Excess Solar power < 0, then the solar and the battery are used to supply the

load. The battery is discharged until the SoC drops just below SoC_U. After

that the solar and the grid are used to supply the load and the battery is neither

charged nor discharged.

 If Excess Solar power > 0, the solar is used to supply the load and charge the

battery until the battery is fully charged.

If exporting power to grid is not supported (IL500):

At any time instant, if the battery is not fully charged, the excess solar power is used

to charge the battery until the SoC reaches 100%. If excess solar power is more than the

 12

maximum allowed charging power of the battery, the battery is charged with that

maximum allowed power.

 If exporting power to grid is supported (IL3K):

At any time instant, if the battery is not fully charged, the excess solar power is used

to charge the battery until the SoC reaches 100%. If excess solar power is more than the

maximum allowed charging power of the battery, the battery is charged with that

maximum power and the rest of the excess power is exported to grid. Once the Battery

SoC reaches 100%, all the excess solar power is exported to the grid until SoC falls below

98% again, to avoid continuous switching between exporting and charging the battery.

 13

3.4 IMPLEMENTATION DETAILS

3.4.1 IL500 System

The proposed algorithm with two SoC thresholds and the modification in the battery

charge-discharge strategy was implemented in the IL500 source code. The code was

implemented and built using the IAR EWARM V8 IDE. The firmware was flashed in the

IL500 system and the functionality and performance tests were done.

a) Functionality Tests: Testing was done at two units, one at Cygni IITM Research

Park and another at Cygni Hyderabad Office simultaneously. All the test cases

were tested separately by varying the power sources and the load accordingly. The

system behavior in each case was verified and validated against the expected

behavior.

b) Performance Tests: The firmware was flashed in the IL500 unit installed at a

house in IITM. The data Energy data and the power data sent to the server from

the system were analyzed and studied for performance improvements.

3.4.2 IL3K System

The IL3K system is still in the develop.m.ent phase, hence the system was simulated

in Python Jupyter notebook to test and analyze the proposed algorithms. Different solar

and load power profiles were constructed for simulation using data collected from the

IL500 systems installed at various places. This section presents the data analysis, data

processing, and other details on the simulation.

 14

a) Solar Data Analysis:

The solar power data sent by the IL500 unit installed at Professor’s home (IITM,

Chennai), over the last one year (01 June 2019 to 31 May 2020), was analyzed. The

month-wise solar power profile was generated to study the variation of the solar

insolation in Chennai. As shown in Figure 1.6Ошибка! Источник ссылки не

найден.Error! Reference source not found. the maximum insolation was in April,

when the peak solar-hours on a day were 4.72 on average. Similarly, the average peak

solar-hours was the least, 1.5 in October.

Figure 1.6 Month wise solar power profile in Chennai

 15

b) Solar Power Profiles for Simulation:

Three different solar power profiles, under different weather conditions, namely

sunny, cloudy, and rainy were considered for simulations. Figure 1.7 shows the power

data plot for each of the profiles, for 4 weeks. Over the 4 weeks, the average peak solar

hours in a day for the sunny, cloudy and rainy solar profiles are 4.82 Wh/Wp, 3.24

Wh/Wp and 1.57 Wh/Wp respectively as shown in

Figure 1.7 Solar power profiles

 16

c) Load power profiles:

Three different load profiles, one household load, and two office loads were

considered for simulations. The two office loads differ with respect to the number of

working days in a week and the percentage of the load energy consumed during the solar

hours.

i. Household Load: Data was collected for 4 Weeks from Professor’s home IL500

unit and was scaled for IL3K. On average, 44% of the load is during the solar

hours, i.e. when the sun is up, as shown in Table 1.1.

Figure 1.8 Household load power profile

 17

Table 1.1 Household Load energy

Total Energy

(Wh)

Load During

Solar hours (Wh)

% Load during

Solar hours

Day1(Mon) 8660 4253.33 0.49

Day2(Tue) 7966.67 3926 0.49

Day3(Wed) 8341.33 4053.33 0.49

...

Day26(Fri) 11384 4510 0.4

Day27(Sat) 11386 4607.33 0.4

Day28(Sun) 11251.33 4320 0.38

Mean 9807.55 4265.7 0.44

ii. Office load 1: Data was collected for 4 Weeks from a unit at Ashok Ranka and co

and scaled for IL3K. The total load was split as 60:40 for AC and DC loads.

Figure 1.9 Office 1 load power profile

 18

This profile has lesser energy consumption on Sundays when compared to the

other days in a week. On average, 63% of the load is during the solar hours as

shown in Table 1.2.

Table 1.2 Office 1 Load energy

 Total Energy

(Wh)

Load During

Solar hours (Wh)

% Load during

Solar hours

Day1(Mon) 23128 13605.33 0.59

Day2(Tue) 25418 15046 0.59

Day3(Wed) 22306 15238.67 0.68

...

Day26(Fri) 19002 13090.67 0.69

Day27(Sat) 14228 11546 0.81

Day28(Sun) 2452 628 0.26

Mean 19748.36 12683.33 0.63

iii. Office load 2: Data was collected for 4 Weeks from a unit at ECIL Kerala and

scaled for IL3K. The total load was split as 60:40 for AC and DC loads. The

power profile is similar on all the days of the week, as shown in the plot. As

shown in Table 1.3, only 26% of the load is during the solar hours on average

while the majority of the load is during the non-solar hours.

Table 1.3 Office 2 Load energy

 Total Energy

(Wh)

Load During

Solar hours (Wh)

% Load during

Solar hours

Day1(Mon) 17961.05 4469.33 0.25

Day2(Tue) 14066.95 4472 0.32

Day3(Wed) 12044 4216 0.35

...

Day26(Fri) 11236 2170.67 0.19

Day27(Sat) 15652 4304 0.27

Day28(Sun) 17768 4570.67 0.26

Mean 13503.71 3597.71 0.26

 19

Figure 1.10 Office 2 load power profile

d) System sizing

Sizing the solar panel and the battery correctly is very important for the system to be

beneficial. The solar panel must be sized such that the solar energy generated is sufficient

to drive the entire day’s load on an average day when it is neither too sunny nor rainy.

Similarly, the battery must be sized large enough to store the excess solar energy

generated during the solar hours, so that it can be used during the non-solar hours.

Additionally, one can include the backup energy required when sizing the battery.

 20

i. Solar Panel Sizing: Entire load energy must be supplied by solar on an

average day.

ii. Battery Sizing: The battery must store the energy required during non-solar

hours and the required emergency backup energy (during power cuts).

The sizing for the three load profiles, considered for simulation is shown in Table 1.4.

The average solar peak hours is taken as 3.24, which is the average calculated during

cloudy days. To account for losses, 0.1 is added to the battery size calculation.

Table 1.4 Solar panel and battery sizing calculations

Solar and battery sizing

A B C D E F G H

Avg

daily

load

(kWh)

%

Load

during

Solar

hours

Emergency

Battery

backup (%

of a day's

load)

Solar

Panel

rating

(kWp)

calculated

Solar

Panel

rating

(kWp)

chosen

Battery

Sizing

(kWh)

calculated

No of 5

kWh

batteries

Battery

pack

capacity

(kWh)

A /

Average

solar peak

hours

A x

(1 - B + C

+ 0.1)

Household Load 9.81 44.00% 30.00% 3.03 3.00 9.42 2.00 10.00

Office Load 1 19.75 63.00% 20.00% 6.10 6.00 13.23 3.00 15.00

Office Load 2 13.50 26.00% 20.00% 4.17 4.00 14.04 3.00 15.00

 21

e) Losses assumed for Simulation

Energy loss is taken to be 5% if AC to DC or DC to AC conversion is required.

Otherwise, the loss is taken to be 2.5%. This is shown in Table 1.5. Similarly, it is

assumed that the battery undergoes self-discharge at a rate of 5% per month.

Table 1.5 Losses assumed for simulation

From To % loss assumed

Solar DC loads 2.5%

AC loads 5%

Battery 2.5%

Grid export

5%

Grid DC loads 5%

AC loads 2.5%

Battery

5%

Battery DC loads 2.5%

AC loads 5%

 22

4. PERFORMANCE STUDY

4.1 PERFORMANCE METRICS

The following metrics were used to study and compare the performance of the system.

4.1.1 Power Utilization factor for each of the Sources

The power utilization factor for a particular power source measures the percentage of

the total input energy supplied by that source. We calculate it on a daily basis. The

objective is to maximize solar utilization and minimize grid utilization.

4.1.2 Power loss and Efficiency

The power loss measures the difference in the supplied energy and the consumed

energy. The efficiency calculated is with respect to the power loss.

 23

4.1.3 Effective Cost per unit

The effective cost per unit of energy is the major factor one considers when installing

this system at their home or workplace. This is what decides how profitable the system is,

especially in grid-connected places. The power utilization factors of the sources, power

loss, and efficiency have a direct effect on the cost per unit.

4.1.4 Average battery backup available at the end of solar hours

The battery SoC at the end of the solar hours (for ex. 6:00 p.m.) is recorded every day

to measure the energy backup available for the rest of the day. This factor is of utmost

importance in places where the grid is not available or in places that face load shedding.

 24

4.2 RESULTS AND ANALYSIS

4.2.1 IL500 System Results

The IL500 system flashed with the updated algorithm had many other changes done

around the same time. The solar panel capacity was doubled from 125Wp to 250Wp and

AC loads were connected to the system which increased the load by a huge amount.

Hence the changes in the performance of the system due to the proposed algorithm could

not be analyzed. Moreover, the algorithm inputs like solar energy and load energy do not

remain constant and change from day to day, thus the results from a real setup do not

precisely reflect the performance changes caused by the algorithm.

4.2.2 IL3K System Simulation Results

a. Reduction in power loss: Modification in the charge-discharge strategy

The IL3K system with the household load profile and rainy solar profile was

simulated for 8 days, with and without the proposed changes in the battery charge-

discharge strategy. Rainy solar profile was chosen so that the reduction in power loss can

be observed since the grid usage is highest during rainy days when solar generation is

less. Figure 1.11 and Figure 1.12 show the power data plot and the power loss and

efficiency for the two algorithms. As expected, a huge difference is observed after the

proposed changes were made, with a 42.6% reduction in power loss during rainy days.

Similarly, simulations done with office load 1 and office load 2 showed 35.2% and 41.8%

reduction in power loss respectively.

25

Figure 1.11 Simulation with the old charge-discharge

strategy

Loss(Wh) Efficiency

Day1_Mon 583.39 92.66

Day2_Tue 566.55 92.26

Day3_Wed 579.58 92.49

Day4_Thu 533.12 93.31

Day5_Fri 613.24 92.99

Day6_Sat 610.89 93.07

Day7_Sun 581.98 92.73

Day8_Mon 527.79 93.14

Mean
[Day2:Day8]

573.31 92.86

Figure 1.12 Simulation using the proposed strategy

Loss(Wh) Efficiency

Day1_Mon 316.47 95.88

Day2_Tue 266.39 96.27

Day3_Wed 273.41 96.31

Day4_Thu 400.26 94.89

Day5_Fri 345.15 95.93

Day6_Sat 369.42 95.69

Day7_Sun 300.96 96

Day8_Mon 345.73 95.4

Mean
[Day2:Day8]

328.76 95.78

 26

b. Manage trade-off between solar utilization and battery backup: With two

SoC thresholds

The IL3K system with different load and solar profiles was simulated for 28 days

(4 Weeks) in each case. The simulations were done with the previously used algorithm

with a single fixed threshold and the proposed algorithm with two SoC thresholds, the

upper threshold as 70%, from 5:30 p.m. to 8:30 p.m. and lower threshold as 40% the rest

of the day.

The results obtained for the household load are given in Table 1.6. The proposed

algorithm with two SoC thresholds performs better in most of the cases, in terms of solar

utilization. Additionally, the algorithm guarantees a battery backup of at least 70% at 8:30

p.m. every day, if the grid power is available from 5:30 p.m. to 8:30 p.m.. But since the

grid is used to charge the battery to 70% in the evenings, losses are higher and efficiency

is reduced.

Similarly, the proposed algorithm showed better performance in terms of the solar

utilization and battery backup for the office loads also, but with a slightly reduced

efficiency.

 27

Table 1.6 Performance results of the algorithm with two SoC thresholds

Performance results for household load

Solar Profile Algorithm
Solar

Utilization (%)

Grid

Utilization (%)

Battery Backup

At 8:30 p.m. (%)

Efficiency

(%)

Sunny

Single Threshold (50%) 90.20 9.80 76.88 94.02

Single Threshold (40%) 96.51 3.49 76.89 93.72

Two Thresholds 96.51 3.49 76.89 93.72

Cloudy

Single Threshold (50%) 80.03 19.97 69.84 94.58

Single Threshold (40%) 85.08 14.92 65.31 94.46

Two Thresholds 84.45 15.55 72.38 94.21

Rainy

Single Threshold (50%) 46.33 53.67 51.30 95.88

Single Threshold (40%) 46.33 53.67 41.26 95.88

Two Thresholds 45.83 54.17 69.21 94.59

 28

c. Manage trade-off between solar utilization and battery backup: With Auto

updating SoC threshold

The IL3K system with the different load profiles was simulated for 112 days (16

Weeks) in each case. The simulations were done with the previously used algorithm with

a single fixed threshold and the proposed algorithm with an auto-updating SoC threshold,

and the results were compared.

A variation was introduced in the solar profile to observe the changing threshold value

with changing solar insolation. The variation is in the following manner: Sunny-Cloudy-

rainy-Cloudy-Sunny as shown in Figure 1.13. Note that this does not accurately represent

a real setup since the solar data constructed for simulation has almost 50% of rainy days

which is not the case in reality. The construction is done in this manner only to observe

the learning during different weather conditions and the transitions in between.

Figure 1.13 Solar variation

 29

i. Prediction results:

Two different AR prediction models were used based on whether there is a weekly

pattern observed in the load profile or not. Prediction model A was used for household

load and office load 2 which do not show any weekly pattern, and prediction Model B

was used for office load 1 which shows a weekly pattern with a lesser load on Sundays.

The python code for the two prediction models is given below.

Prediction Model A:

 trend = (PastData[-5:] - PastData[-12:-7])

 Prediction = PastData[-10:-3].mean() + trend.mean()

Prediction Model B:

 trend = (PastData[-5:] - PastData[-12:-7])

 Prediction = PastData[-7] + trend.mean()

A plot of the predicted values obtained using the prediction model A and actual values

of the excess solar energy available, for household load, is shown in Figure 1.14. The

error plot and the kernel density plot for the household load show that the error is

centered close to zero with a mean error value of 34.23 Wh. The standard deviation of the

error is 1220.92 Wh which is 12.4% of the average load in a day. This shows that the

predictions are very close to the actual values. The simulation for office load 2 with

prediction model A also gave similar results.

Similarly, the prediction results for office load 1 with prediction model B, is shown in

Figure 1.15. The peaks in the excess solar on Sundays can be observed due to the lesser

load requirement as compared to the other weekdays. The model also predicts higher

values on Sundays as shown in the prediction plot.

 30

Figure 1.14 Household load: Prediction and error in

prediction

 Error

count 99.00

mean 34.23

std 1220.92

min -2747.23

25% -625.83

50% 46.40

75% 853.66

max 4899.57

Figure 1.15 Office load 1: Prediction and error in

prediction

 Error

count 99.00

mean 202.96

std 3456.90

min -12276.23

25% -1133.53

50% 359.05

75% 1951.01

max 9500.06

ii. Performance results:

The power data plots in Figure 1.16 and Figure 1.17 of household load show that with

the proposed algorithm, the battery SoC threshold automatically updates itself based on

 31

the available solar energy and the load requirement to ensure that we maintain high

battery backup while maximizing solar utilization at the same time.

The Battery SoC threshold (shown as SoC_L2 in the plot) is lower on sunny days,

allowing most of the solar energy to be captured in the battery and to be used in the non-

solar hours of the day. Power cut does not make any difference on sunny days since solar

supplies the entire load requirement of the day, hence low threshold will not be a

problem. The Battery SoC threshold is higher on rainy days since solar energy availability

is consistently less. Battery need not have too much room to capture the available solar

energy. Moreover, the probability of an emergency power cut is higher on rainy days,

which means, higher the battery backup is, the better it is.

The performance results obtained for the household load are shown in Table 1.7. The

proposed algorithm performs much better than the old algorithm with a single fixed

threshold value, as shown. In the old algorithm, reducing the threshold value improves the

solar utilization, but reduces the battery backup available. Whereas, in the proposed

algorithm, there is an improvement in both average solar utilization and average battery

backup available at the end of solar hours. Similar results were obtained for the office

loads as well.

Table 1.7 Performance results of the algorithm with auto-updating threshold

Results for Household load

Solar

utilization (%)

Grid

utilization (%)

Battery backup

@ 6 p.m. (%)

Old algorithm – single fixed

threshold (55%)
64.45 35.55 77.23

Old algorithm – single fixed

threshold (45%)
68.03 31.97 71.27

proposed algorithm – Auto

updating threshold
70.04 29.96 86.13

 32

Figure 1.16 Simulation with fixed SoC threshold (55%)

Figure 1.17 Simulation with auto-updating threshold

 33

d. Overall Results

The numbers in the previous sections do not reflect the reality precisely since they

were done only for specific solar profiles. Hence, the simulations were done for an entire

year to get results close to reality. The assumed cost per unit of energy for each source is

as follows:

a) Solar Cost per Unit = ₹ 2.5

b) Grid In Cost per Unit For Household loads = ₹ 6.0

c) Grid In Cost per Unit For Office loads = ₹ 10.0

d) Grid Out Cost per Unit = ₹ 3.5

Table 1.8 summarises the results obtained using the old and the proposed algorithms

for the three load profiles considered. It is evident from the table that in all the three load

profiles, algorithm 2 with the auto-updating threshold gives the best performance results

in terms of both cost and efficiency. In terms of the average battery backup available at

the end of solar hours (measured at 6:00 p.m.), although all the three algorithms give

similar results, algorithm 1 guarantees a minimum of 70% (or the set upper threshold) at

8:30 p.m. in case of uninterrupted grid supply between 5:30 p.m. to 8:30 p.m., whereas

the algorithm 2 does not. Algorithm 2 will maximize the backup available at the end of

solar hours on a particular day, only if the prediction was close to the actual excess solar

energy on that day.

3
4

Table 1.8 Complete simulation results

Algorithm

Used***

% solar

utilization

Battery

backup

@ 6 p.m. (%)

Loss

(Wh)

Efficiency

(%)

Effective cost per unit cost

Assuming the battery cost per unit is

₹ 2.00 ₹ 4.00 ₹ 6.00 ₹ 8.00

Household

 load

0 75.11 82.49 821.31 93.33 ₹ 4.80 ₹ 6.07 ₹ 7.35 ₹ 8.62

1 78.99 81.18 700.48 94.14 ₹ 4.39 ₹ 5.41 ₹ 6.43 ₹ 7.46

2 79.23 82.33 655.92 94.58 ₹ 4.24 ₹ 5.15 ₹ 6.06 ₹ 6.97

office load 1

0 74.60 70.43 1465.50 94.26 ₹ 5.67 ₹ 6.62 ₹ 7.57 ₹ 8.53

1 75.83 72.42 1300.60 94.89 ₹ 5.29 ₹ 5.98 ₹ 6.68 ₹ 7.37

2 77.69 71.39 1221.62 95.22 ₹ 5.08 ₹ 5.72 ₹ 6.35 ₹ 6.99

office load 2

0 69.00 88.54 1187.74 93.34 ₹ 6.70 ₹ 8.22 ₹ 9.73 ₹ 11.24

1 74.55 86.62 966.74 94.33 ₹ 5.85 ₹ 6.98 ₹ 8.12 ₹ 9.25

2 77.66 86.02 916.99 94.50 ₹ 5.58 ₹ 6.73 ₹ 7.89 ₹ 9.04

*** 0: Old algorithm with a single SoC threshold (50%) and old charge-discharge strategy

1: Algorithm with two SoC thresholds (70% and 40%) and the proposed charge-discharge strategy

2: Algorithm with auto-updating SoC threshold and the proposed charge-discharge strategy

35

4.3 SUMMARY OF PERFORMANCE STUDY

As shown in Table 1.9, both the proposed algorithms perform better in all terms when

compared to the existing algorithm but the algorithm with the auto-updating threshold

gives the best performance results. When compared to the existing algorithm with a 50%

SoC threshold, on average, algorithm 1 showed a 3.55% increase in solar utilization,

while algorithm 2 showed a 5.29% increase. Similarly, algorithm 1 showed a 0.81%

increase in efficiency, while algorithm 2 showed a 1.12% increase, on average. In terms

of the effective cost per unit of energy, on average, algorithm 1 showed a 12% reduction,

while algorithm 2 showed a 16% reduction.

Table 1.9 Performance Summary

Algorithm***
Increase in

% solar utilization

Increase in

% efficiency

% reduction in

Cost per unit

1 3.55 0.81 12%

2 5.29 1.12 16%

*** 1: Algorithm with two SoC thresholds (70% and 40%) and the proposed charge-discharge strategy

2: Algorithm with auto-updating SoC threshold and the proposed charge-discharge strategy

36

5. CONCLUSIONS AND FUTURE WORK

The work started with the motive to come up with an optimal power management

algorithm that manages the sources and loads connected to the system efficiently to

minimize the effective cost per unit of energy. Solar utilization factor and efficiency of

the system are the two key factors that decide the cost per unit. The solar utilization can

be maximized by keeping the battery empty before the solar hours but this leaves zero

battery power backup for emergency power cuts or load shedding. Hence the work

primarily aimed to improve the solar utilization factor while maintaining sufficient

battery backup and to decrease the losses and improve the overall efficiency of the

system.

The proposed algorithm with the auto updating threshold along with the proposed

modification in the battery charge-discharge strategy resulted in a 16% reduction in the

cost per unit of energy, on average. The efficiency of the system also went up by a

noticeable amount. As stated earlier, with this algorithm, the performance of the system

highly depends on how close the prediction is to the actual value of the excess solar

energy available. Hence with better prediction models, the performance may improve

further, resulting in a further reduction in the cost. Moreover, the prediction models

proposed here have fixed AR coefficients and hence the performance may vary from

system to system. To get the best prediction model for a particular system, ARIMA

(Auto-Regressive Integrated Moving Average) models can be trained using the data

collected from that specific system. One can even have separate prediction models for

solar energy and the load energy during solar hours and combine the results to get the

prediction for the excess solar energy.

37

THE MQTT LIBRARY IMPLEMENTATION

1. INTRODUCTION

1.1 THE MQTT PROTOCOL

MQTT is a lightweight event and message-oriented protocol that enables resource-

constrained devices to asynchronously communicate and distribute telemetry information

to multiple devices efficiently across constrained networks.

As described in the official website [3]:

“MQTT stands for MQ Telemetry Transport. It is a publish/subscribe, extremely

simple and lightweight messaging protocol, designed for constrained devices and

low-bandwidth, high-latency, or unreliable networks. The design principles are to

minimize network bandwidth and device resource requirements whilst also

attempting to ensure reliability and some degree of assurance of delivery. These

principles also turn out to make the protocol ideal of the emerging “machine-to-

machine” (M2M) or “Internet of Things” world of connected devices, and for

mobile applications where bandwidth and battery power are at a premium”.

MQTT was invented by Dr. Andy Stanford-Clark of IBM, and Arlen Nipper of

Arcom (now Eurotech), in 1999. MQTT originally stands for MQ Telemetry Transport,

where MQ denotes the IBM MQ (Message Queuing) product line which is used to

exchange messages, but MQTT is no longer considered an acronym and is simply the

name of the protocol.

38

1.2 THE MQTT ARCHITECTURE

The MQTT protocol defines two subjects: a client and a broker. An MQTT broker is

the server and the devices connected to the broker are the clients. MQTT uses a single

TCP/IP port connection from the client to the server. There are standard ports for MQTT

to use. TCP/IP port 1883 is reserved with IANA (Internet Assigned Numbers Authority)

for MQTT and port 8883 is reserved for MQTT over SSL/TLS.

The protocol uses a simple Publish-Subscribe architecture which facilitates many-to-

one as well as one-to-many distribution. When a client/device wants to send data to one

or many other devices, it would assign the data to a specific topic and send it to the broker

– it is called publishing on the topic. All the clients that want to receive the message

would ask the broker to send any message that gets published on that topic – it is called

subscribing to the topic. The broker queues all the received messages, filters them based

on the topics, and routes them to the clients that have subscribed to that topic. Figure 2.1

depicts the MQTT architecture with a simple example [2].

Figure 2.1 The MQTT Publish-Subscribe Architecture

39

The main components of the MQTT architecture are summarised below:

1. Message: Message is the data that gets exchanged between the Publisher-Broker-

Subscriber.

2. Topic: Topic refers to a UTF-8 string that the broker uses to filter messages for

each connected client. Each message is published (sent to the server/broker) on a

topic.

3. Subscriber: The subscriber subscribes to topics. Any message that is published on

the subscribed topic will be received by the subscriber.

4. Publisher: Publisher is the one that generates the message. It generates the

message and assigns it to a topic and then sends it to the server/broker.

5. Broker: The broker is the server that buffers data and pushes them to the

subscribers according to the topics to which they have subscribed.

1.3 MQTT TOPICS

MQTT topics are a form of addressing that allows MQTT clients to share information.

They are structured in a hierarchy, using the forward-slash (/) as a delimiter. When

subscribing to multiple topics two wildcard characters, namely, the # (hash character) –

multi-level wildcard and the + (plus character) – single-level wildcard can be used. Some

examples of valid topics are house/room1/main-light, house/room1/alarm, house/#,

house/+/main-light etc. All topics are dynamically created by a subscribing or publishing

client and are not permanent.

40

1.4 HOW MQTT WORKS

The MQTT protocol works by exchanging a series of MQTT control packets in a

defined way. An MQTT session consists of four stages: connection, authentication,

communication, and termination just like any other communication protocol.

The clients start by establishing the TCP/IP connection to the broker. Once the TCP

connection is established, the client sends an MQTT CONNECT packet with a unique

client Identifier, username, and password. The broker authenticates the client using the

username and password field in the connect packet. After a successful connection, the

client can publish messages on topics using the PUBLISH packet or subscribe to topics to

receive messages published on them, using the SUBSCRIBE packet. The MQTT broker

sends a PUBLISH packet to the client when it receives a message on the topic subscribed

by the client. The broker can set restrictions on the topics a client is allowed to subscribe

or publish based on its client ID, username, and password. This makes sure that not any

device connected to the broker can publish messages or receive the messages published

on a certain topic. The client must send PINGREQ (ping request) packets to the broker

periodically to keep the connection alive. Finally, the connection can be terminated by

sending an MQTT DISCONNECT packet from the client side. The broker can also

terminate the session in case the keep-alive period expires or the client violates the set

restrictions or behaves abnormally. The broker responds to the packets from a client with

the corresponding acknowledgment packets.

The MQTT protocol provides Quality of service (QoS) levels for reliability. The QoS

level determines how each MQTT message is delivered and must be specified for every

message published. The following are the available QoS levels with which a message can

be published.

41

1. QoS 0 (Fire and forget/At most once): The client or the broker publishes a

packet and does not wait for an ACK message from the other end to ensure

message delivery. Messages are delivered according to the best efforts of the

operating environment. Message loss can occur.

2. QoS 1 (At least once): The client or the broker waits for the PUBACK packet

from the other end to ensure that the message is delivered at least once. Messages

are assured to arrive but duplicates can occur.

3. QoS 2 (Exactly once): The client and the broker exchange a set of three more

control packets following a PUBLISH packet which are PUBREC (publish

received), PUBREL (publish release), and PUBCOMP (publish complete).

Messages are assured to be delivered exactly once.

The client that publishes the message to the broker defines the QoS level of the

message when it sends the message to the broker. The broker transmits this message to

subscribing clients using the QoS level that each subscribing client defines during the

subscription process. If the subscribing client defines a lower QoS than the publishing

client, the broker transmits the message with the lower quality of service. Higher levels

of QoS provide reliability but at the same time increase the latency and bandwidth

requirements. Hence one must carefully choose the QoS levels based on the application.

Figure 2.2 shows the exchange of Mqtt control packets between the clients and the

MQTT broker in an MQTT Network.

42

Figure 2.2 Exchange of control packets in an MQTT Network

1.5 OTHER FEATURES OF THE MQTT PROTOCOL

The MQTT protocol supports many other interesting features that prove to be very

helpful in the IoT environment. Some of them available in the MQTT v3.1.1 are

described below.

Last Will and Testament (LWT): The last will and testament message is used to

notify subscribers of an unexpected shut down of the publisher. When an MQTT client

connects to the MQTT server it can define a topic and a message that needs to be

published automatically on that topic when it unexpectedly disconnects. This is also

called the “Last will and testament” (LWT). When the client unexpectedly disconnects,

43

the keep-alive timer at the server-side detects that the client has not sent any message or

the keep alive PINGREQ. Hence the server immediately publishes the Will message on

the Will topic specified by the client.

Retained Messages: An MQTT message can be published with the retained flag in

the publish packet set to true. The broker stores the last retained message and the

corresponding QoS for each topic. Each client that subscribes to a topic pattern that

matches the topic of the retained message receives the retained message immediately after

they subscribe. This helps the newly-subscribed clients to get a status update immediately

after they subscribe to a topic.

Persistent Session: If the connection between the client and broker is interrupted

during a non-persistent session, these topics are lost and the client needs to subscribe

again on reconnect. To avoid this problem, the client can request a persistent session by

setting the cleanSession flag in the connect packet to false when it connects to the broker.

In a persistent session, the broker stores the required information to resume the session

without a problem when a disconnected client reconnects.

MQTT v5.0 update, which is a successor of v3.1.1, adds several features like better

error reporting, including metadata in message headers, shared subscriptions for client

load balancing, message expiry option, session expiry to improve session management,

zero-length publish topic and topic aliasing to reduce bandwidth usage, etc.

44

1.6 SECURITY IN MQTT

1. Identity management and Authentication:

The MQTT provides some client Identity management and authentication features to

provide some basic client connection security. All the clients must provide a unique client

ID when establishing a new connection. Some broker implementations allow imposing

client id prefix restrictions on the client name to have control on the devices getting

connected. Optionally, a username and password can be used to authenticate the clients

and to restrict access to the broker.

2. Authorization:

The MQTT broker can be configured to allow or restrict a user from performing

certain actions so that different users can be authorized to perform different actions.

Restrictions on publishing or subscribing to topics can be imposed based on the Client ID

or the username. Role-Based Access Controls (RBAC) and Access Control List (ACL)

are two of the most common types of authorization used. Using ACL or RBAC a broker

can be configured with topic permissions. During the run-time, the broker can determine

allowed topics, allowed operations, and allowed quality of service. If a client attempts to

perform an unauthorized operation, the broker can perform actions such as disconnecting

from the client or acknowledging the client with a failure code.

3. Encryption:

The protocol relies on TCP as the transport protocol and does not have security and

encryption built into it. Though it provides an optional username and password for client

authentication, it is sent in cleartext. This leaves a chance for Man-in-the-middle (MITM)

attacks to be executed to steal the credentials. To avoid this, MQTT brokers allow

45

encryption using SSL/TLS (Transport Layer Security) instead of plain TCP, but this is not

integrated into the protocol to keep it lightweight.

Security using TLS comes at a cost in terms of CPU usage and communication

overhead. The additional CPU usage can be a problem for constrained devices that are not

designed for performing computationally intensive tasks. Also, the communication

overhead of the TLS handshake can be significant if the MQTT client connections are

expected to be short-lived. Techniques such as Session Resumption can improve TLS

performance in such cases. Since every packet is encrypted in TLS, packets transmitted

have additional overhead compared to the unencrypted packets. Additionally, TLS has a

large code footprint and increases memory usage significantly.

Payload encryption is another, not very popular method to secure the data on the line.

This is done in the application level to encrypt only the payload transmitted and hence

does not encrypt the username and password. The data is encrypted end to end between

the publishing device and the subscribing device. This means that both the subscriber and

the publisher must use same the encryption with a fixed pre-shared encryption key. The

need to generate the encryption key manually and hardcoding it in all the clients makes

this method less secure despite the additional complexity.

46

1.7 COMPARISON WITH OTHER COMPETING IOT PROTOCOLS

There are many other message/telemetry transfer protocols that compete with Mqtt in

the IoT environment. Some of them are discussed here.

Constrained Application Protocol (CoAP) is primarily, a one to one client-server

protocol developed for IoT applications that run over UDP. In contrast with the data-

centric publish/subscribe communication used in Mqtt, this protocol is designed to

interoperate with HTTP and hence is document-centric and uses a request/response

communication pattern. DTLS, Datagram Transport Layer Security can be employed to

provide security. Recent updates have added support for a publish/subscribe architecture

that runs over TCP like MQTT.

Advanced Message Queuing Protocol (AMQP) is another common IoT protocol

that runs over TCP and supports both request/response and publish/subscribe

communication patterns. Transport Layer Security (TLS) and Simple Authentication and

Security Layer (SASL) are a part of the protocol and hence it provides better security

options. But it is not the best option for constrained devices and constrained networks

since it is designed with more advanced features and has more communication overhead

than MQTT. Moreover, it does not provide options for reliability and uses only the fire

and forget policy.

Extensible Messaging and Presence Protocol (XMPP) is a protocol originally

designed for instant messaging (IM), presence, multi-party chat, voice, and video calls.

The XMPP-IoT is a variant that has added extensions for use in IoT. It is XML based and

hence requires an XML parser that increases the memory footprint. XMPP supports

different communication patterns like Request/Response, Asynchronous Messaging, and

Publish/Subscribe. Similar to AMQP, it uses TLS and SASL to provide security and does

47

not provide QoS levels for reliability. XMPP is basically an IM protocol and has a much

higher overhead when compared to MQTT.

Data Distribution Service (DDS) was designed specifically to address machine-to-

machine (M2M) communication and uses a publish/subscribe pattern like MQTT. It also

provides multiple QoS levels for reliability. The main difference between the two is that

DDS typically uses UDP and is decentralized, i.e. the messages are not routed through a

centralized server, and instead peer to peer communication is used. Unicast messaging is

used for one-to-one communication and Multicast messaging is used for distribution from

one to many.

All of these protocols have their pros and cons. One must choose the protocol that

best suits their application and the device and network constraints. When considering

applications like remote sensing and control, real-time data analytics, and data

monitoring, MQTT proves to the best option since it is designed specifically for such use

cases where the memory, power, and bandwidth usage are constrained.

48

1.8 PROS AND CONS OF MQTT

MQTT is an extremely simple and lightweight messaging protocol, with a

publish/subscribe architecture. It is designed to be easy and straightforward to deploy

with a small code footprint and is capable of supporting thousands of clients with a single

server. The protocol is data-agnostic, i.e. it is possible to send images, text in any

encoding, encrypted data, and virtually every data in binary. The provision of different

QoS levels enables the user to choose between reliability and performance based on the

application requirement. The size of the data packets is minimized to reduce the network

as well as the power usage, which is of utmost importance in IoT devices. In addition,

Mqtt is fast and efficient in data transmission and delivery even in congested or unreliable

network connections.

The protocol also has some disadvantages in its current implementation. As discussed

previously, MQTT has minimal authentication features built into the protocol. Usernames

and passwords are sent in clear text and for encryption and security, one must employ

SSL/TLS, which is not lightweight and increases the code footprint. Even with TLS,

issuing, and managing client certificates for client authentication is a complex process

due to a large number of IoT devices. Another major challenge is that MQTT’s topic

structure makes it difficult to scale the MQTT network to a global level. As the number of

connected devices increases, the complexity on the broker side increases which in turn

affects the overall performance.

49

2. OVERVIEW AND PROBLEM STATEMENT

There are many open-source implementations of the MQTT protocol that can be used

to set up an MQTT broker or a client. While most of them are for operating systems like

Linux, Windows, and Mac, there are very few implementations available for embedded

systems which are a major part of the IoT world. Eclipse Paho Embedded C library is one

very popular C based library that is widely used in embedded IoT applications.

The Eclipse Paho Embedded C Library

Eclipse Paho Embedded C library is a lightweight, open-source MQTT v3.1.1

implementation for embedded devices. It is a generic implementation that is not reliant on

any particular libraries for networking, threading, or memory management. This is done

to make the library portable since TCP/IP stacks and multithreading libraries are not

standardized. Complete implementation of the MQTT protocol using the Eclipse Paho

library in any embedded platform requires the implementation of network calls, timer

functions, and memory management functions. Threading functions must be implemented

if one wants the MQTT communication to function on a separate thread. Besides, security

implementation requires integrating a TLS library and implementing the necessary

functions.

Problem Statement

Using the Eclipse Paho Embedded C library, write an abstract, easy to use wrapper

MQTT library for STM32 Microcontroller devices. Implement all the necessary functions

to provide a clean and complete MQTT client library along with TLS deployment for

security.

50

3. IMPLEMENTATION AND TESTING

The MQTT library was written and compiled in the IAR Embedded Workbench for

ARM which is an IDE for programming embedded applications. Two different versions

were written, MQTT-LWIP Client library for use in devices that use Ethernet for

communication and the MQTT-GSM Client library for devices that use a 2G GSM

module for data communication.

MQTT-LWIP Client library:

• For communication using Ethernet at the physical layer.

• Uses the LWIP (Lightweight IP) TCP/IP stack for networking.

• Uses the mbedTLS library for security.

MQTT-GSM Client library:

• For communication using the Neoway N10 2G GSM module.

• Uses the TCP stack and the TLS stack from the GSM module for networking

and security.

The library provides a simple set of functions making it easier and quicker for the user

to set up an MQTT client for their application. Table 2.1 shows the API’s provided along

with their functionalities. The following functionalities were implemented to simplify the

data exchange in the remote data monitoring and control process. Figure 2.3 illustrates the

usage of these functionalities.

1. NOTIFY: The embedded device can send data at any time over the open MQTT

connection using this functionality. The receiving client, which can be a central

management server (CMS) or a mobile app, can optionally send back an

acknowledgment.

51

2. GET Request/Response: The CMS or the mobile app can request one or more

devices to send data at any time. The IoT devices can then send the requested data.

3. SET Request/Response: The CMS or the mobile app can request one or more

devices to set a certain value to any defined parameter at any time. The IoT

devices set the values accordingly and can optionally send back a response.

The MQTT-LWIP Client library was tested on the STM32f207 microcontroller board

using a simple LED application. An LED light on the microcontroller board was

monitored and controlled from a mobile application. The MQTT-GSM Client library was

tested on the Inverterless 500 system, which uses the STM32f072 microcontroller board.

All the data that was previously communicated to the server using HTTP, was published

using MQTT.

Figure 2.3 Data Exchange functionalities provided

52

Table 2.1 API's provided and their functionalities

API Description

int MqttInit(char* ip_addr, char* port, char*

clientID, char* username, char* password, char

useTLS, char* cacert)

• Establishes TCP connection

• Creates an MQTT session

int Notify(void* data, size_t len) • Publishes the data

int MqttYieldMessage()

• Polls for incoming messages for 150ms

• Pings the server if KeepAlive expires

• KeepAlive set as 5mins

void NotifyAckCb(void* payload, size_t len)

void GetReqCb(void* payload, size_t len)

void SetReqCb(void* payload, size_t len)

• Client can receive NotifyACK , a GET

request or a SET request

• These message received callbacks must be

implemented by the user

int SendGetResp(void* data, size_t len)

int SendSetResp(void* data, size_t len)

• Sends response to the GET/SET request

received

int MqttDisconnect()
• Disconnects from MQTT broker

• Closes TCP session

53

REFERENCES

[1] Anusha Ramachandran, Sairam Mannar, & Ashok Jhunjhunwala. (2016). Inverterless Solar-
DC System Design for OffGrid and Near Off-Grid Indian Homes. IEEE Transaction.

[2] ElectronicWings. (n.d.). Retrieved June 10, 2020, from
https://www.electronicwings.com/nodemcu/nodemcu-mqtt-client-with-esplorer-ide

[3] MQTT. (n.d.). Retrieved June 10, 2020, from http://mqtt.org/documentation

https://www.electronicwings.com/nodemcu/nodemcu-mqtt-client-with-esplorer-ide
http://mqtt.org/documentation

