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ABSTRACT

KEYWORDS: Electromagnetic Scattering, Inverse Problems, Compressive Sens-

ing, Subspace Optimization

This thesis explores the topic of electromagnetic (EM) field prediction in arbitrary scat-
tering scenarios. The method proposed in this thesis does not assume any prior knowl-
edge of the permittivities and the exact geometry of the scatterers. However, the region
in between the scatterers is assumed to be homogeneous. A major contribution of this
thesis is ‘Compressive sensing based subspace optimization method’ (CS-SOM). Us-
ing CS-SOM, we show that the EM fields in an indoor scattering environment with four
scatterers can be reconstructed with an error of 12%, when the number of measurements
are 55% of the number of unknowns used to formulate the problem. We also show that
the tangential fields on the surfaces of the scatterers can be reconstructed with an error
of 22%. We compare CS-SOM to other popular methods in the literature and show
that CS-SOM performs better in terms of the error. Finally, we present a few directions
in which the current work can be extended. Our approach is a significant departure
from traditional ray tracing approaches found in the literature. We use the surface inte-
gral formulations which capture wave-matter interactions accurately, use compressive
sensing to reduce the number of measurements needed, and finally apply the Huygens’

principle to predict the field everywhere.
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CHAPTER 1

INTRODUCTION

This thesis deals with the topic of electromagnetic (EM) field prediction. EM field
prediction is crucial to many applications like radar cross-section estimation (Hansen!
et al., 20006), indoor positioning (Pei et al., |2010; Wu et al.l 2015), and Wi-Fi access
point planning (Bose and Foh, 2007). Traditional approaches to this problem use the
ray tracing technique (Toscano et al., [2003; Degli-Esposti et al., [2004; J1 et al., 2001).
However, these techniques have significant drawbacks — they suffer from large errors
in near field estimation, are only valid in the high frequency regime, and face difficulties
in modelling mutliple scattering events (Remley et al., 2000, Fig. 3). In contrast, the
method proposed in this thesis is based on surface integral formulations, and therefore

overcomes all the limitations specified above.

Our method relies on a few field measurements to predict the EM field everywhere.
It does not assume prior knowledge of the permittivities of the scatterers or their exact
geometry. However, the region in between the scatterers is asumed to be homogeneous.
The fundamental building blocks of our approach are the Huygens’ principle and the
Extinction theorem. Using these two theorems and the method of moments (Chew,
1995), we pose a linear inverse problem whose unknowns are the tangential fields on
the scatterer surfaces. This linear inverse problem is solved in the framework of the
subspace optimization method (Chen, [2009), using a sparsity prior. The estimated tan-

gential fields are then used to predict the fields everywhere.

This thesis only considers two dimensional (2D) geometries that are illuminated by

a transverse magnetic (TM) polarization field.

Notation: This thesis uses the following notation: An arrow above a letter (*) repre-
sents a vector quantity. Bold upper case letters (eg. A) represent a matrix. Bold lower

case letters (eg. a, o) represent a column vector.



1.1

CHAPTER 2

CHAPTER

CHAPTER [

Outline of the thesis

Some fundamental theorems in EM are introduced. Using these theorems, the
problem of predicting the EM fields is posed as a linear inverse problem. This is
followed by a brief discussion on the construction of forward solvers.

Solution strategies for the inverse problem are discussed. An important obser-
vation in this regard is presented, that the true tangential fields obtained from a
forward solver is sparse in a standard basis like the Fourier basis. This observa-
tion forms the basis for compressive sensing based subspace optimization method
(CS-SOM), an algorithm to solve for the EM fields. Numerical results are pre-
sented to quantify the field prediction error. The proposed CS-SOM method is
compared with other methods in literature.

A summary of the thesis is presented, along with a detailed discussion on the
future directions in which this work may be expanded.



CHAPTER 2

INVERSE PROBLEM FORMULATION

In this section, we present a few theorems that are fundamental to electromagnetics,
namely the Huygens’ principle, the Extinction theorem, and the Uniqueness theorem.
Then we formulate the inverse problem using the aforementioned theorems. Finally, we

end the chapter with a brief discussion on the development of the forward solver.

2.1 Preliminaries

Region 0 Region 1 T N
No
—> Region 2
Ny
So
.J

Figure 2.1: The schematic of a 2D inverse scattering problem. J; is a known source
radiating in Region 1 (free space) at a wavelength A. Region 0 (wall) and
Region 2 (object) are scatterers. S,, and S, are the surfaces of the wall and
the object respectively.

The schematic in Fig. represents a 2D computational domain which is illumi-
nated by a TM polarization field. Region 1 is considered to be free space (¢, = 1, 1, =
1). In the following Subsection, we derive the Huygens’ principle and the Extinction

theorem.

2.1.1 The Huygens’ principle and the Extinction theorem

The Helmholtz equation in Region 1 is written as (Chew, 1995, Ch. 8.1):

V2o(7) + ki (7) = Q(7), (2.1)



where ¢(7) is the (scalar) electric field at the location 7, i.e. E(7) = ¢(7)2; ko is the

wave number in free space and Q(7) = jwpoJ; (7).

The Green’s function in Region 1 is defined as:

V(7,7 + kig(F i) = —6(7 — ), (2.2)

Multiplying Eq. 2.1) by ¢(7,7") and Eq. (2.2) by ¢(r) and subtracting the two

equations, we get:
g(F, 7 )V2H(F) = o(F)V2g(F.7) = g(F.7)Q(F) + o(F)o(F = 7)  (2.3)
Integrating both sides over Region 1 (R;), we get:

| (oo 7000w ) e = [ ot | owsrrbr

R1 Rl

(2.4)
We know from vector calculus identities that:
V- (gVe — ¢Vg) = g(7, 7" )V*6(7) — (V7 g(,7") 2.5)
Additionally, the divergence theorem for any vector field f (7) states that:
R fd%:f F(=np)dl +]{ F(—ny)dl (2.6)
R1 So Sw

Using Egs. (2.3) and (2.6), we simplify Eq. (2.4) as:

—% (gVo—oVg) 'ﬁodl—j{ (gVo—¢Vg) -iydl = —¢i(7")+ | ¢(F)o(F—7")d*T,
o w Ry

2.7)
where ¢;(7") = — [, g(7,7")Q(7)d*7is the incident field radiated by the source .J;.

Depending on the choice of 7 in Eq. (2.7), we get two separate, yet important

results:



1. Incase 7" € Ry, Eq. (2.7) becomes the Huygens’ principle:

o(7") = 6n(i) — ]4 (97, )V 0(F) — 6oV g(F, 7)) - frodl

o

—7{ (g(7, 7"V G () — ¢ (F)Vg(F, 7)) - updl, 7' € Ry (2.8)

w

Eq. (2.8) shows that the total field at any point in Region 1 can be written as a
sum of the incident field and the scattered field. The latter is caused by the terms
(o, Vo - 11,) and (¢, Vb, - 1) on the scatterer surfaces. Detailed analysis of
these two terms shows that these are in fact the tangential electric and magnetic
fields on the surfaces of the object and the wall respectively. The fact that the
scattered field in Region 1 can be determined using the tangential fields on the
scatterer surfaces is the essence of the Huygens’ principle.

2. When 7’ ¢ R;, we get the Extinction theorem:

0= 6:(7") - f (97 )V () — 0o(F)Vg(F, 7)) - fodl
- ?i (97, )V 6u(F) = Gu(FIVg(F, 7)) - frudl, Ry (29)

Eq. (2.9) shows that when 7 ¢ R, the tangential fields on the scatterer surfaces
exactly cancel the incident field at that point. Given the source distribution, the
Extinction theorem provides a relationship between the tangential electric and the
tangential magnetic fields.

2.1.2 The Uniqueness theorem of Electromagnetics

A physical situation always has a unique solution. However, when it is represented in
mathematical terms, it may not admit any solution or may admit multiple solutions.
This happens due to the over-specification or the under-specification of the boundary
conditions. The Uniqueness theorem of EM tells us how to correctly specify the bound-

ary conditions so that the solution is unique.

The Uniqueness theorem states that the EM fields in an environment are uniquely
determined once the source and the boundary conditions are specified. The boundary
conditions are specified by specifying:

e the tangential electric field on the scatterer surfaces, or

e the tangential magnetic field on the scatterer surfaces, or

e the tangential electric field on a part of the scatterer surface and the tangential
magnetic field on the rest of it.



In essence, the Uniqueness theorem implies that the fields can be uniquely deter-

mined by specifying either the tangential electric fields or the tangential magnetic fields

(in Huygens’ principle).

2.2

Outline of the inverse problem

In the previous section, we introduced some theorems that are fundamental to EM.

These theorems are also crucial to our understanding of the inverse problem. Therefore,

we summarize a few facts about these three theorems below:

FACT 1:

FACT 2:

FACT 3:

The scattered field at any location in Region 1 (in Fig. [2.T)) can be found by deter-
mining the tangential electric and magnetic fields on the surface of the scatterers
(via the Huygens’ principle).

It is superfluous to use both the tangential electric and magnetic fields in Eq. (2.8).
It is possible to determine the fields uniquely by using any one of the two (via the
Uniqueness theorem).

However, since both sets of tangential fields are used, they must be consistent
with each other. This consistency is imposed via the relations provided by the
Extinction theorem.

Having recapitulated the above facts, we define the inverse problem and provide

an outline of our proposed method for solving it. The problem that we address is the

following: Consider a room with some objects (such as desks and chairs) in which an

active antenna (e.g. a Wi-Fi router) is placed. Can the EM field at each point inside

this room be predicted by making a few field measurements? The problem statement is

graphically represented by the 2D schematic in Fig. An outline of our method is

given below:

STEP 1:

STEP 2:

STEP 3:

Measure the field at some random locations in Region 1.

Estimate the tangential fields on the surfaces of the scatterers using the Huygens’
principle and the Extinction theorem.

Substitute the estimated tangential fields in the Huygens’ principle to predict the
field everywhere.

In the rest of the chapter, we flesh out the details of the idea presented above.
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Figure 2.2: Schematic of the problem statement: Can the field be predicted anywhere
in Region 1 (a homogeneous medium) by making a few measurements. .S,,
is the inner surface of the enclosing wall and .S, is the outer surface of the
scatterer. n,, and 7, are normals to the surfaces of the wall and object,
respectively.

2.3 Mathematical formulation of the inverse problem

Using Huygens’ principle (Balanis, [1999), the z-component of the electric field at any

point 7 in Region 1, ¢(7) can be expressed as:

Oo(F) = 6i(F) — ¢ (9, 7)V'6u () — 67V g(F,7)] - s dl

Sw

—fg [9(7, 7YV 0o (7)) — ¢o(F )V g(7, 7)) - Rp dl’ (2.10)

Note that this equation is simply a restatement of Eq. (2.8)), with the only difference that
7"and 7’ have been interchanged for notational convenience. g(7,7") = —(j/ 4)H(§2) (ko|m—
7”]) is the free space Green’s function in Region 1, ¢;(7) is the incident field, ¢,, ¢,, are
the tangential electric fields on the object and wall surfaces, and n,, and n, are normals
to the scattering surfaces of the wall and object, respectively, as shown in Fig. It can
be shown that V¢, - n, and V¢,, - n,, are proportional to the tangential magnetic fields
on the object and wall, respectively. S,, is the inner surface of the enclosing wall and .S,
is the surface of the scatterer. Note that in Eq. (2.10), ¢(7) represents the field measure-

ment and is therefore known, whereas the quantities (¢,, V,.7,) and (¢, Vdy,.1y)

are to be estimated, and therefore are the unknowns.



We expand the unknowns in known sets of bases p,, () and ¢, (r) as

No
= ampalr), Vo(r Z bipn(r @.11)
n=1
Ny
u(r) =) anau(r), Vo (r Z bgn(r (2.12)
n=1

where lowercase r denotes the parametrized distance along each surface (S, or S,);
pu(r), n=1,2,...,N,,and ¢,(r),n = 1,2,..., N, are the sets of basis functions and

a?, b?, a and by are their respective unknown coefficients.

n’>-n’

Substituting Egs. (2.11) and (2.12)) in Eq. (2.10), and considering M locations of
field measurement, we get the following linear system of equations:

ao ¢s(771)
b (7
EFGH]| _ |, 2.13)
—_—— a? :
A
o0 (7))
T %b/_/

where {E, F} € CM*Ne G, H} € CM*Nw compose the system matrix A € CM*V,
x € CV is a vector with vertically stacked elements {a’, b’} € C™ and {a“,b"} €
CNv, with N = 2(N,, + N,) being the total number of unknowns. The scattered field
at a location 77; is ¢,(7;), which is corrupted by noise given in v. We call Eq. the

‘data equation’ because it is constructed using the field measurement data.

A standard choice for p,(r) and g, (r) is the pulse basis function defined as follows:
Let the lengths of the surfaces S, and S,, be L, and L,, respectively. Divide the two
contours into NV, and N,, segments of equal lengths respectively. With r denoting the

parametrized distance along S,,, the pulse basis functions on S, are defined as:

1 Ton—1 S r S Ton
pa(r) = nell,N,],0<r <L,

0 else

where 7, ,, denotes the parametrized distance to the end of the i"" segment on S,,. Simi-



larly, with r denoting the parametrized distance along S,,, the pulse basis functions on

S,, are defined as:

1 7,w,nfl S r S Tw,n
qn(r) = n € [1,Ny], 0 <r < L,

0 else

where r,, ,, denotes the parametrized distance to the end of the i segment on S,,.

The system matrix constructed using the pulse basis is denoted by A, = [E, F, G, H,,).
The elements of each of the submatrices (denoted by their corresponding lower space

characters) are given by (Sastry et al.,[2019):

Tw,k k 5
ok = / Zpo H® (kopm) (AR, - 1) dr
Tw,k—1 Tm

Rt )
fm,k = _/ ZLHO (k?oﬂm) dr
okt (2.14)

ok jk I
gmi= [ L H () (AR i) e
To,k—1 prnL

oo [ g Y
m,k — T Z 0 (Opm) r
To,k—1

where AR, = 7, — ﬁ(r) Pm = |Al§m] with 7, denoting the position vector of the m™
measurement point, and ﬁ(r) denoting the position vector of the point on the respective

contour with parametrized distance 7.

The data equation was derived using only the Huygens’ principle. We have at our
disposal one more equation — the Extinction theorem. As stated before, the Extinction

theorem relates the tangential electric and magnetic fields. We restate it below:

0=@GW—£[mﬁﬁﬁwwﬁﬂ—%ﬁﬁvbmfﬂ-mdﬂ

‘f@“WW%ﬁﬁﬂMWWMﬁmymm’@w>

o

Note that 7" in Eq. (2.15)) lies outside Region 1. Substituting Egs. (2.11) and (2.12) in

Eq. (2.13), and setting the basis functions to be the pulse basis functions, we get:

T
Az == [0,() - 0u(7)] 216

(. /
~\~

bs

NN




) e, £ are the midpoints

where A, € C>*N s called the the ‘state matrix’, and 77}
of the discretized segments of S, and S,, (These are & in number). We call Eq. (2-16

the ‘State Equation’ because it gives a relation between the two sets of unknowns.

Evaluating the singular integrals: The 2D Green’s function, g(7, ") = —(j/4)H, (ko |7—
7”'|) has a singularity when 7 = 7. In case, any of the integrals involved in our formula-
tion encounter this singularity, they have to be evaluated with sufficient care. The vector
7" in our formulation always exists on the surfaces S, and S,,. In the data equation, 7~
denotes the measurement locations, which lies in Region 1 by definition. This ensures
that 77 is never equal to 7. Therefore, a singularity is never encountered while populat-

(s)

ing the data equation. However, in the state equation, the points 7, are chosen as the

midpoints of the discretized segments of the surfaces. So, whenever the point 7~ Z(s) lies

on the segment over which the integral is being computed, a singularity is encountered.

(s)

For each 7;", there are two singular integrals that are encountered — f:end g(r ES), 7")dl

tart

and fr et""t Vg(7;”,7") - ndl, where rgq, and r.,q are the start and end points respec-
. . — 5) . . . Ten — —,

tively of the edge of which 7, is the midpoint. It turns out that frmft g(ri ,7” )dl
is a convergent integral, and using the small argument approximation for the Hankel’s

functiorﬂ (Abramowitz and Stegun, |1948)), it can be shown that:
Tend y
/Tatm"t g(rl ’T )dl 4h jﬂ- ! 4 + (’y ) ’

where £ is the length of the discretized segment.

However, f fend Vg(F (s) ,7") - ndl is divergent and has to be evaluated carefully (by
choosing a suitable integration contour). On doing so, we get f end Vg( ) -ndl =

—0.5 (Chew, |1995, Chapter 8.2).

Finally, we refine the outline of our method (mentioned in Section using the

mathematical framework that we have developed so far.

STEP 1: Measure the field, ¢(7;) at some random locations, 7; = 7, 75, . . . , 75y in Region
1. Using the field measurements, populate the vector b in the data equation.

STEP 2: Estimate the tangential fields on the scatterer surfaces by solving the following
convex optimization problem:

min;irmize | A,z — blls <€ [[Asz — bslla <7 2.17)
IH(SQ)(kP) =1- (ln L7 ), where ~ is the Euler’s constant.

10



where € is an estimate of the square root of the noise variance, and 7 is an estimate
of the discretization error in the state equation.

STEP 3: Substitute « from above into Eq. (2.10) and calculate the field at S locations. Let
the true field at these S locations obtained from the forward solver be f € C°
(i.e. this data is generated synthetically). Then we compute the error, e € R as

e =Bz - £l (2.18)

where B € C%*¥ is the matrix obtained from Huygens’ principle (2.10) by
setting 7 to the locations where the field prediction is desired.

2.4 A note on the forward solver

Before concluding this chapter, we discuss very briefly the construction of the forward
solver. For a more rigorous treatment, the reader is directed to (Chew, |1995, Chapter
8). In a forward solver, the information about the source and the permittivities of the
scatterers is available, and the tangential fields have to be estimated. A standard method
of exactly solving for the tangential fields is to use the Extinction theorem of Region
1 along with the Extinction theorems of the other regions (the scatterers). In order to
use the Extinction theorem of the other regions, the Green’s function of these regions
have to be specified. If these regions are homogeneous with a wave number of k;,
then the Green’s function of this region is simply g;(7, 7") = —(j/4)Hé2)(ki|F— ).
However, if the scatterers are heterogeneous, the Green’s function has to be computed

numerically.

Once the Extinction theorems of all the regions are specified, an approach similar to
the construction of the state equation is followed, i.e. the tangential fields are expanded
in a known basis and the equations are written at the midpoint of each discretized edge.
Finally, the tangential fields in different regions are related using boundary conditions.
The matrix thus formed is called the ‘impedance matrix’. This system is solved for the
tangential fields. Once the tangential fields are obtained, as usual, Huygens’ principle
can be used to calculate the true field everywhere. This class of forward solvers is called
the ‘Surface Integral Equation’ solver it involves integrals that run over the surfaces of
the scatterers. Further, since in the beginning of this chapter, we assumed a source with
TM polarization (E(7) = ¢(7)Z), the surface integral formulation derived is called the

‘Electric Field Integral Equation’ (EFIE). By duality, one can also derive the ‘Magnetic
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Field Integral Equation’ (MFIE).

The issue of internal resonances: Any discussion on the EFIE is incomplete without a
mention of internal resonances. It turns out that when the operating frequency matches
the resonant frequency of the cavities formed by the scatterers, the integral operator of
the EFIE (or the MFIE) has a non trivial null space (Chew, |1995, Chapter 8.2.3). Equiv-
alently, the impedance matrix formed at these frequencies is ill conditioned (Liu et al.l
2004). Therefore, when the EFIE (or the MFIE) is solved at the resonant frequency,
the tangential fields obtained are not unique. This problem has been known to the EM
community for decades and various approaches have been proposed to overcome this
(Glisson et al.l, [1983); Kajfez er al.l [1984; Mongia and Ittipiboon, [1997)). One of the
popular methods is to use the combined field integral equation, as shown in (Mitzner,

1968)).
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CHAPTER 3

COMPRESSIVE SENSING BASED SUBSPACE
OPTIMIZATION METHOD (CS-SOM)

In this chapter we present compressive sensing subspace optimization method (CS-
SOM), an algorithm that is used to solve the optimization problem in Eq. We
also present the results for a few numerical experiments to demonstrate field prediction.

Finally, we compare our method to other popular methods in the literature.

3.1 Mathematical description of CS-SOM

CS-SOM is an algorithm that is an improvisation of the Subspace Optimization Method
(SOM) (Chenl 2009). Consider the singular value decomposition (SVD) of the system
matrix, A, = ), uiaivf{ , where u; and v; denote the left and right singular vectors of
A, respectively, and o; denotes the corresponding singular value (such that o; > 0;11).
The essential idea of SOM is to recover the unknown signal by projecting it onto two
orthogonal subspaces — the ‘signal’ space, spanned the top L singular vectors of A,,
and the ‘noise’ space, spanned by the remaining N — L singular vectors. In the absence
of noise, Ly would simply be the number of independent rows of A, (typically A, is
underdetermined), and the signal space and noise space would be the row space and
the null space of A,. The row space component of the solution can be determined
unambiguously, whereas nothing can be said about the null space solution. However, in
the presence of noise, the smaller singular values will amplify the noise, and increase
the estimation. Therefore, we express the unknown vector as * = x; + x,,, where x;
and x,, correspond to the signal space and noise space components respectively, and
determine them as follows:

Signal space estimation: The signal space component, x, is determined using a L

term truncated SVD solution of the data equation:

L, H
u;'b
T, = Z ( J )v (3.1



where L is chosen using the Morozov discrepancy principle (Morozov and Greben-
nikov, 2005), i.e. L, is the smallest number such that || A,z — b||2 < €, where € is the
square root of the noise variance, which in many situations, is reasonably known. The
problem is not very sensitive to the exact choice of L,, as the remaining components
are determined in the next stage; various studies have also corroborated this observation
(Chenl 2009; |Sanghvi et al.,[2019).

(i) Noise space estimation: In general, the noise space component, x, cannot be
recovered. However, when there is some prior knowledge about the quantity to be re-
covered, this information can be leveraged to recover x,, to a certain extent. In our
case, the prior information comes from a crucial observation regarding the true tangen-
tial fields. For the scenario in Fig. when the true tangential fields are computed
using a forward solver, and the DFT of these tangential fields is plotted (see Fig. [3.1)),
we observe that most of the coefficients have a very low magnitude, i.e. the unknown

quantity exhibits sparsity in DFT basis.
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Figure 3.1: DFT coefficients of the tangential fields (a) V¢, - n,, (b) ¢, on the scattering
surface S, and (¢) Vo, - Ny, (d) ¢, on the scattering surface S,, as shown
in Fig. [2;2} Most coefficients have very low magnitudes.

This observation can be exploited to reconstruct the EM fields, by leveraging ideas
of Compressive sensing (CS) (Candes et al., 2008). CS principles state that a sparse
signal can be recovered from undersampled linear measurements, provided the obser-
vation matrix satisfies the Restrictive isometry property (RIP). The RIP, however, is in
general difficult to verify for deterministic matrices. So, we apply CS principles heuris-
tically, an approach that has gained popularity in the EM community (Massa et al.,

2015)). Thus, keeping x constant (at the value obtained from Eq. (3.1])), we propose to
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solve for x,, using the following convex optimization problem:

minai}mize | M (x5 + )1
subject to || Apx, — (b — Apxs)||2 <e, (3.2)

HAswn - (bs - Ast)”2 <n

where M = JF, VW, or D are the DFT, wavelet or DCT bases, respectively, chosen
as candidates for sparse representations. As before, € is an estimate of the square root

of the noise variance, and 7 is an estimate of the discretization error in the state equation.

A note on sparsity in EM reconstruction problems: A natural question arises re-
garding the applicability of sparse recovery in general EM problems. As it turns out,
sparsity is indeed a general principle in EM problems involving radiation-like oper-
ators. It is shown in (Chen, 2018, Fig. 6.14) that the right singular vectors corre-
sponding to the highest singular values of the state operator resemble low-frequency
Fourier bases, whereas those corresponding to the lower singular values resemble high-
frequency bases. Therefore, it is clear that the solution is dominated by the highest
singular values, and thus the low-frequency Fourier bases. Hence, the idea of sparse re-
construction can be used as a general principle in all EM problems involving radiation-

like operators.

3.2 Numerical results

In this section we demonstrate the process of field prediction using our method. We
describe the simulation setup, define the error metrics, and present the results for various

scenarios.

3.2.1 Simulation Setup

The simulation domain is a square region of 10\ x 10\ with four objects inside. All
four objects have different permittivities and are within an outer wall, which is as-
sumed to be infinitely thick (a realistic assumption because it is lossy). The simulation

setup is shown in Fig. Objects 1,2,3 and 4 are centered at (—2.5), 1.5), (2, 2)),
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(1A, —2.5)) and (—2.5)\, —1)\) respectively, where A is the wavelength; The relative per-
mittivities of the objects 1, 2, 3, 4 and the wall are ¢,; = 3.7 — 2.17, €,0 = 1.7 — 1.17,
€3 =27—377,¢€4=12—1.1j7and ¢, = 3.7 — 2.15 respectively (lossy, so as to
mimic real life materials such as a concrete wall, etc.). Object 1 is a square of side A,
object 2 is a cirle with radius 0.75), object 3 is a rectangle with dimensions 1\ x 2.5\
and object 4 is a circle with radius 1\. The source is at 7o = (0.5, —0.75)), and it
radiates a cylindrical plane wave of the form: ¢;(7) = Hé2) (ko|7 — T5|). Note that the
permittivity and the true geometry of the objects are used only in the forward solver to

generate the synthetic measurements.

5

-5 A
-5

Figure 3.2: The schematic of the simulation domain of dimension 10\ x 10A. The do-
main includes an outer wall, 4 objects and a source. The objects 1,2,3 and
4 are centered at (—2.5), 1.5X), (2A,2)), (1A, —2.5)) and (—2.5\, —1))
respectively. The source is placed at (0.5, —0.75)) and 'w’ is the outer
boundary. The dotted contours represent approximate geometry of the ob-
jects used in the field reconstruction algorithm.

3.2.2 Generating the ‘True’ fields

The true tangential fields are obtained using the Surface Integral Equation (SIE) method,
using pulse basis to expand the tangential fields on the surfaces of the scatterers. The
procedure for construction a SIE solver is given in Section [2.4] A spatial discretization
of \/40 (of the surfaces of the scatterers) is considered to ensure numerical conver-
gence. The true field at all points is obtained by substituting the true tangential fields

in Huygens’ principle (Eq. (2.10)). To verify the correctness of our forward solver,
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we simulate the scattering from a single infinite cylinder of radius A and validated it
with the Mie series solution. We present the details of this comparison below. Fig.[3.3]
shows the scattered field from a single infinite cylinder computed using the Mie series
solution and our surface integral solver. The radius of the cylinder is 1m and it’s relative
permittivity is €, = 2. The scattered field is computed on a circular contour of radius
2m. The incident wave is a 2D plane wave of wavelength A = 1m. When the surface of
the cylinder is discretized at A/40, the relative error between the two solutions is 1.4%.
We also present a study of the error with different discretization in Table It can be

seen that as the discretization is increased, the error decreases monotonically.

—— Mie Series

— Mie Series ---Bl

---BI m h
5
: 5
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g T
=
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0 /2 T 3n/2 27 0 /2 T 3x/2 27
¢ along the contour # along the contour
(a) Magnitude (b) Phase

Figure 3.3: Comparison of the forward solver with the Mie series solution. The figure
shows the scattered field by a single infinite cylinder of radius 1m with a
relative permittivity of €, = 2. The incident wave is a plane wave. For
BI we choose a discretization of A/40 which gives an error of 1.4%. The
scattered field is calculated along a contour of radius 2m from the center of
the cylinder.

Discretization | A\/10 | A/15 | A/20 | A/25 | A/30 | A\/35 | A\/40 | A/50
Error % 10.8 | 5.9 442 |34 2.9 2.3 1.4 1.3

Table 3.1: The table shows the error between the scattered field from a single infinite
cylinder calculated using the Mie series solution and the forward solver for
various discretizations. The discretization is increased from A/10 to A/50
and the error is calculated in the scattered field.

As noted at the end of Section [2.4] the EFIE is known to display numerical issues
related to cavity resonances. It turns out that our formulation and the choice of fre-
quency is not affected by the issue of cavity resonances as detailed below. In order
to demonstrate this, we plot the reciprocal of the condition number of the impedance
matrix (system matrix of the forward solver) in a range of frequencies around the fre-

quency chosen in our paper. It is known that internal resonances can be inferred from
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the condition number (Liu ef al., 2004)), since at resonance the lowest singular value
tends to zero, and therefore the reciprocal of the condition number also tends to zero.
Fig. [3.4] shows the variation of the inverse of condition number with the frequency of
operation, thus reassuring us that our formulation is not affected by this issue in the

neighbourhood of this frequency.

-1
S - == ]
,b\ - ~e 7 -t r
\
1\— '3 r \ //
N \ /
o \ 7
o 4 o
o A
- Frequency of v
-5 operation
-6

Frequency (MHz)

Figure 3.4: Plot of the log(1/0), where o is the condition number of the impedance
matrix at a particular frequency in a frequency range between % and %.
fo = 10MHz is the operating frequency.

The measurements for the inverse solver are generated synthetically, using the true
tangential fields from the forward solver. The measurements are then corrupted with
additive white Gaussian noise (AWGN) with a signal to noise ratio (SNR) of 25 dB and
10 dB.

3.2.3 Numerical considerations in the inverse problem

In order to demonstrate that the inverse solver requires only the approximate location
and geometry of the scatterers, while predicting the field we don’t assume the knowl-
edge of the exact shape of the scatterer. Instead, as shown in Fig. [3.2]by means of dotted
contours around the objects, we approximate the geometry of the object by a bounding
box that encloses the object. The data equation and the state equation are obtained using
a uniform discretization of \/5 along the dotted contours. This is based on our numer-
ical experiments which showed that a discretization of /5 gives the optimal trade-off
between accuracy and computational cost. In general, the number of unknowns for the
tangential fields varies with the number of objects and the problem discretization. At
a discretization of \/5, the total number of unknowns as 704. In the second stage of

CS-SOM (see Eq. (3.2)), we note that the value of 7 is chosen to be the discretization
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error in the state equation. This is found by computing the ‘state residual’ defined as,
| As@irue — bs||/||bs||, where @, denotes the true tangential fields calculated using
the forward solver. At a discretization of A/5, we obtain a state residual of around 0.06.

Therefore, in all our experiments we set 7 = 0.1.

For ease of notation, we define sampling rate (SR) as the ratio of number of measure-
ments to the number of unknowns. We perform numerical experiments for three values
of SR : 0.3 (212 measurements), 0.55 (387 measurements) and 0.8 (563 measurements).
Applicability of compressive sensing when A/ > %: In the cases where the num-
ber of measurements M exceeds the % a natural question arises regarding whether or
not there are more equations than the number of variables. To recap: the estimation
matrix, A,, is of size M x N, whereas the system matrix, A, is of size % x N, where
M, N refer to the number of measurements and variables, respectively. Thus, when

N

SR > 0.5, i.e. M > =, the total number of equations exceed N. To investigate this

further, we construct a “composite” system matrix such that A= ( iz ), and then study

its singular value spectrum in Fig. [3.5|for varying values of SR. Evidently:

(1) Even by the conservative definition of rank, which includes very small but non-zero
singular values, the rank of the composite system does not exceed V.

(i1) If we take a more realistic scenario and consider singular values within a factor of
108 of the maximum singular value, the number of significant singular values is well

below V.

Therefore, even though the composite matrix Ais overdetermined, it does not have
full column rank. Thus, the use of a priori information towards compressive sensing

solutions remains legitimate.

3.2.4 Error Metric Definition

We define two error metrics — the tangential field error, (A7), and the error in recon-

struction on the 2D grid (A¢). The tangential field error is defined as,

AT _ Hwest - wtrue||2 (33)
||wtrueH2

where x4 and x4, are the estimated and true tangential fields respectively.
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Figure 3.5: Study of the singular values of the composite system matrix A as a func-
tion of sampling rate. The dashed lines for each color indicate the singular
value index where the singular values goes below a factor of 10° from the
maximum singular value.

The field is estimated over the 10\ x 10\ region, discretized on a grid of discretiza-

tion \/20. The error in reconstruction on the 2D grid is calculated as:

error (AG) _ ||¢est _ d)trueHQ (34)
||¢trueH2

where ¢, and ¢,,.,. are the estimated and true fields over the 2D grid of points respec-

tively.

We also define the relative error at a location 7 as:

’(best (77) - (btrue (77‘)’
’¢true<f‘)‘

(3.5)

where s (7) and ¢y, (7) are the estimated and true fields at 7 respectively.

The locations inside the object and those that are very close to the scatterer surfaces
(at a distance less than \/10 from the approximate surfaces of the objects) are not

considered in the error calculation.

3.2.5 Field prediction using random measurements

All the figures presented in the Section are for an SR of 0.55 (387 measurements) and

for an SNR of 25dB. The measurement locations are chosen randomly in the region in
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between the scatterers. The reconstruction of the tangential fields for an SR 0f 0.55 and
25dB SNR can be visually appreciated in Figs. 3.6l The average error in the recon-

structed tangential fields (A7) for this case over 100 monte carlo iterations is 22%.

‘ —True -~ Prediction ‘
004 [ f T T T ) =

[V - Tl

|Gl

0 4 )\ 88X 12X 16X 20X 24X 28X 32X 36\

Figure 3.6: Comparison of the magnitudes of the estimated and true tangential fields on
the surface of the inexact wall, obtained for 387 measurements (0.55 times
the number of unknowns). The measurements are noise corrupted by 25 dB
SNR.

We calculate the field over a circular contour of radius 4.2, centered at the origin
using the true tangential fields and the recovered tangential fields, and plot them in

Fig.[3.7] It can be seen that the predicted fields match the true fields.

Next, we predict the fields on a 2D grid in the computational domain with a pitch
of A\/20. The magnitude and phase of the true and predicted fields over the 2D grid are
given in Figs. [3.8]and [3.9] The average reconstruction error on the grid (A¢) over 100
monte carlo iterations for and SR of 0.55 and 25dB SNR is 12%.

Then we plot the relative error at each prediction location in Fig. [3.10] along with a
histogram of the relative errors calculated at each of the locations. It can be seen that
the error at over 80% locations is less than 10%. In fact, we can also conclude that the
error is highest in the region in between the objects that are close and near the boundary

of the wall.

We tabulate A and Ar for different SRs and SNRs of 10dB and 25dB in Table 3.2}
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Figure 3.7: Comparison of reconstructed and true fields (magnitude and phase) over
a contour of radius 4.2 \ obtained for 0.55x sampling rate (387 measure-
ments). The measurements are noise corrupted by 25 dB SNR.

0.05

Figure 3.8: The magnitude of (a) true and (b) reconstructed 2D fields over a 10\ x 10\
grid, obtained for 0.55x sampling rate (387 measurements). The measure-
ments are noise corrupted by 25 dB SNR. The colorbar shows the field

magnitude in V/m.

As expected, the error reduces as the number of measurements increases. However this

improvement reduces as we go to higher SRs. This can be explained using the SVD of

the system matrices (see Fig.[3.9).

In order to study the variation of the results with geometry, we also perform experi-

ments with different number of objects (two to four). The errors for these experiments
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Figure 3.9: The phase of (a) true and (b) reconstructed 2D fields over a 10\ x 10\ grid,
obtained for 0.55x sampling rate (387 measurements). The measurements
are noise corrupted by 25 dB SNR. The colorbar shows the phase in radians.
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Figure 3.10: (a) Relative error (see (3.5))) in the prediction of total field over a 10\ x 10\
grid discretized at A\/20. The prediction is obtained for 0.55x sampling
rate (387 measurements) . The measurements are noise corrupted by 25
dB SNR, and (b) Histogram of normalized error over different locations
of the simulation domain in Fig. [3.10|(a). 80 % of the locations, have less
than 10 % prediction error with an average error of 12 %

are presented in Table [3.3] It can be seen that the variation in the error is within the
standard deviation. Therefore, we conclude that as the complexity of the scattering

environment increases, the reconstruction error does not change significantly.
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Measurements/Sampling Rate
SNR (dB) | 212/0.3x | 387/0.55x | 563/0.8x
Ag | Ar | Ag | Ar | Ag | Ar
Mean | 23 |32 [ 12 |22 |8 19
Max |32 [43 |17 |29 |11 |24
Min |15 |24 |7 17 |5 16
SD 3 3 2 3 1 2
Mean | 45 |45 |31 |36 |24 |30
Max |54 |53 |37 |41 |28 |39
Min |39 [39 |25 |30 |20 |24
SD 3 3 2 3 2 3

25

10

Table 3.2: Percentage error in the predicted field (Ay) and recovered tangential field
(A7) for different measurement modalities (different number of measure-
ments and SNR values) over a 10\ x 10\ grid calculated for 100 monte carlo
trials. SD is the standard deviation.

Number of Objects

SNR (dB) 2 3 4
Ag | Ar | Ag | Ar | Ag | Ar
Mean | 10 |17 |9 17 |12 | 22
Max |19 |13 |14 |22 |17 |29
Min 6 25 16 14 |7 11
SD 3 3 2 2 2 3
Mean | 30 | 31 |30 |32 |31 |36
Max |37 |38 |39 |46 |37 |47
Min 24 |25 |27 |28 |25 |30
SD 3 3 2 4 2 3

25

10

Table 3.3: Percentage error in the predicted field (Ag) and recovered tangential field
(Ar) for different number of objects over a 10\ x 10\ grid, for 0.55x sam-
pling rate. The error was calculated for 100 monte carlo trials. SD is the stan-
dard deviation. The number objects are considered in serial wise as shown

in Fig[3.2}

3.3 Comparison with related schemes

In this section, we present a comparison of CS-SOM with other popular methods in the

literature.

3.3.1 Truncated SVD

The truncated SVD solution (of the composite matrix A= (‘:’S’ )) is the most natural
choice when solving a linear system with noisy data. Since the state equation is not

corrupted by noise, we determine the truncation limit using only the data equation’s
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residual, i.e. we retain the minimum number of singular values so as to satisfy || A,z —
b|| < €, where € is an estimate of the square root of the noise variance. Since this
approach does not exploit any prior knowledge about the problem, it performs poorly
(in comparison to CS-SOM). For an SR of 0.55 and 25dB SNR, over 100 monte carlo
trials, we obtain Ag = 19% and A = 30%.

3.3.2 Vanilla CS

We can also use CS directly to the problem without the SOM framework. This is

achieved by:

minimize  ||&€|];

subject to  ||A, K& — b2 <, (3-6)

A K& — b2 <n
where K is a linear transformation with coefficients £&. This approach also leads to a
higher error than CS-SOM. It achieves an average of Ag = 14% and A7 = 25% in the

case of a sampling rate of 0.55 and 25 dB SNR. Our proposed CS-SOM approach can

be thought of as a synthesis of these two approaches, and thus gives superior results.

3.3.3 Low pass filtering approaches

In CS-SOM, we recover the noise space component by penalizing the /; norm of the
solution in a standard basis. Another popular way of exploiting sparsity is to regularize
the solution by only choosing the low frequency basis coefficients. There are two popu-
lar methods, also based on SOM, that follow this approach, namely the New FFT SOM
(NFFT SOM) (Wei et al.,|2016) and FFT - Twofold SOM (T-SOM) (Chen, 2018).

In NFFT SOM, the signal is decomposed as ¢ = x; + F'«, where F' is a complete
Fourier basis. In the first stage of the method, x; is recovered using Morozov’s principle
— using the first L right singular vectors of the system matrix A,. This is identical

to the first stage of CS-SOM. The second stage of NFFT SOM is implemented via a
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constrained optimization approach as follows:

minimize ||Fal|y (3.7)
subject to: || As(xs + Fa) — b2 <, (3.8)
|Ay(zs + Fa) — bl <, 3.9

where € is an estimate of the square root of the noise variance, and 7 is an estimate of

the discretization error in the state equation..

In T-SOM, the unknown signal is decomposed as * = x; + Van F,B, where
F is inverse Discrete Fourier Transform matrix (IDFT) and V,, is the minor part of
the right singular vectors of the system matrix A,. The first stage of this method is
identical to that of CS-SOM i.e., x, is recovered using the first L right singular vectors
of the system matrix A,. The second stage of T-SOM is implemented via a constrained

optimization approach as follows:

minignize |DFB||; (3.10)
subject to:  ||A(xs + DFB) — byl <, (3.11)
|A,(z, + DFB) —b|ls <e, (3.12)

where F3 = [Fy,Fy---Fy,]8 and My(< N) is the number of coefficients. D =
VnVnH =1I-— VSVf , V5 1s the major part of the right singular vectors of the system
matrix A,. As before, € is an estimate of the square root of the noise variance, and 7 is

an estimate of the discretization error in the state equation.

We find that our method outperforms both these methods. This is quantified in Table
@for a sampling rate of 0.55 and an SNR of 25dB. We do note, however, that CS-SOM
has a higher computational run time than NFFT SOM or T-SOM.

Method — T-SOM
| Error type €5-50M | NFFT SOM My/N = 0.3 | My/N =05 | My/N = 0.7
Ag 12 15 16 15 15
Ar 22 30 32 29 31

Table 3.4: Comparison of error for different methods at a sampling rate of 0.55 and an
SNR of 25dB.
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CHAPTER 4

CONCLUSION

In this chapter, we present a discussion of the future directions in which this work can be

extended. Then, we conclude this thesis with a short summary of the results presented.

4.1 Future extensions

Since the approach presented in this thesis differs significantly from ray tracing ap-
proaches in literature, it has various applications, and can be extended in multiple ex-

citing directions. We present a few of these below.

4.1.1 Sensor Placement

In this thesis, we consider the measurement locations to be random. A realization of
50 random samples (for a geometry with one object and a surrounding wall) is shown
in Fig. It can be seen that random samples are closely spaced and tend to form
clusters. This increases the redundancy in the system, thus increasing the number of
measurements without decreasing the reconstruction error significantly. From a linear
algebra perspective, closely spaced samples correspond to linearly dependent rows in
the system matrix which leads to deterioration in error performance. Therefore, random

sampling is not the optimal way of selecting samples.

The problem of finding the optimal sampling locations is called ‘sensor placement’
in the literature. Formally, sensor placement is the selection of the ‘best’ M sensor
locations out of Ny (INg > M) possible locations in the presence of noise. When the
measurements and the unknown have a linear relationship, it can be equivalently defined
as the selection of those M rows out of Ny rows in the system matrix, which contains

the most information.

The most obvious way to solve the problem of sensor placement is to try out all

the (]J\\;‘)) possibilities and to choose that combination which results in the least error.
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Figure 4.1: A realization of 50 random samples in a room with a single scattering object
is shown. It can seen that the samples are not uniformly spaced and tend to
form clusters.

This combinatorial approach is NP-hard and is intractable even for small values of N
(eg. (gg) > 10'%). The problem of obtaining the optimal sensor locations at a lower
computational cost has been studied extensively in the literature. Early approaches
include heuristics like cross entropy optimization (Naeem et al., 2009), genetic algo-
rithms (Yao et al., [1993), and tabu search (Lau et al., 2008). However, these heuristics
neither provide any performance bounds nor do they guarantee convergence to the op-
timal solution. Joshi and Boyd (Joshi and Boyd, [2008) formulated the sensor selection
problem as a non-convex optimization of the determinant of the error covariance ma-
trix and proposed to solve a convex relaxation of it. They also provided a lower bound
on the performance which can be used to find out how suboptimal the solution is. It
has been found that due to the convex relaxation, this method sometimes results in an
ill-conditioned matrix, especially when the number of sensors is limited. Few greedy
approaches have also been proposed based on proxies of the estimation error like con-
dition number (Astrid et al., [2008; [Willcox, |2006) and frame potential (Ranier1 et al.,
2014). However, these proxies may also result in an ill-conditioned matrix. More-
over, minimizing these proxies results in the optimal solution only if the rows of the
system matrix (observation vectors) are unit norm. Jiang et al. proposed MPME (Max-
imal Projection on Minimum Eigenspace) (Jiang et al., 2016), a greedy sensor selection
algorithm that maximizes the minimum eigenvalue of the system matrix in a compu-
tationally efficient manner. MPME outperforms condition number and frame potential

based methods (in terms of the mean squared error), and can also guarantee that the sys-
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tem matrix is well-conditioned. Further, it does not assume that the observation vectors

are unit norm. These advantages make MPME a suitable algorithm for our problem.

Preliminary investigations have shown that MPME samples reduce the error to al-
most half the error obtained from random samples. For the simulation setup in Fig.[3.2]
for an SR of 0.55 and SNR of 25dB, random samples gave an error of Ag = 12%
and Ar = 22%. In contrast, the same number of MPME samples gives an error of
Ag = 5% and Ar = 12%. Further investigation is needed to quantify the performance

of the MPME sampling scheme.

4.1.2 Incident Field Expansion

One of the limitations of the method described in this thesis is that it assumes prior
knowledge of the source distribution or the incident field. However, in many cases this
information is not known. Therefore, a field prediction scheme that does not assume the
knowledge of the incident field would be more practical and more widely applicable.

Here, we present one of the ways of achieving this.

The incident field ¢;(7) is written as (see derivation of Eq. (2.8)) in Chapter|1)):

oi(7) = —jwug/ g(m, 7 J (7" dV' 4.1)
Vi
where V; is the region (centered at 7, and enclosing the source, and g(7,7") = —(j/4)H,

7']). The primed coordinates represent the variables of integration and lie within V;. Us-
ing the Graf’s Addition Theorem (Abramowitz and Stegun, |1948), we can expand the

Hankel function as:

Y (nlpr)) = ZH (| 1)) Jo (|| =000 4.2)

n=—oo

where R j; = 7, — 7; is the vector from 7, to 7;; 6; and 6; are the azimuth angles of

and R ;1 respectively. Note that Equation (4.2)) is valid only for || < R jil-

By setting 7; = 7 — 7/, 7} = 7o — 7 and R;; = 7, — 7; = 7o — 7 in Eq. @2), and
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substituting it in Eq. we get:

o0

6i(7) = =10 | (D0 Pkl = M) koly = e =000 ) g ()

n=—oo

4.3)
Notice that £ ;1 and therefore 6, are independent of 7. Also the condition |77;| < R il

is trivially satisfied as long as 7/ € V; and 7 ¢ V.
Since the integral is on primed coordinates, we can simplify this equation further as

follows:

Cn
7\

o] o

@(F) _ Z ((—1)”“%eﬂ'ngﬂflﬁz)(/ﬂolfo _ ﬂ)) / Jn(kolfo _ F")e_jnelJ(F/)dV/
oI Vi

n=—0o0

-~

sn (7)
4.4)

Here, we have expanded the incident field in an infinite series in which ¢, is the un-
known and their corresponding coefficients s, (7) are calculated in closed form. When
the source lies within a circular region of radius p, the infinite summation in Eq. (4.4))

can be truncated to [2koa + 1] terms (Bucci et al., |1998)) so that:
[koal

@i (T) =~ Z Sn(7)cn 4.5)

n=—[koa|

We can now substitute Eq. (4.3)) in Egs. (2.10) and (2.13)), and solve for the incident

field coefficients c,, along with the tangential field coefficients. Numerical experiments

to verify the above derivation are left as future work.

4.1.3 Phaseless Recovery

In many situations, it is inconvenient (and sometimes impractical) to make measure-
ments with phase. So, it becomes important to study reconstruction algorithms which
work with phaseless (amplitude-only) data. In this case, the data equation takes the form
b = |A,x|, where b is now real-valued (| - | denotes an element-wise modulus). The
state equation remains the same as it does not depend on the measurements. The prob-
lem of recovering x from phaseless measurements is called ‘Phase Retrieval’ and has

been studied extensively in the literature (Netrapalli et al., 2013} Candes et al., 2015a;
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Jaganathan et al., 2015;|Sun et al.,|2018]). Since it is a non-convex and an ill-posed prob-
lem, solving this is more challenging. Since the solution to any phase retrieval problem
always has a constant global phase ambiguity, it is sufficient to consider a prediction of

the field magnitude only.

One of the earliest applications of phase retrieval was in fields like Optics (Walther,
1963} |Gonsalves, |1982) and X-Ray crystallography (Millanel [ 1990; Saldin et al.,[2001)
where it was only possible to take phaseless measurements. Traditionally, an alternat-
ing projections approach has been taken to solve these problems (Gerchberg and Saxton,
1972} Fienup, |1982). However these approaches do not guarantee global convergence
and may reach a local minima. One of the successful approaches in recent times is
PhaseLift (Candes et all 2013) in which the unknown signal is lifted to a higher di-
mension (from N to N?) and a semidefinite programming approach is then taken to
solve the problem. PhaseLift requires at least M/ = O(N log(/N)) measurements to
converge to the correct solution. Due to the ‘lift’ to a higher dimension, PhaseLift is
computationally demanding and infeasible for large signals. Another popular method is
a gradient based method called the Wirtinger Flow algorithm (Candes ef al., 2015b). In
this method, the initial estimate is obtained by means of a spectral method and it can be
shown that for i.i.d. gaussian random measurements, this method converges locally with
a high probability, requiring (O(N log(NN)?) measurements for phase recovery. Thus,

both approaches require more measurements than the dimension of the unknown signal.

Naturally, if some a priori information is provided, it should be possible to reduce
the number of measurements required. Compressive sensing provides a framework to
incorporate this information, and a few methods have been suggested (Ohlsson et al.,
2011; Jaganathan et al.| | 2012) for phase retrieval of sparse signals from fewer measure-
ments than those required by the other methods mentioned above. Compressive Phase
Retrieval via Lifting (CPRL— see (Ohlsson et al.l [2011)) has the same objective func-
tion as PhaseLift except there is an additional /1 minimization term due to which it can
recover a k-sparse signal from M = O(k*log(4N/k?)) measurements. For a signal of
sufficient sparsity, CPRL requires lesser number of measurements than the number of
components in the vector (/V). Dictionary learning approaches further leverage the fact
that even though a signal is not sparse in the original domain, it might admit a sparse
representation in another basis or dictionary. DOLPHIn (Tillmann et al., [2016) is one

such algorithm for oversampled phase retrieval and involves iteratively updating the
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signal, sparse codes and dictionary to arrive at the result. Tianyu Qiu et al. in (Q1u and
Palomar, 2017)) have proposed a dictionary learning algorithm SC-PRIME for under-
sampled measurements, i.e. M < N using the majorization-minimization framework.
However, one of the disadvantages of dictionary learning methods is the high sensitiv-
ity to algorithm hyperparameters, which are usually chosen heuristically. FASPR (Shi
et al., 2018)) which is based on the total variation function (assuming the signal to have a
sparse spatial gradient) addresses the problem of having to choose the hyperparameters

heuristically by adaptively updating them.

However, none of these algorithms can be directly applied to our problem. This
is because, in addition to the (phaseless) data equation, we have additionally the state

equation. Therefore, a new phase retrieval algorithm has to be designed for this purpose.

4.1.4 Extensions to three dimensional geometries

In the current thesis, we only consider 2D scenarios. Extending our results to three
dimensional (3D) geometries is one of the top-priority extensions of our current work.

In the present work we restrict ourselves to 2D geometries for the following reasons:

1. In the process of this work — of solving the inverse problem in 2D — we have
come across several nontrivial aspects of study which we believe is of general
interest to the electromagnetics, signal processing, and inverse problems commu-
nity.

2. To the best of our knowledge, the problem setup considered in our work is a first
of a kind, with previous attempts being focused on ray-tracing approaches. As
such, due to a lower computational load, it is possible to explore many direc-
tions within this framework, such as strategies to find optimal field measurement
points, or investigating the impact of disturbance caused to the field by the field
measuring entity (such as an unmanned vehicle). Such investigations will become
computationally very cumbersome in 3D.

3. Now that the methodology of solving the problem in 2D has been established,
going to 3D is straightforward. Technical difficulties aside, we do not anticipate
any new conceptual challenges in this regard. Thus many of the essential aspects
of the inverse problem are conveniently explored within the 2D setup.
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4.2 Summary of the thesis

In this thesis, a surface integral based method for the prediction of EM fields was pre-
sented. The approach relies on the Huygens’ principle and the Extinction theorem to
represent the EM field measurements in the scattering environment in terms of the tan-
gential fields on the surfaces of the scatterers. This problem was then posed as a convex
optimization problem. A Subspace optimization based algorithm, CS-SOM was pre-
sented to solve for the tangential fields on the scatterers. Numerical results were pre-
sented to show the successful reconstruction of the tangential fields and the EM fields.
It was shown that for an SR of 0.55 and an SNR of 25dB, the tangential fields are re-
covered with an average error of 22% and the EM fields on a grid are recovered with
an error of 12%. Finally, a comparison of CS-SOM with other popular methods in the

literature was presented.
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We present a novel method based on Huygens’ principle and compressive sensing to predict the electro-
magnetic (EM) fields in arbitrary scattering environments by making a few measurements of the field.
In doing so, we assume a homogeneous medium between the scatterers, though we do not assume prior
knowledge of the permittivities or the exact geometry of the scatterers. The major contribution of this
work is a compressive sensing based subspace optimization method (CS-SOM). Using this, we show that
the EM fields in an indoor situation with upto four scattering object can be reconstructed with approx-
imately 12% error, when the number of measurements is only 55% of the number of variables used to
formulate the problem. Our technique departs significantly from traditional ray tracing approaches. We
use a surface integral formulation which captures wave-matter interactions exactly, leverage compressive
sensing techniques so that field measurements at a few random locations suffice, and apply Huygens’
principle to predict the fields at any location in space. © 2020 Optical Society of America
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1. INTRODUCTION

Reconstruction of electromagnetic (EM) fields in a scattering
environment is a fundamental problem, with many practical
applications such as radar cross-section estimation [1], indoor
positioning [2, 3], Wi-Fi access point planning [4] and such others.
Traditional approaches to this problem use ray tracing methods
[5-7]. These techniques are valid only in the high frequency
regime, suffer from large errors in near-field estimation, and
face difficulties in modelling multiple scattering events [Fig. 3
8]. These drawbacks may limit their applicability significantly.
In this paper, we overcome these limitations by proposing new
techniques that model wave-matter interactions exactly using
surface integral formulations. This characterization enables accu-
rate prediction of EM fields in arbitrary scattering environments.

Problem statement: The general real-world problem that we
aim to address is as follows: Consider a room with some objects
such as tables and chairs in which an active antenna (e.g. a Wi-Fi
router) is placed. Can the electromagnetic field at every point
inside the room be predicted?

It is desirable to solve this problem by making the least possi-
ble number of field measurements. For this reason, interpolation
based techniques are impractical because field variations on a
sub-wavelength scale dictate a high density of measurements.
Motivated by this, we present techniques that can reconstruct
fields by making few measurements. A major strength of our
approach is that we do not need to know the permittivity of the

objects; only a rough estimate of their locations is sufficient. That
said, we assume that the medium between the scatterers is homo-
geneous. An abstraction of the real world problem stated above
is shown schematically in Fig. 1 by means of a two-dimensional
(2D) scattering problem.

Our approach: According to Huygens’ principle, the scattered
field at a point can be expressed as a convolution between the
free space Green’s function and the tangential electric and mag-
netic fields on the surface of the scatterers. Additionally, the
Extinction theorem enforces certain relations between the tan-
gential electric and magnetic fields [9]. Thus, estimating these
tangential fields by using the above relations points the way
to predicting the scattered fields outside the scattering objects.
Further, it is empirically observed that these tangential fields
are sparse in certain bases (we substantiate this later in the text).
By leveraging this prior information and using the theory of
compressive sensing, we can bring down the number of mea-
surements required.

In the discrete world, the relation between the measurements,
b € CM, and the tangential fields, x € CV, is given by the system
matrix, A, as b = Ax + v, where v represents measurement
noise, M is the number of measurements, and N the number
of variables used to describe the tangential fields. Additionally,
the Extinction theorem gives the following relation between
the tangential fields: Asx = bs, where b, € CN/2 contains the
incident field, and Aj; is termed as the state matrix. The field
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Fig. 1. Schematic of the problem statement: Can the field be
predicted anywhere in Region 1 (a homogeneous medium)
by making a few measurements in the presence of an obstacle
denoted by Region 2? Sy, is the inner surface of the enclos-
ing wall and S, is the outer surface of the scatterer. 71, and 11,
are normals to the scattering surfaces of the wall and object,
respectively.

predicted, f € C%, is expressed in terms of the prediction matrix
B, as f = Bx, where S is the number of locations where the
field is desired. Therefore, the problem boils down to estimating
x given {b, bs} which is a convex optimization problem with
known solution strategies [10, 11].

The problem of recovering a higher dimensional signal from
lower dimensional field measurements has been widely stud-
ied in the inverse imaging community[12-14]. In particular, a
family of so-called subspace optimization methods (SOM) [15]
provide a convenient framework to split the desired signal into
two orthogonal subspaces, and to independently recover each
component. In recent work [16], we have shown an efficient
scheme to recover one component from the field data, and the
other based on a priori information.

Our contributions: To the best of our knowledge, this approach
of using the surface integral formulation along with compres-
sive sensing for solving the problem of field prediction has not
been reported earlier. We propose a compressive sensing-based
subspace optimization method (CS-SOM), that works by split-
ting a signal into two orthogonal vector subspaces and uses
signal sparsity in suitable domains to realize high accuracy field
predictions. Using this technique, we show that in a scatter-
ing environment (such as in the schematic of Fig. 1), the EM
field (in Region 1) can be reconstructed with approximately 12%
error and the tangential fields on scatterer surfaces can be re-
constructed with approximately 22% error, when the number of
measurements is only 55% of the number of variables used to
formulate the problem.

Paper organization: The rest of the paper is organised as fol-
lows. We formally define the problem statement in Section 2.
Then, Section 3 explains the theoretical details of the CS-SOM
algorithm used to solve the stated problem. Numerical Results
for the field prediction are presented in Section 4. We conclude
with a discussion of open issues, limitations, and possible appli-
cations of our techniques in Section 5.

2. PROBLEM FORMULATION

Governing Physics: The electromagnetic (EM) field at any loca-
tion can be obtained using Huygens’ principle, which states that
the field at any location is the superposition of primary (inci-
dent fields) and secondary sources located on scatterer surface(s)
(scattered fields) [9]. The schematic shown in Fig. 1 shows a
two dimensional (2D) computational domain which is illumi-
nated by a transverse magnetic (TM) polarization field. The
z—component of the electric field in Region 1, ¢(¥), can be ex-
pressed using Huygens’ principle [17] as:

¢(7) = ¢in(7)
. BEPIVPul?) ~ o) V'3 7)] -l
- BEPVe) -

oq
=

G0 (7)V'g(7,7)] - o dl!, (1)

where ¢(7,7) = —(j/4)H, (ko\r —7|) is the free space Green’s
function in Region 1, ¢;, (¥ ) is the incident electromagnetic field
due to a source, ¢, ¢,y are the tangential electric fields on the
object and wall surfaces, and i, and 7, are normals to the scat-
tering surfaces of the wall and object, respectively, as shown in
Fig. 1. It can be shown that V¢, - 1, and V¢, - fiy, are propor-
tional to the tangential magnetic fields on the object and wall,
respectively. Sy is the inner surface of the enclosing wall and
S, is the surface of the scatterer; since the problem is 2D, the
surface integrals are equivalent to contour integrals.

As per the Uniqueness theorem of electromagnetics [9], it
is superfluous to use both the tangential electric and magnetic
fields over the entire surfaces to determine the field when using
Huygens’ principle. Indeed, the tangential electric and magnetic
fields on the surface are related to themselves via the Extinction
theorem. When we apply this theorem to Region 1, the follow-
ing relation is obtained between the tangential field variables,

{p:(7), Ve (7) - 11}, t € {0, w}:

— o (P)V'g(7 7)) - A dl’
—ﬁw@WV%<>¢A> §(F 7))ol
- _¢in(7)/ 7e {SZU/ So}~ 2)

Discretized equations: We express the unknowns ¢, ¢o, (Vpyy -
fiw) and (V¢, - fi,) in a known basis p, (1), as:

N, No

= Z “?zpn(") Vo(r) - fio = anl( ), ©)
i=1 i=1
Ny,

= Z ay qn (7 Vo (r) iy = Z by qn(r @)

where lowercase r is reserved to denote the parametrized
distance along each respective surface (S, or Sy); p;(r), i =
1,2,...,N,,and g;(r),i = 1,2,..., Ny, are the sets of basis func-
tions and a9, b9, a} and b¥ are the unknown coefficients. Substi-
tuting Eq. (3) and Eq. (4) in Eq. (1), and considering M locations
of field measurement, we get a linear system of equations of the
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following form:

a’ ¢s(71)

b° ¢s(72)
[ErcH]| | =] " |+v )
—— | a :

b® ¢s("m)
\;‘ N————
b

where {E,F} € CM*Ne {G, H} € CM*Ne compose the system
matrix A € CM*N, x € CVN is a vector with vertically stacked
elements {a%, b°} € CN and {a%,b”} € CNe, with N = 2(N, +
N, ) determining the total number of unknowns. The scattered
field at a location 7; is ¢s(7;), which is corrupted by noise given
inv.

Similarly, substituting Eq. (3) and Eq. (4) in Eq. (2), gives the
following form of the discretized “state" equation:

T
) 6)

Z%n

Asx = — | g (@) - (P

™|

bS

where A, € C2*N is the state matrix, and ?gs), ic[1,Y]in
this case refer to unique points along the surfaces S,, Sy; these
points are made precise once the choice of basis functions is
made concrete.

One of the standard methods of exactly solving this linear
system for the coefficients ¢y, o, (V¢ - 1) and (V¢ - 11y) is to
combine the above equation with the Extinction theorem for the
other regions (however, this requires knowledge of the scatterer
permittivity), and then solve numerically by using the Method
of Moments (MOM) [9].

Key Idea: Our approach is to trade off the exactness of the

solution with the knowledge of the scatterer permittivity, there
by only using Eqs. (5,6) to estimate the unknown coefficients.
Recall that this only involves the Green’s function for Region 1
(i.e. free space), whereas the exact solution requires the Green’s
function for both Regions. Typically, Region 1 will always be free
space, whereas Region 2 will include objects with heterogeneous
permittivity, usually unknown in practical situations.
The above mentioned estimation can be accomplished by mea-
suring the field at a few random locations such that the right
hand side vector b in Eq. (5) is known. Since the system matrix
A has been constructed beforehand, the coefficients x can be
estimated, and as a result, the tangential fields are known via
Egs. (3,4). Then, substituting these fields back in Eq. (1), we can
predict the field at any point in Region 1.

Ideally we are interested in making this prediction by measur-
ing the field at as few locations as required. This typically leads
to the case of having the number of measurements, M, be less
than the number of unknowns, N, i.e. A is under-determined.
For this setup, the problem is formulated as follows,

1. Estimate the tangential fields by solving the following con-
vex optimization problem:

mini}nize |Ax = b|l2 <€, [|Asx — bs|la <7 @)

where A, A, x, bs are as before, b € CM is the vector con-
taining noisy measurements, € is an estimate of the square
root of the noise variance, and 7 is an estimate of the dis-
cretization error in the state equation.

2. Substitute x from above into Eq. (1) and calculate the field
at S locations. Let the true field at these S locations obtained
from the forward solver be f € C° (i.e. this data is generated
synthetically). Then we compute the error, e € R as

e=[Bx—fl> ®

where B € C5*N is the matrix obtained from Huygens’
principle Eq. (1), which when multiplied with the tangential
fields x gives the estimates of the EM fields.

It is crucial to note that B is identical to A in structure; the dif-
ference arises purely due to the choice of the location 7 in the
Green'’s function, g(7,7); in A this 7 corresponds to measure-
ment locations, whereas in B, it corresponds to the locations
where the field is desired. Therefore, in order to construct B, we
follow the same procedure described in this Section (Discretize
Eq. (1) by expanding the unknowns in a suitable basis and plug
in those values of ¥ where the field prediction is desired). It is to
be noted that we are interested in predicting the fields outside
the object (i.e. in Region 1). To get the fields inside the objects
we need to consider the Extinction theorem, which involves
knowing the exact permittivities of the objects. Also note that
even though in this paper we only deal with the scalar 2D case,
extensions to the 3D case or to the vector formulation are not
fundamentally different.

3. COMPRESSIVE SENSING BASED SUBSPACE OPTI-
MIZATION

In this Section, we explain the algorithm used to solve the prob-
lem formulated in the previous Section.

System & State matrix : The system matrix depends on a par-
ticular choice of the basis functions, p;(r), previously introduced.
To represent the tangential fields on scatterer surfaces, we use
pulse basis functions defined as follows: an arbitrarily shaped
contour S of length L is divided into n segments of equal length,
and with r denoting the parameterized distance along the con-
tour (the starting point on the contour is chosen arbitrarily), the
i basis function is:

1 rg;1<r<rsg;
pi(r) —{ . 1

ie[l,n,0<r<L
0 else

where rg; denotes the parameterized distance giving the end of
the ith segment on S. In our case, the contour could be either
the object S, (with n = N,, basis functions denoted by p), or the
wall Sy (with n = Ny, basis functions denoted by g). In this
pulse basis, the system matrix is denoted as A, = [E; F; G, Hp],
with the elements of each sub-matrix given by the corresponding
lower-case symbols [18]:

Twk k N
Cmk = 4] 0 H{z)(kopm)(ARm . ﬁ) dr
Twk-1 2Pry
Tk G
fug == [ SHE (kop) dr
Twk—1 (9)
Tok 7k N
S = / L1 (ko) (MR - 1) dr
Tok-1 201y
Tok 1
== [ 21 (kopu) dr
JTo k-1

where AR,, = R, — ﬁ(r), om = \Al_ém| with R, denoting the
position vector of the mth measurement point, and R(r) denoting
the position vector of the point on the respective contour with
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parameterized distance r. Similar expressions can be obtained

H(S)}

for the elements of the state matrix by setting {?§s>, Y,

in Eq. (6) to the midpoints of the discretized segments of the
surfaces S, and Sy (these segments are % in number). Sufficient
care has to be taken while evaluating the associated singular
integrals.

Subspace Optimization Method In order to solve this prob-
lem we improvise on the subspace optimization method (SOM)
[15], typically used in the context of inverse scattering prob-
lems. Here, the signal of interest is recovered from its projection
in two orthogonal subspaces. Our approach begins with the
singular value decomposition (SVD) of the system matrix as
Ap = Y u;o0H, where u,v represent the left and right singu-
lar vectors and ¢”’s are the corresponding singular values (with
0it+1 > 0;7). The essential idea is to consider the following orthog-
onal vector spaces, the ‘signal’ space spanned by the top L, right
singular vectors of the system matrix Ay, and the ‘noise’ space
that is spanned by the remaining N — L, vectors. In the absence
of noise, L, would simply be the the number of independent
rows of the matrix A, and the ‘signal” and ‘noise’ subspaces
would be identical to the row and null spaces of the matrix Ap,
respectively. However, in the presence of noise, the lower sin-
gular values amplify the noise from the measurements and lead
to a large error in the solution. Thus, the solution sought is
expanded as x = x; + x, corresponding to the signal and noise
spaces, respectively, which are estimated as follows:

(i) Signal space estimation: This component, x;s, is determined
by a L,-term truncation of the SVD of A, as follows:

Lo /ullp
e n ()

i=1

An immediate question concerns the selection of the parameter
Lo. This number is chosen using the Morozov discrepancy prin-
ciple [19], where L, is chosen as the smallest number such that
[[Apxs — b|l2 < €, where € is the variance of the noise, which in
many situations, is reasonably known. The problem is not very
sensitive to the exact choice of L, as the remaining components
are determined in the next stage; various studies have also cor-
roborated this observation [15, 16].

(ii) Noise space estimation: This component, x; is determined
from apriori information about the problem, based on the fol-
lowing observation: when the discrete Fourier transform (DFT)
coefficients of the true tangential fields are computed (using a
forward solver, see plots in Fig. 2), we observe that most of the
coefficients are very low in magnitude, i.e. the solution exhibits
sparsity in the DFT basis. This property can be exploited to
reconstruct the EM fields by using ideas from Compressive Sens-
ing [20] which penalizes the I; norm of the solution vector to
promote sparse solutions. As per the rigourous requirements
of Compressive Sensing, a sparse signal can be reconstructed
from undersampled linear measurements provided that the sens-
ing matrix follows the restrictive isometry property (RIP). Since
the RIP is difficult to verify in practice, we heuristically apply
Compressive Sensing ideas to our problem, a strategy that has
gained popularity in the electromagnetics community [11] in re-
cent times. Thus, holding x; constant, the noise space estimation
proceeds as per the following optimization problem:

minimize ||M(xs + x,)||1
Xn

1Ay — (b — Apxs)l2 <e, (10)
[ Asxn — (bs — Asxs)|l2 <1

subject to

where M = F,W,or D are the DFT, wavelet or DCT bases,
respectively, chosen as candidates for sparse representations.
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Fig. 2. DFT coefficients of the tangential fields (a) V¢, - 1o, (b)
¢o on the scattering surface S, and (c) V¢y, - iy, (d) ¢ on the
scattering surface Sy, as shown in Fig. 1. Most coefficients have
very low magnitudes.

4. NUMERICAL RESULTS

In this section we present the numerical results for the prediction
of spatial electromagnetic fields from measurements using the
formulations described previously. We describe the simulation
setup, define the error metrics and then present the results for
varying number of objects. All simulations are programmed
in MATLAB 2018b and executed on an Intel Core i7-7700 CPU
running at 3.60GHz, using 16GB RAM.

Simulation Setup: The simulation domain is 10A x 10A with
four objects all with different permittivities and an outer wall
which encloses all the objects. The simulation setup is shown in
Fig. 3 with objects 1,2,3 and 4 centered at (—2.5A, 1.51), (2A,2A),
(1A, —2.5A) and (—2.5A, —1A) respectively, where A is the wave-
length; The relative permittivities of the objects 1, 2, 3, 4 and
wall are €, = 3.7 —2.1j, €p = 1.7 —1.1], €3 = 2.7 - 3.7},
€4 = 1.2 — 1.1 and €,y = 3.7 — 2.1j respectively (lossy, so as to
mimic real life materials such as a concrete wall, etc.). Object 1
is a square of side A, object 2 is a cirle with radius 0.75A, object 3
is a rectangle with sides 1A x 2.5\ and object 4 is a circle with
radius 1A. Note that the permittivity and the true geometry of
the objects are used only in the forward solver to generate the
synthetic measurements. The source is placed at the location
7o = (0.5A, —0.75A), with a cylindrical plane wave of the form:
Pinc(7) = Hy” (ko7 = 7o)).

We obtain the true fields first using the Boundary Integral
(BI) method using pulse basis for the tangential fields on the
surface of the scatterers. Substituting the true tangential fields
in Huygens’ principle (Eq. (1)), fields at all other locations are
obtained. For this problem, a spatial discretization of A/40 is
considered to ensure numerical convergence. To verify the cor-
rectness of our forward solver, we have simulated the scattering
from a single infinite cylinder of radius A and validated it with
the Mie series solution, finding agreement within a relative error
of 1.5%. Since the electric field integral equation is known to
display numerical issues related to cavity resonances, we verify
(numerically) that there are no resonances in the frequency range

fox %, where fj is the operating frequency in our simulations.
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Fig. 3. The schematic of 10A x 10A simulation domain. The
domain includes a wall, 4 objects and a source. The objects
1,2,3 and 4 have their centers respectively at (—2.54,1.57),
(2A,27), (1A, —2.51) and (—2.5A, —1A). The source is located
at (0.54, —0.751) and ‘'w’ is the outer boundary. The dotted
contours are the approximate geometry of the objects used in
the field reconstruction algorithm.

The measurements are corrupted with additive white Gaussian
noise (AWGN) with a signal to noise ratio (SNR) of 25 dB and
10 dB.

Error metric definition: We define two error metrics in order to
evaluate the performance of our method, namely the tangential
field error, (At), and the error in reconstruction on the 2D grid
(Ag). The tangential field error is defined as,

Ap = ||xest - xtrue”Z a1
thrueHZ

where x5 and x4, are the estimated and true tangential fields
respectively.

For the purpose of quantifying the accuracy of the predicted
field, the field is estimated over the 10A x 10A region that is
discretized on a grid with pitch equal to A/20.

The error in reconstruction is calculated using the following
relation:

error (Ag) = st = Ptruell2 12)
H(Ptrue HZ
where ¢esr and ¢y are the estimated and true fields over the
2D grid of points respectively.
We also define the relative error at a location 7 as:

[9et(7) = i) .
| Ptrue (7’) |
where ¢, (7) and ¢y, (7) are the estimated and true fields at 7

respectively.

The fields inside the object and fields that are very close to
the scatterer surfaces (at a distance less than A/10 from the
approximate surfaces of the objects) are not considered in the
error calculation.

Problem Discretizations: For predicting the field we don’t as-
sume the knowledge of the exact shape of the scatterer, instead
we approximate the geometry of the object by a bounding box
that encloses the object. This is shown in Fig. 3 by means of
dotted contours around the objects. The system matrix and the

state matrix for the inverse problem (of the form given in Eq. (9)
are obtained using a uniform discretization of A /5 along the dot-
ted contours. This was chosen heuristically based on numerical
experiments where the discretization was varied from A/2 to
A/20; it was found that a discretization of A /5 gives the optimal
trade-off between accuracy and computational cost. The number
of unknowns for the tangential fields varies with the number
of objects; considering all four objects and the wall, there are
704 unknowns. In the figures shown below, we consider the
case of all 4 objects and the wall with 387 randomly chosen field
measurements (0.55 times the number of unknowns) with 25
dB SNR. The system matrix A, has a rank of 380, and using the
Morozov principle gives a number L, in the range of 140-150 as
the number of significant singular values at this value of SNR
(i.e the signal space is spanned by the first L, right singular
vectors of Ap).

Applicability of compressive sensing when M > %: In the cases
where the number of measurements M is greater than %, a nat-
ural question arises regarding whether or not there are more
equations than the number of variables, and subsequently the
applicability of the idea of compressive sensing. However, when
we construct a “composite” system matrix such that A = ( g’f )
for various values of M and study its singular value spectru;n,
the following observations emerge:

(i) Even by the conservative definition of rank, which includes
very small but non-zero singular values, the rank of the compos-
ite system does not exceed N.

(ii) If we take a more realistic scenario and consider singular
values within a factor of 10° of the maximum singular value, the
number of significant singular values is well below N.

Therefore, even though the composite matrix A is overde-
termined, it does not have full column rank. Thus, the use
of a priori information towards compressive sensing solutions
remains legitimate.

Predictions based on random measurements: The reconstructed
tangential fields on the wall are plotted along with the true
tangential fields in Fig. 4. It can be seen that the tangential fields
are recovered well.

‘ —True - Prediction ‘

12X 16X 20X 24X 28X 32X 36\

0.2H¢

[Dul

0.1

ti

12X 16X 20X 24X 28X 32X 36\

Fig. 4. Comparison of the magnitudes of the estimated and
true tangential fields on the surface of the inexact wall, ob-
tained for 387 measurements (0.55 times the number of un-
knowns). The measurements are noise corrupted by 25 dB

SNR.

To visualize field prediction, we consider a contour of ra-
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dius 4.2A centered at origin, which includes all objects and plot
the true and predicted fields over it using the CS-SOM method
and report the results in Fig. 5. As can be seen, the prediction
matches the true field very well. Next, to consider a larger area
for prediction, we consider the entire scattering region outside
the objects, plotting the true and reconstructed fields in Fig. 6,
which again reveal a very good correspondence. Finally, Table
1 shows the tangential field error and the error in reconstruc-
tion for various measurement modalities (different number of
measurements and SNR values). We also report along with the
number of measurements, the sampling rate (SR) which is defined
as the ratio of the number of measurements to the number of
unknowns in the problem. We use the DCT bases and apply the
subspace optimization method (see Eq. (10)) for estimating the
tangential fields.

In order to study how well our results generalize to different
scattering geometries, we also perform experiments with differ-
ent numbers of objects (one to four). Table 2 shows the tangential
field error and the error in reconstruction with different number
of objects with a fixed sampling rate of 0.55. As can be seen,
the predictions are quite accurate, giving an error of 12% for
a sampling rate of 0.55 and 25 dB SNR with a simulation time
of 5 minutes per instance of random measurement points. The
relative error at each location is shown in Fig. 8, and it can be
seen that though the error observed is 12% for 0.55x sampling
rate, the major error occurs near the boundary of the walls, and
in between close objects. As evidenced by the histogram of error
values reported in Fig. 8(b), the prediction accuracy is very good
at all the other regions and is less than 10% for more than 80%
of the grid locations.

A note on related numerical schemes: It is worth mentioning
in passing, the accuracy of three related schemes in solving the
above problem.

(i) It is natural to consider a truncated SVD (of the composite
matrix A) when faced with finding the solution to a linear in-
verse problem with noisy data. Since this approach does not
leverage any a priori information about the problem, the error,
not surprisingly, is higher. In particular, we obtain Ag = 19%
and At = 30% in the case of a sampling rate of 0.55 and 25 dB
SNR when we retain the minimum number of singular terms so
as to satisfy ||Apx — b2 < e.

(ii) The second approach is to use compressive sensing in a
straight forward manner by formulating the problem as:

miniénize 12111

|ApKE — bl <e, as)
[|AsKE — bs[2 <7

subject to

where sparsity of the solution in a domain represented by a linear
transformation K with coefficients ¢ is leveraged for obtaining
a solution. Since exact knowledge of the sparsifying domain is
not known in general, this approach also leads to a higher error.
In our experiments we considered the DFT, DCT, and Wavelet
(db-2) transformations, achieving an average of Ag = 14% and
A1 = 25% in the case of a sampling rate of 0.55 and 25 dB SNR.
Our proposed CS-SOM approach gives superior results, and can
be thought of as a synthesis of these two ‘naive” approaches.

(iii) The third approach is to enforce sparsity by choosing the
lower frequency DFT coefficients as the unknowns. We compare
CS-SOM to two such reconstruction algorithms, namely the New
FFT (NFFT) SOM [21] and the FFT - Twofold SOM (T-S0M) [22].
We find that for a sampling rate of 0.55 and 25 dB SNR, both

NFFT SOM and T-SOM achieve an average of Ag = 15% and
A1 = 30%. We do note, however, that CS-SOM has a higher
computational run time than NFFT SOM or T-SOM.
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Fig. 5. Comparison of reconstructed and true fields (magni-

tudes and phase) over a contour of radius 4.2 A obtained for
0.55x sampling rate (387 measurements). The measurements
are noise corrupted by 25 dB SNR.

Fig. 6. The magnitude of (a) true and (b) reconstructed 2D
fields over a 10A x 10A grid, obtained for 0.55x sampling rate
(387 measurements). The measurements are noise corrupted
by 25 dB SNR. The colorbar shows the field magnitude in
V/m.

5. DISCUSSION

Sparsity in electromagnetic reconstruction problems: In this paper,
we have proposed a method of field reconstruction using elec-
tromagnetic (EM) principles (Huygens’ principle, Extinction
theorem) and tangential field sparsity in certain transformed
domains. A natural question arises regarding the applicability
of sparse reconstruction in general EM problems. This issue has
been addressed in [Fig. 6.14 22]. As it turns out, the right singu-
lar vectors corresponding to the highest singular values of the
state operator resemble low-frequency Fourier bases, whereas
those corresponding to the lower singular values resemble high-
frequency Fourier bases. If we consider the simple idea of the
pseudoinverse of the operator, it becomes clear that the solution
is dominated by the highest singular values, and therefore the
low-frequency bases. Hence, the idea of imposing sparsity is
a general principle in all electromagnetic problems involving
radiation-like operators.
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Fig. 7. The phase of (a) true and (b) reconstructed 2D fields 10 Max 37 |38 | 39 | 46 | 37 | 47

over a 10A x 10A grid, obtained for 0.55x sampling rate (387
measurements). The measurements are noise corrupted by 25
dB SNR. The colorbar shows the phase in radians.

0.5 1
% Error

Fig. 8. (a) Relative error (see Eq. (13)) in the prediction of total
field over a 10A x 10A grid discretized at A/20. The predic-
tion is obtained for 0.55x sampling rate (387 measurements) .
The measurements are noise corrupted by 25 dB SNR, and (b)
Histogram of normalized error over different locations of the
simulation domain in Fig. 8 (a). 80 % of the locations, have less
than 10 % prediction error with an average error of 12 %

Measurements/Sampling Rate

212/ 0.3x | 387/0.55x | 563/0.8x
Ac | At | Ag | Ar | Ag | Ar
Mean | 23 | 32 | 12 | 22 8 19
Max 32 |43 | 17 | 29 11 | 24

SNR (dB)

25
Min 15 |24 |7 17 5 16
SD 3 3 2 3 1 2
Mean | 45 | 45 | 31 | 36 24 | 30
10 Max 54 | 53 | 37 | 41 28 | 39

Min 39 |39 | 25 | 30 20 | 24
SD 3 3 2 3 2 3

Table 1. Percentage error in the predicted field (Ag) and recov-
ered tangential field (At) for different measurement modalities
(different number of measurements and SNR values) over a
10A x 10A grid calculated for 100 monte carlo trials. SD is the
standard deviation.

Min 24 | 25 |27 |28 | 25 | 30
SD 3 3 2 4 2 3

Table 2. Percentage error in the predicted field (Ag) and recov-
ered tangential field (Ar) for different number of objects over
a 10A x 10A grid, for 0.55x sampling rate. The error was calcu-
lated for 100 monte carlo trials. SD is the standard deviation.
The number objects are considered in serial wise as shown in
Fig 3.

Extensions of this work: An interesting line of research opens
up when we consider the optimality of the sampling locations.
To understand this point better, we conducted numerical exper-
iments in which we made field measurements only along an
arbitrary line, and found the field prediction to be erroneous.
Motivated by this observation, we plan to extend our work by
investigating optimal sensor placement and optimal sensing ba-
sis with an aim to minimize the number of measurements. There
has been promising recent work, both theoretical and computa-
tional, in this regard [23-28], though in different settings than
those considered here.

Currently, we characterize the error using the sampling rate
which is defined as the ratio between the number of measure-
ments and the number of unknowns. The latter is not a funda-
mental choice and other characterizations, such as the electrical
length of the scatterers or the degrees of freedom of the scattered
fields [29, 30] are also possible.

An important line of research is to consider the case of phase-
less (amplitude-only) measurements. Such an extension would
be useful in situations where it is inconvenient/expensive to
make measurements with phase. This problem is called ‘Phase
Retrieval’ and has been studied extensively in the literature [31—
34]. Traditional approaches like alternating projections [35, 36]
often reach a local minima, but more recent advances in this
area are based on dictionary learning [37, 38] and have achieved
considerable success, even for the case where the number of
measurements is smaller than the number of unknowns. Finally,
we plan to extend our work to 3 dimensional (3D) scenarios.

Limitations of the proposed method: The method proposed in
this paper suffers from the following limitations:

(i) The highest error in prediction occurs at the corners of the
outer wall and the regions in-between the objects where very
few field measurements are taken. To mitigate the error in
between the objects more measurements should be considered
in such regions.

(ii) In complex scattering environments with a large number of
scatterers, the number of unknowns increases. Since the error
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in reconstruction depends on the sampling rate, the number of
measurements needed to attain the same level of accuracy is
also higher. Further studies on the degrees of freedom inherent
in a scattering environment need to be undertaken in order to
determine how the number of unknowns scale with the number
of scatterers [29, 30, 39].

Summary: In this work, we have shown that when spatial
measurements of fields are taken in an indoor scenario, we can
recover the electromagnetic fields to varying degrees of accuracy
depending on the number and location of measurements. We
use the compressive sensing subspace optimization technique
to find tangential fields on the surfaces of the scatterers. For
example, in the numerical study we undertook within a 10A x
10A region, the electromagnetic fields can be recovered with 387
measurements upto an error of = 12%.

Future applications: The method described in this paper can
be employed in a number of scenarios, a few of which are men-
tioned here. Since our method correctly reconstructs the tangen-
tial fields on a contour bounding the object, a logical extension
is the prediction of the radar cross-section (RCS) of the scatter-
ing object using a near-to-far field transformation (see [1] for
example). RCS estimation is known to be a time intensive pro-
cess, and any improvement that can be attained by minimizing
the number of measurements required is welcome. Next, in-
door Positioning Systems can employ this method, instead of
ray tracing methods (e.g. [40—42]) to determine the location of
a person based on EM field measurements. To counter unique-
ness problems (where two or more locations have approximately
the same field magnitude), multiple frequency sources can be
employed, and or data can be collected from several locations.
Finally, our method can also be applied to WiFi access point
planning, in which one tries to optimally place WiFi routers in
an environment so that most locations receive good Quality of
Service (QoS) guarantees.
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